Math 3A, Linear Algebra Practice problems

Problem 1.

Is the solution set of a system of 3 homogeneous equations in 5 variables a subspace in \mathbb{R}^{3} or in \mathbb{R}^{5} ?

Problem 2.

True or False: If A and B are $n \times n$ matrices, then $(A+B)(A-B)=A^{2}-B^{2}$.

Problem 3.

Suppose $A^{n}=0$ for some $n>1$. Find an inverse for $I-A$.

Problem 4.

True or False: If $\bar{u} \perp \bar{v}$, then $\|\bar{u}-\bar{v}\|=\|\bar{u}+\bar{v}\|$.

Problem 5.

Let x_{1}, x_{2}, x_{3} be real numbers. Define Vandermond matrix V by

$$
V=\left(\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2}
\end{array}\right) .
$$

Show that $\operatorname{det} V \neq 0$ if and only if all the numbers x_{1}, x_{2}, x_{3} are different.

Problem 6.

True or False: If \bar{v} and \bar{u} are vectors from \mathbb{R}^{3}, and $\bar{v} \perp \bar{u}$, then for any vector \bar{x} from \mathbb{R}^{3} we have

$$
\|\bar{x}\|^{2} \geq|\bar{x} \cdot \bar{v}|^{2}+|\bar{x} \cdot \bar{u}|^{2} .
$$

Problem 7.

True or False: If matrix A is similar to matrix B, and B is diagonalizable, then A is also diagonalizable.

Problem 8.

Suppose an $n \times n$ matrix A satisfies the equation $A^{2}-2 A+I=0$. Show that $A^{3}=3 A-2 I$.

