Math 3A, Linear Algebra Sample Final

Problem 1.

Find a basis in the subspace spanned by vectors

$$
\left[\begin{array}{c}
2 \\
-8 \\
6
\end{array}\right],\left[\begin{array}{c}
3 \\
-7 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
6 \\
-7
\end{array}\right] .
$$

Answer: For example, vectors $\left[\begin{array}{c}2 \\ -8 \\ 6\end{array}\right],\left[\begin{array}{c}3 \\ -7 \\ -1\end{array}\right]$ form a basis. Notice that the choice of a basis is not unique!

Problem 2.

Find $\operatorname{det} A$, where

$$
A=\left(\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right)
$$

Answer: -10

Problem 3.

Find all eigenvalues of the matrix

$$
\left(\begin{array}{ccc}
-1 & 0 & 1 \\
-3 & 4 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Answer: -1, 4, 2 .

Problem 4.

For each of the following statements determine whether it is true or false (explain your answer):
a) If A and B are diagonalizable 2×2 matrices, then $A+B$ is also diagnalizable.
b) If A, B, and C are 2×2 matrices, such that A and B are similar, and B and C are similar, then A and C are also similar.
c) If A and B are 2×2 matrices that have no real eigenvalues, then $A B$ also does not have real eigenvalues.

Answer: (a) - false; counterexample: $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$.
(b) - true; indeed, if $A=P B P^{-1}$ and $B=Q C Q^{-1}$, then $A=(P Q) C(P Q)^{-1}$.
(c) - false; counterexample: $A=B=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Problem 5.

Find A^{n} (for every $n=2,3, \ldots$), where

$$
A=\left(\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right) .
$$

Answer: $A^{n}=\left(\begin{array}{cc}2 \cdot 3^{n}-2^{n} & 2 \cdot 3^{n}-2^{n+1} \\ 2^{n}-3^{n} & 2^{n+1}-3^{n}\end{array}\right)$.

