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Abstract

Here we study an amazing phenomenon discovered by Newhouse [S. Newhouse, Non-density of Ax-
iom A(a) on $2, in: Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., 1970, pp. 191-202; S. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9-18; S. Newhouse, The abundance of
wild hyperbolic sets and nonsmooth stable sets of diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci.
50 (1979) 101-151]. It turns out that in the space of C” smooth diffeomorphisms Diff” (M) of a compact
surface M there is an open set U such that a Baire generic diffeomorphism f € U has infinitely many coex-
isting sinks. In this paper we make a step towards understanding “how often does a surface diffeomorphism
have infinitely many sinks.” Our main result roughly says that with probability one for any positive D a
surface diffeomorphism has only finitely many localized sinks either of cyclicity bounded by D or those
whose period is relatively large compared to its cyclicity. It verifies a particular case of Palis’ Conjecture
saying that even though diffeomorphisms with infinitely many coexisting sinks are Baire generic, they have
probability zero.

One of the key points of the proof is an application of Newton Interpolation Polynomials to study the dy-
namics initiated in [V. Kaloshin, B. Hunt, A stretched exponential bound on the rate of growth of the number
of periodic points for prevalent diffeomorphisms I, Ann. of Math., in press, 92 pp.; V. Kaloshin, A stretched
exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II,
preprint, 85 pp.].
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1. Introduction

Let M be a smooth 2-dimensional manifold and Diff” (M) be the space of C” smooth diffeo-
morphisms with the uniform C” topology. According to the standard terminology Baire generic
(residual) set of diffeomorphisms is a subset of Diff” (M) which contains a countable intersec-
tion of open dense sets. During the time Thom [39] had been developing singularity theory he
conjectured that Baire generically a diffeomorphism or a flow has only finitely many hyperbolic
periodic attractors. It turns out that this conjecture has a negative answer.

We say that a diffeomorphism f € Diff” (M) exhibits a homoclinic tangency (HT) if it has a
saddle periodic point p = f"(p) for some n € N such that stable and unstable manifolds W*(p)
and W¥(p) of p respectively have a point g of tangency (see Fig. 1). Denote by H7 C Diff" (M)
the set of diffeomorphisms exhibiting homoclinic tangency. The picture of homoclinic tangency
seems fragile and easily destroyable by a small perturbation for a single saddle periodic point.
Surprisingly however, Newhouse [25] proved that the C"-closure of H7 contains an open set
U C Diff" (M). These open sets are called Newhouse domains. Later Newhouse [26,27] proved
that in such a domain there is a Baire generic set of diffeomorphisms having infinitely many
coexisting sinks. Examples of coexistence of infinitely many sinks have been found in various
situations:

Henon family.  In the 1970s, M. Henon [16] made an extensive numerical study of the behavior
under iteration of maps P, j: R% — RZ? of the form x, )~ {1- ax? + by, x), where a, b € R.
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In particular, Henon found numerical evidence supporting the existence of a strange attractor for
P, », when a = 1.4 and b = 0.3. In the parameter plane (a, b) it was shown [40] that arbitrarily
near (a,b) = (2,0) there is an open set U such that for a Baire generic parameter in it, the
corresponding P, ; has infinitely many coexisting sinks.

Polynomial automorphisms of C2.  Buzzard [4], using results of Forness—Gavosto [7], showed
that for a large enough d in the space of holomorphic self-maps H;(C?) of C? of degree d, there
exists an open set N’ € H;(C?) such that for a Baire generic parameter in it, the corresponding
self-map has infinitely many coexisting sinks.

Newhouse’s discovery of existence of infinite number of attractors for topologically generic
dynamical system leads to the following natural question: What is the probability of this phe-
nomena in some measure theoretical sense? In the case of finite parameter families as above it
corresponds to the question: What is the measure of the set of Baire generic parameters with
infinitely many coexisting sinks?

Another result which shows importance of investigation of perturbations of HT is the follow-
ing

Conjecture 1. (Palis [31]) For any r > 1 any surface diffeomorphism f € Diff" (M) can be
approximated by one that is either essentially hyperbolic or exhibiting HT.

Essential hyperbolicity refers here to a diffeomorphism that has a finite number of hyper-
bolic attractors whose basins of attraction cover a set of full Lebesgue measure. For r = 1 this
conjecture has been proven by Pujals—Sambarino [36].

The primary goal of this paper is to analyze trajectories localized in a neighborhood of a
fixed HT. A loose statement of the main result is in the abstract. A sink periodic orbit is the
simplest attractor. We now define notions of an unfolding of an HT and localized trajectories of
finite complexity associated to that HT.

Wu(p)

p q=(1,0) [

Fig. 1. Homoclinic tangency.
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Fig. 2. Localization for homoclinic tangency.

Consider a 1-parameter family of perturbations {f:}.cs, I = [—&0, &9] of a 2-dimensional
diffeomorphism f = fo € Diff" (M) with homoclinic tangency and small g9 > 0 (see Fig. 1).
Roughly speaking, ¢ parametrizes oriented distance of the top tip of the unstable manifold to the
stable manifold. Such a family is called an unfolding of an HT.

Robinson [37], adapting Newhouse’s ideas [26,27], showed that for such an unfolding there
is a sequence of open intervals converging to zero such that for a generic parameter from those
intervals the corresponding diffeomorphism f; has infinitely many coexisting sinks.

Assume that f has a fixed saddle point pp = f(po) and that the eigenvalues A, u of the
linearization Df(pg), 0 < A < 1 < u, and they belong to the open dense set of pairs of full
measure of eigenvalues for which Sternberg’s linearization theorem holds. Then in a small neigh-
borhood V of pg there is a C” smooth normal coordinate system (x, y) € V C R? such that
f(x,y)=(rx, uy). Suppose g is the point of homoclinic tangency of W*(pg) and W*(po) away
from V, and let § = f~'(g) be its preimage. Extend the coordinate neighborhood V by iterating
forward and backward until first it contains g and f(g), respectively. Decreasing vV if necessary
we can assume that there are no overlaps. Denote such a neighborhood by V and call it a normal
neighborhood. By definition V does not contain g (see Fig. 2). Consider a neighborhood U (re-
spectively UcU) of g (respectively ¢) such that f(U)NU = @ (respectively f~ "OynU =),
f (U )DU,and f (U )NV = (. By rescaling coordinate axis one could set g to have coordinates
(1,0) and g to have (0, 1). Set YV =V U U. In what follows we fix a neighborhood V once and
for all.

Definition 1. We call an invariant set of points V-localized if it belongs to V. In particular, any
invariant set contained in

Ay=[)r"0) (1)

nez

is V-localized. A periodic point f"(p) = p, n € N, is called V-localized if it belongs to Ay, and
is called (V, s)-localized if its trajectory P = { f¥( P)}j_, visits U exactly s times. Call s = s (')
the cyclicity of a V-localized periodic orbit.
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The zoo of V-localized invariant sets is incredibly rich. Below we just mention the authors
favorite animals.

e Smale’s horseshoe created by a small perturbation of an HT.

o V-localized sink of an arbitrary high period (Gavrilov—Shilnikov [8] and Newhouse [27]).

o [Infinitely many coexisting V-localized sinks. Actually Newhouse [26] (see also Palis—Takens
[33] for a simplified proof) proved that for a Baire generic set of diffeomorphisms in a
Newhouse domain there are infinitely many coexisting sinks. However one can construct
infinitely many of those as V-localized.

e Strange attractor (Benedicks—Carleson [2], Mora—Viana [24], Young—Wang [41]). A strange
attractor appears as an attractor for the return map of a certain rectangle localized in U into
itself. It would imply that a V-localized set could contain a strange attractor.

o [Infinitely many coexisting strange attractors (Colli [6]).

e Arbitrarily degenerate periodic points of arbitrary high periods (Gonchenko—Shilnikov—
Turaev [13]).

o Uniformly and non-uniformly hyperbolic horseshoes as maximal invariant sets Ay (New-
house—Palis [28], for further generalizations see Palis—Takens [32], Palis—Yoccoz [34,35],
and I. Rios [38]).

The first of our main results is the following

Theorem 1.1. With the above notations, for a generic' 1-parameter family { f:}ec; that unfolds
an HT at g there is a sequence of numbers {Ns}sen such that for almost every parameter &
and any D € N the corresponding f, has only finitely many V-localized sinks {3} je; whose
cyclicity is bounded by D or period exceeds Ny;, where sj = s(PBj) > D is cyclicity of a cor-
responding sink B ;. In other words, for almost every parameter ¢ if there are infinitely many
coexisting V-localized sinks {*j} e, then all but finitely many have cyclicity s;j =s(B;) > D
and period < Nj;.

Remark 1. For 1-loop periodic sinks a similar result is obtained by Tedeschini-Lalli—Yorke [23],
see also [29]. Dynamical properties of periodic and homoclinic orbits of low cyclicity
(s =1,2,3) were studied in [11,12]. In particular, Gonchenko and Shilnikov found the rela-
tion between existence of the infinite number of 2-loop sinks and numerical properties of the
invariants of smooth conjugacy [10]. For random maps the problem of finiteness of attractors
was considered by Araujo [1].

2
Remark 2. We can choose Ny = s7° .

Remark 3. In a later publication of the authors on the subject of Newhouse phenomenon we mod-
ify arguments from Palis—Takens [32] and show that for a generic parameter ¢ in a Newhouse
interval (see the result of Robinson [37] stated above) f; has infinitely many V-localized sinks
of {Pj}; whose periods exceed the corresponding functions N, of their cyclicity s; = s(P;). In
particular, it implies that Theorem 1.1 gives another example of a topological generic phenom-

1 Meaning of “generic” is in the sense of prevalence in the space of 1-parameter families, see Section 2.8 for a defini-
tion.
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enon of zero measure in the space of parameters. For other examples of prevalent topologically
negligible phenomena see [17,21,30].

Since a sink is the simplest example of an attractor, this result is a particular case of the
following

Conjecture 2. (Palis) With probability one a surface diffeomorphism has finitely many attractors.

Our method provides significant additional information about hyperbolicity of corresponding
localized periodic points, which is the second main result.

Definition 2. We say that a periodic (under the map g) point p of period n is (i, R)-trace hyper-
bolic if

|Tr Dg" (p)| > =" 2)
Remark 4. For a V-localized periodic point p of large period n (> s) we have that
det Df"(p) ~ (Ap)".
Hence if the product of eigenvalues Ay < 1, then the condition (2) implies hyperbolicity of p.

Theorem 1.2. With the above notations of Theorem 1.1, for any & > 0 there is a sequence of
numbers {N;(R)}sen such that for almost every parameter ¢ and any D € N the corresponding
fe has only finitely many V-localized not (i, R)-trace hyperbolic periodic points {'B j} jey whose
cyclicity is bounded by D or period exceeds Ny, (R), where s; = s(B;) > D is cyclicity of a
corresponding sink B ;. In other words, for almost every parameter ¢ if there are infinitely many
coexisting not (j, R)-trace hyperbolic V-localized periodic points B} ey, then all but finitely
many have cyclicity sj = s(Bj) > D and period < Nj;.

Remark 5. Note that if p is a periodic orbit of a planar diffeomorphism of period n and
|Tr DfX(p)| > 2, then p can not be a sink. Therefore Theorem 1.2 implies Theorem 1.1.

Palis—Takens [32] and Palis—Yoccoz [34,35] investigated generic unfolding of an HT not only
for saddle periodic points but also for horseshoes. They investigated parameters outside of New-
house domains. We obtain less sharp properties of the dynamics, but we treat parameters inside
Newhouse domains too!

Strange attractors can be found as invariant sets of certain return maps of a subset I7 of U
into itself, i.e. for some n we have f":IT — U is well defined. For trajectories in (<7, £k,
the period grows linearly with cyclicity. The main result does not restrict attention to a subset
IT of U but has to consider trajectories whose period grows superexponentially (> sssz) with
cyclicity s.

1.1. Main ideas of the proof of Theorem 1.2

The general idea of the method is described in non-technical terms in [14].
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1.1.1. Borel-Cantelli arguments
Fix X >0,e.g. R=1/2. Let

B, s = {e € I | fe has anot (u, 1/2)-trace hyperbolic

periodic point of period n and cyclicity s }
Suppose

Z Leb(B, ) <+4oc foranyseZ,,

neZy

where Leb is the Lebesgue measure. Then for almost every ¢ € [ there are only finitely many not
(u, 1/2)-trace hyperbolic periodic points of bounded cyclicity. The focal point of the proof is to
estimate the measure of “bad” parameters Leb(B,, s).

1.1.2. Trajectory type, hyperbolic and parabolic maps

Any (V,s)-localized periodic orbit, by definition, visits U exactly s times and spends
ni,no,...,Nng consecutive iterates in V, n = ny +ny + --- + ng + 5. We call an ordered se-
quence (ny,...,ny) type of a periodic orbit. For a given periodic orbit denote the points of
intersection with U by po, p1, ..., Ps—1 and the corresponding points in U by po = f"(po),
f’l = fnz(P1)7 cees f)s—l = f’ls (stl)-

Recall that f is linear in V \ U with eigenvalues A < 1 < p, f|v\0(x, y) = (Ax, ny). Call
this linear map hyperbolic, denoted L, and f|; parabolic, denoted P.

1.1.3. Cone condition

To estimate the measure of parameters for which a periodic orbit of a given type is not
(u, 1/2)-trace hyperbolic, we introduce the following cone condition. Define at every point
p € U acone

Ka(p) ={v=(vx,vy) € TV =Ry > vl .

To show that the periodic point pg is hyperbolic it turns out that it suffices to find 0 < o <K 1
independent of n such that

Df;fpo (Kan (pO)) C Kan(Po)- 3)

To verify this condition directly does not seem possible in general. Our plan is to verify that
for most parameters this cone condition holds after each loop:

ni+1 R R p— _
&,pi S =uU,..., .
DS (Kan(Pi)) C Kan(Pit1 mods)) foreachi =0 s—1 4)

See Fig. 3 for s = 1. This condition clearly implies (3), because the image of the first cone
Kun (po) belongs to the second cone Ky, (p1). The image of the second one belongs to the third
one and so on.

Fix 0 < o « 1. Notice that if all loops are long: n; > 3an, then L™ K, (p;) is the cone
of width angle < 2u™*". Fix 1 < j < 5. To satisfy condition (4) for j we need to avoid the
intersection of the cone D fg,f,j (L" Kon(pj)) and the complement to Ky (Pi+1). Assume that
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L'(K (p)

Fig. 3. Evolution of cones.

we can perturb Df, 5. by composing with rotation and angle of rotation is a parameter. Then we
need to avoid a phenomenon that has “probability” ~ p~%". Taking the union over all types N,
|N;| = n we get that probability to fail (4) for some 1 <i < s is ~ n*u~*". We avoid saying
explicitly probability in what space, just assume that it is proportional to angle of rotation, and
postpone the exact definition for further discussion.

However, it might happen that one of n;’s is significantly smaller than an, e.g. ny < Inn. In
this case, the above argument fails. Indeed, let ny = [Inn], n > 1. Consider the image of the
cone K, (ps—1) after the last loop L™ K, (ps—1)- It is the cone, whose width angle is of order 1.
Taking into account possibility that Df, 5 rotates a vertical vector by 7 /2 it is certainly not
possible to fulfill (4) by a small perturbation. The natural idea is fo avoid looking at condition (4)
after “short” loops. This leads to combinatorial analysis of type N of trajectories.

1.1.4. Combinatorial analysis of type N of s-loop trajectories
Below we do not pay attention to dynamics of a trajectory of type N; under consideration.
We investigate only properties of N.

o Short and long loops. We shall divide an s-tuple Ny = (n1, ..., ny) into two groups of long
and short n;’s, because they correspond to loops of a trajectory. After such a division long
n;’s should be much longer than short n;’s. Denote by ¢ (respectively s — t) the number of
long (respectively short) loops.

e Generalized loops and essential returns. Since we cannot fulfill (4) after short loops, we
combine all loops into groups, called generalized loops. Each generalized loop starts with
a long loop and is completed by all short loops following afterwards. Therefore, the num-
ber of generalized loops equals the number of long loops. Then we verify (4) not after each
loop, but after each generalized loop. Denote by Py, ..., Pi_1, P, = Py C U starting points
of generalized loops, by P, ..., P,_1, P, = Py, prestarting points of generalized loops, i.e.
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f(15,~) =Pi11,i=0,...,t—1,and by Ny, ..., N; their lengths, respectively. Then we mod-
ify (4) to

Df;f’éj‘ (Kan(P;)) C Kan(Pi41) foreachi=0,...,1—1. (3)

Now the idea presented above has a chance to work. Indeed, let n; be a long loop and
Mjyl,...,n 4 o be short ones from the corresponding generalized loop. Consider the image of
the corresponding cone K, (P;) after the generalized loop. Notice that after the long loop 7
the cone L"/ Ky, (P;) is the cone of width angle < 2u~*". Since long n; is so much longer than
short loops nj 11, ..., n 4 jr, the cone

(Df&f’.w_/’ oL o -0 Dfepji© L”Hl) e (Df&f’j oL K“"(p/))

has width angle < 3u~%". To satisfy condition (4) for j + j’ we need to avoid an interval of ro-
tations (i.e. of parameters) of length < 5u~%". This phenomenon still has “probability” ~ p=%".

After this combinatorial analysis we face the next difficulty. We cannot perturb Df and D f
independently at nearby points p and p’.

1.1.5. Dynamical analysis of trajectories

Assume for a moment that we are interested in properties of scattered periodic orbits, that is,
such orbits that Py, ..., P in U are pairwise well spaced. In particular, it is always the case for
1-loop orbits. In this case the difficulty of nearby points is removed. Using Discretization Method
and the cone condition (5) one can prove that for most parameters all but a finite number of the
periodic orbits are hyperbolic saddles. Moreover, consider for 0 <y’ = %" &« y” = u ="
parameters for which a periodic not enough hyperbolic y”-scattered y’-pseudo-orbit of period n
exists. In fact, we can show that the measure of these parameters is small (see (28) for the formal
statement). Now we are going to explain how this can be used to treat all periodic orbits, not
necessarily scattered. Consider the 2-loop case for illustration. If starting points of loops po and
p1 are far enough from each other, one can perturb differential of parabolic map at their preim-
ages independently, and above arguments allow to estimate the measure of “bad” parameters.
Otherwise a periodic orbit can be decomposed into a union of two 1-loop periodic pseudo-orbits,
which have nearby endpoints in U. The cone condition (5) for each of these pseudo-orbits holds
for most parameters, which implies (3).

Another illustration can be given by the case ¢ = 1, i.e. we have one loop which is much
longer than all the others. In this case the image of the cone K, (po) after the application of dif-
ferential of the map along the orbit has width angle < 2u~%", as explained above. Point p;_; =
Po= f"Y(po) = £~ (po) cannot be too close to points Po, P1, ..., Ps—2. Indeed, the distance
between p; and x-axis is (p;), ~ u~""+!. Since ny > n; we have u~ "' « u™". Therefore the
point po can not be too close to points py, ..., Ps—1, and we can perturb ¢ (Ps—1) = ¢>(f_1 P0))
independently of ¢ (Py), - - ., @ (Ps—2). This allows to estimate the measure of “bad” parameters.

To consider the general case we represent a periodic orbit as an oriented cyclic graph. Starting
points of generalized loops are vertices of this graph, and vertices corresponding to a subsequent
generalized loops are connected by an oriented edge (see Fig. 4, picture 1). It turns out that for
some y’ < y” for any pair of points (P;, P;) either dist(P;, P;) > y” or dist(P;, Pj) < y’. This
is explained in details in Section 7. Therefore every pair of vertices is either y’-close or y”-far
apart (see Fig. 4, picture 2). Now all the vertices can be divided into “clouds” or “clusters.” Let
us identify the vertices in the same cloud of nearby points, as shown on Fig. 4, picture 2. The
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noa0s O 0
P 2 p3<‘>' - < <>

Py Py O " @ O

1. Properly oriented cycle 2. Identification of vertices and 3. Decomposition into
oriented pseudographs scattered cycles

Py Py

Y
0

P

12

Ps\

Fig. 4. Graph surgery.

initial cycle is transformed now into oriented pseudograph (see Definition 20) with the same
number of ingoing and outgoing edges at each vertex. Such a pseudograph can be decomposed
into the union of oriented cycles, see Lemma 7 and Fig. 4, picture 3. Each of cycles from this
decomposition represents a y”-scattered y’-pseudo-orbit. Application of the arguments above
to these pseudo-orbits gives inclusion (5) for most values of parameters and implies the cone
condition (3) for the initial periodic orbit.

1.1.6. Tools for measure estimates: Discretization Method and Newton Interpolation
Polynomials

To make perturbations in a described way and to estimate the measure in a space of parameters
we use Discretization Method and Newton Interpolation Polynomials. This method was already
successfully used in [22] and we strongly believe that it can be applied to wide range of problems
in Dynamics. See Sections 9-11 of the present paper, Section 3 in [22] or [14] for discussion of
the method.

The structure of the paper is the following. In Section 2 the exact statements of results are
given. In Section 3 a model example is considered, a strategy of the proof is presented, and Fu-
bini reduction is described. In Section 4 Auxiliary Theorems I and II are stated, and the results
are reduced to those theorems. Sections 5-11 are devoted to the proof of Auxiliary Theorem I.
Section 12 gives the proof of Auxiliary Theorem II. In Section 13 the results are extended to
nonlinear situation and to periodic saddle with homoclinic orbit. Section 14 contains some tech-
nical proofs, including the proof of Addendum to Theorem B. In Appendix A we study relations
between existence of infinite number of periodic orbits of bounded cyclicity and Kupka—Smale
property. Appendix B provides the proof of the estimate of “non-hyperbolic” parameters that is
used in the proof of Auxiliary Theorem II and in Section 13.
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2. Statement of the results
2.1. Description of the initial map

Consider a linear map

(6 )()
L= ,
0 wu/\y
where 0 <A <1 < p. Set I =—(InA)/(Inu) > 0.

Denote g = (1, 0) and g = (0, 1). Fix small 8,8 > 0. Let U be a neighborhood of point ¢, and
let U and U be neighborhoods of point ¢, such that

U={(x,y)|xell—61+56], ye[-3,58]},
U={x.y)|yell—51+35], xe[-4, 3]},
U={(x,y|yell—251+25], x e[-25,251}, (6)

see Fig. 2. Take a C”-diffeomorphism G : U — R? such that G(U) > U and r > 2. In particular,
G (g) might be equal ¢, but it is not required. Since for homoclinic tangency or intersection G(g)
indeed equals g, both are covered by our model.

Fix a small neighborhood V' of a set {(x, y) |x € [0, Ay = 0} U {(x,y)|yel0,1],x =0}
Picking small 8,8 > 0 we can assume that L~ (U) N =g, LUYNU=@,andU NV =0.
The map f is defined in the following way:

Lx,y), if(x,y)e WU,

. A @)
G(x,y), if(x,y)eU.

f:V— R f(x,y):{

As a matter of fact trajectories we shall investigate will never visit U \U.
Informally we say that a map f has a hyperbolic part L and a parabolic part G.

2.2. Localized s-loop periodic orbits

In the introduction we defined periodic trajectories of special kind (V-localized). We are going
to investigate the behavior of those. Namely, fix s € N and a neighborhoods V, U and U. We
shall consider periodic orbits which “go around” a neighborhood V U U not more than s times.

Introduce a term “loop.”

Definition 3. A sequence of points {po, ..., pm—1} C V U U is called a loop (of length m),
if poe U, pu—1 €U, and foreachi =0,...,m —2 we have L(p;) = pi+1.

The following lemma is obvious.
Lemma 1. Any (V, s)-localized periodic orbit is a disjoint union of s loops.

In what follows an orbit consisting of s loops is called also an s-loop orbit.
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2.3. Description of perturbations

We shall consider an infinite parameter family of analytic perturbations of the map f perturb-
ing only parabolic part G of the map. It is more natural to write these perturbations in a shifted
coordinate system. Denote by (x, y) = (x, y — 1) coordinates in U. Consider a C*-function p
identically 1 in U and 0 outside U. In these coordinates perturbed map has the following form:

o1z,
2 (x y))7 ®)

G*(J?,i):G(i,iH—p(i,i)( .-
: @g(x, y)
where cbgl and @52 are analytic functions in U,

1 1 .i.j 2 2 i
Dz (x,y)= Z EjjX ¥, D (x,y)= Z EijX ¥,
0<i,j 0<i,j

and
E={ef, eR||ef;| <1, k=1,2, 0<i, j}.
The family of maps { f:} we shall study is the following map fs:V — R?

L(x,y), if(x,y)eV\U,

. A )
Gz(x,y), if(x,y)eU.

fE(x,y)={

To make all the perturbations small we restrict size of the coefficients. Namely, take a small
constant { and require |sfj| <¢fork=1,2,0<1, j. So the space of coefficients is the following
Hilbert cube:
HB@) ={ef; e R |ef;| <¢, k=1,2, 0<i, j}. (10)
Take ¢ small enough to guarantee that Gg(U ) D U forall € € HB(Z).
We shall also use the following constants:

M= su

p el an
£€HB(¢)

{Izlcn [/ Nads Ma= sup {lfillca,
£e€HB(¢)

2.4. Product measure in the space of coefficients

To make any statements in terms of probability we need to choose a measure in the space of
parameters. We do this in the following way.

Let Leb; be the Lebesgue measure on the interval [—¢, ¢]. For each parameter sf.‘j we define a
probability measure on this interval vfj = % Leb, (all vl(‘, ’s are the same, but indexes emphasize
correspondence to different coefficients). Consider the normalized product Lebesgue measure v
in the space of coefficients HB({):

v= X (v x vlzj) (12)

0<i,j
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2.5. Statement of main results (unbounded cyclicity)

Theorem A. For v-almost every € € HB(¢) the corresponding map fz has only a finite number
of localized sinks {3 j} ; whose period exceeds

4sjz-+4s]- +7

)28 (sj+1)
Asj (10(1~|—\s)) A
where s; = s(B;) is cyclicity of a corresponding sink B; and A is a constant depending on
parameters of the problem.

Remark 6. According to the standard terminology this theorem says that for a prevalent dif-
feomorphism near HT there are only a finite number of localized sinks of large enough period
compare to its cyclicity. Such a definition of prevalence is introduced in [17] and is used in [21]
under similar circumstances. In [19] a different way to define prevalence is proposed.

Our method provides significant additional information about hyperbolicity of corresponding
localized periodic points.

Definition 4. We say that a periodic (under the map g) point p of period n is (i, R)-trace hyper-
bolic if

|Tr Dg" (p)| > =" (13)

Theorem B. For any R > 0 there is a sequence of numbers {Ns(R)}sen such that for v-almost
every & € HB(L) the corresponding map fz has only a finite number of V-localized periodic
points {*'B;} of period greater than Ns;(R) that are not (u, R)-trace hyperbolic, where sj =
s(PB;) is cyclicity of the corresponding sink 3 ;.

Addendum 2.1. One can take

(5S2N_l (1 4 \(\3))252+25+1

Ny (R) = 35(Bs* — (252 + 25 + 1) (s + D 1InR) ™

’

where B is a constant depending on parameters of the problem. Notice that Ng(R) < 555 for
large s.

Remark 7. Note that if p is a periodic orbit of a planar diffeomorphism of period n and
| Tr DfZ (p)| > 2, then p can not be a sink. Therefore Theorem B implies Theorem A (see Sec-
tion 4 for more details).

To state corresponding theorems for periodic trajectories of bounded cyclicity we need to
introduce families of polynomial perturbations of bounded degree.
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2.6. Description of polynomial perturbations

Now we consider a finite-parameter family of polynomial perturbations of the map f perturb-
ing only parabolic part G of the map. As above (¥, y) = (x, y — 1) denotes the shifted coordinates
in U. In these coordinates perturbed map has the following form:

L > S )
Gz, 5, ) =GCGE. ) +pE N\ 7 ) (14)
¢§<2x (-xv )’)
where ¢£<2x and qj§2<zs are polynomials,
¢§1<25 (x7 y) = Z 811./Xiyj’ ¢§<2s (x’ y) = Z 8isziyj7
0<i,j,i+j<2s 0<i, j,i+j<2s

and
Eas={ef; eRIk=1,2, 0<i, j, i +j<2s}.
The family of maps { fz_, } we shall study is the following map f;z_, :V — R?

L(x,y), if (x,y) eV\ U,

S (x,y) = .
Jear D=0 G oy, ity e,

We put the same restriction on size of the coefficients as for analytic perturbations. Namely, we
require |8fj| L¢fork=1,2,0<1i,j, i+ j<2s.So the space of coefficients is the following
cube:

HB o,(0) = {ef; e R | [ef| < ¢, k=1,2, 0<i, j, i +j <2s}. (15)

Constant ¢ was chosen small enough to have ngx(ﬁ) DU and Gg<2x(l}) NV =9 for all
€25 € HB_74(¢). Constants M and M, as well as ¢ can be chosen the same as above. Product
measure in a space of coefficients is as follows

Vopg = X (vilj x vlzl) (16)

0<i, j,i+j<2s
2.7. Statement of main results (bounded cyclicity)

Theorem A’. Fix s € N. For v_os-almost every € <o, from HB .25 () the corresponding map f;_,.
has only a finite number of localized sinks of cyclicity at most s.

If we restrict ourselves to a fixed number of loops s, then existence of an infinite number of
s-loop sinks implies that a corresponding diffeomorphism is not Kupka—Smale? (see Appendix A

2 We are grateful to D. Turaev for this remark.
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for a precise statement and a proof). Therefore, this result should be expected. Indeed, in [19]
it was shown that Kupka—Smale systems are prevalent (although the notion of prevalence is
different from ours).

Theorem B’. Fix s € N. For any R > 0 and v_og-almost every & .o; € HB _24(¢) the correspond-
ing map fz_, has only a finite number of V-localized periodic points of cyclicity at most s that
are not (u, R)-trace hyperbolic.

2.8. Prevalence in the space of families

In this section we define the notion of prevalence in the space of 1-parameter families and then
show how Theorem A implies Theorem 1.1. This notion was introduced by Hunt—Sauer—Yorke
[17] for linear spaces and by Christensen [5] for Polish spaces.

Consider the space of C"-smooth 1-parameter families of diffeomorphisms { f, : W — R?} ¢/
of an open set W C R? such that f = f; has a non-resonant® saddle periodic point p = f*(p)
which has an HT at some points ¢ and % (q) = q. Denote this space Cpyp (W X I, RR?). Choose
small / = [—e&p, &9] and small neighborhoods U C U C W and U C W of points g and U re-
spectively so that fraoHynu =9, f‘k(l}) N =9, f,f(l?) D U and ka(l}) NV = ¢ for all
k € I as we do in front of Definition 1. Due to theory of normal forms (see, e.g., [18]) there are
linearizing normal coordinates in a neighborhood V of a saddle p. Consider a family of analytic
perturbations (8) of each family inside of U. This gives the new family

{fezbw.®)erxHB@)-

Definition 5. A set of families I{ in C ;{Tn (W x I, R?) is called prevalent if for any family { fi }ces
for v-almost every &, the family { f, z, }ces belongs to .

Show that the set of families satisfying Theorem A is prevalent. Consider the set of families
U in C;,Tn (W x I,R?) such that for any { fi}cer € U we have that for almost every « € [ the
diffeomorphism f satisfies Theorem A. Show that {{ is prevalent.

Apply to each f,, Theorem A (see Section 13 for additional arguments required to apply The-
orem A). It gives that for any x € I and v-almost every € we have that f, z has only finitely many
sinks of sufficiently large period compare to its cyclicity, i.e. satisfying conditions of Theorem A.

By Fubini Theorem it implies that for v-almost every ¢ we have that the family { f, z}ces
satisfies conclusion of Theorem A for almost every . Therefore, v-almost every family is in /.

In the next sections we shall be proving Theorem B’ and extract Theorem B in the process of
the proof. Theorems B and B’ imply Theorems A and A’, respectively, see Section 4 for details.

3. Scheme of the proof
3.1. Strategy

Here we give a complete scheme of the proof omitting involved definitions. Detailed defini-
tions, exact intermediate statements and their proofs are given in subsequent sections.

3 We hope to get rid of non-resonance condition in a future publication.
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Step I (Sorting by type). Reduction to a uniform (over all types of a fixed length) estimate of the
measure of “bad” parameters associated with periodic orbits of a given type.*

Set initial parameters of the problem

InA
W=, A, M, M, V,8,¢,3=——1. 17
Inpu

In what follows these parameters stay fixed.
Define the following sets in the spaces of parameters HB(¢) and HB25(¢):

B [ f. Ny, 1= {2 € HB(¢) | f; has a V-localized periodic

,00

not (u, X)-trace hyperbolic orbit of type N }, (18)

and

BYS°ls, f. Ny, Rl = {E<2s € HB24(¢) | fi_,, has a V-localized periodic

not (1, R)-trace hyperbolic orbit of type N } (19)

To apply standard Borel-Cantelli argument (as it is done in Section 4) to prove Theorem B’
(which implies Theorem A’) we need to prove that the following series is convergent:

> v BEECLs. £ NG R} < 0. (20)
N,

Since #{N; | INy| =ny +--- +ny + s = n} < n®, to prove (20) it is enough to show that the
following estimate holds true:

voog{ BECLs, £, Ny, R]} < o MG 1)
where Ns = (ny, ..., ny), |Ns| =n;+---+ns +s, and positive constants hy and C, are uniform

over all types N of large enough length |A|.
In order to prove Theorems A and B we need to choose (see Sections 4.5 and 14.1) a sequence
{N;(®)}s such that the following series is convergent:

> > v{BREL NN < oo (22)

seN Nv 5 |Nv | >N.Y (N)

Due to Fubini reduction argument (Section 3.2) estimate (21) implies the same estimate for
v{Bg{}Ce [f, N5, R]}. Therefore we reduced the proof to estimate (21).

,00

4 See Definition 12 for a definition of type.



A. Gorodetski, V. Kaloshin / Advances in Mathematics eee (eeee) see—eee 17

Set B =R/(55%(1 +3)). This parameter will be responsible for definitions of short and long
loops, sizes of cones, etc. When we need to include s, 8 and R to the set of parameters of the
problem, we use the notation

InA
QzQUU{s,,B,N}:{M,A,Ml,Mz,V,S,g, «—3:——1“ ,s,,B,N}. 23)
np

At this moment we fix the extended set of parameters £J.

Step II (Sorting by shape). Reduction to uniform (over all types of given shape and a fixed length)
estimate of the measure of “bad” parameters associated with periodic orbits of a given type.

In Section 5.1 we shall introduce notion of shape [ = [(N) (see Definition 14). To show that
(21) holds it is enough to prove the following estimate:

voas { BES[s, £, N;, R]} < Copu NS (24)

where Cy > 0 and h; = hy(n;,) > 0 is uniform over all types N having shape /. Indeed, if this
estimate holds, one can set hy = min(ky, ..., hy).

Step IIL. From a (u, R)-trace hyperbolicity condition to a generalized loop cone condition.

Introduce the generalized loop cone condition with constants (6, &) (see Sections 5.2 and 6.1
for complete definitions).

Definition 6. Consider an s-loop periodic orbit B = {po, ..., pp—1} of amap fz_, of type N,
|Ns| = n. We say that a generalized loop cone condition with constants (8, £) holds if

Ken(P;) — Kon(Piy1) foreachi=0,...,t(N;)—1,

N:
Df;" (P

where P; is the starting point and N; is a length of ith generalized loop for each i =0, ...,
t(Ny) — 1, respectively.

Denote this property for periodic orbits by (fz_,.,P) € K{Q, N, n; (0, £)}. Indeed, it de-
pends on ‘P and the linearization of fz_, at all points from .
Define the following sets:

BE™ (s, f. Ny (0,8)] = <25 € HB25() | fz_,, has a (V, s)-localized periodic orbit 3
of type Ny with (fz, ) ¢ K{Q. N, INsl: (6. 6)}}.
We prove (see Lemma 3) that if n = || is large enough, then
ngce[s7 fV-/\[SvR]CBgne[SV fﬂNS‘s(97§)]v (25)

for R =250 +2(1 +3J)(s — 1) and 0 < 6 < &. Therefore to prove (24) it is enough to prove that
forsmall0 < 6; < &,l=1,...,s,

V{BE™[s, £.N5: Gy E1v;)] ) < Copivm sl (26)
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Step IV (Partition into non-recurrent parts). Cloud decomposition and reduction to estimate of
the measure of “bad” parameters associated with a scattered pseudotrajectory of a given type.

First we need several definitions.

Definition 7. A sequence of points Z = {zo, ..., zn—1} C V is called a k-loop periodic y -pseudo-
orbit of the map fz_, ifitintersects U at exactly k points and

(1) ifzj ¢ U, then fe_,, () = 2j+13
(2) if zj € U, then dist(Gz_,, (Zj), Zj+1 (mod m)) < V-

Remark 8. We consider pseudo-orbits, for which the image of a point may differ from the next
point only for parabolic part of the map fz_, . Similarly to s-loop periodic orbits, any k-loop
periodic pseudo-orbit is a disjoint union of k loops.

In Section 5.1 we introduce collection of positive rapidly decreasing to zero numbers {d;}ls;rll.

Definition 8. A pseudotrajectory has shape (/, n), if all loops have length > din (long loops)
or < dj41n (short loops).

Notions of type and generalized loop can be introduced for periodic pseudo-orbits in the
same way as for periodic s-loop orbits. We will use the notations similar to the notations from
Sections 4.1 and 5.2 for pseudo-orbits.

Definition 9. Given a periodic pseudo-orbit Z = {zg,...,zn—1}, let us denote by F év (Zm):
R? — R? the following linear map:

Fg’gds (zm) = Df5<2x (Zm+N-1) 0 Df§<zx (ZmtN-2)0---0 Df5<2S (Zm+1) 0 Df§<2S (Zm)-
Note that we naturally identify 77, V with R2.

Note that if ‘B = {po, ..., pn—1} is an orbit (not just pseudo-orbit) of the map fz_, , then
Fg,g<2x (pm) = D-}%IZZY (pI’n) If Fg’§<zx (Zm)(KAl (Zm)) C KA] (Zm-‘,—N), we will write

Ka,(zm) L)Fg,ng ) Ka, ZmsnN)-
Again, we identify tangent spaces at any two points of ) in a natural way.

Definition 10. Consider a k-loop periodic pseudo-orbit Z = {2, ..., zn—1} of amap f;_, of type
N having shape (I, n), | Nx| = n < n. We say that an (I, n)-generalized loop cone condition with
constants (6, &) holds if

Ken(Z)) =N Kon(Zi41) foreachi=0,...,7t—1,

25y, (Zi)

where t = 7(N}) is the number of generalized loops and Z; is the starting point and N; is a
length of ith generalized loop for eachi =0, ..., T — 1 respectively.
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Denote this property for periodic pseudo-orbits by (fz_,,, Z) € K{Q, N, n; (6, &)}. Indeed,
it depends on Z and the linearization of fz_, at all points from Z.

Definition 11. A k-loop periodic orbit is called p-scattered, if for any two generalized loops the
distance between starting points of these generalized loops is at least o.

Fix a shape /. For any sequence {7} _;,
following sets in the space of parameters.

Recall that for any type Ny with 1 < k < s having shape (I, n) we have djn < |[Ni| < n, aloop
is long if length is > djn and short if < dj4n respectively and Ny C; N denotes N being an
I-subtype of N (see Definition 21). Suppose N has t = #(Nj) long and (k — 7) short loops,
then for any 0 < 7 < m < s we define

O<oa1 <o2 <--- <, one can define the

Bgm[f, Ne,n,l,ml = {E € HB _»(¢) | fé_,, has a k-loop sl um-1n_geattered periodic

—omn

-pseudotrajectory Z of type N having shape (I, n) with
(f§<255 Z) ¢ IC{Q5-/\/}(7 n; (291,11’17 %‘l)}}'

Existence of a decomposition of any s-loop orbit into the union of some scattered pseudotra-
jectories (see Lemma 8) allows to claim the following. One can choose 6; and {6} ,,}},_, in such
a way that the following inclusion holds for any type N having shape [:

BE™[s. f.N:: 0.&n] ¢ | U BS[s. £, N NG Lom). 27
Ni SN 1N <m<s

If we prove that
voos{BEM[s, f, Ne.n,1,m]} < Cipmm (28)
then we get estimate
voas | BECLs, £, Np, R1} < vaag | BE™[s, £, Nis 01, &D]) < Cou ™S,
where one can take Cs = (s!2°s)Cy.

Step V (Discretization). Reduction to estimate of the measure of “bad” parameters associated
with a scattered admissible pseudotrajectory of a given type.

After discretization procedure (see Sections 8.1 and 8.2 for the definitions of grids) and the
construction of admissible pseudo-orbits (see Definition 23) we introduce one more family of
sets in a space of parameters.

One can choose constants {6}, _;,
Define the following sets of parameters:

0 < 6;,m < 61, in such a way that the following holds.

BY™[s, f, Ni.n,l,m] = {E<as € HB25(¢) | fz_,, has a k-loop (25) ™! =@ m-1"scattered
u~%m"_admissible pseudotrajectory 2R of type N having shape (I, n)
with (fz_, . R) & K{Q, Ni, n; Or.m. 6D }}- (29)
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One can show that for an appropriate choice of {0, ,}; _, (see Lemma 4) we have the inclu-
sion:

BE"[s, f. Ni.n,l,m] C BY™[s, f, Ni,n, 1, m]. (30)
Therefore to prove (28) we need to justify the estimate
voog{ BE™[s, fu Nk, n, Lom]} < Crum, 31

Step VI (Newton Interpolation Polynomials). Proving estimate (31) of the measure of the set
BY™[s, f. Ni.n.1,m].

This step is carried out in Section 11, where we prove estimate (31) of the measure of a “bad”
set. Preliminary discussions are in Sections 9 and 10. The informal presentation of the general
method of investigation of prevalent dynamical properties with the use of Newton Interpolation
Polynomials that we apply here can be found in [21, part II, Section 4].

3.2. Fubini reduction from HB(¢) to HB 225(¢)

We need to estimate v{B”‘lce [s, f, Vs, R]}. One can reduce this estimate from infinite-
dimensional Hilbert cube of parameters to (25 + 4s2)-dimensional cube, that is to the estimate
of voog{Bg[s, f, N, R}, using simple Fubini arguments. Namely, decompose the set of para-
meters in the following way:

HB>o5(0) = {ef, eR | |ef,| <¢, g =1,2, 0<i, j, 25 <i+j},
HB({) = HB<2S(§) GBHB}ZAY(C)- (32)

Each parameter £ € HB(¢) has a unique decomposition into

€ = (E<2s, E25) € HB25() ® HB>24(2),
oL =0f oy +@L o= Y ey Y eyl 33

0<i, j.i+j<2s 0<i,j.2s<i+j

Decompose the product measure v in the space of parameters, defined in (12), into the direct
products

1 2
V=V_ps X V25, Wwhere vy = X (vj X V]) (34)

0<id, j,2s<i+j

Thus, each component of the decomposition of the space of parameters is supplied with the
Lebesgue product probability measure. Suppose we can get an estimate

voos | BECSLs, fu N5, R, Esal) < Cop MG (35)

of the measure of the “bad” set
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ngce[s’ FNG R, Bl = {§<2S € HB25(¢) | f¢ = fi_p,@#s,, has an s-loop periodic

not (u, R)-trace hyperbolic orbit of type N } (36)

in each slice HB .»5(¢) x {522‘;} C HB(¢) uniformly over all parameters §>2S in HB>»,(¢). Then
by Fubini Theorem and choice of the probability measure (34), estimate (35) implies the same
estimate of the measure v{ngfgo [s, f, Ns, N1}

Fix a parameter value §>2S € HB>,(¢) and the corresponding parameter slice HB -7 (¢) x
{€>25} in the space of parameters HB(). Let f = f(oﬁg%,) be the center of this slice. In this slice
we have the family

{f~g<23 }§<25 €HB () = {f(g<25s§>2s) }g<256HB<2s({) (37)

of perturbations by polynomials of degree 2s — 1. This is the family for which we shall investigate
the measure of “bad” parameters. Re-denote the set of “bad” parameters ngce[s, fr N, R, 5225]

by Bye[s, f, N, R].
4. Reduction to Auxiliary Theorems

In this section we state two Auxiliary Theorems and reduce the proof of Theorems A, B, A’
and B’ to the proof of those two. Recall that parameters of the problem 20 = {u, A, M|, M>,
V,§, ¢} are fixed once and for all.

4.1. Types of localized s-loop periodic orbits

Let us consider a (V, s)-localized periodic orbit B = {po, ..., pp—1} C V of a diffeomorphism
/& (of period n). This orbit (by definition) meets a neighborhood U (respectively U) at exactly s
points. Denote those points by po, P2, - - ., Ps—1 (in U) and pg, p2, - .., Ps—1 (in U) in such a way
that

f)() = Lnl(po)v ceey f)i = L”H»l (pi)v ] f)s—l = Lns (ps—l)s and
p1=Gz(Po), ..., Pi+1=Gz@), ..., Po=Gz(Ps—1)- (38)

Similar notations can be used for diffeomorphisms f;_, too.
Notethatn =n; +ny+---+ng +s.

Definition 12. We say that a (V, s)-localized periodic orbit described above has type N =
(n]5 "‘5nS)'

4.2. Auxiliary Theorem I
To prove Theorems A, B, A’ and B’ we apply the standard Borel-Cantelli argument. Essential

ingredient of these type of arguments is estimates of the measure where certain “bad” phenom-
enon occurs. The following result provides such an estimate.
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Auxiliary Theorem 1. Given s € N. For any ® > 0 and a sufficiently large N*(s, R) there are
positive constants hy = hy(R) and Cy such that for any type Ny = (ny,...,ng), n=ny +---+
ns + s, n > N*(s, R), we have estimates

v{ BESS [N NI} < G ™",

9]

Vg | Boacels, £ Ns, NI} < Copu ™™, (39)

Moreover, one can take N*(s, R) = Bs(5s2R~1(1 + 3)» 42+ ¢, = exp(s>(A+91Ins)), hy =
hy(R) = (52R71(1 4+ 3))~C+2+D ywhere B = B(IV) and A = A(D) depend on parameters
207 only.

4.3. Auxiliary Theorem Il

Recall that a periodic orbit is called non-hyperbolic if one of its linearization eigenvalues has
an absolute value equal to 1.

Auxiliary Theorem II. For v-almost every € € HB() the map fz has no non-hyperbolic V-
localized periodic orbits.

Forany s €N, for all 0 < s’ < s and v_ys-almost every & .o; € HB _25({) the map fz_,, has
no non-hyperbolic (V, s')-localized periodic orbits.

Remark 9. Note that due to Fubini reduction argument (Section 3.2) the first part of Auxiliary
Theorem II is a consequence of the second part.

4.4. Auxiliary Theorems imply Theorems A" and B/

Assume that Auxiliary Theorems hold. We show that this implies Theorem B'.
Take a small » > 0. Show that

V2 {§<2‘Y € HB»5(2) | fz_,, has an infinite number of (V, s)-localized not (u, R)-trace
hyperbolic periodic points of period greater than N*(s, R)} <b. (40)
Suppose that for some b > 0 the inequality (40) fails. For a given period n there are at most
n® different types of (), s)-localized periodic orbits of this period. Therefore, Auxiliary Theo-
rem I implies that the measure of parameters € .o, € HB .25(¢), for which the corresponding map
fz_,, has a (V, s)-localized not (u, R)-trace hyperbolic periodic orbit of period 7, is not greater

than Cyn®p 0",
Note that the series

o0
C nsu—hsn
E K

n=1

is convergent.



A. Gorodetski, V. Kaloshin / Advances in Mathematics eee (eeee) see—eee 23

Take Ny so large that the following inequality holds:

— b
Z Con* ™" < 2.
n=~Ny 2
Now Auxiliary Theorem I implies that for a set of parameters of the measure at least b/2 there
is an infinite number of not (u, RX)-trace hyperbolic periodic orbits of period < Ny. This implies
that for some N; < Ny and for a set of parameters of the measure at least b/(2Ny) there is an
infinite number of periodic orbits of the same period N; (an absence of trace hyperbolicity is not

essential now).

Proposition 1. If the map fz_, has an infinite number of (V, s)-localized periodic points of the
same period N1, then fz has a non-hyperbolic (V, s")-localized periodic orbit, s' < s, of period
not greater than Nj.

Proof. Since period is bounded, any limit point of those periodic points has to be a non-
hyperbolic periodic point. O

This contradicts Auxiliary Theorem II and, therefore, proves (40). Since b here can be taken
arbitrary small, Proposition 1 and Auxiliary Theorem Il imply that for almost every €, the map
fz_,, has only finite number of s-loop orbits of period < N*(s, R). This proves Theorem B’

Proof of Theorem A’. This theorem is an immediate consequence of Theorem B’ and Auxiliary
Theorem II. Indeed, apply Theorem B’ with & = 1/2. Note that if n > [(2In2)/(In )] + 1 then
u=m = /2 = 2 Due to Auxiliary Theorem II and Proposition 1 for almost every &_o; €
HB _25(¢) amap fz_, has only finite number of periodic (V, s)-localized orbits of period <
[(2In2)/(n )] + 1. Now Theorem A’ follows from Theorem B’ and Remark 7. O

4.5. Derivation of Theorems A and B from Auxiliary Theorems

Prove of Theorem B. Take ¥ € (0, 1). Auxiliary Theorem I claims that for any type N, |N;| >
N*(s, ®),
v{& € HB(¢) | f; has a V-localized not (i, R)-trace hyperbolic orbit of type N}
< CSM_hslel, (41)

where Cs = exp(s2(A + 91Ins)) and hy = hy(R) = (552~ (1 4 3))~@s*+2s+D),
Consider a sequence {N;(R)}; chosen in such a way that Ny (R) > N*(s, ®), and the series

S wEEANN)<Y Y oL @

seN Ny, INGIZN:(®) seN N, INGIZNs(R)

For any period n and cyclicity s there exists at most n* different types N such that |N| = n.
So if Ny (R) grows fast enough with s, this series converges, and due to Borel-Cantelli argument
almost every € € HB(¢) belongs to only a finite number of sets Bg{}cgo[f, Ny, RTINS = Ny (R).
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By Auxiliary Theorem II for almost every € € HB(¢) and any type N the map f; can have only
finite number of V-localized periodic orbits of type N;. This implies Theorem B. O

Quantitative estimates showing how fast N (R) should grow with s and the proof of Adden-
dum 2.1 are presented in Section 14.

Theorem A follows from Theorem B and Addendum 2.1 in the same way as Theorem A’
follows from Theorem B'.

5. Combinatorics of the loops

Here we define the notions of long and short loops, generalized loop, shape, and make a re-
duction to the estimate (24).

5.1. “Short” and “long” loops

Consider a (V, s)-localized periodic orbit {pg,..., pp—1} CV =V U U of type N; =
(n1,...,ng). It is the union of s loops of lengths (n; + 1,...,ns 4+ 1). Some of loops can be
much longer than others. As we have seen in the model example, it is essential to treat some of
these loops as “long” and others as “short.” Below we give an algorithm of division.

Take a small constant 0 < 8 < 1/s to be determined later. A decision whether a particular
loop is short or long depends on a type N and B.

Introduce the following constants {d; }fill

ds-‘,—l — ﬁ(2S+2)S+1’ dS — /3(2S+2)(571)+1’ e, di — ,3<2X+2)(i71)+17 e dl — ﬂ (43)

Definition 13. A loop of length (r; + 1) of a (V, s)-localized periodic orbit of period # is called
d-long (respectively d-short), if (n; + 1) > dn (respectively (n; + 1) < dn).

Lemma 2. For any type Ny = (n1,...,n5), n1+---+ng+s=n, there is j € {1,...,s} such
that any loop of any s-loop periodic orbit of type N is either dj-long or dj1-short.

Proof. Since 0 < 8 < 1/s, there is at least one loop of length greater than din = Bn. Consider
intervals

Isz(ds—i-lnvdsn]v ey Ii :(di+1nvdin]’ ceey 11:(d2nad1n]
At most (s — 1) loops have lengths which belong to one of these intervals. By the Pigeon hole
principle at least one interval is “empty.” If interval /; is “empty,” then any loop is either d;-long

or dj1-short. Lemma 2 is proved. O

Definition 14. We say that an s-loop periodic orbit of type Ns = (n1,...,n5), n =ny +--- +
ns + s, has shape [ if

I=min{j €{l,...,s}|any loop is either d;-long or d;-short}.

Remark 10. A (V, s)-localized orbit of shape / has at least / loops which are d;-long (or, equiv-
alently, it has at most (s — /) loops which are d;1-short).
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5.2. Generalized loops

Consider an s-loop periodic orbit of type Ny. We need to mark all d;-long loops. By definition
all d;-long loops are so much longer than d;1-short ones that we regroup them into generalized
loops. Each generalized loop starts at one d;-long loop and ends right before the next d;-long one.
In other words, we attach to each d;-long loop following afterwards dj4-short loops. Formal de-
finition of generalized loop is the following. Consider an s-loop periodic orbit {po, ..., pp—1} of
type N5 = (n1, ..., ny) and shape [. It is the union of s loops, cyclically ordered in a natural way.

Definition 15. A generalized loop is the union of a d;-long loop and all (if there are any) consec-
utive d;41-short loops following afterwards.

Introduce notations:

e ¢ —the number of generalized loops (= the number of d;-long loops);

Each jth generalized loop, j =1, ..., t, has the following characteristics:
e length N;;
° nj + 1 — length of the corresponding jth d;-long loop;
e P;_ i —its starting point. Set P, = Py;
° ﬁ/_l — its ending point. Set f’, = 130;
e /1j —the number of d;1-short loops after the jth d;-long loop.

~ N;—1 ~ ~ ~ -
Note that P;_y = f, ' Pj_y €U and {Py,..., P,—1} S {pPo, ..., Ps—1}, {Po,..., Pi—1} < {Po,

ce f’s—l 1.
The following proposition is a direct consequence of definitions.

Proposition 2.

o Total number of short loops th=1 hj=s—t<s—1.
o Total length of short loops n — thzl n;‘ —t < (s —t)dj4n.
o Length of jth generalized loop N < nj + 1+ — Ddi4n. (44)

5.3. Restriction to the case of a given shape
Recall that the set of parameters Q = {u, A, My, M5, V,8,{,3=—(nA)/(Inw), s, B, R} is

fixed. Take any shape [/ € {1, ..., s}.
We will prove the following estimate for any type Ny = (ny, ..., ny) of shape [:

v{ £ | fz has a (V, s)-localized periodic orbit of type N,
which is not (u, R)-trace hyperbolic} <Gy, (45)

where h; > 0 and Cy > 0 do not depend on type Ny and n =nj +--- +ng + .
Taking hy = min; &;, we have a uniform estimate (i.e. Auxiliary Theorem I):
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v{§ ] fz has a (V, s)-localized periodic orbit of type Ny = (n1, ..., ny),
which is not (u, N)-trace hyperbolic } < Gy /L_hs", (46)

wheren =n{ +---+ng +s.
6. Cones and trace hyperbolicity

In this section we prove the inclusion (25).
6.1. Cones and generalized loop cone condition

Instead of checking (u, R)-trace hyperbolicity (13), we will check another, more geometric
condition. We have already discussed the latter (cone) condition in Section 3.1 (see Defini-

tion 10).

Definition 16. Denote by K4 (p) a vertical cone at point p € V (i.e. in T,)) of the following
form:

Ka(p) ={0=(vr,vy) € T,V [ Joy| = ™ Aul}.
Definition 17. Assume that fgm2 (p)=p2. If ngmz (p1)(Ka,(p1)) C Ka,(p2), we will write
Ka,(p1) b K4, (p2)-

Definition 18. We will say that generalized loop cone condition with constants (6, &), 0 <6 <&,
holds for an s-loop periodic orbit P = {py, ..., py}if foreachi =0, ..., — 1 we have

Kg}:n(Pl) ;)Df«NiJrl K@Il(Pi+l)'

£<2s

6.2. Generalized loop cone condition implies trace hyperbolicity
The following lemma shows that the cone condition implies trace hyperbolicity.

Lemma 3. Let 8, 0 and & be sufficiently small, 0 < 0 < &, and let N be sufficiently large. Suppose
a (V,s)-localized periodic orbit of fz_, of period n > N satisfies the generalized loop cone
condition with constants (0, §). Then it is (i, R)-trace hyperbolic, R =250 +2(1 +3J)(s — 1) B.

Proof. Letus denote g = fz_, for brevity. We use the notations from Section 5.2. Since for each
i=0,...,t—1 theinclusion Kg,(P;) C K¢, (P;) holds, we have

Ken(Po) = pgn Kon(Po).

It means that there is a unit eigenvector of a linear map Dg"(Py) in Ky, (Py), denoted by
w € Kgu(Po), |w| = 1.

Denote an eigenvalue, corresponding to W, by o1 € R. The second eigenvalue of Dg"(Py)
also has to be real and is denoted by o, € R.
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We can estimate product of eigenvalues |o; - 02| = |det Dg" (Py)|. Type of (V, s)-localized
trajectories and the form of Df (see (9)) we have

ot - 02| = |det Dg" (Po)| < A" ~*u"~* Mj.

In order to estimate the sum |o| + o»| estimate |o| first.

For each i = 1,...,1 + 1 set w; = DgMT+tNi-1(%), that is, w; = w, wr = DgN'(w) €
Tp,V,...,w, = Dg" N (W) € Tp,_,V, W11 = Dg" (W) = o1 w.
Estimate y-component of these vectors (w)y, ..., (@,)),, (Wi41)y. First of all, note that

since W; € Kon(Pi), we have |(i;)y| = w™""|(@;)x|. Since [(W;)x| + |(@;)y| = ;], we have
(14 u)|(@i)y| = 1(i)x| +1(;)y] > |i;], which implies

. I on =
WWH >k |w; .

|(J)l ) y | >
Now in notations of Section 5.2 we have

i 1] = [Dg™ (@0)| = | D™= (L (@) | = My " AN L i) |

—hi=1y Nj—n* n*| = L —hi—1, Ni—n* n* —6n-
> My TN I )y | > 5 My TN i (4T)

After counting over all the generalized loops and applying Proposition 2 we have:

o LS S Ny SN —om
o1 10] = [y 41] > oMy == i (D il =0 )|
%M]—s)ts%»(sfl)dl“nMnfsf(sfl)dlﬂnufx@n |ﬁ)|

— [2—SM;SM—(1+3)S]M(I—SQ—(I-F:Y)(S—l)d[Jrl)n|J)|. (48)

=

Since |0 - 02| K AU MY = M ST (=9 we have

l0s] < ﬁMISM(Ts—I)SM(I—TS)n <[22 M2 2 |6 Din
ol

Now we can estimate |o] + o> ]:
|O,l + 0_2| 2 |0,1| _ |O,2| 2 [2—sMl—sM—(1+%)S]M(l—50—(l+%)(s—1)d1+1)n
_ [ZsM]ZsMZT&S]M(—§+59+(1+3)(S—l)dH_l)n
> [Z—sM;sH—(1+3)s]M(l—xe—(lﬁ)(s—l)dl“)n
% [1 _ (22s MlSsMer3Ss)M(fl7S+2A‘9+2(1+3)(s71)d1+1)n]' (49)

If 6 and B are small enough, and r is large enough, then

[1 _ (2zsMl3sus+3ses)u(—1—3+2s0+2(1+3)(s—1)d,+.)n] - l
2 9
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and we have

o1 + 03] > [2—5—1M;su—(1+3)s]u(1—S@—(1+3)(s—1)d1+1)n
> [z—s—lMl—sM—(1+3)s]u(1—se—(1+3)(s—1)ﬁ)n

— (1—2X9—2(1+3)(S—1)/3)I‘l. (50)

[2—s—1Ml—sM—(l+3)SM(S9+(1+‘3)(&—1)/3)11]M

For large n
[2—5—1MI—SM—(l+S)SM(S9+(1+3)(S—1)/3)H] >1,
therefore we have
|Tr Dg"(P0)| — o] + op| > p(1=20"20+G=Dn
Lemma 3 is proven. 0O
7. Decomposition into scattered pseudotrajectories

In this section we introduce combinatorial constants, decompose s-loop periodic orbits into
the union of some scattered pseudo-orbits and, finally, prove the inclusion (27).

7.1. Choice of combinatorial constants and cone characteristics

Here we provide exact values for the following set of constants:

{(61, &)};_, — sizes of cones for pseudotrajectories;

{01,m}; ,, — sizes of cones for admissible pseudotrajectories;

{o1,m}] ,,— —exponents of sizes of grids and scales;

{hi};_, — exponents in upper bounds of the measure of sets of “bad” parameters.

Definition 19. Introduce the following notations:

=0 =dp=pEtDEDF2 =1 s

.

° Ql,m — EIBZ(s—m)-Q-Z — ﬂZ(‘vl+l—m+1), Ibm=1,...,s;

o ap,= SIIBZ(S—m)—H — 132(sl+l—m)+l’ l, m= 1, LS

o h=dy=dp*t =g 11, 5. (51)

Remark 11. Since 8 is small, we have
h=d <01 <Ko 1 KK KOs Ky s KO =6 KLdj.

The following lemma is a direct consequence of Definition 19.
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Lemmad4.[f0 < < 1/(3s2 4+ 2+ (1 4+3)(s — 1)), then the following inequalities hold for all
Im=1,...,s:

2(s2 = 1)dps1 + (2 = V)@t me1 — O1m < —hi,
2(s* = 1)dig1 + (s> = Dagm—1 + & — (L +3)(d) — (s — Ddi41) < —hy,
Orm < arm — (1 +3)(s — Ddiy1 — hy,
& <1 +3)d — O m — (A +3)(s — Ddpy1 — . (52)

7.2. Cloud decomposition

Lemma 5. Consider a t-tuple of points P ={Py, ..., P,_1} in a metric space M. Fix a sequence
of numbers 0 < y) <y <--- < yi—1 and anumber Q) < c < 1/(t — 1). For some 1 <m < t there
is a decomposition of P into disjoint union of k' (k' <m and k' =t if m =t) subsets

P=PiuPu---uPy
with the property
dist(P;, Pj) > cVi—m+1 form >1 (53)
and
diam(P;) < Yi—m form <t. (54)

Remark 12. We shall apply this lemma for a rapidly decreasing with j sequence of y;’s. In-
formally this means that a finite set of points can be decomposed into disjoint union of subsets
(“clouds”) such that distance between any pair of points in the same “cloud” are much smaller
then distances between “clouds.” In the case k' = 1 this decomposition contains just one “cloud”
and inequality (53) does not apply. Also in the case k' = ¢ each “cloud” contains only one point
and inequality (54) does not apply.

Note also that Lemma 5 provides such a decomposition even though in general it is not unique.

We shall apply this lemma with y; = u=%*~" where (I, n) is fixedandi =1, ..., — 1.

In this section (in the proof of Lemma 5) and in the next two sections we need some notions
from graph theory. Recall them in the following

Definition 20.

Graph is a collection of points (vertices) and lines (edges) connecting some of them.
A graph is a multigraph if multiple edges are allowed between vertices.

An edge of a graph which joins a vertex to itself is called a graph loop.

A graph is a simple graph if it contains no multiple edges and no graph loops.

A graph is a pseudograph if multiple edges and graph loops are allowed.

An oriented graph is a graph in which each edge is oriented.

A cycle is a graph which forms a closed path.

NN hA LD
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8. A cycle (or a circuit) of a graph is a subset of the graph edge-set which forms a closed path
with pairwise distinct vertices.
9. An oriented cycle is called properly oriented if each of its vertices has one ingoing edge and

another outgoing.
Proof of Lemma 5. Consider a sequence of simple graphs I'1, ..., I';_1. For each I, its vertices
are points Py, ..., Pi_1, and two vertices are connected by an edge if and only if the distance

between them < cy;,. Note that the distance between any two points from the same connected
component of I, is not greater than (t — )¢y, < V-

Let g, be a number of connected components of I5,. Since a graph I, contains all edges
of the graph I, we have g, 11 < gm. Set go =1 and g; = 1. We have

l=g; <g-1<---<g1<g=t.

By the Pigeon hole principle some of the numbers {go, g1, ..., g} must coincide. Suppose
ke {l1,...,t}is a minimal index such that g; = g;_,. Then

8 =8j_1 <8 r<""<& <8 <& =1,

hence g; = g;_, <t—k+1.Setk/ =g and m=1—k+ 1. We have k' <m, and if m =1
then k¥’ =r.

Decomposition P =P LP> L - -- U Py into k" connected components of I';_, satisfies (53)
and (54). Indeed, if k > 1 (i.e. m < t) then diameter of any connected component of I;_, is
not greater than (¢t — 1)y;_; < ¥4_; = ¥r—m- It implies (54). If k <t (ie. m > 1), then distance
between any points from different connected components of I is at least cy; = cyr—m+1. It
implies (53). Lemma 5 is proven. O

7.3. Decomposition of oriented pseudographs

Now we state two simple lemmas about oriented pseudographs. It is helpful to look at Fig. 4.
The following lemma is obvious.

Lemma 6. Consider a properly oriented cycle. After identification of some vertices we get a
connected oriented pseudograph with the following property: At each vertex the numbers of
ingoing and outgoing edges are the same.

Remark 13. Note that the converse is also true, namely any connected oriented pseudograph
such that at each vertex the number of ingoing edges is equal to the number of outgoing edges
can be represented as a properly oriented cycle with some vertices identified.

Lemma 7. Consider a connected oriented pseudograph such that at each vertex the number of
ingoing edges is equal to the number of outgoing edges. Then it can be decomposed into the
union of oriented cycles in the following way:

e ceach cycle is a subgraph of the initial graph;
e cach cycle is properly oriented,
e cach edge belongs to only one cycle (different cycles could have common vertices).
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The proof of this lemma is in Section 14.2.
7.4. Decomposition into scattered cycles

Definition 21. Consider a type Ny = (n1,...,ns), INy| =n =ny + --- + ng + s, having shape
[ (in particular, ny > djn). Set ng41 =ny and denote 1 =ip < i < --- <i;(N;)—1 < s indices
of dj-long loops, i.e. Pj =p;;—i. An [-generalized element of N is a sequence of consecu-
tive n;,,, ..., nj,,,—1 bounded by adjacent dj-long n;’s. Call this sequence the wth generalized
element and denote it by

N = Ry ooy Py —1)-

We say Ny = (n},...,n}) is an [-subtype of N if for some v < ¢ it consists of some
I-generalized elements of N (possibly permuted), i.e. for a subset

{wo, w1, ..., 01} C {0, 1,...,t(N,) — 1},
a permutation on t elements o : S; — S;, we have
Ny = (szr(l)’”.“/\/swo(r))'
If Ni = (n},...,n}) is an [-subtype of N5 we denote
Ne SI NS
Notice also that if N is an [-subtype of N, then it has shape (I(N5), |Ns|) (see Definition 8).

Lemma 8. Any (V, s)-localized orbit of period n and shape [ is

— either a union of some periodic %" -pseudo-orbits. Moreover, each one is a generalized
loop of the initial s-loop periodic orbit. Set m =1 in this case;

— or a union of some (%M_“’vm—'”)-scattered periodic p=“-m"-pseudo-orbits for some m €
{2,3,...,5}. Moreover, each of these pseudo-orbits consists of at most m generalized loops
of the initial s-loop periodic orbit.

Each of these periodic =% m"-pseudo-orbits has a type which is an l-subtype of Ny and,
therefore, has (I, n)-shape.

Proof. Consider a set P = {Py, ..., P,_1} of starting points of generalized loops. Let the con-
stant ¢ = 1/s and the sequence 0 < y; < y» < --- < y;—1 is given by y; = u=%—"_ Apply
Lemma 5 with these constants to P. For a corresponding decomposition P =Py LPU--- U Py
into k' subsets for some k' < m <t we have

1
dist(P;, Pj) > cVi—mt1 = —p %=1 if k' > 1, and
s

— mn

diam(P;) < Yr—m =1 form < t.

Consider the graph I" whose vertices are points Py, ..., P,_1 and two vertices are connected by
an edge if and only if they are starting point of consecutive generalized loops. An orientation is
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introduced in the natural way. Notice that the graph I" is a properly oriented cycle. Identifying
vertices that belong to the same set of the decomposition, we get an oriented pseudograph. Ap-
ply Lemma 7 to this pseudograph and decompose the graph I" into union of properly oriented
cycles. Due to inequalities above, each cycle from this decomposition represents (%,u_““”*”’)-
scattered periodic p~*-m"-pseudo-orbit, if k¥’ > 1. If k¥’ = 1, graph I' has just one vertex, and any
generalized loop is periodic p~*-m"-pseudo-orbit (hence, periodic p =% 1" -pseudo-orbit).

Each of these periodic u~%.»"-pseudo-orbits represented by cycles from decomposition con-
sists of one or several generalized loops of the initial periodic orbit of type N, and, therefore,
has a type which is an /-subtype of N. This completes the proof of Lemma 8. O

7.5. Cone fitting

Here we prove that Lemma 8 implies the inclusion (27). Indeed, assume that there exists
€25 € HB _75(¢) such that

E<as € BE™[s, £, Ny (61,&)] and

it U U BS[s. £ N NG Lom).
NeSINs tND<m<s

This means that fz_, has an s-loop periodic orbit P = (po, ..., ps—1) of period n = |Nj]| of type
N5 (having shape [ = [(N5)) such that a generalized loop cone condition with constants (6;, &)
does not hold. That is, for some i = LtV =1

the inclusion K¢, (P;) — Ko,n (Pi+1) does not hold. (55)

DY (R

Consider the decomposition of ‘B3 into the union of periodic p~%.m"-pseudo-orbits (which
exists for some 1 < m < s due to Lemma 8). Take a k-loop (k < 5) ™% -pseudo-orbit Z which
contains a point P; (and, therefore, the generalized loop of 3 that begins at P;). This pseudo-orbit
Z has type N €; Ny and has ¢t (V) < k' < m generalized loops. Since we assume that

E<2s ¢ U U Bgatt[s,f,,/\/k,n,l,m],
NiSINs t(N)<m<s

the (I, n)-generalized loop cone condition with constants (26; ,,,, &) (see Definition 10) holds for
pseudo-orbit Z. In particular (since P; = Z; is a starting point of a generalized loop from Z),

Ken(P) = i o) Kooyn (Zjr1).

2,805

Note that Ni_ (P) =D fa i (P) (we identify tangent spaces at P;y and Z ;). Constants 6,
and 6, were chosen in such a way that 20, ,, < 0; (see Definition 19), therefore Kog, ,,n C Kgn.
Finally we have

Kg,n(Pi) — K291,mn(Pi+1) C K@m(Pi+1)

N:
ngizs (Pp)

and get a contradiction with (55). This proves inclusion (27).
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8. Class of admissible pseudotrajectories and discretization

So far we reduced the proof to the estimate (28) of the measure of “bad” parameters
Bga”[s, fo Ni,n, 1, m]. Recall that this is the set of parameters for which there is a k-loop pe-
riodic scattered (non-recurrent) p~%m-pseudotrajectory of type N having shape (I, n), such
that an (/, n)-generalized loop cone condition with constants (26; ,, &) fails. In this section,
we replace this set of “bad” parameters by the set Bgdm [s, f, Nk, n, 1, m] (that is, we prove the
inclusion (30)), see next several sections and Section 3.1 for definitions and description of the
discretization procedure. The advantage of this replacement is that there are only finite number
of admissible pseudo-orbits of a given type for all possible values of parameters. In subsequent
parts of the proof we shall estimate the measure of “bad” parameters associated with a particular
admissible pseudotrajectory and extend this estimate to the set of “bad” parameters associated
with all possible admissible pseudotrajectories of a given type.

8.1. Testing rectangles

For some points from U we can a priori be sure that these points cannot belong to any loop of
given length g + 1. Consider for each g € N testing rectangles T, and 1.

Definition 22. A testing rectangle I7,, is a rectangle
Oy ={(x,y) |xe[l-8,1468], ye[1 =& 7, (1+8u"?]} CU.
A testing rectangle T, is a rectangle
Oy ={(x,y) [xe[(1=8)27, A+8)1], ye[l -5, 1+8]} CU.
Remark 14. Note that L9(11;) = flq for every g.

The reason why we want to consider these rectangles is the following obvious lemma.
Lemma 9. Let {po, ..., pp—1} be an s-loop periodic orbit of type (ni,...,ns), ny + -+ +
ng + s = n. Denote the points of this orbit, which belong to U and U, by po, P1, ..., Ps—1 and
Po, P2, - - ., Ps—1 respectively. Then

piiel,, pi1ell,, i=1,..,s.
8.2. Grids in I, and in I,

Let us take a small 0 < y <« 8, and consider a grid in [, of size y ™7 in vertical direction
and of size y in horizontal direction. Denote this grid by IT,(y). Let us also consider a grid
in I1, of size y in vertical direction and of size yA9 in horizontal direction. Let us denote this

grid by 1, ().
It is clear that the following lemmas hold.
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Lemma 10. The number of grid points in I1,(y), as well as the number of grid points in ﬁq ),
is not greater than

28 g 2,,-2 2,12
7+1 =@25+y)y "<9%y .

Lemma 11. The hyperbolic map L9 sends the grid I1,(y) into the grid ﬁq (y):

LYy (y)) = Hy(p).
8.3. Admissible pseudo-orbits

Definition 23. A sequence of points R = {rg, 72, ...,ra—1} C V is called a y-admissible k-loop
pseudo-orbit of type Ny = (n1, ..., i), [Nkl =n1+---+ng +k =n, associated to € (or to the
map fz) if

(1) it is a disjoint union of k loops of lengths n; + 1,n3 + 1, ..., nx + 1. Denote the starting
points of these loops by rg, ..., rx—1 € U, and the ending points by Tg, ..., Tr—1 € U, in
such a way that r; = L" (1;);

@) 1 €M, (), i €, (1)

(3) dist(Gz(F;), Yit1 (mod b)) < 3+2My)y foreachi =0,1,...,k—1.

In other words, y -admissible pseudo-orbit is a periodic (3 4+ 2M)y -pseudo-orbit which loops
begin in vertices of corresponding grids.

Definition 24. A y-admissible pseudo-orbit is p-scattered, if the distance between starting points
of any two loops is at least o.

The definition of admissible k-loop pseudo-orbit is motivated by the following proposition.

Proposition 3. For any k-loop periodic y-pseudo-orbit {z, ..., zn—1} of a map fz there exists
a y-admissible k-loop pseudo-orbit {ry, ..., rn—1} of the same type, such that dist(r;, z;) < 2y.
If the initial periodic y-pseudo-orbit is p-scattered, then a corresponding y -admissible pseudo-
orbit is (0 — 4y)-scattered.

Proof. Consider points of the orbit {zg,...,zn—1} which belong to U, denote them by
Zo,...,2Zk—1. By Lemma 9 we have z; € IT,,. Since for each i =1, ..., k the rectangle IT,,
is divided into the union of small rectangles (of size y x yu~"), we can take a small rec-
tangle 7; C I1,, which contains a point z;. Take one of the vertices of n; (let it be left upper
vertex, for example) and denote it by r;. Now take a pseudo-orbit {rg,...,rn—1} as a union
of loops {rg, Lxg, ..., L"'ro}, {r{, Lry, ..., L"™r1}, ..., {rp—1, Lrg_1, ..., L™r_1}. Since for
each ¢ =0, ...,n; we have L9r; € L97;, L9z; € L97w;, and diam(L97;) < 2y, the property
dist(r;, z;) < 2y holds.

Show that {ry, ..., rp} is a y-admissible pseudo-orbit. Property (1) is guaranteed by our con-
struction. Property (2) is a consequence of Proposition 11. We just need to check property (3).
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Take ¥g = L"'Ty, ..., T = L™ ry_1. By our construction dist(¥;, Z;) < 2y, therefore (if we
set Zy = Zg)

dist(Gz (), zi+1) <dist(Gz (), Gz(#)) +y <2Miy +y.
Since dist(r;+1,zi+1) < 2y, we finally have
dist(Gz(F), rig1) < dist(Gz(F), zi1) + dist(Zi41, ¥i41) < G +2M)y.

The second part of the statement of Proposition 3 is obvious.
Proposition 3 is proved. O

8.4. Discretization of a generalized loop cone condition

A generalized loop cone condition for pseudo-orbits was introduced in Definitions 9 and 10.

To check an (/, n)-generalized loop cone condition for a k-loop periodic y-pseudo-orbit
(having shape (/, n)) we just need to check an (I, n)-generalized loop cone condition for a corre-
sponding y-admissible k-loop pseudo-orbit.

Proposition 4. Fix s, i, A, M1, My, and B < 1/(3s> + 2+ (1 +3)(s — 1)), where 3 = —(In1)/
(Inw). Take any shape l € {1, ..., s}. For any constants 0, 0', a, &, such that

0<0, O<a—(1+3G6-Ddr, E<(+3d—60—A+3)(s—Ddy (56)

(where dy = BETDEDF qnd gy = BTN and sufficiently large N the following holds.
For any given type N, = (ny, ..., ng), n1 +--- +ny +k =n, having shape (I, n), n > N, and for
y = u~ %", an existence of a y -admissible k-loop pseudo-orbit R = {rg, ..., rn—1} that satisfies
(I, n)-generalized loop cone condition with constants (0, &) implies that any k-loop periodic
y-pseudo-orbit Z = {z¢, ..., Zn—1} such that dist(z;, r;) <2y foralli =0, ...,n— 1, satisfy the
(1, n)-generalized loop cone condition with constants (0', £).

Proof. The proof is technical but more or less straightforward. We are going to estimate the size
of an image of cone K¢, (Z;) under the map Ffzvfg<2v (Z;), which is going to be small. Also we
are going to estimate angle between images of the vertical line under F évf§<2s (Z;) and under
FN.

R,e
line under Fg’;gds (R;) belongs to Ky, (R;+1), those estimates allow to claim that

) (R;). Tt is also going to be small. Since 6 < 6’, and we know that an image of the vertical

K&n(zi) ;)FN"

Z’E<2S (

7)) K@’n(zi-i-l)-

First of all we are going to investigate how the size of a cone changes under iterations of a
map. To do that let us define a cone in more general way than it was done by Definition 16.

Definition 25. A cone K = K (v;, vp) between two nonzero vectors vy, vy € RZis the following
set:

K ={v|v=ajvi +av2, ajaz > 0}.

The size of this cone is an angle between v; and v. Let us denote it by /K.
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Lemma 12. For any cone K C R? and any linear map A:R* — R? the following inequality
holds:

sin LZAK) < |AJl - JA"] - | sin ZK].

Proof. Take two vectors v; and vy such that v, L (v — vp) and K = K (vy, vp). In this case
[sin ZK| = |v; — vz|/|vy]. Since A(K) = K(Av;, Avy), we have

|Avi — Ava| _ [|All]vr — va]
X
[Avy] A== oy

sin ZA(K) < =||A| - JA”Y| - |sin ZK]|.

Lemma 12 is proved. O
We need to consider just one generalized loop. Without loss of generality we can proceed
with the first one. Recall that it is length is Ny, the length of the first (long) loop is ny + 1,
the number of short loops is /. Therefore, the lengths of loops in this generalized loop are
ni+1,ny+1,...,n5,41 + 1. Note also that ny > din and n; <djpnfori=2,...,hy + 1.
The proof of the following lemma is straightforward.

Lemma 13. Size of the cone K¢, is equal to 2arctan(ué"). Under the iterations of the map L a
cone K¢, changes in the following way:

Kepn = 1m Ken—(143n, -
Therefore
LL" (Kgn(Z0)) = LKgn—143m, (Zo) = 2arctan (u&"~1F9m),

Since sing = (2cot(¢/2))/(1 + cot?(¢/2)), we have

1+3)n1—
Z,u( +J)n1—&n En—(14+)n

sin L Kgn—(14+3ym, (Zo) = <24

1+ 2+ m—Em

Now by Lemma 12 we have
. Ni— 5
sin / (FZ’*:; (Kén—(l+;‘s)n1 (ZO)))

ny+n3—+-+np 41
2hi42( M . =
<Mt (K) sin ZKgn—(143)n, (Z0)

< 2M12h1+2M(1+g)(”2+"3+"'+'11’1“) . MS”*(HS‘)M. (57)
This implies that (since ¢ € (0, 71/2) = ¢ < 7 sing)

~ h
L(FY:_, (Ken(Zo))) <My p (0 Qi miamm+én, (58)

»€<2s
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Take v = (0, 1) and estimate angle between Fg‘g z,(ZO)(U) and Fglg 2V(Ro)(v). To do that
we use the inequality

, IFZ'.  (Zo)(v) — Fy; (Ro) )]
sin LK (FY_ (Zo)v), Fyy'; | (Ro)(v)) < ——=2— <k
| | IFYL  (Zo)w)
We need to estimate |Fglg<2v (Zp)(v)| from below and |F (Zo)(v) m 2 s, (Ro)(v)| from
above. It is easy to estimate |Fg‘§ ) (Zy)(v)|:
L™ ()] = ™

M ™ < | Dfs(Zo) o L™ (v)| < Myp™
Ml_ll'bnl)"nz < |Ln2 ° DfE(ZO) ° Lnl(v)| < MIMI’H-'HLZ’

M A D (Zi) o L o0 Dfi(Zo) o L™ (v)| < Myp 12t
M R L 0 Dfe(Zi) 0 -+ 0 Dfe(Zo) o L™ ()| < Myu™ it

M]_hl_lﬂnl)\.'zz+."+nhl+l < |Fé\”1§<2x (Z())(v)| < M{’1+1M"1+"2+'"+”h1“ . (59)

To estimate | F g" (Zp)(v) — (Rp)(v)| we use the following obvious lemma.

?R £
Lemma 14. For any linear maps A1 and A and vectors vy and vy the following inequality holds:

[A1v) — Aqvp| < | Arllvr — v2| + [|A1 — Az]l|v2].

Since dist(z;, ¥;) < 2y, we have an estimate || Df3(z;) — Df:(¥;)| < 2y M. Together with
Lemma 14 this gives us:

|Df:(Zo) o L™ (v) — Df:(Ro) o L™ (v)| < 2y Mop™
|Df:(Z1) 0 L™ 0 Df:(Zg) o L" (v) — Df:(R1) o L™ o Dfz(Ro) o L™ (v)|
M- [2y Map" 2] 4 2y My - [My ™72 ] = 4y My Mop 712,

|F3  (Zo)(w) — mgz(Ro)(v)| <2(h1 + Dy MY Moy Hr2t e, (60)

This implies

hi+1
2(h1 + )y M} MypZizi

1‘4]—]11—1 ny 2t

sin ZK( (Zo)(v) §<2S (Ro) (U)) <

=2(hy + Dy M Dbt 6)
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Therefore
LK(FZ. (Zo)), ' | (Ro)(®)) <m(hy + Dy My H D mttmy 0 - (6)
We want to check that
FY'.  (Ken(Z0)) C Korn(Z1). (63)
We know that Fy, (Ro)(v) € Ko, (R1), so to check the inclusion (63) it is enough to check that
LK(FE 2z, (Zo)(v), F, (Ro)(v)) + Z( Z7 o, (Ken(Z0)))

< E(ZKG’n(ZI) - ZKen(Rl))- (64)

We have the following estimate (since ¢ € (0, 7/4) = ¢ > 7 tang)

T

T 1 _
tan<5_§“<en<m>)=u9" = ———ZKen(Rl) won.

-blhl

2

Also we have (since ¢ € (0, 1/2) = ¢ <tang)

T 1 / T 1 /
tan| = — = /Kyn(Z)) | = 70" = /Ky (Z)) <o,
an(2 5 o' ( 1)) 1z = 773 on(Z1) <

Therefore

1
E(ZKG’n(Zl) - ZI(é)n(Rl)) =

oY

T 1 T 1
5—511(9”(1?1) - E—EZKG’n(Zl)

_ _ _ T _(p'_
M en_lL 0}’1:“ 0n<__u (9 Q)i’l). (65)

\Y
A~ 9

4

We have also the following estimate (from (58) and (62)):

LK(F3Y, (Zo)0). Fy; | (R)W) + L(FZ; , (Ken(Z0)))
< ((h + l)yMzh1+1M(1+:s>(ZfLn,-m T M12h1+2u<1+3)(2f:11n,—+1_n1>+sn)
<r M2s —2I+1 ((S I+ I)MfomM(IJr?s)(sfl)dHln + MIM(]+?\)((sfl)dl+1n7d1n)+$n)' (66)
Now inequalities (56) imply that

w0 (s — 14 D =24 AFD6=Ddrn

+ T[M12372l+2’u‘(1+:V)((S—l)d[+]n—d[n)+§n) N 0 asn — +OO (67)
and
T / T
1 u@=0m 7 asn— oo, (68)
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hence

—on( T —('—6)n
pon(G o)

- nM12S721+1 ((S I+ I)M—anM(H—S)(s—l)dl_,_]n + lu(l+3)((s—l)d[+1n—d/n)+$n) (69)

for all large n, which implies an inequality (64) for large n.
Proposition 4 is proved. O

8.5. Decomposition into admissible pseudotrajectories

Here we show that Propositions 3 and 4 imply the inclusion (30).

Take &5 € BE™[s, f, Nik,n,1,m]. Consider the case m > 1 (the case m = 1 is similar,
we just need to omit the scattering condition). This means that fz_, has a k-loop periodic
% u¥m=1"_gcattered % m"-pseudotrajectory Z of type Ny such that the (I, n)-generalized
loop cone condition with constants (26; ,,,, &) fails. Consider the p~%-»"-admissible pseudo-
trajectory R the same as in Proposition 3. It has the same type N} and (by Proposition 3) is
(%u_“’«m-l" — 4p~%m™y-scattered. Since o -1 <K o (see Remark 11), for large enough n
we have

<1M0‘1,m1n _ 4Mal,mn> > l'ufal,mfl”. (70)
2s

N

Therefore ‘R is 2_1s um=1"_gcattered p~%-m"-admissible periodic pseudotrajectory. Since R
is 2u~%m"_close to Z, the (/,n)-generalized loop cone condition with constants (6 ,&)
fails for PR. Indeed, note that inequalities (56) hold if we choose {6} ., 26 ., 21 m, &} equal
{0,0', a, £} (this is guaranteed by Lemma 4). Hence, if the (I, n)-generalized loop cone condi-
tion with constants (0; ,, &) holds for R, if n is large by Proposition 4 the (/, n)-generalized
loop cone condition with constants (26; ,,,, &) holds for Z, which contradicts to the choice of
pseudotrajectory Z. Thus, €55 € ngm[s, foNe,n, 1, m].
Inclusion (30) is proved.

9. Newton Interpolation Polynomials and blow-up along the diagonal in multijet space

Now we present a construction due to Grigoriev and Yakovenko [15] of choosing a con-
venient for dynamics basis in the space of polynomials. The exposition is closely related to
[22, Section 2.2]. This construction is an interpretation of Newton Interpolation Polynomials as
an algebraic blow-up along the diagonal in the multijet space. In order to keep the notations
and formulas simple and put the main ideas in evidence in this section we consider only the
1-dimensional case. See [22, Section 3] for more detailed description.

Fix a positive integer k. Consider the 2k-parameter family of perturbations of a C! map
f:1 — I by polynomials of degree 2k — 1

2k—1

fo) = f@) +de), de(0) = Y e, (71)
=0
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where ¢ = (g, ..., e2r—1) € R, Suppose the perturbation vector € consists of coordinates from
the cube HB ,, (¢) ={e; eR | |ej| <¢, j=0,1,...,2k—1}.

Given n > 0 and a C! function f:I — R we define an associated function jl'* f: 1% —
I* x R%* by

JUEF G0y xkm1) = (%0, Xty FR0)s s f Om), fI G0 f k). (72)
In singularity theory this function is called the k-fuple 1-jet of f. The ordinary 1-jet of f,

usually denoted by j!' f(x) = (x, f(x), f'(x)), maps I to the 1-jet space J'(I,R) ~ I x R
The product of k copies of 7' (I, R), called the multijet space, is denoted by

TR = TN UL R) x - x TR, (73)

k times

and is equivalent to 7% x R?¥ after rearranging coordinates. The k-tuple 1-jet of f associates with
each k-tuple of points in 7% all the information necessary to determine how close the k-tuple is
to being a periodic orbit, and if so, how much hyperbolicity does the linearization has.

The set

An(D) = {{x0, ., Xum1) x I" x R" € J""(1,R) | 3 i # j such that x; = x;} (74)

is called the diagonal (or sometimes the generalized diagonal) in the space of multijets. In
singularity theory the space of multijets is defined outside of the diagonal A, (/) and is usually
denoted by jnl(l, R) = 7M1, R) \ A, (1) (see, e.g., [9]). It is easy to see that a recurrent
trajectory {xi}reN is located in a neighborhood of the diagonal A, (I) C JY(ILR) in the space
of multijets for a sufficiently large n. If {xk}Z;é is a part of a recurrent trajectory of length n, then
the product of distances along the trajectory

l_[ |Xn—1 — xx| (75)

measures how close {xk}z;(]) to the diagonal A, (1), or how independently one can perturb points
of a trajectory. One can also say that (75) is a quantitative characteristic of how recurrent a
trajectory of length n is. This product is introduced in [22] and is extremely important quantity
for our analysis.

Our goal now is to describe how such perturbations affect the k-tuple 1-jet of f, and since
the operator j ¥ is linear in f, for the tlme being we consider only the perturbations ¢, and
their k-tuple 1-jets. For each k-tuple {x ]} 0 ! there is a natural transformation 7% : I¥ x R%* —

J V%1, R) from e-coordinates to Jet—coordmates given by

TN (x0, - xum1,8) = F e (xo, - xim1). (76)

Instead of working directly with the transformation 7K, we introduce intermediate
u-coordinates based on Newton interpolation polynomials. The relation between e-coordinates
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DDYF(I,R) =1 x --- x I xR?

k times
oLk
Ix - xIxR%* JVE(ILR) =1 x --- x I xR?*
N—— > N——
k times k times
Fig. 5. Algebraic blow-up along the diagonal A (7).
and u-coordinates is given implicitly by
2k—1 2%k—1  j—1
¢y =Y ejx/ =Y u; [ ] = xi (mod 0))- (77)
j=0 Jj=0 i=0

Based on this identity, we will define functions DL [k x R?% — 1% % R%) and 71k 1% x
R* — FL5(I,R) so that 71% = 715 o DI*, or in other words the diagram in Fig. 5 commutes.
We will show later that D+ is invertible, while 7 ¥ is invertible away from the diagonal Ay (1)
and defines a blow-up along it in the space of multijets 7 ¥ (1, R).

The intermediate space, which we denote by DDLk (I, R), is called the space of divided dif-
ferences and consists of k-tuples of points {x j}’;;(l) and 2k real coefficients {u j}f":*ol. Here are
explicit coordinate-by-coordinate formulas defining

kDD (L R) - TR AL R).

This mapping is given by
nl’k(xo,...,xk_l,uo,...,ugk_l)
= (X0, -y Xk—1. P (X0, - - ., P (k—1), DL (x0), - ., Pl (xk—1)), (78)
where
¢¢(x0) = uo,

@ (x1) =uo + u1(x1 — x0),

Qe (x2) =up +ui(x2 — x0) +uz(x2 — x0)(x2 — x1),

e (xk—1) =ug +ui(xg—1 —xp) +---

+ g1 (xXk—1 — x0) - - (Xg—1 — Xg—2),
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s

U-1
¢, (x0) = ( > u, H(x — Xi (mod k)))

j=0 i=0 =0
2k—1 J
L (1) = —( > ur [ [ = i (moa k>)> (79)
j=0 =0 X=X

These formulas are very useful for dynamics. For a given base map f and initial point xq,
the image f.(xo) = f(x0) + ¢:(x0) of xo depends only on ug. Furthermore the image can be
set to any desired point by choosing u appropriately—we say then that it depends only and
non-trivially on ug. If x¢, x1, and u¢ are fixed, the image f;(x1) of x; depends only on u;, and
as long as xo # x it depends non- tr1V1ally on u1. More generally for 0 < j < k — 1, if distinct
points {x J} o and coefficients {u; }] _o are fixed, then the image f,(x;) of x; depends only and
non- tr1V1ally onuj.

Suppose now that an k-tuple of points {xi}f;o not on the diagonal A (I) and Newton co-

efficients {u,-}].‘:o1 are fixed. Then derivative f/(xo) at xo depends only and non-trivially on u,,.

Likewise for 0 < j < k — 1, if distinct points {x ]} _0 and Newton coefficients {u; }k+j ! are
fixed, then the derivative f/(x;) at x; depends only and non-trivially on uyy ;.

As Fig. 6 illustrates, these considerations show that for any map f and any desired trajec-
tory of distinct points with any given derivatives along it, one can choose Newton coefficients
{u; }2k !and explicitly construct a map f. = f + ¢. with such a trajectory. Thus we have shown
that 77 ¥ is invertible away from the diagonal A;(I) and defines a blow-up along it in the space
of multijets TV R).

Next we define the function D% : 1% x R — DDk (I, R) explicitly using so-called divided
differences. Let g: R — R be a C" function of one real variable.

T 1

fu(%) 1

Un, Un-+k

Fig. 6. Newton coefficients and their action.
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Definition 26. The first order divided difference of g is defined as

Ag(xg, x1) = W (80)

for x| # xo and extended by its limit value as g’(xg) for x; = xq. Iterating this construction we
define divided differences of the mth order for2 <m < r,

Am71 X0y oo ey Xm—2, X, _Am71 X0y ooe sy Xin—2y Xm—
A" g(x0, ...\ X)) = 8(xo m=2:%m) g(xo m—2sXm—1) -

Xm — Xm—1

for x,,—1 # x,,, and extended by its limit value for x,,—1 = x,.

A function loses at most one derivative of smoothness with each application of A, so A™g is
at least C" " if g is C". Notice that A™ is linear as a function of g, and one can show that it is a

symmetric function of xo, ..., x;;; in fact, by induction it follows that
g(xi)
A"g(x0, ..., xm) = (82)
" Z 1_[]751 (xz - )

Another identity that is proved by induction will be more important for us, namely

A" xT (X0, -y Xm) = Pjm (X0, -+, ), (83)
where p; (X0, ..., %) is 0 for m > j and for m < j is the sum of all degree j — m monomials
in xg, ..., X, with unit coefficients,

Pim(X0,s -\ Xpm) = > [~ (84)

r0+~~~+rm=jfm i=0

The divided differences form coefficients for the Newton interpolation formula. For all C*®
functions g : R — R we have

g(x) = A% (x0) + A g(x0, x1) (x — x0) + - --

+ A e (o, ) (= x0) - (8 — xk2)
+ AR g(x0, ., Xpm1, X)(x — X0) -+ (X — Xp—1) (85)
identically for all values of x, xg, ..., xx—1. All terms of this representation are polynomial in x

except for the last one which we view as a remainder term. The sum of the polynomial terms
is the degree (k — 1) Newton interpolation polynomial for g at {x; }];;(1). To obtain the degree
(2k — 1) interpolation polynomial for g and its derivative at {x j}ljc.;(l), we simply use (85) with k
replaced by 2k and the 2k-tuple of points {x; (mod k)}ﬁl‘;o].

Recall that D¥ was defined implicitly by (77). We have described how to use divided differ-

ences to construct a degree 2k — 1 interpolating polynomial of the form on the right-hand side
of (77) for an arbitrary C* function g. Our interest then is in the case g = ¢, which as a degree
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2k — 1 polynomial itself will have no remainder term and coincide exactly with the interpolating
polynomial. Thus D" is given coordinate-by-coordinate by

2k—1
Up = Arﬂ( Z ij])(xo, <+ +» Xm (mod k))
j=0

2k—1
=é&m + Z Sjpj,m(XOa---axm (mod s)) (86)
Jj=m+1
form=0,...,2k—1.

Equation (86) defines a transformation (ug,...,u3x—1) = E%(k (¢) on R*, where X; =
(X0, ..., xk—1) € I*. We call E;k the Newton map. This map is simply a restriction of D!¥
to its final 2k coordinates:

DXy, &) = (Xk, Ly, (). (87)

Notice that for fixed Xy, the Newton map is linear and given by an upper triangular matrix
with units on the diagonal. Hence it is Lebesgue measure-preserving and invertible, whether or
not Xy lies on the diagonal A (7).

Furthermore, the Newton map ﬁ%(k preserves the class of scaled Lebesgue product measures.
In general, we define

Definition 27. A measure p on R is called a scaled Lebesgue product measure if it is the
product ;= po X - -+ X ox—1, where each p; is Lebesgue measure on R scaled by a constant
factor (which may depend on the coordinate j).

Since the E;(k only shears in coordinate directions, we have the following lemma.

Lemma 15. The Newton map E;(k given by (86) preserves all scaled Lebesgue product measures.

Extension of this lemma to 2-dimensional case will be used in Section 10.
We call the basis of monomials

J
l_l(x—xi (mod 1) for j=0,...,2k—1 (88)
i=0

in the space of polynomials of degree 2k — 1 the Newton basis defined by the k-tuple {x j}/;;(l).
The Newton map and the Newton basis, and their analogues in dimension 2, are useful tools for
perturbing trajectories and estimating the measure of “bad” parameter values € € HB2<2k(§ ).
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10. The multidimensional space of divided differences and dynamically essential
parameters

10.1. Dynamically essential parameters

In Section 9 we defined the space of divided differences DDV (I, R) = I¥ x R¥ in the 1-di-
mensional case, where I can be the interval [—1, 1]. In this case in [22], we develop a method of
estimating the measure of “bad” parameters (see Sections 3.3-3.4 there).

Similarly to notations of Section 9, in 2-dimensional case we define the space of divided
differences

DD**(B§.R?) = {(Po, Plo-es Pk—1: {llaa|=0: - - - {la }jaj=2¢~1)

€ B x - x B xR" 0D » ... x R”@k*l’z)}
_—

N ——.
k times
P
=B} x - x BY x W5 x Wi x o x WS wy
$ $ k—1,2
—_—
k times
u, Py u,Py
X Wi X x Wy o, (89)

where 352 is the 2-dimensional ball of radius §, v(j, 2) is double of the number of multiindices
o = (o1, ap) with |a| = j < 2k,

P;={po,p1,....Pj—1 (mod b} Py=0,

and W]u PmintkoJ) i the space of homogeneous polynomials of degree j from R? to R? with
the Newton basis defined below. There are two issues we face that were not a concern for the
1-dimensional Newton basis (88).

10.1.1. Non-uniqueness
It turns out that the choice of a basis in the space of divided differences DDZ’k(Bz, R2) and
the definition of the Newton map

Cpk ({EaHat<2k) = ({tahiai<2k) (90)

(defined by (86) in the 1-dimensional case) for a multiindex « € Z is far from unique. In the
1-dimensional case, the standard basis is {x/ }k ! and the Newton ba51s is

k—1

r—1
{ l_[(x —xj)>
j=0

r=0

In the 2-dimensional case, (p — p;) = (x — xj,y — y;) € R? is a 2-dimensional vector. For a
fixed coordinate system in R?, let (p — p )i denote the ith coordinate of the vector (p — p;).



46 A. Gorodetski, V. Kaloshin / Advances in Mathematics eee (eeee) see—eee

The number of different monomials of the form

k—1
{ H(P_pj)i(j)} o1
{i(0),..i (k—T)}e{1,2)¢

j=0

is 2. However the number of homogeneous monomials in 2 variables of degree k, i.e. { P Val=k>
is equal to k + 1, which is much smaller than 2¥ for k > 2.

Therefore, among the monomials (91) we need to choose an appropriate basis and define an
appropriate Newton map C%,k. The standard way to choose a Newton basis (see, e.g., [15]) is as
follows. For o € Zi, let the Newton basis monomial for the multiindex o be

ap—1 ar—1
(P P0s -+ Plal—1 mod )* = [ [ & = xi) [T 0 = Yentin)- 92)
i1=0 ip=0

The Newton basis for WZ’zl;(k’z, the space of homogeneous vector-polynomials of degree < 2k,

consists of 2 such monomials (one for each basis vector of R?) for each a = (o], @2)
with || < 2k. By analogy with identity (77) and definition (86) we implicitly define the 2-di-
mensional Newton map L%,k by identity

D Ep“= D dia(pi o Plal—1 (mod 1) (93)

The explicit formula involves taking divided differences with respect to both x and y as in
(80) and will be given by (93).

The standard Newton basis does not fit purposes, as the following example illustrates: py =
(1,0), p1 =0, 1), po = (1, 1). Then for all @ with |e| =2, we have (p2; po, p1)* = 0. Thus,
the monomial (p; po, p1)® is useless to perturb the image of p;. So we need to define the basis
differently depending on the given sequence Py.

10.1.2. Dynamically essential coordinates/monomials

After a Newton basis is chosen, one needs to make sure that it is effective for dynamical
purposes. In Section 9 we noticed that in order to perturb by Newton Interpolation Polynomials
in an effective way, we need to make sure that the product of distances ]_[1;;(2) |pk—1 — pjl is
not too small. Similarly, in the multidimensional case we need at least one Newton monomial
(p; pos - --» pk—2)* with |a| = k — 1 not to be too small. The most natural way to choose a “good”
monomial is by taking the maximal coordinates of corresponding vectors. Let v = (vy, v2) € R?
be a nonzero vector. Set

_J L iffur] = |val,
m(v) = { 2, otherwise.

Then
k—2 k—2
[Tt = Pmpecs—pp| =27 P2 1pk—1 = pjil- (94)
j=0 j=0
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This is a satisfactory estimate, because k (the number of loops) is bounded. For a given Py =
{po, ..., pk—1} we can neglect uniformly bounded distortion factors. Given Py = { p,-}i.‘;(} of
pairwise distinct points, we call the monomials

j—1
0 (p.P) =[] — Pdmipy—pye  J=0eccsk—1, 95)
i=0

dynamically essential. These Newton monomials control periodicity (see Fig. 6, line 1). Denote
by P]/- ={pj+1s---, px—1, pj} for j =0,...,k — 1, where P, = and Qdy“(p,P,i) = 1. Then
foreachm =1,2and j =0,...,k — 1 set

(0. PP = (p = pm (O (p. P)) QY (p. P)). (96)

These Newton monomials control hyperbolicity (see Fig. 6, line 2).
We use these Newton monomials to estimate the measure of “bad” u-parameters.’

10.1.3. Complete set of dynamically essential coordinates/monomials
Dynamically essential Newton monomials introduced in (95) control position of trajectories
(see Fig. 6, line 1) and those in (96) control properties of the linearization (see Fig. 6, line 2).

Definition 28. The complete set of dynamically essential Newton monomials associated with a
k-tuple Py = {po, ..., pk—1} is a collection of 3k pairs of monomials (one for each basis vector
of R?) given by (95)—(96).

10.1.4. An algorithm of constructing Newton basises

Now we present an elementary scheme of constructing a vast family of Newton basises in the
space of polynomials of given degree and show that at least one of them contains all dynamically
essential monomials.

Consider the positive octant of planar integer grid 7% = {a = (x1,0) € Vi |y =0, ap = 0}.
Denote |o| = a1 4+ a2. We say that a grid point o € Zi is equipped if there is a oriented path Iy
from the origin to o consisting of oriented unit segments I, j connecting a vertex o’ with either
a’+(1,0) ora’ + (0, 1). Represent I, = U Iy, j as the ordered union of these unit segments.
Denote an equipped point by a(I"), where this symbol is a point in Zz along with an oriented
path connecting it to the origin. See Fig. 7.

Let Py ={po,..., pk—1} C B(S2 be a k-tuple of points and let || < 2k. A Newton monomial
associated to an equipped vertex a(I") is defined as follows

||

) )—H(P Pj—1 (mod k) j(I')» G
j=1

(P POs P1-- -, Plaj—1 (mod k)

where j(I7) is 1 if I'; is horizontal and 2 otherwise.
Important to notice that properly choosing equipment I” we could obtain the complete set of
dynamically essential monomials associated with any k-tuple P; of pairwise distinct points.

5 We shall imitate estimates (3.26)—(3.34) from [22].
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Fig. 7. Equipped vertices.

Let 7y = U|a\<2k a(I") be the union of equipped vertices, Py = {po, ..., pr—1} C B{% a

k-tuple. Call {(p; po, ..., Pla|-1 (mod k))“(m}‘akzk be the set of Newton monomials associated
to I and Py,.

Lemma 16. This is a basis in the space Wy 2 of 2-component polynomials in (x,y) of de-
gree < 2k.

This lemma, proven below, motivates the following

Definition 29. Let 7; = U|a\<2k a(I") be the union of equipped vertices, Py = {po,...,
pk—1} C B} be a k-tuple, and {(p; po, - ..., Pla(r)|—1 (mod k))*Y?}aj<2k be the set of Newton
monomials associated to Z; and Py. We call this basis a dynamical Newton basis if it contains
the complete set of dynamically essential Newton monomials associated with Py.

Now we define the Newton map associated to an equipped multiindex. Implicitly for the stan-
dard basis it is defined by (93). It requires taking divided differences of functions of 2 variables
(see also [15]) so we need to generalize Definition 26. The definitions below are very much sim-
ilar to 1-dimensional definitions (80)—(85), but notations are a bit cambersome. Let g:R"” — R
be a C*°-smooth function of n variables (x1, ..., x,). Our main interest will be the case when g
is a polynomial.

Definition 30. The first order divided difference of g with respect to x; is defined as

/ 4
;o gx1, .o Xy X)) —8(X1, . X, Xp)
A8ty xp, x| o X)) = L — ! (98)
x/ —x]
for x”” # x” and extended by its limit value as dy; g(x1, ..., X, ..., x,) for x; = x/ = x;.

Clearly, Ay, g is C*°-smooth function of its arguments, because g is C°°-smooth. Therefore,
iterating this construction is possible. This could lead to somewhat awkward notation, since for-
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mally Ay, Ay, makes no sense: one should decide between Ay Ay, and ArA,,. Fortunately,
the result will be the same, as an easy computation shows [3]. Moreover, it is clear that the op-
erators Ay, and Ay ; commute for k # j, and therefore we use well-defined multiindex notation:
for o = (a1, ap) € Zi and a function f(x, y) of 2 variables (x, y) we denote A% f = AY! A‘;zf
the mixed divided difference of order || = or; + 2. Now we need to apply the Definition 30 to
incorporate equipped multiindices {« (1)} into this scheme.

Fix an equipped point «(I"), || < 2k, and a k-tuple Py = {po, ..., pr—1}. We define divided
differences of the |«|th order associated to «(1") inductively as follows.

e Start with a C®°-smooth function of 2 variables hg(x, y). If I'| is horizontal, take divided
difference of /o(x, y) with respect to x. Namely, apply (98) withn =2, g(x1, x2) = ho(x, y),
i=1,x1=x,x2=y, x| =x0, x{ =x.If I'l is vertical, put i =2, x}, = yo, x; = y. Now we
obtain a function of 3 variables, denote it by /1 (x1, x2, x3).

e Start with a function of 3 variables A1 (x, x2, x3). For determinacy suppose I is horizontal,
then A1 (x1, x2, x3) = h1(x0, x,y) = Axho(x, y). If I is horizontal, take divided difference
of h1(xg, x, y) with respect to x. Namely, apply (98) withn =3, g(x1, x2, x3) = h1(x0, X, y),
i=2,x1 =xp, xé =xq, xé/ =x,x3 =y. If I; is vertical, take divided difference with respect
to y. Namely, apply (98) with n = 3, g(x1, x2, x3) = h1(x0, X, y), i =3, x1 = X0, X2 = X,
x4 = y1, x5 =y. Now we obtain a function of 4 variables, denoted it by &2 (x1, x2, X3, X4)
and so on.

Let Z; = U|a|<2k a(I") be the union of equipped vertices, Py = {po, ..., px—1} be a k-tuple,

and {(p; po, .-, Pla|—1 (mod k))a(r)}\a|<2k be the set of Newton monomials associated to Zj
and P. Now we would like to define an associated Newton map implicitly given by
D Ea= D ialp; pos - Plai-1 (mod )™, 99)
|| <2k || <2k

where (p; po, ..., Pla|—1 (mod k))"‘(r) is defined in (97).
In the case of trivial specification, i.e. (p; po, ..., Pla|-1 (mod k))“(r) is replaced by (p; po,
-+ Plal—1 (mod k)%, given by (92), the standard formula for multivariable Newton map is

Uy =Eq + Z €8 Ppras (X0s+ - -+ Xay (mod k) PBaas (V05 - -+ s Yar (mod k))>  (100)
a<p, |Bl<2k

where pg,q, (respectively pg,q,) is the homogeneous polynomial in x (respectively in y) of
degree (81 — a1) (respectively (82 — «2)) defined by (84) depending on (81 — «1) (respectively
(B2 — ap)) variables out of | 8] — |«| (see, e.g., [15,20]). It generalizes the 1-dimensional formula
(86) to the case of 2-variables. However, we are not able to provide a formula of type (92) for a
general specification. We shall give an indirect definition. Namely, we just prove that there is a
linear map of {§a}‘a|<2k into {ﬁa}|a\<2k satisfying the identity (99).

Open brackets in the right-hand side of (99). Since points po, ..., px—1 are fixed, we could
view both sides as polynomials in x and y. Group terms in the right-hand side according to
monomials p* = x*1 y*2. Compare coefficients of both sides. This leads to equalities

Eq =llg + Z UBPB a(X0s s XB =15 Y05 - -+ YBo—1)s (101)
a<p,|Bl<2k
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where Pg , is a homogeneous polynomial computable using Vieta formulas. This shows that the
linear transformation of {§a}‘a|<2k into {ﬁa}‘a|<2k is given by an upper triangular matrix with
units on the diagonal. This leads to the following

Lemma 17. There is an upper triangular matrix L%k»Ik = {9g.a}al,|p|<2k With units on the
diagonal such that for

lio(ry =%+ Y.  Qpatp (102)
a<p, |Bl<2k

and for any {€q Y a|<2k and {Uiq }a|<2k given by this formula (99) holds.

Proof. For example, use formula of inversion of a square matrix using complement maximal
minors. 0O

Definition 31. We call the linear map LP T defined by the matrix { Qg « }|«|,|8|<2k» an associated
Newton map to a k-tuple Py and equlpment T

Denote by W”;,:"z the space of 2-component vector polynomials of degree < 2k in x and y
with the Newton basis associated with Z; and P;. The map £2 is called a dynamical Newton
map if associated set {(p; po, ..., Plaj-1)% all’ )}\a|<2k contalns the complete set of dynamically
essential Newton monomials associated with Py and is denoted by

2,d, P Ty
Ly, Wk — Wi, (103)
Lemma 18. The Newton map E%,k o Wk — WZ’ZIZ’ZIk given by (102) preserves all scaled
Lebesgue product measures. '

Proof. It follows from the fact that the corresponding linear map is given by an upper triangular
matrix with units on the diagonal. O

Proof of Lemma 16. Notice that for any multiindex o = (a1, o2) independently of its equipment
I, the Newton map (102) is given by an upper triangular matrix with units on the diagonal.
Therefore, this linear map is non-degenerate and {(p; po, - .., p|a|_1)°‘(r )}|a‘<2k forms the basis
in Weor oo O

11. Discretization Method

In Section 3.1 in Step V we reduced the proof of the results of the paper to the proof of
estimate (31). Then in Step VI we mentioned that this estimate will be proven using Newton
Interpolation Polynomials. Now we split Step VI into two steps.
Step VI A (Collection). Reduction to estimate of the measure of “bad” parameters associated

with a scattered admissible pseudotrajectory of a given type and specified starting points of
generalized loops.

6 See Definition 27 of scaled Lebesgue measures.
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We need to estimate v<25{B§m[s, fiNi,n,1,m]}. Long loops of pseudotrajectories of
type Ny have lengths nf + 1, ..., n¥ + 1, where 7 = (\) is the number of generalized loops.
Consider testing rectangles {Hnj-};:1 and grids {H,,;f (u_“lv"l")}ﬁzl, defined in Sections 8.1

and 8.2, respectively. Pick a set of (2s) " —um—1m _gscattered set of points R ={Ryp, ..., Rr_1},
Rjell nt (u=%m™) " consider the set of parameters

BEUs, f. Ni.n.1,m; Rl = {2 € HB34(¢) | fi_,, has a k-loop
(25) " @m=17_gcattered p~*-m"-admissible pseudotrajectory 2%
of type Ny having shape (I, n), (fi_,,. R) & K{Q.IWNy), n, Orm. 6},

and R is the ordered set of starting points of generalized loops}. (104)

For each j the number of points in H,,jf(u_“h'"”) is bounded by 98%(u2%m") (see

Lemma 10). Thus, the number of different choices of set R is bounded by (982~ 2UmnyT
Therefore to prove (31) we need to establish the following estimate:

V<25{nged[s, f’ Nk, n, l, m; R]} < (982M201,mn)_fcju/—hln’ (105)

Step VI B. Reduction to the cone condition for one generalized loop of a scattered admissible
pseudotrajectory of given type and fixed ordered starting points of generalized loops.

Given (25)~ ! u~%m-1"_scattered set R as above, define the following set of parameters:

BIM[s, £, Ni,n,1,m; R] = {-o5 € HB2(¢) | f:_,, has a k-loop
(25) "~ m—1"_gcattered % m"-admissible pseudotrajectory R
of type N having shape (I, n), R is the ordered set of starting points of

generalized loops, and inclusion K¢, (Rg) — Ko, un(R1) fails}, (106)

N
Fa
RE 2

(Ro)

where N is a length of the first generalized loop.
For any ordered set of points R = {Ry, ..., Rr—1} define a cyclic permutation Shift(R) =
{Ry,..., R;_1, Ro}. Now we have

T—1
Biﬁjxed[sv f?-/\/ks n, ls m; R] - U BgSt[s’ f’ Nk’ 1, l’ s Shlftj(R)]. (107)
j=0

Now we reduce the problem to the proof of the following estimate:
1 -
U<25~{Bgm[5, f,./\/k,n,l,m;R]} < ;(982M2al’mn) TC;kI/L—hln- (108)

To obtain this estimate we apply Fubini reduction from HB 2, (¢) to HB 24 (¢) first and then use
Newton Interpolation Polynomials.
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11.1. Fubini reduction from HB -25(¢) to HB <21 (&)

We reduced the problem to estimate (108) of v<2s{BhrSt[s, fr N, n, 1, m; R]}. Before we ap-
ply Discretization Method we need to reduce this estimate to the estimate of v_o,-measure of the
following set:

ﬁrSt [k, f,Ni,n,l,m; R] = {8<2k € HB .7, (¢) | foq=f+ d)5<2k has a k-loop
(2s) L —em—1n_scattered pu~%-m"-admissible pseudotrajectory 2R
of type N having shape (I, n), R is the ordered set of starting points of

generalized loops, and inclusion K¢, (Rop) < Ko, .n(R1) fails}, (109)

Joud

ey (RO)

where N is a length of the first generalized loop.

One can make this Fubini reduction almost in the same way as in Section 3.2. Namely, con-
sider the following decomposition of the space of parameters, perturbations, and the product
measure for k < s:

HB_24(¢) = HB<2k($) © HB>ok, <25(5),  where
HB>5 <25(¢) = {el.qj GR| |8:.]j <6, q9q=1,2,0<i,j,2k<i+j< 2s}
E<os = (E<ak, Ex2k,<25) € HB 2k ($) ® HB> ok, <25(£),

S oL, = X e X ey
LN =0: )+, () ;X v + &X'y,
0<i, j,i+j<2k 0<i, j, 2k<i+j<2s
V<2s = V<2k X V>2k, <25, where
1 2 1 2
Vok = X (1)/ X Ul/) V>2k, <25 = X (V/ X 1)1/) (110)
0<i,j,i+j<2k 0<i, j, 2k <i+j<2s

Suppose we can get the following estimate

Voo BENk, £, Nieon, 1,m; R} < Cy (™ 20mm) " =i, (111)

where f = f(0»522k,<2s) =f+ @gﬂk.dy uniformly over all parameters §>2k,<2‘v € HB> oy, <2s.

Since § is assumed to be small, Fubini Theorem implies estimate (108) with C; = sC‘s.

In order to apply the Discretization Method and Newton Interpolation Polynomials we need
to partition the cube of parameters HB -7, (¢) into bricks of certain size and derive estimates of
the type (111) in each of those bricks.

11.2. From the cube to a brick of at most standard thickness

Definition 32. We call the set of parameters

¢
G

HBstZk(g)_{g eR“s 5, ¢=1,2,0<1i,/, and 2k < l+]<2s}
the brick of standard thickness with width ¢.”

7 Cf. [22, Sections 3.1 and 4.4] for similar definitions.
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Denote by HBStZk(£<2k, ¢) the standard thickness with width ¢ centered at §<2k, i.e. con-
ditions |8ij| < ¢/(i!j1)? are replaced by |s (5*)’1 | < ¢/@!j)%. We shall partition the cube
HB _»x () into disjoint bricks of standard thlckness w1th width ¢ simply by dividing ij-side of
the brick into (i!j 1?2 equal sides. The probability measure v_o; on HB 2k (¢), defined in the pre-
vious section, induces a measure on each brick of standard thickness with width ¢. Fix one brick
HB k(5<2k’ ). After normalization v_y; induces the probability on this brick denoted v* 2k

Denote by BgSt Uk, fg Nk, n,l, m; R] the intersection of the set Bﬁm[k, foNe,n, L,m; R
with the brick HBizk (€% 4+ ©). If we can prove that the following estimate holds true

V(B k. fery Nieon. Lmi R} < Gy (20 ", (112)

where f; o = f + q)** e uniformly over all parameters €.y, € HB_-2; (), then this implies
estimate (1 11). We shall prove (112) in Collection Lemma (Section 11.6).

11.3. Decomposition into pseudotrajectories

Now our goal is to estimate the measure of the “bad” set Bg“t St[k, fiNi,n,l,m; R] and
prove (112). This set consists of parameters for which there is a k-loop scattered (non-recurrent)
admissible pseudotrajectory of type A having shape (I, n), given ordered starting points of
generalized loops, and associated cone condition of this pseudotrajectory fails after the first gen-
eralized loop. We apply Discretization Method similar to the one in [22, Sections 3.1-3.4]. For
this purpose we would like to contain the set of “bad” parameters into a finite collection of
subsets each of “bad” parameters corresponding to a single k-loop (2s)~! =% m-1"_scattered
u~“m"-admissible pseudotrajectory, where oy ,—1 and o ,, are defined in Section 7.1. So fix
type Ny = (n1, ..., ni) and its shape (/, n). Consider grids IT,, (w=*m") and I~Inl. (u=%my in
each of testing rectangles IT,,, and ﬁn,- fori =1, ..., k. Denote

H-/\/k(:uial‘mn): U Hn,-(Mial'mn) and ﬁ'/\/‘k(y,faﬂ'"”): U ﬁni(ﬂial’mn).

1<i<k 1<i<k
Fix starting points of generalized loops R = {Rop, ..., R;—1} and an admissible n-tuple of
points R = {ro,...,m—1}, Re =R NU = {rg,...,rx_1} so that R € Ry C I (u™*""),
r;ell,, (u_“lm”) fori =0,...,k— 1. Suppose 0 =ig <ij < - < ir—1 < k are indices of

starting points of generalized loops in Ry. Since the map f; out51de U does not depend on &,
ak-tuple Ry C U (if admissible) determines a k-loop admissible pseudo-orbit R uniquely. There-
fore, there is a one-to-one correspondence between n-tuple k-loop admissible pseudo-orbits

= {rg,...,m—1} and the corresponding intersections Ry = 2R N U. Thus, we can consider
only (2s5)~!pu~%m-1"_gcattered p~%m"-admissible k-tuples Ry C U. Let R C {ro, ..., rr_1}.
Define “bad” parameters corresponding to a p~*-m"-pseudotrajectory R as follows

BEM [k, fo Neon, Lms R {xo, . vk1)] = {E<ok € HBY, () | fi_y, ha

—Qf 1N —®mh

a k-loop ) 'u -scattered u -admissible pseudotrajectory R
of type N having shape (I, n), Ry is the ordered set of starting points of
loops Ry = {ro, ..., re—1} C M pgp (u™*""), 1; € My (™ *m")

fori =0,....k — 1, and .ok € B[k, f, Ni,n,l,m; R]}. (113)
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To estimate the measure of Bﬁm Uk, f Ni,n,l,m; R] we need to define additional
sets.’ Consider the definition of parameters €<k for which the map f;_, has a prescribed
(25) " @m—1m_scattered p~%-m" -admissible pseudo-orbit {ro, ..., rr_1} C IT N (u™%0m™) that
is almost periodic, has appropriate combinatorics, but does not satisfy the cone property after the
first generalized loop. Based on it define a set of parameters £ .o; for which only a part of length
n’ < n of the u~*n"-pseudotrajectory {ro, ..., rw—1} and an ordered set of starting points of
generalized loops are prescribed for fz_,, and {ro,...,rp—1}NU ={rg,...,r;_1}:

BEU [k, f, Ni,n,1,m; R, (o, ..., rj_1}]
= {§<2k € HBS<12k(§) | there is {ry, ..., m—1} C I n (u™*"") such that {r;};_ _1 defines

a k-loop (2s5) ™! =% m-1"_scattered p~*m"-admissible pseudotrajectory associated

to €2k, and €~ € Bgsw[[k, filNg,n, 1, m; 'R]} (114)
Since {ip, ..., i;—1} are indices of starting points of generalized loops, for each j not among

them we have

Bgst,st[k’ f,/\/'k,n,l,m; R, {I'(), ,rj—l}]
_ U Bjﬁarst,st[k7 f’j\/k’n’l’m; R, {I'(), ey rj}] (115)

—ap
r; EH”_HI (u=m™)

and for each j € {ip, ..., i;—1} we have the corresponding point of pseudotrajectory fixed so

BE[k, f. Neon, 1,m; R {xo, ..., vj_1}]
BE Mk, £, Nion,Loms R, {xo, ..., x5}, (116)
Let j be the smallest index such that r; is not a starting point of a generalized loop. If such j

does not exist, i.e. all the loops are long, the sets (109) and (113) coincide. Otherwise inductive
application of these formulas gives

BE Mk, £, Ni.n. 1, m; R,

U BEU[k, f, Nie,n,L,m; R, {xo, ..., 15}]. (117)

. 7&14 .‘”
rjennj+1(llv me)

The first step is to estimate the measure of BgSt’St[k, fiNe,n,l,m;R,{rg,...,ri_1}] and
then “collect” over admissible k-tuples {rgp,...,ry—1} and get an estimate of the measure
fBﬁrst st k, f,./\[k,n,l,mi R]_9

8 See [22, Section 3.2] for a similar construction in a simpler case.
9 We shall follow the same strategy as in [22, Sections 3.3-3.4].
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Fig. 8. Distortion by the Newton map.

11.4. Distortion Lemma

In this section we formulate the Distortion Lemma for a Newton map ﬁ N y defined in (100)

and in the next four sections complete the proof of the key estimate (108) by collecting all
possible scattered admissible “bad” pseudotrajectories defined above (see the Collection Lemma
in Section 11.6).

Consider an ordered k-tuple of points R, = {F i }];;(1) c U. Select the complete set of dynami-

cally essential monomials associated with Ry (see Definition 28) and the dynamical Newton map

idyzn Wk — Wizlzkézk, defined by (103). By definition the dynamically essential monomi-
k Lk >

als form a subset of basis vectors in WZ’zlzkéI". We now estimate the distortion of the Newton

map £2~’dyn as the map from the standard basis {Ea}‘akz;{ in W.og 2 to the dynamical Newton
k

basis {ua T Nl <2k in W <2kk21A' It helps to have in mind the following picture characterizing the

distortion of the Newton map (see Fig. 8).
Recall that in Section 11.2 we restrict ourself to the brick of standard thickness with width ¢
as space of parameters

HBStzk(g)_{Sl/_ l]v l] ‘| 27q 172a0<lv.}’l+]<2k}a

(l’ )

where ¢ is small enough to guarantee that G (0) DU forall . € HBS<t2k C HB -7, (¢) and

€2k
the family of perturbations is:

Gz, (%, 9) =G, §) + Pz, (%, 9),

- (x, ) o
q>g<2k()z,y):< o o ) ol (FH= > eFy. g=1.2. (118)
(DEZ x,y) = 0<i it J
<2k <iLj, i+j<2k
Distortion Lemma. Let R = {rog,...,Tr_1} C Bg be an ordered k-tuple of points in the 5-ball

Bg, and [,%k’ 7 Wooo— Wi ’2%/31" be the Newton map, defined by (100). Then the image of the
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brick of standard thickness HBSIZk(g“ ) with edge ¢ is contained in the brick of standard thickness
HB%,, (¢ /(1 —48)) with edge ¢ /(1 — 45):

¢ R,
Cik (HBZy (£)) C HBi%(ﬁ) C Wiy (119)

In other words, independently of the choice of an k-tuple {tg, ..., Tx_1} C Bg forany 0 <i <k,
the coefficients u; on have the range of values bounded by |ufx Ik' < ¢ /(1 —46) in the image

Ly, 3, (HBL (0)).

Proof. Recall that for {€4}jo|<2x € HB® 2k(;) therefore, for each of these @ and g = 1,2 we
have that |ef | < ¢(a!)~2. We cannot use arguments of the proof of Distortion Lemma from Sec-
tion 3.4 [22], because the Newton map is given by an implicit formula (see Lemma 17 and (102)).
Note that for the standard Newton basis we do have explicit formulas of Newton map (see (86)
and (100) in 1- and 2-dimensional cases, respectively). We shall prove it by backward induction
in |¢|. By Lemma 17 we know that for |«| =2k — 1 we have ul = ¢, q = 1, 2. Therefore,
ug) < ¢@h ™.

We proceed by inductively decreasing |«|. Fix « such that |«| = 2k — 2. Consider identity
(99) as polynomial equality. Differentiate it vy times with respect to x and «, times with respect
to y. We get the following identity:

qaqlon! + §a+(1,0)(a1 + Dlag!x + ga.,_(o’])otl!(olz + D'y

= ﬁaal!az! +ﬁa+(1,o)a1!a2!((a1 + 1x — Z xj)

jel

+ ﬁa+(o,1)a1!a2!<(oez +hy— ) yj>, (120)

jela

where JJ and Jg are two sets of indices of (a1 + 1) and (a2 + 1) elements. We shall not use
pI’eCiSC form of these sets of indices. Since l:t)a+(1,()) = §a+(1,0) and I:ia_;,_(o’l) = §a+(0,1), we could
cancel the corresponding terms. All x;’s and y;’s are from the §-ball. It implies that

ud| < |sq|+(a1+1)5yua+(01)|+(a2+1)5|ua+(10)|

ar+1 ar+1
=letl+ ("ol (2 Yol

This implies that

¢

(1—48)@)?’ (20

ud | <

where we use (1 +28) < (1 —48)~L.
Suppose we prove the above estimate for all « such that |«| > m. Fix « such that |o| = m.
Consider identity (99) as the polynomial equality. Differentiate it «¢; times with respect to x and
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o times with respect to y. In the identity obtained this way plug in x = y = 0 and replace each
x;’sand y;’s by its upper bound §. For ¢ =1, 2 we get the following inequality:

|ug|a1!a2! < |6‘Z|O[1!O[2!+ Z 6"3'_'“|u%|<§i)a1!(5i>a2!.

a<p, |Bl<2k

Applying upper bounds (121) on u% we get

¢ S1BI=le] ! !
1< —==(1 :
] (a!)2< o 1 =45 Bi!(B1 —an)! B2!(B2 — a2)!

a=<p. Bl <2k

Write the right-hand side as the power series of § and estimates coefficients. Direct verification
shows that the right-hand side is bounded by (121). Indeed, for o < 8, |8 — | = 1 the coefficient
next to § is bounded by

1 1

— + —— <4
ar+1  ar+1

For a < B, | — a| = 2 the coefficient next to 8% is bounded by

1 1 1 1 1
4[ + i| + + + <16
ar+1 aw+1] (r+D@+2) (@1 +Dea+1) (24 D(x2+2)
and so on. This completes the proof of the lemma. O

For a given k-tuple Ry = {f'j}];-;(l) C B2, the parallelepiped

P ke O =La

st u, Ry, Ty
Sz, O =Ly 7 (HBLy () W (122)

<2k,2

is the set of parameters {iiy 7, }|o|<2« that correspond to parameters {€q}jo|<2x from HBS<tzk (5).

In other words, these are the Newton parameters allowed by the family (118) for the k-tuple Rg.

st St
We already knew by Lemma 18 that P<2k,f{k, Ik(g) has the same volume as HB”.,, (¢), but the

Distortion Lemma tells us in addition that the projection of P

<2k, Ry, Ty
axis is at most a factor of (1 —48)~! longer than the projection of HBS<‘2k ©).

(¢) onto any coordinate

Let R = {f'i}ljz_ol be the j-tuple of first j points of the k-tuple Ri. We now consider which
Newton parameters are allowed by the family (118) when l~{,~ is fixed but ¥, ..., Fx—1 are such
that ¥; € I, (u*m"). Since we will only be using the definitions below for admissible
discretized k-tuples ﬁk cn N (u™%m"), we consider only the (finite number of) possibilities
Fj,...,Fr—1 CHpp (u™%m™), Let

R T,

u,Re, Ty . WM,RkaIk S wh wR; T ou R Ty N W”sR.i» j
: in

u iy
<2< <22 <j2 and ook W
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1;

L Rj, . .
be the natural projections onto the space WZ /.é of 2-component polynomials of degree j

R;.Z; . ; .
and the space W;2 7”77 of 2-component homogeneous polynomials of degree j respectively.
Denote the unions over all ¥}, ..., T C ﬁ/\/k (u~%m"y of the images of Pit% ReT (¢) under
the respective projections ”izlltkng and nZ’ZI,{(”‘}.I" by
st _ Ry st u, ~j’Ij
P<2k,<,/,1ij,zj )= U T2k, <j (P<2k,ﬁk,zk(§)) C WS./,Z ’
oo B 1 CILA (™ ¥0m™)
P ()= U a R T ps o (0) wiR T (123)
<2k,j,R;.Z; - <2k, j <2k, Ry, Tk J:2 ’
Fjoo B CH A (™ m™)
11.5. Probability estimates of an elementary event
Consider a set of starting points of loops Ry = {rop, ..., rx—1} C U~ of type Ny = (ny, ... ,~nk),
shape (I, n), and scale number m, where r; € IT,,  (u=*""). Let Ry = {Fo, ..., Fx—1} C U be

a set of ending points of the corresponding loops, Zy = {a(1")},o|<2x be a set of equipped mul-
tiindices. It defines the family of perturbations by Newton polynomials associated to the k-tuple
R}, and equipped multiindices Z

r ~ -d
faon gz, ) =F@)+ Y dig7 (p; po, - Plal—1 moa k), (124)
|| <2k
where the Newton monomial (p; po, - - -, Pla|—1 (mod k))*' is defined in (97) and
-dyn _ [-dyn st
qu - {u(x,zk}\a|<2k € 7)<2k,ﬁk,Ik (C)

We omit sub-subindex Z; for brevity. We choose equipments of multiindices so that all dynami-
cally essential monomials (95)—(96) are present. It is possible by Lemma 17.
Among the dynamical Newton monomials we have a set of dynamically essential monomials

{094 (p R)), Qﬁ,yn*q(p,lij,li'j)}, j=0,...,k—1,m=1,2, and g = 1,2 is an index of
vector component. Dynamically essential monomials have the following degrees:

= . dyn, _ ;
deg(Q™™(p,R))) =j,  deg(Qw"’(p,R;,R))) =k+j,
and satisfy the following inequalities:

j—1
dyn,g ;= . R —j/2 S =
Q¥ Rp| =272 [ TIF; —Fil.
i=0
j—1 k—1
> 2 CHEDRTTE -8 ] F—Fl,
i=0 i=j+1

0 dyn,g .~ o B
an (rijjaR/])




A. Gorodetski, V. Kaloshin / Advances in Mathematics eee (eeee) see—eee 59

j—1 k—1
22—<k+j—1>/21—[|fj_fl.|2 l‘[ £ — Fil. (125)

0
8—Q2y“"( - R;.R))

Recall that by Distortion Lemma the set of Newton parameters P* <2 R T, (¢) allowed by the

family (118) is contained in the cube HBjZk(;‘ /(1 —46)) (see (122) for definition). Therefore,
it suffices to consider |uayn 7| < ¢/(1 —48) for each ¢ = 1,2 and |«| < 2k. We denote u y; €

B“(;/(l 49)) if |udynq| <¢/(1—46) forall |¢|=jand g = 1,2, where j =0,...,2k — 1.
Define v = Xia|= ](v“ ' x V52,

Due to the choice of Newton polynomials the image fadyn RuTy (Tp) is independent of ﬁdy% =

(ugy;;(l dyn. 2) for all || > 0. Therefore the position of fadyn &,.7, (F0) depends only on “0 I =
(u oy;k]’ Oy; 2) Recall that Voo and Voo are 1-dimensional Lebesgue measures scaled by 1/(2¢).

This gives

~d e . i
vat{ yn € HB) <m> ‘ ’fgdyn,ﬁklk (o) — r]’ < y}

2 2 2 2
() (o)

Denote _the right-hand side by Probo(y, ¢). To fit notations below we put Probo(y,¢) =
Probo(R1,y, ¢, 9).

.. =dyn dyn, 1 dyn2 -dyn
dle] uOdI ;( 0.7, %01, ). Similarly, the position of fadyn deIk(rl) dzpends onlyonu 0Ty
n n -dyn -dyn
(g 7, g 7, ) for le] =1, i.e. e is either (0, 1) or (1,0). Call ify’7 = (i, 7, }jal=1-

Thus, using the dynamically essential monomials and Distortion Lemma, we get

_d ¢ z -
vft{uly; eHB?t<m) ‘ | faan g, 7, F1) — 12| < V}

@ (1)%y)? - 2( (1n%y

< d 5 d 5N
Q¢(1—48)2107" F1, Ry) - 057" (1, Ry)| ¢(1—49)

2
) I£] — Fol 2. (127)

Denote the right-hand side by Prob; (ﬁz, ¥,¢,6).

Inductively for j =2,...,k — 1, fix il 7, = (ugy;kl dy" 2) for || < j. Then the position
of fﬁdyn’Rk (¥;) depends only on uj = {uiy;khm:]. Moreover, for j=2,...,k— 1 we have

—dyn ¢ e ~
v t{ujy_’[k € HB?(m) ’ |f,‘4‘dyn’f{k’1'k(rj) —Tj+1 (mod k)| < V}
G2
T (1 —48)%

. i—1
200G . .,

<74| ||r-—r-| ) (128)
2 _ 2 J i

|Qdyn,] (f‘j, Rj) . Qd}’n,Z(i‘-j, f{j)}*l

Denote the right-hand side by Prob (RH_ LY, 0).
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Now consider a cone K = K (t;,—1), ZK < m/2. Recall that r;; = R; is the starting point of
the second generalized loop. We want to estimate the measure of parameters, for which the image
of this cone under D fadyn RT, (¥i,—1) does not intersect the cone K x (ril) =R2\ Ko, o (xiy).
As before we identify tangent spaces at points r;; and f-dyn RuTy (r;, ,1) with RZ. Note that i Y;k
with |a| > k+i1 — 1 does not affect to the image of the cone K. Fix parameters {ua’Ik Horl<ktiy—1-

. —dyn _ (~dyn ) . .
Consider Wi 11, = {”a,Ik}|°f|=k+ll—1' We shall prove in Section 11.8 that

-dyn S ¢ ~ ~
Uk+11 1{“k+;1 1.7 GHBZt+i1—1 (ﬁ) ‘ D from g, 7, K (Fij—1) 0 ng,mn(ril (mod k) 7 {0}}

1 — 48)2k+i1—1) .
T iy )2 0 LK 4 b

i1—2

k—1
s [T 1®—1 =% 2 [ [ 1R — 17" (129)
i=0

=iy

Denote the right-hand side by Prob-cone(ﬁk, i1,n,M1,¢,8,01m, LK).
Combining estimates (126)—(129) along with Distortion Lemma'® we get

v BES [k, £, Nkn Lm; R, (xo, ..., 15—1}])

< (1—48)"3* Prob-cone(Ry, i1, n, M1, £, 8,600, { Kinax)

x ]_[Probj(f{j“, G+ 2Mpp ™" ¢, 8). (130)

We derive an upper estimate on Z K,x in the case under consideration later. One could just keep
in mind that it is of order p~@mThO" and is exponentially small in n (see (156)).

11.6. Collection Lemma

st
k, <j.R; I(;’)and’P 2k,j,R;,Z;

only on the j-tuple R; j» the set Z; of equipped multiindices || < j, and width ¢ of the cube
st st u, R Zj
HB?%,,(¢). The set P <R

(¢) consists of all Newton parameters {iq, 7, }jo|<j € Wj >
that are allowed by the family (1 18) for the j-tuple R;.
For each j < k, we introduce the family of diffeomorphisms

For each j < k, the sets 7?“2 (¢) are polyhedrons. Both depend

f—dyn Gz, =F0+ ) iy (P pos s Pl (131)
lal<j

10° Cf. with [22, Section 3.3].
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where the Newton monomial (p; po, ..., p|0,\,1)°‘(r ) is defined in (97), equipment I" of each

multiindex a is given by the set Z;, and 12%“( j) = {ugy;i}wg] P &, 7, () (. (124).

For each possible continuation Ry of ﬁj, the family fadynm R.T; includes the subfamily

of f N R, T, (with udyn ’quk R.Z, (¢)) corresponding to u yn

the action of f i R,.7, ON To,...,T;_1 does not depend on ¥}, ..., I, so for these points the

=0 for all || > j. However,

family f~dyn( /)R is representative of the entire family f i R, T, ThlS motivates the defini-
tion

<2k</(f ro,...,rj_1,;,Fjq1)

uR Z; ~ ~
(a2 () e P o<y 1,0 CWES || Framipy 7, -0 = 1| <7

fori:l,...,j+1}. (132)

In a view of the family of perturbations (118) and the form of the map (7) notice that knowing
type N of a k-tuple Ry one can reconstruct the corresponding k-tuple Ry by applying inverse of

the linear map L the prescribed number of times. It provides natural identiﬁcation of Ry and Ry.
-dyn
o, Tk } lor] < j

allowed by the family (118) for which rp,...,r; isa y-pseudotrajectory of f~dyn ()R, T (and
K )

<2k <](f ro,...,r;,r;;1) represents the set of Newton parameters u (]) {

hence of fﬂdyn(n R.T; for all valid extensions u% and Rk of u uI (]) and R])

In the following lemma, we collect all possible (2s)~!u~%m-1"_scattered % -m"-pseudo-
trajectories and estimates of “bad” measure corresponding to those p~*.m"-pseudotrajectories.
Denote R; = (Ro, ..., Rj_1) the first j starting points of generalized loops and define indices
{io, ..., iz—1} as follows Ry =71y, ..., R,_1 =r;__,. According to our notations R; =R.

Collection Lemma. With the notations above, for all Ty € IT,, (™ *"") the measure of the
“bad” parameters satisfies
ltzk{ ﬁrSt’St[k’ fv Nk’ n, la m, /"L_alvmn; R]}
< (1 — 48)"KC=D+2 Y01 iiprobcone(Ry., i1, 1, My, £, 8, 0, M2~ = Enthom)
x H Prob;, 1 (Ri;, 3 +2M)u~ """, ¢, 6)
j=1
< (2 Eyp i, (13)

where C s is some explicitly commutable constant (144) and constants oy, 0 m, h; are defined
in (51).

Proof. Denote p=%-»" by y, for brevity in the proof below. We prove by backward induction
on j that for ro € I, (u=*""),...,rj € Iy, ,(u ") such that r; is not a starting point of
a generalized loop,
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v BES[k, £, Nk L, m; R S {x, ... T} UR])

. . t; . . ~
< (1 — 48) =GN+ +HDFEL, irhtin Prob-cone(Ry, i1, 1, M1, ¢, 8, 6pm, LK)

T
D 2 n —
% T Probi—1 (Riy G+ 2007, ¢.8) vy (T2 (Fitor o w200, (134)
I=tj+1

where ¢; is the number of starting points of generalized loops among first j points in R;. In the
case r; is a starting point of a generalized loop we have equality (116). Even though the measure
stays unchanged the above formula changes as indices in terms depending on j change. This
estimate results in the first inequality in (133) for j = 0.

Consider the case j =k — 1. Fix a k-loop (25)~! pu%m=1"_gcattered (non-recurrent) y;,-
admissible pseudotrajectory {rg, ..., m—1} of type Ny having shape (I, n) whose starting points
of generalized loops R = {Ro, ..., Rr—1} C I ; (¥u) N {ro,...,ra—1} are fixed. Recall that
we denote by Ry = {Fp, ..., Fx—1} intersection of the pseudotrajectory with U and by R =
{R1,..., R._1} the preimages of the above starting points. Notice that Ry is not uniquely de-
termine by the fixed Ry and depends on £ y. Using formulas (128) and (129), we have

dyn | -d ¢ ~ -
v 1yn{ 11, € HB?—1<—1 _45> ‘ | fu iz, @r—1) — 10| <3 +2M1)J/n}
< Proby—1 (Re, 3 +2M1)ya, £, 8) (135)

and

t,d ~st,d ¢ = -
Uli+l?ln 1 {ulsc+iy1n—1,zk €HBY,; (1——48) ‘ D fram i, 7, K iy —1) N K (8 mod 1) 7 {0}}
< Prob-cone(Ry, i1, 1, M1, ¢, 8, 01.m, L Kmax)- (136)

We omit HB® 7 (respectively k-+i;— 1)(§ /(1 —46)) in corresponding estimates for brevity. The Fu-
bini Theorem, Lemma 18, and definition (16) of the product measure vitz,( imply that

VU BESSU L, £ Niyn, L,ms R € (ro, ..ot} UR])
<MY | 1y 7 ) — 1o < G4+2M)y)

st stdyn | 2,34+2M)yn , 7,
x 1_[ V; {P_x .j.Re, Ik(g)} <k—l{T<2k,<k—l (f:ro, . -"rkfl)}
k< j<2k—1, jEk+ii—1

t,d -d ~ ~
X V/i_HTH 1{ ki_n” 1,7y ’ Dfﬁdyn’ﬁk’IkK(ril—l) N Kg/,mn(ril (mod k)) 7é {0}}
d 2,342M )y, , 7 ~
<SIHTZEEI (for, v | Probic (Re. B+ 2M1) i, €. 9)

x (1 — 48) = kDR +iprob_cone(Ry, i1, n, M1, £, 8, 61, £ Kmax) (137)

where / Kax is the maximal possible angle of F. R B (K gn(Ro)) estimated in (156) from above
by 4_1‘42(Y I)M—(el,m-‘rhl)n.



A. Gorodetski, V. Kaloshin / Advances in Mathematics eee (eeee) see—eee 63

The last inequality follows from the Distortion Lemma, which says that for each « such that
|| < 2k —2 we have

VP Rz (O <A —48)720TD, (138)
This yields the required estimate (134) for j =k — 1.

Suppose now that for j + 1, (134) is true and we would like to prove it for j. There are
two different cases: either rjy; is not a starting point of a generalized loop or it is. Esti-
mates in both cases follow the same strategy of implicit collection. Consider the first case.
Denote by Gi;}inMl)y"(f ﬂdyn(j — sro,...,r;) C Iy, ,(ya) the set of points rjy; of
the grid IT,;,(y») such that the (j + 2)-tuple rg,...,rjy1 is a y,-admissible pseudotrajec-

tory associated to some extension ﬁ% (j) e P ({ ) of *dyn( j — 1). In other words,

<2k, <,
Gi’ﬁ?FﬁM')V" (f, l:i%:n(j — 1);rg,...,r;) is the set of all possible continuations of the y;,-
admissible pseudotrajectory ro, ..., r; using all possible Newton parameters ”I "(j) allowed
by the family (118).
Now let rg, ..., r; be a y,-admissible pseudotrajectory associated to ﬁ%n( j)= {ﬁg%;k}wg i

then at most 4 points rjy € IT,;,(y,) are within y, of f«dyn( DRI (¥;). Therefore, for fixed

~dyn .. (~dyn st dyn st
Uy, () = {“a,Ik}\“K] € P<2k <RI (¢), each value of U, € 7)<2k R (¢) corresponds to
at most 1 points in GiéiHMl)y" (f,i *dy (] —1);rp,...,rj).In the case when a point is exactly in

the middle of 2 or 4 grld pomts we assomate it to the right or the right-top neighbor respectively.
It follows that

st [72G+2MDyn 7. .
Z véj{T<2k,<j+1 (fix0,....vjxD}
2,(34+2M s o .
r_/'+l€G<§k,+j 1)V"(f,udY“(/—l);ro,--v,r,-)
U pst 2,3+2M )y, . )
{73<2ij Z({)}U<J AT 2" (firo, ) (139)

The Distortion Lemma then implies that

st 2,3+2M)yn , 7. .
Z ng{T<2k,<j+1 (f,l'O,--~ar./+l)}
2,(3+2M = .
rj1€Gy S (Fadm (1))
2j st 2.G+2M )y 7. .
<A —48) g, 1{T<2k’<j "(firo.....rp}. (140)

Consider the second case when r;; is a starting point of a generalized loop. According to
our notations it means j + 1 =i, and R; =r;4 for some 1 < ¢ < 7. In this case the Distortion
Lemma and estimate (128) imply

st {T27(3+2M1)Vn (f~ 1o,

V<G <2k, <j+1 "rj+1)}

2,342 o
<Prob; (R 1. G+ 2M )y, ¢ 0)E (T2 27 (firo,oxp). (4D

Inductive application of this formula proves (134). In the case j = 0 we get



64 A. Gorodetski, V. Kaloshin / Advances in Mathematics eee (eeee) see—eee

Vit2k{BgSt’St[k’ fiNe,n, 1, m; R]}

< (1 — 48) K Ck=D+25 )1 i prob-cone(Ry, i1, n, My, £, 8, 0., LK)

T
x [ [ Probi,—1(Ri;. 3 +2M1)y,. ¢.6). (142)
j=1

Apply to the right-hand side Lemma 21. Direct calculation (see (156)) shows that angle of the
cone after the first generalized loop (in our notations of length N1) satisfies

Ni—1 2(s—1) — +
ZKmax = ZFm,lﬁdk (Ki;‘ln(RO)) < 4M1 (s )/L O h;)n' (143)
Put

24s2+s (3 + 2M1)25M13s2s52+s
(1 _ 45)252—&-45{&&-1

s—1
Co=[]un*(@s - 1)!)4[

}(SMIZSH + M), (144)
j=0

Recall that T < s. Combining (148), (149) with the above estimates we get
Ust{Bgrst,st[k’ £ N, 1, m; 'R]} < éslf«_gl’mnﬂsz_l)(al'm_'+2d[+])n (M—Za/_mn)f‘
By Lemma 4 we have
2(s* = )di1 + (2 = Doyt — Opm < —hy.
For large enough n and (2s)~ ! um _gcattered set R this leads to the estimate
vSt{Bg“’St[k, fiNe,n, 1, m; ’R]} < (Mza’wm”)_résu_h’”. (145)

This proves the Collection Lemma. O
11.7. Auxiliary estimates

We are interested only in scattered admissible pseudotrajectories. Recall that R C U is a set
of ending points of generalized loops. To get lower estimates of pairwise distances between an
ending point of a generalized loop and another point from the set Ry = {rp, ..., Fx—1} C U we

have applied two following lemmas in the section above.

Lemma 19. For a k-loop y'-admissible pseudotrajectory of type N, shape (1, n), and for any
pair of points ¥;, ¥ € Ry such that ¥; € R and ¥j ¢ R the following inequality holds:

IFj =5 = M ((1=8) = (14 9)u @0 23 4 2My)y ") u =41, (146)

Remark 15. In the case under consideration we have p~%.m"-admissible pseudotrajectories.
It means that y’ = pu~*m". According to the choice of combinatorial constants dj1| < o
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(see Sections 5.1, 7.1, 8.3). Therefore, the inequality (146) implies that for (1 —§) — (1 +8) x
p@=deon _ 23 L 2 M)y p4+1" > 1/2 (see Section 11.9) we have

- L1
|rj_ri|>§M1 1% b,

Lemma 20. For a k-loop y"-scattered y'-admissible pseudotrajectory of type Ny and shape
(I, n) for any pair ¥;,¥; € R the following inequality holds:

¥ —Fil > M7 (1-26+2M)y' )7y (147)
Remark 16. In the case under consideration we have only p~%m"-admissible 2% p o m=1T
scattered pseudotrajectories, where o ,—1 << o (see Sections 5.1, 7.1, 8.3). Therefore, the
inequality (147) implies that for 2(3 4+ 2M;)u("%m+em-0" - 1/2 (see Section 11.9) we have
[ —Fi] > (s M)~ e,
Lemma 21. With the notations of Lemmas 19 and 20 above, we have for periodicity
T
[ [ Probi,—1 (Ri;. 3 +2M1)u=>n", £, 5)
J=1

s—1
< 22}:1(1']'*1)(1 _45)*225:11']' l_[(]’)4§72‘[(3 +2M1)2T(4SM1)‘[(T71)

Jj=0
x (2M; )21(1'—1) (M—Zro{],mn)lur(r—l)a[4n,_1n+2r(r—l)d[+1n , (148)
where {i j};(l) are indices of starting points of generalized loops. For cone property we have

Prob-cone(Ry, i1, n, My, ¢, 8, Orm, LK)

< (1 —48) 7% (s — DY) e 256D MP 4 2] 2M} LK + My o)

% IJ/Z(S—])d[+1n+(f_])al.mfln‘ (149)

Proof. We start by proving (148). Using definitions of the numbers Probi,l(li,-,(3 +
2My)p~2mn ¢ 8),{i;};, and Remarks 15 and 16 we have that

T
[ [ Probi,—1 (Ri. 3 +2M)u=>n", £, 5)
j=1
T T
<TG =)' [T 1 —48) 26D 3 +2M1)%c72)
j=1 j=1

2+4+6+~~~+2(r—1)(

X M72Tal,mn (4SM1 H’al.mfln) 2M1Mdl+ll’l)2(f_l)f.
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To obtain the second estimate application of (129) shows that we need to estimate the last
two products of distances there. Consider the former of them. Recall that Rj_1 = I i1 This
implies that among points {rg, F(, ..., f‘ij,z} there are (j — 1) points from R and (i; — j) from
the complement. By Remarks 15 and 16 for large enough n we have an estimate

ij -2 ' ' '

l—[ |i;i_,'—1 _ f.q|—2 < (ZSM] Mal’m_ln)2(j_l)(2Ml Md[_*_]n)z(lj_J)

q=0

< (4SM1Mal'm_ln)2(j_1) (ZMI[LdH'In)Z(k_t) < (45M1,ual’m_ln)2(j_l) (2M1,U,dl+ln)2(s_l).

Recall that Ry = T, —1- Using the above estimates we estimate the following product:

i1—2 k-1

- < -2 - < -1
l_[ IF; -1 — Fj] l—[ Ir;, -1 — |
Jj=0 J=i

< (2]‘/[1 'ud/+1n)2(i1_1)(4“‘/[1 Mal,m—ln)r_l (ZM] 'ud/+1'l)k_i1_f"'1

< [24s—4M13s—4ss—2]M2(s—1)dl+1n+(r—l)oq_m,1n )
This completes the proof of the lemma. 0O
We shall prove Lemmas 19, 20, and estimate (129) in the next Section 11.8.

11.8. The proof of auxiliary estimate

This section is devoted to the proof of estimate (129) and Lemmas 19, 20 from Section 21.
We start with the proof of (129). Consider an image

DFf, g,z (Fi 1)K (F 1) = K Wedi=ken—t ().

Recall that M is an upper bound on C'-norm of f:; R T, and its inverse, where u is allowed by
the family (9). For any set of parameters {ﬁa}\a|=k+il_ 1 by Lemma 12 we have

LK b= =1 (r ) COMP LK (Fy-1).

Consider a cone I%(r,-l) which is wider than Kgl ,,,n(ril) by 2M12£K(f'i,_1) on both sides, in
particular,

LR (vi) = LKj (riy) +4MT LK (i, 1),

and

N R (1 -
smEZK(rl-l):sm(EKngn(r“)+2M121K(ri11))

1 -
< sin(zKé}?,,ln(ri,)> +sin(2M7 LK (F,-1))

<2M?}LK (Fiy—1) + 0%, (150)
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Take any unit vector (a,b) € K (¥;,-1), a*> +b*> = 1. If Df; k.1, () (}) ¢ K (r;,) then

Df; g, 7, K@ - NKG () =1{0}. (151)

~ - a a
pfisan®in(;) = (5)

It is enough to check that |b]/v/a2 + b2 > sin %Zl%(ril) to claim that (151) holds. We have

\/&2+52—‘Df L )<a>‘<M
- i, R, I V' 4 b ~ I

therefore it is enough to estimate the measure of parameters for which

Denote

- 1 A
b > My~ %" 4 2M3 /K (¥;,—1) > M sin EZK(ril).
‘We have

DJ?,;,RA 7, (Fiy—1)

d ~ ~ d ~ ~
(A + Lo yn(ril—l,Ril—l,R;I,]) B+ul, > a; 0, yn(l‘il—l,Ril—l,Rgll)) (152)
= d - - - N
C+ud 207" F -1 R R, ) D+ul 20" & 1. Ry —1.R, _))

a1 9x a2 dy

where A, B, C, D do not depend on {iiam }m=1,2. Notice that by construction of dynamical New-
ton monomials we have

d = ~ 0 _dyn ~ -
Q yn(l'il—l, R; -1, Rél_l) = @szn(ri]—lv R; -1, R§1_1)

i1—1-2 2k—1
- ~ =2 ~ ~ -1
=[] =872 [] 1B -7 (153)
i=0 j=i1

Now we have

~ - a a
Dt o(?)= ()

d
(Aa+Bb+a ual anyn(rll ls i1— 11 11 ])+buo{26yQ2yn(rll 1’l{ll 1’ 11 1)>
- > d
Ca+Db+au2 0 Q]yn(ril—lsRil—ls i171)+bu2 0 Q yn(ril—lsRi1—19 ilfl)

o1 Ox (%) BV

Since a2 +b? =1, either |a| > 1/\/§, or |b| > 1/+/2. Assume that |a| > 1/f2 (opposite case
is similar). In this case we get an estimate
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-dyn
V/:t_;_,l 1{uk+,]_1 € P<2k i —1Ry () | Df Ry, IkK(rzlfl) N Kgl ,,,n(rll (mod k)) 7# {0}}
- (1 _48)—2(k+11—1) 2M /K +M1M79[an

X

dyn - -
; |axQ Y (ril—laRil—laR;1_1)|

< (1 _ 48)_2(k+i1_1)((k + il _ 1)!)4§—12(k+l'|—l)/Z(ZM?ZK + M][,L_Ql’mn)

i—2

k-1
o < -2 o S -1
X 1_[ ¥ —1 — Iyl 1_[ [P —1 —F—1]" . (154)
i=0

=iy

This proves (129).

Now we derive an upper estimate on /K. Take the cone K¢, (Rp). We want to consider the
cone Fglgz; (Kgn(Rp)) as a cone K in a statement above. Let us estimate its size. The image of
the cone K¢, (Ro) under L"! is a cone K¢, —(143)n,, and we have

SinZKélnf(l+3)n1 < Zuéln—(l+5)n1 < 2M§zn—(l+3)d1n_

After application of the map along short loops we have

E nate g 4
A

< 2200 [ (D dn(143)  n—(143)din

2h .
sin ZF 1 (Kéln(RO)) ! ( sin ZKgn—1+3n,

< 2M12(S*1)M((S—l)(1+?s)d1+| +E1—(l+??)dl)n’ (155)
and finally applying Lemma 4 we have
ZF;X‘;;(KE,H(RO)) < 4M2(S*1)M((s—l)(l+3)d1+1+§l—(1+3)d[)n
< AW O, (156)
This proves estimate (143).

Proof of Lemma 19. By definition of admissible pseudotrajectory

|Gz(®) —Tit1 mod k| < B+2M1)y" and  |G5(Fj) —Tjy1 (mod 1| < B+2MD)y’.

For any point (in particular, for riii (mod k) from testing rectangle ITpn, | 04541 IS
y-coordinate < (1 + §)p ™"+ (mod b+1,
For any point (in particular, for rjii (mod k)) from testing rectangle I7,,,, (o454 1tS

y-coordinate > (1 — §)u~"/+! (mod b+1 Therefore

1 mod by — X1 (mad )] 3 (1 = )™ "/¥1 0051 — (1 §) "0+t ot 1
> (1= 8)p~ " — (14§~
((1 —8) —(1+ S)M*(dlfdlﬂ)n)ufdlﬂn. (157)
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This gives the following:

|Gz(F) — Gz (F))|
> [Fit1 (mod k) — Fj+1 (mod k)| — |G2(F) — Tit1 (mod k| — |Gz () —Tjt1 (mod k)|

> ((1=8) — (148~ U=0" 23 4 2My )y pli") =4, (158)
Finally we get
Fi — ;1 > M ' |Ge(#) — Gz (F))|
T =8) — (1 + §)p =D 23 4 2My)y pdieim) p=d=1n - (159)
Lemma 19 is proved. O
Proof of Lemma 20. By definition of admissible pseudotrajectory
|Gz(F) —Tigt mod k| SB+2M1)y" and  |Gz(F)) — Tjt1 (mod b < B+ 2M1)y".
By definition of a scattered pseudotrajectory we have
i1 (mod k) — Tj+1 (mod k)| =¥
This implies
|Gz(F) — Gz (F))

> |¥i41 (mod k) — Fj+1 (mod &)| — |Gz (Fi) = Fit1 (mod 1| — |G2(®)) — X1 (mod b |
>y" =203 +2My)y’. (160)

Finally we have
5 — 81> M (1= 26 +2M)y' )7y
Lemma 20 is proven. 0O
11.9. Estimates of constants in Auxiliary Theorem [
The last estimate in (133) gives Auxiliary Theorem I, as explained in Section 3.1. To finish
the proof we just need to estimate the constants Cy, hy(R) and N*(s, R).

Estimate hg(R) first. We can take hg(R) = minj—;,__s/;. By our choice (Definition 19)
hy = B+ therefore min; by = hy = 251 So we can take

2
h, = ﬂ252+25+1 (5s2N 1(1+(\)) (2s +2s+1)_

To estimate Cs note that we can take Cs > (s!s2°)C; (to ensure that (28) implies (26)),
Cr= sC~‘S (to ensure that (108) implies (105)), and C~‘x given by (144). This implies that we
can take Cy = exp(s2(A +91ns)), where A depends on {M1, 8, {} only.
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To estimate how large N*(s, ®) should be taken, let us recall that we made an assumption
that period n is large enough in the proof of Lemma 3, in the proof of Proposition 4, assuming
that inequality (70) holds, and in Remarks 15 and 16. In all these cases the assumption could
be written in the form A1 A, $ ;L_A3” < 1, where constants A, Ay > 0 depend on parameters 2

only, and A3 > hy = (5528 (1 + 3))~@*+25+D_ Therefore all these assumptions follows from
the condition n > N*(s, 8) > (InA| — sIn A2)/(A31n ). In particular, we can take

2
N*(s,®) = BS(SSZN_I(l + %))25 +25+1’

where B depends on parameters 20 only.
12. Prevalence of hyperbolicity of localized periodic orbits
In this section we prove Auxiliary Theorem II stated in Section 4.3.
12.1. Hyperbolicity of linear operators
Recall that a linear operator A:RY — R is hyperbolic if it has no eigenvalues on the unit
circle {|z] = 1} € C. Denote by | - | the Euclidean norm in CV. Define the hyperbolicity of a

linear operator L by

Hyp(A) = inf inf |Av— 2mi . 161
yp(A)=_inf ' inf |Av —exp(2mig)v| (161)

It is clear that a linear operator A is hyperbolic if and only if Hyp(A) = 0.
This notion of hyperbolicity (in some cases more appropriate than the minimum distance of

the eigenvalues of A from the unit circle in C) was introduced and studied in [22]. In particular,
we need the following statements proved in Appendix D of [22].

Lemma 22. For any pair of linear operators L and A of RY into itself. hyperbolicity satisfies
the estimate

Hyp(L + A) = Hyp(L) — [|A]l. (162)
Proof. By the definition of hyperbolicity,

Hyp(L+ A)= inf inf |(L + Ay — exp(2ni¢)v|. (163)
#€l0, D) flvl=1

By triangle inequality, for all v € RV,
[(L + A)v —expQrig)v| = |Lv — expQrig)v| — |Av]. (164)
This implies the statement of Lemma 22. O

Proposition 5. [22, Proposition A.5] Let r < 1 < K be positive numbers and A, B be linear
operators of RN into itself given by N x N matrices from My (R) with real entries. Consider an
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Nz—parameterfamily {Ay = A+ UB}Uech oy where CN2 (r) is the cube in My (R) whose en-
tries are bounded in absolute value by r. Suppose that | B||, | B~ || < K. Then for the Lebesgue
product probability measure i, y2 on the cube cV? (r) and all 0 < y < min(r, 1), we have

2 C(N)KXNy
1 x2{U € CV () | Hyp(Ap) < v} < — (165)

where the constant C (N) depends only on N.
12.2. Completely scattered periodic orbits of given type

Set initial parameters of the problem 20 = {u, A, My, M>, V, 8, ¢}. Introduce the following
sets in space of parameters HB -25(¢):

Xgn'hyp[ f.s,8'1= {§ € HB»(¢) | fz has a non-hyperbolic (V, s)-localized periodic orbit}.
(166)

Recall that vy, is the Lebesgue product probability measure on HB25(¢), as defined by (12).
Auxiliary Theorem II is equivalent to the following equality:

N
-h
v<2s{ U X LS, s’]} =0.
s'=1

Therefore we need to show that foreach s’ =1,...,s

v { Xgg PLL 55T} =0, (167)
To show that perturbations of f do not have non-hyperbolic s’-loop periodic orbits for
V_os-almost every perturbation, our method requires to consider polynomial perturbations of

degree 2s” — 1. Therefore we can reduce the space of parameters for s’ < s in the following way.
Introduce the sets:

Xgdlf,s'1= {& € HB_»(¢) | f: has a non-hyperbolic (V, s")-localized periodic orbit}. (168)

Using Fubini reduction from Section 3.2 one can show thatif f (%, 7) = f (&, §) + 5g>k, L, (X )
and o

Voo | XS F, 51} =0 (169)

for all §>2S/,<2s, then (167) holds. So we need to prove (169) in order to prove Auxiliary Theo-
rem II.

Definition 33. An (V, s”)-localized periodic orbit is called p-completely scattered if the distance
between starting points of any two different loops is at least p.
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Define

X;‘?H[f, N, pl= {§<2s’ € HB »y(?) | fz has a non-hyperbolic (V, s)-localized p-completely
scattered periodic orbit of type Ny } (170)

For any s’-loop periodic orbit it is p-scattered for some p > 0. Therefore X%‘[ f ,s'] can be
decomposed into the countable union

Xoslf.s'1=J ng;ﬁ“[f,m, %]

meN ./\/;,/
Therefore we reduce (169) and, therefore, Auxiliary Theorem II to the following statement:
For each type Ny and each p > 0 we have v<2s/{X;§?"[f, Ny, pl} =0. (171)

12.3. Admissible periodic orbits of small hyperbolicity

To prove (171) we fix type Ny = (n1,...,ny), p > 0, and consider grids of a small size
y & p (see Sections 8.1-8.3). By Proposition 3 for any p-completely scattered s’-loop periodic
orbit B = {po, ..., pn—1} of amap f;_, , there exists a y -admissible (see Definition 23) periodic
pseudo-orbit R = {rg, ..., r,—1} of the same type which is (p — 4y )-completely scattered and
dist(pi,ri) <2y,i=0,...,n—1.

Calculations similar to (60) show that

” Df§n<2x, (po) — F&’gd.« (ro) ” < [zs/Mi-/,leunis,]y’
so (by Lemma 22) if Hyp(D fgn (po)) =0 then
Hyp(Ffl;{,‘;(zS, (”0)) < [Zs/Mf,_lelun—s’]%
Define the following sets

Xg%m[f, Ny, p,yl= {E € HB_»y(¢) | fz_,, has a y-admissible (p — 4y)-completely
scattered (V, s”)-localized periodic orbit R of type Ny such that

Hyp(Fjy s, (ro)) < [25'M} ' Mop" [y} (172)
We have forall y < p/10
X8, Ny, p.v]1 D XU L. Ny, pl.

A set X;%‘“[f, Ny, p] does not depend on y, and

Voo { XS, Ny, o1} S vaay (XSMLF Nyrs o, 7]).
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Therefore to prove that vy { X53"[ £, Ny, pl} =0 it is enough to show that

Voo { X8 Ny o, v1} < C(F, 20, Ny, p)y. (173)

Take any p-completely scattered y-admissible pseudo-orbit R = {rg,...,r,—1} of type Ny.
Recall that we denote the intersection of R with U (with U ) by Ry ={rpg,...,ry_1} (by
Ry = {F, ..., Fy_;} respectively). Note that the entire pseudo-orbit 9 is uniquely defined by
the choice of set Ry = {ro,...,ry_}, where r; € I, , (y). By Lemma 10 there exist at most
(982)/’2)3'/ different sets Ry with this property. For each Ry = {ro, ..., rs—1}, r; € T, (¥),
which is (o — 4y)-scattered (that is, dist(r;,r;) > p — 4y for each pair i # j), define a set of
parameters

X%ed[f, y,Ry] = {§ € HB_»y(¢) | fz has a y-admissible (V, s")-localized periodic

orbit fR such that Ry is the ordered set of starting points of its loops and

Hyp(Fpz ,(r0)) < [26'M} " Mo~ Ty} (174)
We will prove that for any (p — 4y )-completely scattered set Ry and y < p we have

va {Xoi LS 7. Ryl} S CH(F 20 Ny )y H (175)

This will imply that
V<2S’{Xf%m[f» -/\/;/1 pa V]}

< v<2$’< U Xgﬁed[f’ Vs Rs’])

{Ry/ Ry is (p—4y)-completely scattered}
<(98%y77)" - CH(F W Ny, )y = C(F, 20, Ny, p)y, (176)

which is exactly the required estimate (173). Therefore we reduced the proof of Auxiliary Theo-
rem II to the estimate (175).

12.4. Newton Interpolation Polynomials and estimates of the measure of “bad” parameters

To prove (175) we follow exactly the same strategy as to prove (108). The key element is
application of Discretization Method from Section 11. Actually we need just estimates from
Section 11.5. Combining estimates (126)—(128) for j =0, ..., s’ — 1 we get an estimate of prob-
ability of Ry being y-admissible pseudo-orbit. To estimate probability of non-hyperbolicity we
apply Proposition 5 with matrix N = 2, the unperturbed 2 x 2 matrix A = Fg ,(rp), matrix
B = Const~F5’;{01 (rg),and U = {ugm }¢.m=1,2. Indeed, calculation from Section 11 8 and, in par-
ticular, expression (152) shows that the corresponding composition of linearizations Fg’l‘h&z« (rg)
written in dynamical Newton basis has the form (152) and by (153) we have that ‘

s'—1

= < =2

Const = l_[ S o
Jj=0
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Now we substitute (129), the family (152), and the proof of it by (5), the family

{Fg’% 2/(r0)_Fm0(ro)+C0nstU Fgg0(1~0)}U€C4W(1 sz

and Proposition 5. We get

~dyn ;‘ ’_ o
V2s’—1{u2« LT, GHst—l(m> ’HYP(FSa,zQS,(l‘o))<[25,Mf "M S]V}

(1—45)2 =
< g9722‘ [25' M}~ Mo ] M T T Iy — 12y 177)
Jj=0

Denote the right-hand side by Prob-non-hyp(Ry/, n, M1, ¢, 8, y).
Combining (126-128) for ¢ =0, ..., s’ — 1 we derive an analog of (130)

Voo | XBLT v Ro1| < (1= 48)72 @ DProbenon-hyp(Ry:, 1, M1, £, 8, v)

s'—1

x [ ] Prob;(Rj11.7.2.6). (178)
j=0

Products of distances in {Prob;}; and in Prob-non-hyp are bounded from below by powers
of (p — 4y). Provided that y <« p we could replace (p — 4y) by p/2. All the other constants
depend on parameters of the problem 20 and are uniform. This proves (175) and, therefore,
complete the proof of Auxiliary Theorem II.

13. Nonlinear results
13.1. The proof of the main result for a non-resonant saddle fixed point

Consider a C" smooth diffeomorphism f:M — M of a smooth compact surface M
with r > 2. Suppose p’ = f(p’) is a non-resonant saddle fixed point, i.e. eigenvalues |A| < 1 <
|u| of Df(p’) have no integer relations A" u”"2 = 1. Suppose it has a homoclinic tangency at
some point ¢’. Let g’ = f~'(g’). Since p’ is non-resonant, by Sternberg’s linearization theorem,
in a small neighborhood of p’ there is a C" smooth normal coordinate system (x, y) such that
f(x,y) = (Ax, wy) in it. Extend the coordinate neighborhood by iterating forward and back-
ward until the first time it contains ¢ and ¢ respectively. Denote such a neighborhood by V" and
call a normal neighborhood. Similarly extend the coordinate neighborhood by iterating forward
and backward until the first time it contains ¢ and f(q) respectively. Denote it by V'. By def-
inition V’ does not contain g (see Fig. 9). Consider a neighborhood U ! (respectively U cU)
of ¢/ (respectively ¢ "y such that f(U") N U’ = @ (respectively f~ LOHNU' =v), fUHoU,
and f(U) NV = ¢. Consider the normal chart T : V" — R? as a subset of R? and denote it by
T(VY=V.Denote T(¢')=q, T(q') =q, and T (p’) = p respectively. As the result we get C”
smooth transition maps from U’ C U’ (respectively U’) into U C U (respectively U), both are
restrictions of 7.
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Fig. 9. A non-resonant saddle fixed point.

The family of perturbations (9) becomes

ro . ’o X 3L
T 0GzoT((,y), if(x,y)eU'.

In the linearized coordinates this family has the following form:

L(x,y), if(x,y)eV\U,

~ (180)
Gz(x,y), if(x,y)eU.

fg(x,y)={

Then Theorems A, B, A’, and B holds true for this family.
Remark 17. Probably it would be more natural to consider the following family of perturbations

fox',y), if (X, y)eVI\U',

fie' ) = {G’—(x’ y), if(,y)el’ (181)
& b k 9 .

It seems that our method still works for this family. However, this leads to variety of technical

complications in the proof so we omit detailed explanation.
13.2. Statement of the main result for saddle periodic points with homoclinic tangency

Consider a C" smooth diffeomorphism f:M — M of a smooth compact surface M
with r > 2. Suppose p’ = fX(p’) is a non-resonant saddle periodic point for some integer , i.e.
eigenvalues |A| < 1 < |u| of Df*(p’) have no integer relations A" "2 = 1. Denote by W3 (p’)
and W"(p’) stable and unstable manifolds of p’. Suppose p’ has a homoclinic tangency at some
point ¢, i.e. W*(p’) and W*(p’) contain and do not transverse at ¢’. Let §' = f ~¥(¢’). Since p’
is non-resonant, by Sternberg’s linearization theorem, in a small neighborhood of p’ there is a
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C" smooth normal coordinate system (x, y) C V'’ such that f k(x, y) = (Ax, ny). Extend the co-
ordinate neighborhood by iterating forward and backward until the first time it contains g and ¢
respectively. Denote such a neighborhood by V;j/(p’). Similarly extend the coordinate neighbor-
hood by iterating forward and backward until the first time it contains ¢ and f(g) respectively.
Denote it by V;j(p') and call a normal neighborhood. By definition Vj(p') does not contain g
(see Fig. 9). Consider images of V{j(p’), denoted V/f(p/) = fI(V'(p")) for j=1,....k — 1.
Even by decreasing Vj(p) we cannot not claim that V]f (p')’s are pairwise disjoint.!" Consider

a neighborhood U’ (respectively U’ C U’) of ¢’ (respectively ') such that f(U') N U’ = (re-
spectively f~1 (0" NU' =9), f(U)DU', f(U)NV' =, and both U’ and U’ are disjoint
from U];;(l) V]f (p'). This is always possible to achieve by decreasing corresponding V’s and U,
because ¢’ and §’ belongs to W*(p’) N W“(p’) and therefore, cannot belong to W*( f/(p’)) or
WH(fI(p") for j =1,...,k — 1. Indeed, under forward (respectively backward) f k_iterates it
should converge only to p. After such a choice of U’ and U’ we reduce the case of a saddle
periodic point with a homoclinic tangency to the case of a saddle fixed point with a homoclinic
tangency. Namely, we consider only V-localized sets for f* (not f!) defined as in Definition 1
with f replaced by f¥.

Consider the normal neighborhood T : V'(p') — R? as a subset of R? and denote it by
T(V'(p))=V.Denote T(§g')=q, T(q') =q, and T(p’) = p respectively. As the result we
get C” smooth transition map from U’ C U’ and U’ into U C U and U respectively, which
we also denote by T. Consider the images f¥~1(U’) = 1712—1 - fk_l(ﬁ’) = 0,2_1. The maps
Tof 1=k induces charts on 012—1 and lA],i_l. Notice that because of the way charts are defined the

map £~ restricted to U’ is the identity map. With respect to these charts we consider the fam-
ily of maps of perturbations of the form (179) with T replaced by T o f!~* and the family { f:}
replaced by the family { fgk }. The rest of the proof is the same as in Section 13.1.

14. Auxiliary computations
14.1. Proof of Addendum 2.1

Proof of Addendum 2.1. We need to choose a sequence {N;(R)}, in such a way that the series
(42) is convergent. For any period n and cyclicity s there exists at most n* different types N,
INs| =n, so it is enough to require the convergence of the following series:

oD atCutn (182)

seN n2>2N;(R)

It is enough to choose N (R) in such a way that for some so € N the following inequality holds
for each s > s0:

> G <o, (183)
n=N; (%)

This is equivalent to the following:

1" Moreover, there are examples when this property have to fail.
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o0
Z m + Ny (N) p AN =5 op (184)

Z exp{s*(A +91ns) +sIn(m + N;(R)) +5 — B2+ (1 w)(m+N; (X))} <1

m=0

where g = N/(5s2(1 + 3)). Since In(m + N3 (R)) < In(N;(R)) + m/N;(R), we have

> exp{s2(A +91ns) +sln(m + No(®)) +5 — B2+ (In o) (m + Ny(R)) )

m=0

< exp{s2(A +91ns) + s In(Ny () 45 — B2 T2 (In ;)N (%) }
x Z [(N W — B +2S+1(lnu)>mi|. (185)

We can set the following condition in advance:

2s
In this case
i exp S _ ’32s2+2s+1 lIlM m| < i exp _lﬂz‘y2+2s+l 11’1[»6 m
m=0 N; (%) h m=0 2
1
(187)

- exp(_%ﬂ2s2+2s+l Inp) ’
Take so such that for s > 59 the inequality holds ﬂ2s2+2s+l Inp < 1. For any y € (0, 1) the in-

equality holds 1/(1 — e™>) < 2y~!. This implies that the value (185) for s > so can be estimated
from above by

2
T g exp{s?(A +91Ins) +s +sIn(N;(R)) — = 5T In )N, (R) ). (188)

To estimate (188) we use the following lemma.
Lemma 23. Given s € N, for any X1, X», X3 > 0 such that

X, +InX; —sln X3 > sIn(3s), (189)
and for any N > 3sX3_1(X2 +1In X1 — s1n X3) the inequality holds

Xiexp(Xp+sInN — X3N) < 1.
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Proof. Substitution N = X3N reduce the statement of Lemma 23 to the following one.
For any X1, X», X3 > 0 such that (189) holds and for any N > 3s(X7 + In X1 — sln X3) the
inequality holds
Xiexp(Xo —sInX3+sInN —N) < 1. (190)
Inequality (190) is equivalent to the inequality

X7 +1In X, —slnX3+sln]\~/—1§7<0.

Denote Y = X, + In X — s In X3. Note that we reduced the proof of Lemma 23 to the following
one. 0O

Lemma 24. Given s €N, for any Y > sIn(3s) and N > 3sY the inequality holds
Y+sInN—N <0. (191)

Proof. Set N =3sY A, where A > 1. Inequality (191) is equivalent to the inequality

Y+sInBs)+snY +slnA —3sYA <O. (192)

We will prove that
Y+sIn(3s)+slnY —3sY <0 and (193)
sInA —=3sY(A—-1)<0. (194)

Sum of these two inequalities gives (192) and, therefore, this will prove Lemma 24.
Let us show that (193) holds.
—Y +sIn(3s) <0
— Y —-2s)4+sIn(3s) <0
= Y +sIn@Bs)+sY —3sY <0
= Y +sIn@Bs)+slnY —3sY <0. (195)

Now let us show that (194) holds.

VseN 1<sln(3s)<VY
= 1-3Y<0
= s—3s5Y <0
= s(A—-1)—3sY(A-1)<0
= sIhA-3sY(A—-1)<0. (196)

Lemma 24 (and, therefore, Lemma 23) is proved. O
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Apply Lemma 23 to

4

Xl = 277
ﬂ2s +25+1 lnu

Xo=s2(A+9Ins)+s,  X3=p¥ 2 . (197)

Check the condition (189) for s > sq:

1
X1 >2, X3< 5 = Xo4+InX; —slnX3> X> > As®> > sIn(3s)
for any A > 3. Therefore the quantity (188) is less than 1 (and, hence, the inequality (183) holds)
for any

5520 1(1 + 25242541
NS(N)>3S( s ( 1: ) (s*(A+9Ins) +s+1Ind — (s + Inlnp
n

— (25 + 25+ 1)(s + D(In® — In(5s%) — In(1 +))). (198)

In particular, we can take

(5S2N71 (1 4 S‘))2S2+2S+]

Ns(R) = 35(Bs* — (252 + 25 + 1) (s + ) InR) m
w

3

where B = B(20) depends on parameters of the problem. It is clear that in this case condition
(186) holds and we can satisfy the requirement Ng(R) > N*(s, R) (increasing B, if necessary).
Addendum 2.1 is proved. O

14.2. Proof of Lemma 7

The proof is by induction on the number of edges. Lemma 7 holds for a graph loop, i.e. a graph
with one edge and one vertex.

Now take a connected oriented pseudograph such that at each vertex the number of ingoing
edges is equal to the number of outgoing edges. Take any vertex and let us construct an oriented
path without repeating edges. After each edge added to the path check whether any two vertices
of the path coincide. If no two vertices coincide, we can continue to construct the path. Indeed,
at each vertex the number of ingoing edges is equal to the number of outgoing edges. Therefore
at last vertex of the path at least one edge is outgoing. The number of edges of the initial pseudo-
graph is finite, so at some moment two vertices of the path coincide. Hence the part of the path
which begins and ends at this vertex is a cycle, and by construction this cycle is properly oriented.
Remove the edges of this cycle from the initial pseudograph. For any vertex or no edges were
removed either one ingoing and one outgoing edge were removed. Therefore for each connected
component of the rest (if the rest does contain any edges) the claim of lemma can be applied by
induction. This completes the proof of Lemma 7.

15. Notations

e L —linear part of the map;
e 0 <A<1<pu—ecigenvaluesof L, I=—(InA)/(Inp);
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f — initial map;

q,G = f~'(g) — homoclinic points;

{ fz} — family of maps under consideration;

G — parabolic part of the initial map;

{G3} — corresponding family;

U, U - neighborhoods of ¢ and g;

8 —size of U and U;

V — aneighborhood of a homoclinic contour;

A —maximal invariant set of f in V;

B ={po, ..., pn—1} — a periodic point of f3;

n — period of a periodic orbit;

s and 5" < s — number of loops of periodic orbits;

k < s — number of loops of a pseudotrajectories under consideration;
(<D§1, q§§2) — family of analytic perturbation;

(¢§1<2S, 4552@) — family of perturbations by polynomials of degree 2s — 1;
£ = {sl’fj} — family of parameters;

Eops = {S,kj}iJr j<2s — family of parameters of degree 2s — 1;

HB(¢) — the space of parameters for unbounded cyclicity;

HB _74(¢) — the space of parameters for cyclicity s;

¢ — size of the cube of parameters;

My, M> — C' and C?-norms of the family, respectively;

v?‘j — probability measure on the interval [—¢, ] 3 811.‘].;

v — probability measure on HB -25(¢);

N — lower bound of periods of periodic orbits under consideration;

R, C — constants in a definition of (C, u, ®)-trace hyperbolic point;

N = (ny, ..., ng) —type of an s-loop periodic orbit of type N;

INy| =n1 +---+ny +s — period of an s-loop periodic orbit of type Nj;
P, ={po, ..., Pps—1} — points of an intersection of a periodic s-loop orbit P with a neighbor-
hood U;

P, = {Po, - .., Ps—1} — points of an intersection of a periodic s-loop orbit 3 with a neighbor-
hood U ;

hy, Cs, C¥, C), — constants in estimates of the measure of “bad” parameters for a given type
of periodic orbits;

B, {d;}, {bi} — constants in a definition of short and long loops;

I =1(N;) — shape of a periodic orbit of type N;

Ny € N —an [-subtype of a type Ni;

t —number of generalized loops;

7 = t(N}) — number of generalized loops of scattered pseudo-orbit;

N; —length of jth generalized loop;

nj + 1 — length of the jth long loop;

P ={Py,..., Pr_1} — starting points of generalized loops;

ﬁj = f! (Pj+1) —ending point of the jth generalized loop;

h j — the number of short loops in jth generalized loop;

K 4(P) — vertical cone at point P;

LK 4 (P) — width (an angle) of K4 (P);

({61.m}]_,» &) — sizes of cones;
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IT,, — testing rectangle;

I1, — image of a testing rectangle T, under L";

mo,(y), 0,(y) - grids of size y x yu~" in IT, and of size y A" x y in ,, respectively;
{u,i};_, — exponents of sizes of grids;

{yi}f;(l) —scales, y;—; = u~ %" where (I, n) is type;

m — scale number;

k" — number of clouds in Cloud decomposition;

Z =1{z0,...,2n-1} — k-loop pseudotrajectory;

n — period of a pseudotrajectory;

7, ={z9,...,7x—1} — intersection of Z with U;

Zk ={Zg, ...,7Zr_1} — intersection of Z with U:

R = {rg, ..., m—1} — admissible pseudotrajectory of period n;

R ={Ro, ..., Ri—1}—starting points of generalized loops of an admissible pseudotrajectory;
Ry ={ro, ..., rr_1} — intersection of R with U;

ﬁk = {ro, ..., Tr_1} — intersection of R with U;

F g’g( p) — composition of differentials of fz in N subsequent points of Z starting at p € Z;
ig, i1, ...,ir—1 —indices of starting points of generalized loops of admissible pseudo-orbit;

7; — the number of starting points of generalized loops among first j points R; of admissible
pseudo-orbit;

Wi 2 — the space of 2-component homogeneous polynomials of degree k in (x, y);

Wk“’ ’ZR" — the space of 2-component homogeneous polynomials of degree & in (x, y) vanishing
at all the points Ry with the standard basis;

Eﬁk — the Newton map of Wgo 2 to W;’zltfz;

m(v) — the index of maximal component of vector v;

(p; pos - -, pk—1)* — the standard Newton monomial, where || = k;

o (I") — a symbol which stands for a multiindex o = (o1, @2) € Zi and an oriented right-up
path I, connecting o with the origin;

I — the union of symbols «(I") over all |o| < s;

(P: Pos - - - » Pk—2)*d) — the Newton monomial associated with the corresponding oriented
path I'y;

ngn (r, Rg) — the dynamically essential Newton monomial vanishing at Ry;

Q" = {0 (p.Rp). 03" (p. R1.R)). ... 0" (p. R), 0" (p. Ry, R})}., where m =
1,2 — complete set of dynamically essential monomials;

W,f yzn‘Rk — the space of 2-component homogeneous polynomials of degree k in (x, y) van-
ishing at all the points Ry with the basis containing Q%ykn;

Ei’:‘yn — the dynamical Newton map of W, 2 to Wiyzll’gk;

DPk.m (X0, - . ., X;») —homogeneous polynomial of all monomials of degree k —m in xo, ..., Xm

with unit coefficients;

DD>* (B2, R?) — the space of divided differences;
N — the set of positive integer numbers;

Z4 — the set of nonnegative integer numbers.
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Appendix A. Infinite number of localized sinks of bounded cyclicity and Kupka—-Smale
property

Definition 34. A diffeomorphism f: M — M of a closed manifold M is called a Kupka—Smale
diffeomorphism, if

(1) all periodic points of f are hyperbolic;
(2) for any two (not necessarily different) periodic points the stable manifold of one is transversal
to the unstable manifold of the other.

Suppose that M is a closed manifold of dimension d > 2, f:M — M is a diffeomor-
phism with hyperbolic periodic point p of period k, i.e. f¥(p) = p. Denote dim W*(p) = d*,
dim W¥(p) = d*, then d" + d* =d. Let ¢ € W"(p) N W¥(p) \ p be a homoclinic point. For
small p we define a neighborhood U, (¢g) of a homoclinic orbit { /' (g)};ez in the following way.
Set § = f*(q). Let Vfé (p) be a p-neighborhood of p. Since p is a hyperbolic periodic point
and p is small, one can assume that f k|V/;/( p) is topologically conjugated to Df k(p). There are
integers n1 and n; such that fkmg) e Vﬁg (p) and f~*m2(g) e V;) (p). Choose a small neighbor-
hood U (g) of ¢ such that f¥1(U(q)) C Vl/) (p). Choose a small neighborhood 0((}) of g such
that f~*"2(U(g)) C V) (p) and f*(U(§)) C U(q). Finally, set

kny k—1
Vo) =vV,ipyJrv@) | r(0,@).
i=0 i=—kny

Definition of (U (q), s)-localized periodic orbits is the same as in Definition 3 with V =V, (p)
and U =U(q).

Proposition 6. Suppose a C'-diffeomorphism f:M — M has a hyperbolic periodic point
p € M with a homoclinic point q. Consider a neighborhood V,(p), associated with this homo-
clinic point defined above. For any s € N existence of an infinite number of (U(q), s)-localized
sinks implies that f is not a Kupka—Smale diffeomorphism.

Proof. Consider a sequence of (U(q), s)-localized sinks. Numerate them. Each sink intersects
a neighborhood U (g) at s points, denoted by {p{", py, ..., p{'} for mth sink. Set p{", | = p7'.
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Denoteflf = f‘k(pfﬂ) € f](q),l =1,...,s.Foreachi e Nand/ =1, ..., s there exists Nli eN
such that

£ (p]) = Bi.

One can choose a subsequence in such a way that the corresponding sequence of finite sets has a
limit:

{pllplzplv} — {p}.p3.....p}} asi— oo

It is clear that the following lemma holds.

Lemma 25. For each 1 <[ < s there exists a limit lim; _, o Nli = Nl* € NU {oo}, and
PPEW(p) & BeW'(p) & N =oco.

Since a limit of a sequence of periodic points of the same period has to be a non-hyperbolic
periodic point we have: if all the limit points {p}, p3, ..., p;} does not belong to W*(p), then the
map f is not a Kupka—Smale diffeomorphism.

Assume that ¢ points out of s points {p}, p}, ..., p;} belong to W*(p) for some ¢ > 1. Denote
them by {qi,q2,....q;} S {p],p3,....p;}. This implies that ¢ out of s points {p}, p3, ..., P;}
belong to W*(p). Denote them by {q1, q2, ..., q;} S {P]. P5. ..., Py} Set Qi1 =q1, qr+1 =q1,
Nﬁlax =(@E—-1+ ZNI*#O Nl*. Foreach j =1,...,1t there exists Njf* < N¥_ such that

max

kN~
Q) =qj41.

In particular, all {qq, q2, ..., q;} and {qy, q2, - - ., q;} are homoclinic points.

To show absence of sinks we shall construct an invariant cone field for f in an open subset
of V,(p) so that trajectories {p9}1 <j<m Visit it for large i. Below we construct both: an invariant
cone field and a subset.

There exists a continuous invariant (under %) splitting of a tangent bundle of V,(p), TxM =
ES @ E“ for all x € V,(p), dimES = d* and dim E* = d“. By iterations of f¥ (respectively
f _k) we can extend this splitting to U (q) (respectively U (g)). Assume that stable and unstable

manifolds of the points q1, q2, . .., q; intersect transversally (otherwise f is not Kupka—Smale),
# ~
ie. DfN (Egj) @ Ej,,, = Ty;,, M. Consider a cone field in U(g) (respectively U (g)) of the

following form:

Vx € U(§) I%;‘(A):{UGTXM|U=v”+vS, v e EY, v' € EY,

th| >A|vs

J,

VyeU(q) Ki(A)={veTyM|v=v"+v" v"€El v'cE}, b'|>A""|v'|}.

. kN¥ oy s
Since Df J(E(.l_)eaE =T,
J

Qs qj'+1Mv for A large enough and each j =1, ..., ¢ we have

DN (e (4) C K

qj+1

(A).
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Take small § > 0 and consider §-neighborhoods Us(q;), j =1,...,t. Due to the continuity of
stable and unstable subbundles, if A is large and § is small enough, for all x € 03 (q j) we have

kN* /=~
Df*"i (K{(A) C K" 4
@

(A).

Decreasing 8, if necessary, we can also get the following property. For any point y € Us(q;)
such that for some positive integer N, the finite orbit {y, f k), ..., fNok(y)} forms a one loop,
i.e. belongs to a set

ni 0
Vo U rf @) U A 0@),

i=1 i=—ny
and with % (y) € U(g) only for i = N, the following inclusion holds

DN (KU (A)) C I%;N),k (@)

Moreover,
u Nyk N::‘IZLX
Vv e K} (A) |DFY )| = 2M ™ vl

where My = max{|| fllc1. 1/~ c1)-

Therefore for any s-loop periodic orbit 3 from the initial subsequence whose intersection
with U(q) is close enough to the set {p], p3, ..., p;} we have the following combinatorics. By
construction return P N U are either close to {q1, qa, .. ., q;} and belong to their §-neighborhood
or do not belong there and length of the corresponding loops following after them is bounded.
More exactly, the sum of lengths of all such loops is bounded by N7 . This implies distortion
of vectors is bounded and, therefore, for any y € Us(q;) that is a starting point of a loop,

Yoe KU(A) DNV )] > 2] and

kNy+kN#
DT T Ky e (A).

»)

Therefore, some vectors in its tangent space are expanding after each “generalized” loop, i.e.
a loop starting at Us(q;) and ending at Us(q;) for some 1 < i, j <. This is impossible for a
sink. This contradiction proves Proposition 6. O
Appendix B. Estimate of measure of “non-hyperbolic” parameters

Here we reproduce the proof of Proposition 5 (Proposition A.5. from [22]).

Proof of Proposition 5. For 0 < y < 1 and ¢ € [0, 1), define the sets of non-y-hyperbolic
matrices by
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NH’,(R) = {L € My(R) | Hyp(L) < v},

NHP®) = {LeMy@®) | inf |(L~exprig)o] < v} (198)
Then
NHY®) = | NHY(R). (199)
$€[0,1)
We claim that
NEy®R) | NEYTPT®R). (200)
j=0,...15/y1-1

Indeed, suppose that L € NH }/v (R). Then for some number ¢ € [0, 1) and vector v € R with
|[v] =1, we have |(L —exp(2mi¢))v| < y. Let j be the nearest integer to [5/y]¢ and let ¢, =
J/15/y];then ¢ — ¢y, < 1/(2(5/y — 1)) <y/(2n). Thus

|(L —exprig,))v| < |(L — exp2migp))v| + |expri) — exp(2mig, )| <2y,  (201)

and L € NH?Vy’j/[n/yH] (R) as claimed.

Next, we claim that every matrix in NH?\,V’j 5/ y](R) lies within 2y of a matrix in
NH(])\}j /B/YIR), where we use the Euclidean (R¥) norm on My (R) (not the matrix norm).
Consider L € NH/%,V"i/[S/y](R), ¢ €0, 1), and v € RN with |v| = 1 and

|(L —exp(2ij/[5/71))v| < 2y.

Let w = (L — exp(2mij/[5/y]))v and let M € My (R) be the matrix whose kth row is wyv,
where wy, is the kth coordinate of w. Then the Euclidean norm of M is |w| <2y and Mv = w,
so that (L — M — exp(27ij/[5/y1))v =0 and hence L — M € NH3//P/V(R).

We complete the estimate (165) by estimating for each j the number of y-balls needed to
cover NH ?\}j /51 y](]R) within an appropriate bounded domain. It then follows from the previous
paragraph that if we inflate each of these balls to the concentric ball of radius 3y, the collection

of larger balls will cover NH i}”j /1 ”(R), and from the paragraph before that the union over j

of these covers will then cover NH % (R). To this end, we show that each NH(,)\}J /15/7] (R) is a real

algebraic set and compute its codimension.'> Then we will apply an estimate of Yomdin [42] on

the number of y-balls necessary to cover a given algebraic set by polynomials of known degree.
Notice that

NHY?(R) = {L € My (R) | det(L — exp(2ri¢)Id) =0}, (202)

12 Unfortunately NH% (R), in contrast to NH(I)\}'j /B/v1 (R), is not algebraic.
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We split into the two cases exp(2mi¢) € R (thatis, ¢ =0 or 1/2) and exp(27i¢) ¢ R. In the first
case, the equation det(L =+ Id) = 0 is a polynomial of degree N in the entries of L, so NH?\}O(R)
and NH?\}I/ 2 (R) are real algebraic sets defined by a single polynomial of degree N.

In the second case, decompose the equation det(L — exp(2mwi¢)ld) = 0 into two parts:
Re[det(L — exp(2ri¢)ld)] = 0 and Im[det(L — exp(2mwi¢)Id)] = 0. Each part is given by a
real polynomial of degree N. Furthermore, these two polynomials are algebraically indepen-
dent, since otherwise Re[det(L — exp(2mi¢)Ild)] and Im[det(L — exp(2mwi¢p)ld)] would satisfy
some polynomial relationship which would imply that det(L — exp(2mi¢)Id) takes on values
only in some real algebraic subset of the complex plane. However, for N > 2 (which is neces-
sary for complex eigenvalues), by considering real diagonal matrices L we see that the values
of det(L — exp(2wi¢)Id) contain an open set in C. Therefore, NH(])\}¢ (R) is a real algebraic set
given by two algebraically independent polynomials of degree N.

Covering Lemma for Algebraic Sets. [42, Lemma 4.6] Let V C R™ be an algebraic set given
by k algebraically independent polynomials p1, ..., pi of some degrees dy, ..., dy respectively,
ie.V={xeR"|pi(x)=0,..., pr(x) =0}. Let C'} (s) be the cube in R™ with side 2s centered
at some point A. Then for y <, the number of y-balls necessary to cover V.0 C'} (s) does not
exceed C(D,m)(2s/y)™ K, where the constant C(D, m) depends only on the dimension m and
product of degrees D =[], d;.

Remark 18. Some additional arguments based on Bezout’s Theorem give an upper estimate
of C(D, m) by 2™ D for y sufficiently small.

To complete the proof of Proposition 5, we apply the Covering Lemma for Algebraic Sets to
each NH*//B/YI(R), where j =0, ...,[5/y] — 1, withm = N2, s = Kr, and A as in the state-
ment of the proposition. (Notice that if U € CN2 (r)then A+ UB € Cﬁ’z (Kr), so we need only
cover the part of NH*//I3/Y1(R) lying in the latter set.) In the case that j/[5/y] =0 or 1/2,
we have k =1, di = N, and D = N, so the number of covering y-balls is bounded by
C(N, Nz)(2Kr/y)N2". In the case of other j, we have k =2, dy =d, =N, and D = N2,
so the number of covering y-balls is bounded by C (N2, N2)(2Kr/y)N2’2. The number of j’s
of the second type is less than 5/y. Combining all these estimates along with (200) we get
that NHY (R) N CI{‘VZ(KV) can be covered by C(N%, N>(2 + 5/(2Kr))(21(;’/)/)1\'2_1 balls of
radius 3y.

Finally, notice that the preimage of a ball of radius 3y under the map U +— A 4 U B is con-

tained in a ball of radius 3Ky, whose p, y2-measure is less than (3Ky/ N ?. Therefore the
total measure of 3K y-balls needed to cover the set {U € cV’ (r) | Hyp(A+ U B) < y} is at most

C(N)KzNzy/rz, where the constant C(N) depends only on N.
Proposition 5 is proved. O
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