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Abstract

Here we study an amazing phenomenon discovered by Newhouse [S. Newhouse, Non-density of Ax-
iom A(a) on S2, in: Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., 1970, pp. 191–202; S. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9–18; S. Newhouse, The abundance of
wild hyperbolic sets and nonsmooth stable sets of diffeomorphisms, Publ. Math. Inst. Hautes Études Sci.
50 (1979) 101–151]. It turns out that in the space of Cr smooth diffeomorphisms Diffr (M) of a compact
surface M there is an open set U such that a Baire generic diffeomorphism f ∈U has infinitely many coex-
isting sinks. In this paper we make a step towards understanding “how often does a surface diffeomorphism
have infinitely many sinks.” Our main result roughly says that with probability one for any positive D a
surface diffeomorphism has only finitely many localized sinks either of cyclicity bounded by D or those
whose period is relatively large compared to its cyclicity. It verifies a particular case of Palis’ Conjecture
saying that even though diffeomorphisms with infinitely many coexisting sinks are Baire generic, they have
probability zero.

One of the key points of the proof is an application of Newton Interpolation Polynomials to study the dy-
namics initiated in [V. Kaloshin, B. Hunt, A stretched exponential bound on the rate of growth of the number
of periodic points for prevalent diffeomorphisms I, Ann. of Math., in press, 92 pp.; V. Kaloshin, A stretched
exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II,
preprint, 85 pp.].
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1. Introduction

Let M be a smooth 2-dimensional manifold and Diffr (M) be the space of Cr smooth diffeo-
morphisms with the uniform Cr topology. According to the standard terminology Baire generic
(residual) set of diffeomorphisms is a subset of Diffr (M) which contains a countable intersec-
tion of open dense sets. During the time Thom [39] had been developing singularity theory he
conjectured that Baire generically a diffeomorphism or a flow has only finitely many hyperbolic
periodic attractors. It turns out that this conjecture has a negative answer.

We say that a diffeomorphism f ∈ Diffr (M) exhibits a homoclinic tangency (HT) if it has a
saddle periodic point p = f n(p) for some n ∈N such that stable and unstable manifolds Ws(p)

and Wu(p) of p respectively have a point q of tangency (see Fig. 1). Denote by HT ⊂Diffr (M)

the set of diffeomorphisms exhibiting homoclinic tangency. The picture of homoclinic tangency
seems fragile and easily destroyable by a small perturbation for a single saddle periodic point.
Surprisingly however, Newhouse [25] proved that the Cr -closure of HT contains an open set
U ⊂ Diffr (M). These open sets are called Newhouse domains. Later Newhouse [26,27] proved
that in such a domain there is a Baire generic set of diffeomorphisms having infinitely many
coexisting sinks. Examples of coexistence of infinitely many sinks have been found in various
situations:

Henon family. In the 1970s, M. Henon [16] made an extensive numerical study of the behavior
under iteration of maps Pa,b :R2 →R2 of the form (x, y) �→ (1− ax2+ by, x), where a, b ∈R.
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In particular, Henon found numerical evidence supporting the existence of a strange attractor for
Pa,b when a = 1.4 and b = 0.3. In the parameter plane (a, b) it was shown [40] that arbitrarily
near (a, b) = (2,0) there is an open set U such that for a Baire generic parameter in it, the
corresponding Pa,b has infinitely many coexisting sinks.

Polynomial automorphisms of C
2. Buzzard [4], using results of Forness–Gavosto [7], showed

that for a large enough d in the space of holomorphic self-maps Hd(C2) of C
2 of degree d , there

exists an open set N ⊆Hd(C2) such that for a Baire generic parameter in it, the corresponding
self-map has infinitely many coexisting sinks.

Newhouse’s discovery of existence of infinite number of attractors for topologically generic
dynamical system leads to the following natural question: What is the probability of this phe-
nomena in some measure theoretical sense? In the case of finite parameter families as above it
corresponds to the question: What is the measure of the set of Baire generic parameters with
infinitely many coexisting sinks?

Another result which shows importance of investigation of perturbations of HT is the follow-
ing

Conjecture 1. (Palis [31]) For any r � 1 any surface diffeomorphism f ∈ Diffr (M) can be
approximated by one that is either essentially hyperbolic or exhibiting HT.

Essential hyperbolicity refers here to a diffeomorphism that has a finite number of hyper-
bolic attractors whose basins of attraction cover a set of full Lebesgue measure. For r = 1 this
conjecture has been proven by Pujals–Sambarino [36].

The primary goal of this paper is to analyze trajectories localized in a neighborhood of a
fixed HT. A loose statement of the main result is in the abstract. A sink periodic orbit is the
simplest attractor. We now define notions of an unfolding of an HT and localized trajectories of
finite complexity associated to that HT.

Fig. 1. Homoclinic tangency.
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Fig. 2. Localization for homoclinic tangency.

Consider a 1-parameter family of perturbations {fε}ε∈I , I = [−ε0, ε0] of a 2-dimensional
diffeomorphism f = f0 ∈ Diffr (M) with homoclinic tangency and small ε0 > 0 (see Fig. 1).
Roughly speaking, ε parametrizes oriented distance of the top tip of the unstable manifold to the
stable manifold. Such a family is called an unfolding of an HT.

Robinson [37], adapting Newhouse’s ideas [26,27], showed that for such an unfolding there
is a sequence of open intervals converging to zero such that for a generic parameter from those
intervals the corresponding diffeomorphism fε has infinitely many coexisting sinks.

Assume that f has a fixed saddle point p0 = f (p0) and that the eigenvalues λ,μ of the
linearization Df (p0), 0 < λ < 1 < μ, and they belong to the open dense set of pairs of full
measure of eigenvalues for which Sternberg’s linearization theorem holds. Then in a small neigh-
borhood Ṽ of p0 there is a Cr smooth normal coordinate system (x, y) ∈ Ṽ ⊂ R

2 such that
f (x, y)= (λx,μy). Suppose q is the point of homoclinic tangency of Ws(p0) and Wu(p0) away
from Ṽ , and let q̃ = f−1(q) be its preimage. Extend the coordinate neighborhood Ṽ by iterating
forward and backward until first it contains q̃ and f (q), respectively. Decreasing Ṽ if necessary
we can assume that there are no overlaps. Denote such a neighborhood by V and call it a normal
neighborhood. By definition V does not contain q (see Fig. 2). Consider a neighborhood U (re-
spectively Ũ ⊂ Û ) of q (respectively q̃) such that f (U)∩U = ∅ (respectively f−1(Û)∩ Û = ∅),
f (Ũ)⊃U , and f (Û)∩V = ∅. By rescaling coordinate axis one could set q to have coordinates
(1,0) and q̃ to have (0,1). Set V = V ∪ U . In what follows we fix a neighborhood V once and
for all.

Definition 1. We call an invariant set of points V-localized if it belongs to V . In particular, any
invariant set contained in

ΛV =
⋂
n∈Z

f n(V) (1)

is V-localized. A periodic point f n(p)= p, n ∈N, is called V-localized if it belongs to ΛV and
is called (V, s)-localized if its trajectory P= {f k(p)}nk=1 visits U exactly s times. Call s = s(P)

the cyclicity of a V-localized periodic orbit.
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The zoo of V-localized invariant sets is incredibly rich. Below we just mention the authors
favorite animals.

• Smale’s horseshoe created by a small perturbation of an HT.
• V-localized sink of an arbitrary high period (Gavrilov–Shilnikov [8] and Newhouse [27]).
• Infinitely many coexisting V-localized sinks. Actually Newhouse [26] (see also Palis–Takens

[33] for a simplified proof) proved that for a Baire generic set of diffeomorphisms in a
Newhouse domain there are infinitely many coexisting sinks. However one can construct
infinitely many of those as V-localized.

• Strange attractor (Benedicks–Carleson [2], Mora–Viana [24], Young–Wang [41]). A strange
attractor appears as an attractor for the return map of a certain rectangle localized in U into
itself. It would imply that a V-localized set could contain a strange attractor.

• Infinitely many coexisting strange attractors (Colli [6]).
• Arbitrarily degenerate periodic points of arbitrary high periods (Gonchenko–Shilnikov–

Turaev [13]).
• Uniformly and non-uniformly hyperbolic horseshoes as maximal invariant sets ΛV (New-

house–Palis [28], for further generalizations see Palis–Takens [32], Palis–Yoccoz [34,35],
and I. Rios [38]).

The first of our main results is the following

Theorem 1.1. With the above notations, for a generic1 1-parameter family {fε}ε∈I that unfolds
an HT at q there is a sequence of numbers {Ns}s∈N such that for almost every parameter ε

and any D ∈ N the corresponding fε has only finitely many V-localized sinks {Pj }j∈J whose
cyclicity is bounded by D or period exceeds Nsj , where sj = s(Pj ) > D is cyclicity of a cor-
responding sink Pj . In other words, for almost every parameter ε if there are infinitely many
coexisting V-localized sinks {Pj }j∈J , then all but finitely many have cyclicity sj = s(Pj ) > D

and period < Nsj .

Remark 1. For 1-loop periodic sinks a similar result is obtained by Tedeschini-Lalli–Yorke [23],
see also [29]. Dynamical properties of periodic and homoclinic orbits of low cyclicity
(s = 1,2,3) were studied in [11,12]. In particular, Gonchenko and Shilnikov found the rela-
tion between existence of the infinite number of 2-loop sinks and numerical properties of the
invariants of smooth conjugacy [10]. For random maps the problem of finiteness of attractors
was considered by Araujo [1].

Remark 2. We can choose Ns = s5s2
.

Remark 3. In a later publication of the authors on the subject of Newhouse phenomenon we mod-
ify arguments from Palis–Takens [32] and show that for a generic parameter ε in a Newhouse
interval (see the result of Robinson [37] stated above) fε has infinitely many V-localized sinks
of {Pj }j whose periods exceed the corresponding functions Nsj of their cyclicity sj = s(Pj ). In
particular, it implies that Theorem 1.1 gives another example of a topological generic phenom-

1 Meaning of “generic” is in the sense of prevalence in the space of 1-parameter families, see Section 2.8 for a defini-
tion.
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enon of zero measure in the space of parameters. For other examples of prevalent topologically
negligible phenomena see [17,21,30].

Since a sink is the simplest example of an attractor, this result is a particular case of the
following

Conjecture 2. (Palis) With probability one a surface diffeomorphism has finitely many attractors.

Our method provides significant additional information about hyperbolicity of corresponding
localized periodic points, which is the second main result.

Definition 2. We say that a periodic (under the map g) point p of period n is (μ,ℵ)-trace hyper-
bolic if ∣∣TrDgn(p)

∣∣> μ(1−ℵ)n. (2)

Remark 4. For a V-localized periodic point p of large period n (
 s) we have that

detDf n(p)≈ (λμ)n.

Hence if the product of eigenvalues λμ � 1, then the condition (2) implies hyperbolicity of p.

Theorem 1.2. With the above notations of Theorem 1.1, for any ℵ > 0 there is a sequence of
numbers {Ns(ℵ)}s∈N such that for almost every parameter ε and any D ∈ N the corresponding
fε has only finitely many V-localized not (μ,ℵ)-trace hyperbolic periodic points {Pj }j∈J whose
cyclicity is bounded by D or period exceeds Nsj (ℵ), where sj = s(Pj ) > D is cyclicity of a
corresponding sink Pj . In other words, for almost every parameter ε if there are infinitely many
coexisting not (μ,ℵ)-trace hyperbolic V-localized periodic points {Pj }j∈J , then all but finitely
many have cyclicity sj = s(Pj ) > D and period < Nsj .

Remark 5. Note that if p is a periodic orbit of a planar diffeomorphism of period n and
|TrDf n

�ε (p)|> 2, then p can not be a sink. Therefore Theorem 1.2 implies Theorem 1.1.

Palis–Takens [32] and Palis–Yoccoz [34,35] investigated generic unfolding of an HT not only
for saddle periodic points but also for horseshoes. They investigated parameters outside of New-
house domains. We obtain less sharp properties of the dynamics, but we treat parameters inside
Newhouse domains too!

Strange attractors can be found as invariant sets of certain return maps of a subset Π of U

into itself, i.e. for some n we have f n :Π →U is well defined. For trajectories in
⋂

k∈Z
f nk(Π),

the period grows linearly with cyclicity. The main result does not restrict attention to a subset
Π of U but has to consider trajectories whose period grows superexponentially (> s5s2

) with
cyclicity s.

1.1. Main ideas of the proof of Theorem 1.2

The general idea of the method is described in non-technical terms in [14].
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1.1.1. Borel–Cantelli arguments
Fix ℵ> 0, e.g. ℵ= 1/2. Let

Bn,s =
{
ε ∈ I | fε has a not (μ,1/2)-trace hyperbolic

periodic point of period n and cyclicity s
}
.

Suppose ∑
n∈Z+

Leb(Bn,s) <+∞ for any s ∈ Z+,

where Leb is the Lebesgue measure. Then for almost every ε ∈ I there are only finitely many not
(μ,1/2)-trace hyperbolic periodic points of bounded cyclicity. The focal point of the proof is to
estimate the measure of “bad” parameters Leb(Bn,s).

1.1.2. Trajectory type, hyperbolic and parabolic maps
Any (V, s)-localized periodic orbit, by definition, visits U exactly s times and spends

n1, n2, . . . , ns consecutive iterates in V , n = n1 + n2 + · · · + ns + s. We call an ordered se-
quence (n1, . . . , ns) type of a periodic orbit. For a given periodic orbit denote the points of
intersection with U by p0,p1, . . . ,ps−1 and the corresponding points in Ũ by p̃0 = f n1(p0),

p̃1 = f n2(p1), . . . , p̃s−1 = f ns (ps−1).
Recall that f is linear in V \ Ũ with eigenvalues λ < 1 < μ, f |

V \Ũ (x, y) = (λx,μy). Call
this linear map hyperbolic, denoted L, and f |

Ũ
parabolic, denoted P .

1.1.3. Cone condition
To estimate the measure of parameters for which a periodic orbit of a given type is not

(μ,1/2)-trace hyperbolic, we introduce the following cone condition. Define at every point
p ∈U a cone

KA(p)= {
v = (vx, vy) ∈ TpV �R

2
∣∣ |vy |� μ−A|vx |

}
.

To show that the periodic point p0 is hyperbolic it turns out that it suffices to find 0 < α � 1
independent of n such that

Df n
ε,p0

(
Kαn(p0)

)⊂Kαn(p0). (3)

To verify this condition directly does not seem possible in general. Our plan is to verify that
for most parameters this cone condition holds after each loop:

Df ni+1
ε,pi

(
Kαn(pi )

)⊂Kαn

(
pi+1 (mod s)

)
for each i = 0, . . . , s − 1. (4)

See Fig. 3 for s = 1. This condition clearly implies (3), because the image of the first cone
Kαn(p0) belongs to the second cone Kαn(p1). The image of the second one belongs to the third
one and so on.

Fix 0 < α � 1. Notice that if all loops are long: ni > 3αn, then Lni Kαn(pi ) is the cone
of width angle < 2μ−αn. Fix 1 � j � s. To satisfy condition (4) for j we need to avoid the
intersection of the cone Dfε,p̃j

(Lnj Kαn(pj )) and the complement to Kαn(pi+1). Assume that



ARTICLE IN PRESS YAIMA:2661
JID:YAIMA AID:2661 /FLA [m1+; v 1.59; Prn:15/05/2006; 12:16] P.8 (1-88)

8 A. Gorodetski, V. Kaloshin / Advances in Mathematics ••• (••••) •••–•••
Fig. 3. Evolution of cones.

we can perturb Dfε,p̃j
by composing with rotation and angle of rotation is a parameter. Then we

need to avoid a phenomenon that has “probability” ∼ μ−αn. Taking the union over all types Ns ,
|Ns | = n we get that probability to fail (4) for some 1 � i � s is ∼ nsμ−αn. We avoid saying
explicitly probability in what space, just assume that it is proportional to angle of rotation, and
postpone the exact definition for further discussion.

However, it might happen that one of ni ’s is significantly smaller than αn, e.g. ns � lnn. In
this case, the above argument fails. Indeed, let ns = [lnn], n
 1. Consider the image of the
cone Kαn(ps−1) after the last loop Lns Kαn(ps−1). It is the cone, whose width angle is of order 1.
Taking into account possibility that Dfε,p̃s−1 rotates a vertical vector by π/2 it is certainly not
possible to fulfill (4) by a small perturbation. The natural idea is to avoid looking at condition (4)
after “short” loops. This leads to combinatorial analysis of type Ns of trajectories.

1.1.4. Combinatorial analysis of type Ns of s-loop trajectories
Below we do not pay attention to dynamics of a trajectory of type Ns under consideration.

We investigate only properties of Ns .

• Short and long loops. We shall divide an s-tuple Ns = (n1, . . . , ns) into two groups of long
and short ni ’s, because they correspond to loops of a trajectory. After such a division long
ni ’s should be much longer than short ni ’s. Denote by t (respectively s − t) the number of
long (respectively short) loops.

• Generalized loops and essential returns. Since we cannot fulfill (4) after short loops, we
combine all loops into groups, called generalized loops. Each generalized loop starts with
a long loop and is completed by all short loops following afterwards. Therefore, the num-
ber of generalized loops equals the number of long loops. Then we verify (4) not after each
loop, but after each generalized loop. Denote by P0, . . . ,Pt−1,Pt = P0 ⊂ U starting points
of generalized loops, by P̃0, . . . , P̃t−1, P̃t = P̃0, prestarting points of generalized loops, i.e.
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f (P̃i)= Pi+1, i = 0, . . . , t −1, and by N1, . . . ,Nt their lengths, respectively. Then we mod-
ify (4) to

Df
Ni+1
ε,p̃i

(
Kαn(Pi)

)⊂Kαn(Pi+1) for each i = 0, . . . , t − 1. (5)

Now the idea presented above has a chance to work. Indeed, let nj be a long loop and
nj+1, . . . , nj+j ′ be short ones from the corresponding generalized loop. Consider the image of
the corresponding cone Kαn(Pj ) after the generalized loop. Notice that after the long loop nj

the cone Lnj Kαn(Pj ) is the cone of width angle < 2μ−αn. Since long nj is so much longer than
short loops nj+1, . . . , nj+j ′ , the cone(

Dfε,p̃j+j ′ ◦L
nj+j ′ ◦ · · · ◦Dfε,p̃j+1 ◦Lnj+1

) ◦ (Dfε,p̃j
◦Lnj Kαn(pj )

)
has width angle < 3μ−αn. To satisfy condition (4) for j + j ′ we need to avoid an interval of ro-
tations (i.e. of parameters) of length < 5μ−αn. This phenomenon still has “probability” ∼ μ−αn.

After this combinatorial analysis we face the next difficulty. We cannot perturb Dfp̃ and Dfp̃′
independently at nearby points p̃ and p̃′.

1.1.5. Dynamical analysis of trajectories
Assume for a moment that we are interested in properties of scattered periodic orbits, that is,

such orbits that P0, . . . ,Pt−1 in U are pairwise well spaced. In particular, it is always the case for
1-loop orbits. In this case the difficulty of nearby points is removed. Using Discretization Method
and the cone condition (5) one can prove that for most parameters all but a finite number of the
periodic orbits are hyperbolic saddles. Moreover, consider for 0 < γ ′ = μ−α′n � γ ′′ = μ−α′′n

parameters for which a periodic not enough hyperbolic γ ′′-scattered γ ′-pseudo-orbit of period n

exists. In fact, we can show that the measure of these parameters is small (see (28) for the formal
statement). Now we are going to explain how this can be used to treat all periodic orbits, not
necessarily scattered. Consider the 2-loop case for illustration. If starting points of loops p0 and
p1 are far enough from each other, one can perturb differential of parabolic map at their preim-
ages independently, and above arguments allow to estimate the measure of “bad” parameters.
Otherwise a periodic orbit can be decomposed into a union of two 1-loop periodic pseudo-orbits,
which have nearby endpoints in U . The cone condition (5) for each of these pseudo-orbits holds
for most parameters, which implies (3).

Another illustration can be given by the case t = 1, i.e. we have one loop which is much
longer than all the others. In this case the image of the cone Kαn(p0) after the application of dif-
ferential of the map along the orbit has width angle < 2μ−αn, as explained above. Point p̃s−1 =
P̃0 = f n−1(p0) = f−1(p0) cannot be too close to points p̃0, p̃1, . . . , p̃s−2. Indeed, the distance
between pi and x-axis is (pi )y ∼ μ−ni+1 . Since n1 
 ni we have μ−n1 � μ−ni . Therefore the
point p0 can not be too close to points p1, . . . ,ps−1, and we can perturb φ(p̃s−1)= φ(f−1(p0))

independently of φ(p̃0), . . . , φ(p̃s−2). This allows to estimate the measure of “bad” parameters.
To consider the general case we represent a periodic orbit as an oriented cyclic graph. Starting

points of generalized loops are vertices of this graph, and vertices corresponding to a subsequent
generalized loops are connected by an oriented edge (see Fig. 4, picture 1). It turns out that for
some γ ′ � γ ′′ for any pair of points (Pi,Pj ) either dist(Pi,Pj ) > γ ′′ or dist(Pi,Pj ) < γ ′. This
is explained in details in Section 7. Therefore every pair of vertices is either γ ′-close or γ ′′-far
apart (see Fig. 4, picture 2). Now all the vertices can be divided into “clouds” or “clusters.” Let
us identify the vertices in the same cloud of nearby points, as shown on Fig. 4, picture 2. The
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Fig. 4. Graph surgery.

initial cycle is transformed now into oriented pseudograph (see Definition 20) with the same
number of ingoing and outgoing edges at each vertex. Such a pseudograph can be decomposed
into the union of oriented cycles, see Lemma 7 and Fig. 4, picture 3. Each of cycles from this
decomposition represents a γ ′′-scattered γ ′-pseudo-orbit. Application of the arguments above
to these pseudo-orbits gives inclusion (5) for most values of parameters and implies the cone
condition (3) for the initial periodic orbit.

1.1.6. Tools for measure estimates: Discretization Method and Newton Interpolation
Polynomials

To make perturbations in a described way and to estimate the measure in a space of parameters
we use Discretization Method and Newton Interpolation Polynomials. This method was already
successfully used in [22] and we strongly believe that it can be applied to wide range of problems
in Dynamics. See Sections 9–11 of the present paper, Section 3 in [22] or [14] for discussion of
the method.

The structure of the paper is the following. In Section 2 the exact statements of results are
given. In Section 3 a model example is considered, a strategy of the proof is presented, and Fu-
bini reduction is described. In Section 4 Auxiliary Theorems I and II are stated, and the results
are reduced to those theorems. Sections 5–11 are devoted to the proof of Auxiliary Theorem I.
Section 12 gives the proof of Auxiliary Theorem II. In Section 13 the results are extended to
nonlinear situation and to periodic saddle with homoclinic orbit. Section 14 contains some tech-
nical proofs, including the proof of Addendum to Theorem B. In Appendix A we study relations
between existence of infinite number of periodic orbits of bounded cyclicity and Kupka–Smale
property. Appendix B provides the proof of the estimate of “non-hyperbolic” parameters that is
used in the proof of Auxiliary Theorem II and in Section 13.
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2. Statement of the results

2.1. Description of the initial map

Consider a linear map

L=
(

λ 0

0 μ

)(
x

y

)
,

where 0 < λ < 1 < μ. Set �=−(lnλ)/(lnμ) > 0.
Denote q = (1,0) and q̃ = (0,1). Fix small δ̃, δ > 0. Let U be a neighborhood of point q , and

let Û and Ũ be neighborhoods of point q̃, such that

U = {
(x, y) | x ∈ [1− δ,1+ δ], y ∈ [−δ, δ]},

Ũ = {
(x, y) | y ∈ [1− δ̃,1+ δ̃], x ∈ [−δ̃, δ̃]},

Û = {
(x, y) | y ∈ [1− 2δ̃,1+ 2δ̃], x ∈ [−2δ̃,2δ̃]}, (6)

see Fig. 2. Take a Cr -diffeomorphism G : Û →R
2 such that G(Ũ)⊃U and r � 2. In particular,

G(q̃) might be equal q , but it is not required. Since for homoclinic tangency or intersection G(q̃)

indeed equals q , both are covered by our model.
Fix a small neighborhood V of a set {(x, y) | x ∈ [0, λ], y = 0} ∪ {(x, y) | y ∈ [0,1], x = 0}.

Picking small δ̃, δ > 0 we can assume that L−1(Û) ∩ Û = ∅, L(U) ∩ U = ∅, and U ∩ V = ∅.
The map f is defined in the following way:

f :V→R
2, f (x, y)=

{
L(x, y), if (x, y) ∈ V\Û ,

G(x, y), if (x, y) ∈ Û .
(7)

As a matter of fact trajectories we shall investigate will never visit Û \ Ũ .
Informally we say that a map f has a hyperbolic part L and a parabolic part G.

2.2. Localized s-loop periodic orbits

In the introduction we defined periodic trajectories of special kind (V-localized). We are going
to investigate the behavior of those. Namely, fix s ∈ N and a neighborhoods V , U and Ũ . We
shall consider periodic orbits which “go around” a neighborhood V ∪U not more than s times.
Introduce a term “loop.”

Definition 3. A sequence of points {p0, . . . , pm−1} ⊂ V ∪ U is called a loop (of length m),
if p0 ∈U , pm−1 ∈ Ũ , and for each i = 0, . . . ,m− 2 we have L(pi)= pi+1.

The following lemma is obvious.

Lemma 1. Any (V, s)-localized periodic orbit is a disjoint union of s loops.

In what follows an orbit consisting of s loops is called also an s-loop orbit.



ARTICLE IN PRESS YAIMA:2661
JID:YAIMA AID:2661 /FLA [m1+; v 1.59; Prn:15/05/2006; 12:16] P.12 (1-88)

12 A. Gorodetski, V. Kaloshin / Advances in Mathematics ••• (••••) •••–•••
2.3. Description of perturbations

We shall consider an infinite parameter family of analytic perturbations of the map f perturb-
ing only parabolic part G of the map. It is more natural to write these perturbations in a shifted
coordinate system. Denote by (x̃, ỹ)= (x, y − 1) coordinates in Ũ . Consider a C∞-function ρ

identically 1 in Ũ and 0 outside Û . In these coordinates perturbed map has the following form:

G�ε(x̃, ỹ)=G(x̃, ỹ)+ ρ(x̃, ỹ)

(
Φ1
�ε (x̃, ỹ)

Φ2
�ε (x̃, ỹ)

)
, (8)

where Φ1
�ε and Φ2

�ε are analytic functions in Ũ ,

Φ1
�ε (x, y)=

∑
0�i,j

ε1
ij x

iyj , Φ2
�ε (x, y)=

∑
0�i,j

ε2
ij x

iyj ,

and

�ε = {
εk
ij ∈R

∣∣ ∣∣εk
ij

∣∣< 1, k = 1,2, 0 � i, j
}
.

The family of maps {f�ε} we shall study is the following map f�ε :V→R
2

f�ε (x, y)=
{

L(x, y), if (x, y) ∈ V \ Û ,

G�ε(x, y), if (x, y) ∈ Û .
(9)

To make all the perturbations small we restrict size of the coefficients. Namely, take a small
constant ζ and require |εk

ij |� ζ for k = 1,2, 0 � i, j . So the space of coefficients is the following
Hilbert cube:

HB(ζ )= {
εk
ij ∈R

∣∣ ∣∣εk
ij

∣∣� ζ, k = 1,2, 0 � i, j
}
. (10)

Take ζ small enough to guarantee that G�ε(Ũ )⊃U for all �ε ∈HB(ζ ).
We shall also use the following constants:

M1 = sup
�ε∈HB(ζ )

{‖f�ε‖C1 ,
∥∥f−1
�ε

∥∥
C1

}
, M2 = sup

�ε∈HB(ζ )

{‖f�ε‖C2,
∥∥f−1
�ε

∥∥
C2

}
. (11)

2.4. Product measure in the space of coefficients

To make any statements in terms of probability we need to choose a measure in the space of
parameters. We do this in the following way.

Let Lebζ be the Lebesgue measure on the interval [−ζ, ζ ]. For each parameter εk
ij we define a

probability measure on this interval νk
ij = 1

2ζ
Lebζ (all νk

ij ’s are the same, but indexes emphasize
correspondence to different coefficients). Consider the normalized product Lebesgue measure ν

in the space of coefficients HB(ζ ):

ν =×
0�i,j

(
ν1
ij × ν2

ij

)
. (12)
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2.5. Statement of main results (unbounded cyclicity)

Theorem A. For ν-almost every �ε ∈ HB(ζ ) the corresponding map f�ε has only a finite number
of localized sinks {Pj }j whose period exceeds

As
4s2

j+4sj+7

j

(
10(1+�)

)2sj (sj+1)
,

where sj = s(Pj ) is cyclicity of a corresponding sink Pj and A is a constant depending on
parameters of the problem.

Remark 6. According to the standard terminology this theorem says that for a prevalent dif-
feomorphism near HT there are only a finite number of localized sinks of large enough period
compare to its cyclicity. Such a definition of prevalence is introduced in [17] and is used in [21]
under similar circumstances. In [19] a different way to define prevalence is proposed.

Our method provides significant additional information about hyperbolicity of corresponding
localized periodic points.

Definition 4. We say that a periodic (under the map g) point p of period n is (μ,ℵ)-trace hyper-
bolic if

∣∣TrDgn(p)
∣∣> μ(1−ℵ)n. (13)

Theorem B. For any ℵ > 0 there is a sequence of numbers {Ns(ℵ)}s∈N such that for ν-almost
every �ε ∈ HB(ζ ) the corresponding map f�ε has only a finite number of V-localized periodic
points {Pj } of period greater than Nsj (ℵ) that are not (μ,ℵ)-trace hyperbolic, where sj =
s(Pj ) is cyclicity of the corresponding sink Pj .

Addendum 2.1. One can take

Ns(ℵ)= 3s
(
Bs4 − (

2s2 + 2s + 1
)
(s + 1) lnℵ) (5s2ℵ−1(1+�))2s2+2s+1

lnμ
,

where B is a constant depending on parameters of the problem. Notice that Ns(ℵ) < s5s2
for

large s.

Remark 7. Note that if p is a periodic orbit of a planar diffeomorphism of period n and
|TrDf n

�ε (p)|> 2, then p can not be a sink. Therefore Theorem B implies Theorem A (see Sec-
tion 4 for more details).

To state corresponding theorems for periodic trajectories of bounded cyclicity we need to
introduce families of polynomial perturbations of bounded degree.
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2.6. Description of polynomial perturbations

Now we consider a finite-parameter family of polynomial perturbations of the map f perturb-
ing only parabolic part G of the map. As above (x̃, ỹ)= (x, y−1) denotes the shifted coordinates
in Ũ . In these coordinates perturbed map has the following form:

G�ε<2s
(x̃, ỹ)=G(x̃, ỹ)+ ρ(x̃, ỹ)

(
Φ1
�ε<2s

(x̃, ỹ)

Φ2
�ε<2s

(x̃, ỹ)

)
, (14)

where Φ1
�ε<2s

and Φ2
�ε<2s

are polynomials,

Φ1
�ε<2s

(x, y)=
∑

0�i,j,i+j<2s

ε1
ij x

iyj , Φ2
�ε<2s

(x, y)=
∑

0�i,j,i+j<2s

ε2
ij x

iyj ,

and

�ε<2s =
{
εk
ij ∈R | k = 1,2, 0 � i, j, i + j < 2s

}
.

The family of maps {f�ε<2s
} we shall study is the following map f�ε<2s

:V→R2

f�ε<2s
(x, y)=

{
L(x, y), if (x, y) ∈ V \ Û ,

G�ε<2s
(x, y), if (x, y) ∈ Û .

We put the same restriction on size of the coefficients as for analytic perturbations. Namely, we
require |εk

ij |� ζ for k = 1,2, 0 � i, j, i + j < 2s. So the space of coefficients is the following
cube:

HB<2s(ζ )= {
εk
ij ∈R

∣∣ ∣∣εk
ij

∣∣� ζ, k = 1,2, 0 � i, j, i + j < 2s
}
. (15)

Constant ζ was chosen small enough to have G�ε<2s
(Ũ ) ⊃ U and G�ε<2s

(Û ) ∩ V = ∅ for all
�ε<2s ∈ HB<2s(ζ ). Constants M1 and M2 as well as ζ can be chosen the same as above. Product
measure in a space of coefficients is as follows

ν<2s = ×
0�i,j, i+j<2s

(
ν1
ij × ν2

ij

)
. (16)

2.7. Statement of main results (bounded cyclicity)

Theorem A′. Fix s ∈N. For ν<2s -almost every �ε<2s from HB<2s(ζ ) the corresponding map f�ε<2s

has only a finite number of localized sinks of cyclicity at most s.

If we restrict ourselves to a fixed number of loops s, then existence of an infinite number of
s-loop sinks implies that a corresponding diffeomorphism is not Kupka–Smale2 (see Appendix A

2 We are grateful to D. Turaev for this remark.
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for a precise statement and a proof). Therefore, this result should be expected. Indeed, in [19]
it was shown that Kupka–Smale systems are prevalent (although the notion of prevalence is
different from ours).

Theorem B′. Fix s ∈N. For any ℵ> 0 and ν<2s -almost every �ε<2s ∈HB<2s(ζ ) the correspond-
ing map f�ε<2s

has only a finite number of V-localized periodic points of cyclicity at most s that
are not (μ,ℵ)-trace hyperbolic.

2.8. Prevalence in the space of families

In this section we define the notion of prevalence in the space of 1-parameter families and then
show how Theorem A implies Theorem 1.1. This notion was introduced by Hunt–Sauer–Yorke
[17] for linear spaces and by Christensen [5] for Polish spaces.

Consider the space of Cr -smooth 1-parameter families of diffeomorphisms {fκ :W →R
2}κ∈I

of an open set W ⊂ R2 such that f = f0 has a non-resonant3 saddle periodic point p = f k(p)

which has an HT at some points q and f−k(q)= q̃ . Denote this space Cr
HTn

(W × I,R
2). Choose

small I = [−ε0, ε0] and small neighborhoods Ũ ⊂ Û ⊂W and U ⊂W of points q̃ and U re-
spectively so that f k(U) ∩ U = ∅, f−k(Û ) ∩ Û = ∅, f k

κ (Ũ) ⊃ U and f k
κ (Û) ∩ V = ∅ for all

κ ∈ I as we do in front of Definition 1. Due to theory of normal forms (see, e.g., [18]) there are
linearizing normal coordinates in a neighborhood Ṽ of a saddle p. Consider a family of analytic
perturbations (8) of each family inside of Û . This gives the new family

{fκ,�ε}(κ,�ε)∈I×HB(ζ ).

Definition 5. A set of families U in Cr
HTn

(W ×I,R
2) is called prevalent if for any family {fκ}κ∈I

for ν-almost every �ε∗ the family {fκ,�ε∗}κ∈I belongs to U .

Show that the set of families satisfying Theorem A is prevalent. Consider the set of families
U in Cr

HTn
(W × I,R

2) such that for any {fκ}κ∈I ∈ U we have that for almost every κ ∈ I the
diffeomorphism fκ satisfies Theorem A. Show that U is prevalent.

Apply to each fκ Theorem A (see Section 13 for additional arguments required to apply The-
orem A). It gives that for any κ ∈ I and ν-almost every �ε we have that fκ,�ε has only finitely many
sinks of sufficiently large period compare to its cyclicity, i.e. satisfying conditions of Theorem A.

By Fubini Theorem it implies that for ν-almost every �ε we have that the family {fκ,�ε}κ∈I

satisfies conclusion of Theorem A for almost every κ . Therefore, ν-almost every family is in U .
In the next sections we shall be proving Theorem B′ and extract Theorem B in the process of

the proof. Theorems B and B′ imply Theorems A and A′, respectively, see Section 4 for details.

3. Scheme of the proof

3.1. Strategy

Here we give a complete scheme of the proof omitting involved definitions. Detailed defini-
tions, exact intermediate statements and their proofs are given in subsequent sections.

3 We hope to get rid of non-resonance condition in a future publication.
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Step I (Sorting by type). Reduction to a uniform (over all types of a fixed length) estimate of the
measure of “bad” parameters associated with periodic orbits of a given type.4

Set initial parameters of the problem

W=
{
μ,λ,M1,M2,V , δ, ζ,�=− lnλ

lnμ

}
. (17)

In what follows these parameters stay fixed.
Define the following sets in the spaces of parameters HB(ζ ) and HB<2s(ζ ):

B trace
W,∞[f,Ns ,ℵ] =

{�ε ∈HB(ζ )
∣∣ f�ε has a V-localized periodic

not (μ,ℵ)-trace hyperbolic orbit of type Ns

}
, (18)

and

B trace
W [s, f,Ns ,ℵ] =

{�ε<2s ∈HB<2s(ζ )
∣∣ f�ε<2s

has a V-localized periodic

not (μ,ℵ)-trace hyperbolic orbit of type Ns

}
. (19)

To apply standard Borel–Cantelli argument (as it is done in Section 4) to prove Theorem B′
(which implies Theorem A′) we need to prove that the following series is convergent:

∑
Ns

ν<2s

{
B trace

W [s, f,Ns ,ℵ]
}

<∞. (20)

Since #{Ns | |Ns | = n1 + · · · + ns + s = n} < ns, to prove (20) it is enough to show that the
following estimate holds true:

ν<2s

{
B trace

W [s, f,Ns ,ℵ]
}

� Csμ
−hs |Ns |, (21)

where Ns = (n1, . . . , ns), |Ns | = n1+· · ·+ns + s, and positive constants hs and Cs are uniform
over all types Ns of large enough length |Ns |.

In order to prove Theorems A and B we need to choose (see Sections 4.5 and 14.1) a sequence
{Ns(ℵ)}s such that the following series is convergent:

∑
s∈N

∑
Ns , |Ns |�Ns (ℵ)

ν
{
B trace

W,∞[f,Ns ,ℵ]
}

<∞. (22)

Due to Fubini reduction argument (Section 3.2) estimate (21) implies the same estimate for
ν{B trace

W,∞[f,Ns ,ℵ]}. Therefore we reduced the proof to estimate (21).

4 See Definition 12 for a definition of type.



ARTICLE IN PRESS YAIMA:2661
JID:YAIMA AID:2661 /FLA [m1+; v 1.59; Prn:15/05/2006; 12:16] P.17 (1-88)

A. Gorodetski, V. Kaloshin / Advances in Mathematics ••• (••••) •••–••• 17
Set β = ℵ/(5s2(1+�)). This parameter will be responsible for definitions of short and long
loops, sizes of cones, etc. When we need to include s, β and ℵ to the set of parameters of the
problem, we use the notation

Q=W∪ {s, β,ℵ} =
{
μ,λ,M1,M2,V , δ, ζ, �=− lnλ

lnμ
, s,β,ℵ

}
. (23)

At this moment we fix the extended set of parameters Q.

Step II (Sorting by shape). Reduction to uniform (over all types of given shape and a fixed length)
estimate of the measure of “bad” parameters associated with periodic orbits of a given type.

In Section 5.1 we shall introduce notion of shape l = l(Ns) (see Definition 14). To show that
(21) holds it is enough to prove the following estimate:

ν<2s

{
B trace

W [s, f,Ns ,ℵ]
}

� Csμ
−hl |Ns |, (24)

where Cs > 0 and hl = hl(Ns ) > 0 is uniform over all types Ns having shape l. Indeed, if this
estimate holds, one can set hs =min(h1, . . . , hs).

Step III. From a (μ,ℵ)-trace hyperbolicity condition to a generalized loop cone condition.

Introduce the generalized loop cone condition with constants (θ, ξ) (see Sections 5.2 and 6.1
for complete definitions).

Definition 6. Consider an s-loop periodic orbit P= {p0, . . . , pn−1} of a map f�ε<2s
of type Ns ,

|Ns | = n. We say that a generalized loop cone condition with constants (θ, ξ) holds if

Kξn(Pi) ↪→
Df

Ni
�ε<2s

(Pi )
Kθn(Pi+1) for each i = 0, . . . , t (Ns)− 1,

where Pi is the starting point and Ni is a length of ith generalized loop for each i = 0, . . . ,

t (Ns)− 1, respectively.

Denote this property for periodic orbits by (f�ε<2s
,P) ∈ K{Q,Ns , n; (θ, ξ)}. Indeed, it de-

pends on P and the linearization of f�ε<2s
at all points from P.

Define the following sets:

Bcone
Q

[
s, f,Ns; (θ, ξ)

]= {�ε<2s ∈HB<2s(ζ )
∣∣ f�ε<2s

has a (V, s)-localized periodic orbit P

of type Ns with (f�ε,P) /∈K
{
Q,Ns , |Ns |; (θ, ξ)

}}
.

We prove (see Lemma 3) that if n= |Ns | is large enough, then

B trace
W [s, f,Ns ,ℵ] ⊂ Bcone

Q

[
s, f,Ns; (θ, ξ)

]
, (25)

for ℵ= 2sθ + 2(1+�)(s− 1)β and 0 < θ � ξ . Therefore to prove (24) it is enough to prove that
for small 0 < θl � ξl , l = 1, . . . , s,

ν
{
Bcone

Q

[
s, f,Ns; (θl(Ns ), ξl(Ns ))

]}
� Csμ

−hl(Ns )|Ns |. (26)
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Step IV (Partition into non-recurrent parts). Cloud decomposition and reduction to estimate of
the measure of “bad” parameters associated with a scattered pseudotrajectory of a given type.

First we need several definitions.

Definition 7. A sequence of points Z = {z0, . . . , zn−1} ⊂ V is called a k-loop periodic γ -pseudo-
orbit of the map f�ε<2s

if it intersects Ũ at exactly k points and

(1) if zj /∈ Ũ , then f�ε<2s
(zj )= zj+1;

(2) if zj ∈ Ũ , then dist(G�ε<2s
(z̃j ), zj+1 (mod n)) � γ .

Remark 8. We consider pseudo-orbits, for which the image of a point may differ from the next
point only for parabolic part of the map f�ε<2s

. Similarly to s-loop periodic orbits, any k-loop
periodic pseudo-orbit is a disjoint union of k loops.

In Section 5.1 we introduce collection of positive rapidly decreasing to zero numbers {dl}s+1
l=1 .

Definition 8. A pseudotrajectory has shape (l, n), if all loops have length � dln (long loops)
or < dl+1n (short loops).

Notions of type and generalized loop can be introduced for periodic pseudo-orbits in the
same way as for periodic s-loop orbits. We will use the notations similar to the notations from
Sections 4.1 and 5.2 for pseudo-orbits.

Definition 9. Given a periodic pseudo-orbit Z = {z0, . . . , zn−1}, let us denote by FN
Z (zm) :

R
2 →R

2 the following linear map:

FN
Z,�ε<2s

(zm)=Df�ε<2s
(zm+N−1) ◦Df�ε<2s

(zm+N−2) ◦ · · · ◦Df�ε<2s
(zm+1) ◦Df�ε<2s

(zm).

Note that we naturally identify Tzi
V with R

2.

Note that if P = {p0, . . . , pn−1} is an orbit (not just pseudo-orbit) of the map f�ε<2s
, then

FN
P,�ε<2s

(pm)=Df N
�ε<2s

(pm). If FN
Z,�ε<2s

(zm)(KA1(zm))⊂KA1(zm+N), we will write

KA1(zm) ↪→FN
Z,�ε<2s

(zm) KA2(zm+N).

Again, we identify tangent spaces at any two points of V in a natural way.

Definition 10. Consider a k-loop periodic pseudo-orbit Z = {z0, . . . , zn−1} of a map f�ε<2s
of type

Nk having shape (l, n), |Nk| = n � n. We say that an (l, n)-generalized loop cone condition with
constants (θ, ξ) holds if

Kξn(Zi) ↪→
F

Ni
Z,�ε<2s

(Zi )
Kθn(Zi+1) for each i = 0, . . . , τ − 1,

where τ = t (Nk) is the number of generalized loops and Zi is the starting point and Ni is a
length of ith generalized loop for each i = 0, . . . , τ − 1 respectively.
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Denote this property for periodic pseudo-orbits by (f�ε<2s
,Z) ∈ K{Q,Nk, n; (θ, ξ)}. Indeed,

it depends on Z and the linearization of f�ε<2s
at all points from Z .

Definition 11. A k-loop periodic orbit is called �-scattered, if for any two generalized loops the
distance between starting points of these generalized loops is at least �.

Fix a shape l. For any sequence {αl,m}sm=1, 0 < αl,1 < αl,2 < · · · < αl,s , one can define the
following sets in the space of parameters.

Recall that for any type Nk with 1 � k � s having shape (l, n) we have dln � |Nk|� n, a loop
is long if length is � dln and short if < dl+1n respectively and Nk ⊆l Ns denotes Nk being an
l-subtype of Ns (see Definition 21). Suppose Nk has τ = t (Nk) long and (k − τ) short loops,
then for any 0 < τ � m � s we define

Bscatt
Q [f,Nk, n, l,m] = {�ε ∈HB<2s(ζ )

∣∣ f�ε<2s
has a k-loop s−1μ−αl,m−1n-scattered periodic

μ−αl,mn-pseudotrajectory Z of type Nk having shape (l, n) with

(f�ε<2s
,Z) /∈K

{
Q,Nk, n; (2θl,m, ξl)

}}
.

Existence of a decomposition of any s-loop orbit into the union of some scattered pseudotra-
jectories (see Lemma 8) allows to claim the following. One can choose θl and {θl,m}sm=1 in such
a way that the following inclusion holds for any type Ns having shape l:

Bcone
Q

[
s, f,Ns; (θl, ξl)

]⊂ ⋃
Nk⊆lNs

⋃
t (Nk)�m�s

Bscatt
Q

[
s, f,Nk, |Ns |, l,m

]
. (27)

If we prove that

ν<2s

{
Bscatt

Q [s, f,Nk, n, l,m]}� C∗s μ−hln (28)

then we get estimate

ν<2s

{
B trace

W [s, f,Ns ,ℵ]
}

� ν<2s

{
Bcone

Q

[
s, f,Ns; (θl, ξl)

]}
� Csμ

−hl |Ns |,

where one can take Cs = (s!2ss)C∗s .

Step V (Discretization). Reduction to estimate of the measure of “bad” parameters associated
with a scattered admissible pseudotrajectory of a given type.

After discretization procedure (see Sections 8.1 and 8.2 for the definitions of grids) and the
construction of admissible pseudo-orbits (see Definition 23) we introduce one more family of
sets in a space of parameters.

One can choose constants {θl,m}sm=1, 0 < θl,m < θl, in such a way that the following holds.
Define the following sets of parameters:

Badm
Q [s, f,Nk, n, l,m] = {�ε<2s ∈HB<2s(ζ )

∣∣ f�ε<2s
has a k-loop (2s)−1μ−αl,m−1n-scattered

μ−αl,mn-admissible pseudotrajectory R of type Nk having shape (l, n)

with (f�ε<2s
,R) /∈K

{
Q,Nk, n; (θl,m, ξl)

}}
. (29)
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One can show that for an appropriate choice of {θl,m}sm=1 (see Lemma 4) we have the inclu-
sion:

Bscatt
Q [s, f,Nk, n, l,m] ⊂ Badm

Q [s, f,Nk, n, l,m]. (30)

Therefore to prove (28) we need to justify the estimate

ν<2s

{
Badm

Q [s, f,Nk, n, l,m]}� C∗s μ−hln. (31)

Step VI (Newton Interpolation Polynomials). Proving estimate (31) of the measure of the set
Badm

Q
[s, f,Nk, n, l,m].

This step is carried out in Section 11, where we prove estimate (31) of the measure of a “bad”
set. Preliminary discussions are in Sections 9 and 10. The informal presentation of the general
method of investigation of prevalent dynamical properties with the use of Newton Interpolation
Polynomials that we apply here can be found in [21, part II, Section 4].

3.2. Fubini reduction from HB(ζ ) to HB<2s(ζ )

We need to estimate ν{B trace
W,∞[s, f,Ns ,ℵ]}. One can reduce this estimate from infinite-

dimensional Hilbert cube of parameters to (2s + 4s2)-dimensional cube, that is to the estimate
of ν<2s{B trace

W
[s, f,Ns ,ℵ]}, using simple Fubini arguments. Namely, decompose the set of para-

meters in the following way:

HB�2s(ζ )= {
ε
q
ij ∈R

∣∣ ∣∣εq
ij

∣∣� ζ, q = 1,2, 0 < i, j, 2s � i + j
}
,

HB(ζ )=HB<2s(ζ )⊕HB�2s(ζ ). (32)

Each parameter �ε ∈HB(ζ ) has a unique decomposition into

�ε = (�ε<2s , �ε�2s) ∈HB<2s(ζ )⊕HB�2s(ζ ),

Φ
q

�ε (x, y)=Φ
q

�ε<2s
(x, y)+Φ

q

�ε�2s
(x, y)=

∑
0�i,j,i+j<2s

ε
q
ij x

iyj +
∑

0�i,j,2s�i+j

ε
q
ij x

iyj . (33)

Decompose the product measure ν in the space of parameters, defined in (12), into the direct
products

ν = ν<2s × ν�2s , where ν�2s = ×
0�i,j,2s�i+j

(
ν1
ij × ν2

ij

)
. (34)

Thus, each component of the decomposition of the space of parameters is supplied with the
Lebesgue product probability measure. Suppose we can get an estimate

ν<2s

{
B trace

W [s, f,Ns ,ℵ, �ε�2s]
}

< Csμ
−hs |Ns | (35)

of the measure of the “bad” set
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B trace
W [s, f,Ns ,ℵ, �ε�2s] =

{�ε<2s ∈HB<2s(ζ ) | f�ε = f�ε<2s⊕�ε�2s
has an s-loop periodic

not (μ,ℵ)-trace hyperbolic orbit of type Ns

}
(36)

in each slice HB<2s(ζ )×{�ε�2s} ⊂HB(ζ ) uniformly over all parameters �ε�2s in HB�2s(ζ ). Then
by Fubini Theorem and choice of the probability measure (34), estimate (35) implies the same
estimate of the measure ν{B trace

W,∞[s, f,Ns ,ℵ]}.
Fix a parameter value �ε�2s ∈ HB�2s(ζ ) and the corresponding parameter slice HB<2k(ζ )×

{�ε�2s} in the space of parameters HB(ζ ). Let f̃ = f(0,�ε�2s ) be the center of this slice. In this slice
we have the family

{f̃�ε<2s
}�ε<2s∈HB<2s (ζ ) = {f(�ε<2s ,�ε�2s )}�ε<2s∈HB<2s (ζ ) (37)

of perturbations by polynomials of degree 2s−1. This is the family for which we shall investigate
the measure of “bad” parameters. Re-denote the set of “bad” parameters B trace

W
[s, f,Ns ,ℵ, �ε�2s]

by B trace
W

[s, f̃ ,Ns ,ℵ].

4. Reduction to Auxiliary Theorems

In this section we state two Auxiliary Theorems and reduce the proof of Theorems A, B, A′
and B′ to the proof of those two. Recall that parameters of the problem W = {μ,λ,M1,M2,

V , δ, ζ } are fixed once and for all.

4.1. Types of localized s-loop periodic orbits

Let us consider a (V, s)-localized periodic orbit P= {p0, . . . , pn−1} ⊂ V of a diffeomorphism
f�ε (of period n). This orbit (by definition) meets a neighborhood Ũ (respectively U ) at exactly s

points. Denote those points by p̃0, p̃2, . . . , p̃s−1 (in Ũ ) and p0,p2, . . . ,ps−1 (in U ) in such a way
that

p̃0 = Ln1(p0), . . . , p̃i = Lni+1(pi ), . . . , p̃s−1 = Lns (ps−1), and

p1 =G�ε(p̃0), . . . , pi+1 =G�ε(p̃i ), . . . , p0 =G�ε(p̃s−1). (38)

Similar notations can be used for diffeomorphisms f�ε<2s
too.

Note that n= n1 + n2 + · · · + ns + s.

Definition 12. We say that a (V, s)-localized periodic orbit described above has type Ns =
(n1, . . . , ns).

4.2. Auxiliary Theorem I

To prove Theorems A, B, A′ and B′ we apply the standard Borel–Cantelli argument. Essential
ingredient of these type of arguments is estimates of the measure where certain “bad” phenom-
enon occurs. The following result provides such an estimate.
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Auxiliary Theorem I. Given s ∈ N. For any ℵ > 0 and a sufficiently large N∗(s,ℵ) there are
positive constants hs = hs(ℵ) and Cs such that for any type Ns = (n1, . . . , ns), n= n1 + · · · +
ns + s, n > N∗(s,ℵ), we have estimates

ν
{
B trace

W,∞[f,Ns ,ℵ]
}

� Csμ
−hsn,

ν<2s

{
B trace

W [s, f,Ns ,ℵ]
}

� Csμ
−hsn. (39)

Moreover, one can take N∗(s,ℵ)= Bs(5s2ℵ−1(1+�))2s2+2s+1, Cs = exp(s2(A+ 9 ln s)), hs =
hs(ℵ)= (5s2ℵ−1(1+�))−(2s2+2s+1), where B = B(W) and A=A(W) depend on parameters
W only.

4.3. Auxiliary Theorem II

Recall that a periodic orbit is called non-hyperbolic if one of its linearization eigenvalues has
an absolute value equal to 1.

Auxiliary Theorem II. For ν-almost every �ε ∈ HB(ζ ) the map f�ε has no non-hyperbolic V-
localized periodic orbits.

For any s ∈ N, for all 0 < s′ � s and ν<2s -almost every �ε<2s ∈ HB<2s(ζ ) the map f�ε<2s
has

no non-hyperbolic (V, s′)-localized periodic orbits.

Remark 9. Note that due to Fubini reduction argument (Section 3.2) the first part of Auxiliary
Theorem II is a consequence of the second part.

4.4. Auxiliary Theorems imply Theorems A′ and B′

Assume that Auxiliary Theorems hold. We show that this implies Theorem B′.
Take a small r > 0. Show that

ν<2s

{�ε<2s ∈HB<2s(ζ )
∣∣ f�ε<2s

has an infinite number of (V, s)-localized not (μ,ℵ)-trace

hyperbolic periodic points of period greater than N∗(s,ℵ)
}

� b. (40)

Suppose that for some b > 0 the inequality (40) fails. For a given period n there are at most
ns different types of (V, s)-localized periodic orbits of this period. Therefore, Auxiliary Theo-
rem I implies that the measure of parameters �ε<2s ∈HB<2s(ζ ), for which the corresponding map
f�ε<2s

has a (V, s)-localized not (μ,ℵ)-trace hyperbolic periodic orbit of period n, is not greater
than Csn

sμ−hsn.
Note that the series

∞∑
n=1

Csn
sμ−hsn

is convergent.
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Take N0 so large that the following inequality holds:

∞∑
n=N0

Csn
sμ−hsn <

b

2
.

Now Auxiliary Theorem I implies that for a set of parameters of the measure at least b/2 there
is an infinite number of not (μ,ℵ)-trace hyperbolic periodic orbits of period � N0. This implies
that for some N1 < N0 and for a set of parameters of the measure at least b/(2N0) there is an
infinite number of periodic orbits of the same period N1 (an absence of trace hyperbolicity is not
essential now).

Proposition 1. If the map f�ε<2s
has an infinite number of (V, s)-localized periodic points of the

same period N1, then f�ε has a non-hyperbolic (V, s′)-localized periodic orbit, s′ � s, of period
not greater than N1.

Proof. Since period is bounded, any limit point of those periodic points has to be a non-
hyperbolic periodic point. �

This contradicts Auxiliary Theorem II and, therefore, proves (40). Since b here can be taken
arbitrary small, Proposition 1 and Auxiliary Theorem II imply that for almost every �ε<2s the map
f�ε<2s

has only finite number of s-loop orbits of period � N∗(s,ℵ). This proves Theorem B′.

Proof of Theorem A′. This theorem is an immediate consequence of Theorem B′ and Auxiliary
Theorem II. Indeed, apply Theorem B′ with ℵ = 1/2. Note that if n > [(2 ln 2)/(lnμ)] + 1 then
μ(1−ℵ)n = μn/2 > 2. Due to Auxiliary Theorem II and Proposition 1 for almost every �ε<2s ∈
HB<2s(ζ ) a map f�ε<2s

has only finite number of periodic (V, s)-localized orbits of period �
[(2 ln 2)/(lnμ)] + 1. Now Theorem A′ follows from Theorem B′ and Remark 7. �
4.5. Derivation of Theorems A and B from Auxiliary Theorems

Prove of Theorem B. Take ℵ ∈ (0,1). Auxiliary Theorem I claims that for any type Ns , |Ns |>
N∗(s,ℵ),

ν
{�ε ∈HB(ζ ) | f�ε has a V-localized not (μ,ℵ)-trace hyperbolic orbit of type Ns

}
� Csμ

−hs |Ns |, (41)

where Cs = exp(s2(A+ 9 ln s)) and hs = hs(ℵ)= (5s2ℵ−1(1+�))−(2s2+2s+1).
Consider a sequence {Ns(ℵ)}s chosen in such a way that Ns(ℵ) > N∗(s,ℵ), and the series

∑
s∈N

∑
Ns , |Ns |�Ns (ℵ)

ν
(
B trace

W,∞[f,Ns ,ℵ]
)
�
∑
s∈N

∑
Ns , |Ns |�Ns (ℵ)

Csμ
−hs |Ns |. (42)

For any period n and cyclicity s there exists at most ns different types Ns such that |Ns | = n.

So if Ns(ℵ) grows fast enough with s, this series converges, and due to Borel–Cantelli argument
almost every �ε ∈HB(ζ ) belongs to only a finite number of sets B trace [f,Ns ,ℵ], |Ns |� Ns(ℵ).
W,∞
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By Auxiliary Theorem II for almost every �ε ∈HB(ζ ) and any type Ns the map f�ε can have only
finite number of V-localized periodic orbits of type Ns . This implies Theorem B. �

Quantitative estimates showing how fast Ns(ℵ) should grow with s and the proof of Adden-
dum 2.1 are presented in Section 14.

Theorem A follows from Theorem B and Addendum 2.1 in the same way as Theorem A′
follows from Theorem B′.

5. Combinatorics of the loops

Here we define the notions of long and short loops, generalized loop, shape, and make a re-
duction to the estimate (24).

5.1. “Short” and “long” loops

Consider a (V, s)-localized periodic orbit {p0, . . . , pn−1} ⊂ V = V ∪ U of type Ns =
(n1, . . . , ns). It is the union of s loops of lengths (n1 + 1, . . . , ns + 1). Some of loops can be
much longer than others. As we have seen in the model example, it is essential to treat some of
these loops as “long” and others as “short.” Below we give an algorithm of division.

Take a small constant 0 < β � 1/s to be determined later. A decision whether a particular
loop is short or long depends on a type Ns and β .

Introduce the following constants {di}s+1
i=1 :

ds+1 = β(2s+2)s+1, ds = β(2s+2)(s−1)+1, . . . , di = β(2s+2)(i−1)+1, . . . , d1 = β. (43)

Definition 13. A loop of length (ni + 1) of a (V, s)-localized periodic orbit of period n is called
d-long (respectively d-short), if (ni + 1) > dn (respectively (ni + 1) � dn).

Lemma 2. For any type Ns = (n1, . . . , ns), n1 + · · · + ns + s = n, there is j ∈ {1, . . . , s} such
that any loop of any s-loop periodic orbit of type Ns is either dj -long or dj+1-short.

Proof. Since 0 < β < 1/s, there is at least one loop of length greater than d1n= βn. Consider
intervals

Is = (ds+1n,dsn], . . . , Ii = (di+1n,din], . . . , I1 = (d2n,d1n].
At most (s − 1) loops have lengths which belong to one of these intervals. By the Pigeon hole
principle at least one interval is “empty.” If interval Ij is “empty,” then any loop is either dj -long
or dj+1-short. Lemma 2 is proved. �
Definition 14. We say that an s-loop periodic orbit of type Ns = (n1, . . . , ns), n = n1 + · · · +
ns + s, has shape l if

l =min
{
j ∈ {1, . . . , s} | any loop is either dj -long or dj+1-short

}
.

Remark 10. A (V, s)-localized orbit of shape l has at least l loops which are dl-long (or, equiv-
alently, it has at most (s − l) loops which are dl+1-short).
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5.2. Generalized loops

Consider an s-loop periodic orbit of type Ns . We need to mark all dl-long loops. By definition
all dl-long loops are so much longer than dl+1-short ones that we regroup them into generalized
loops. Each generalized loop starts at one dl-long loop and ends right before the next dl-long one.
In other words, we attach to each dl-long loop following afterwards dl+1-short loops. Formal de-
finition of generalized loop is the following. Consider an s-loop periodic orbit {p0, . . . , pn−1} of
type Ns = (n1, . . . , ns) and shape l. It is the union of s loops, cyclically ordered in a natural way.

Definition 15. A generalized loop is the union of a dl-long loop and all (if there are any) consec-
utive dl+1-short loops following afterwards.

Introduce notations:

• t – the number of generalized loops (= the number of dl-long loops);

Each j th generalized loop, j = 1, . . . , t, has the following characteristics:

• length Nj ;
• n∗j + 1 – length of the corresponding j th dl-long loop;
• Pj−1 – its starting point. Set Pt = P0;
• P̃j−1 – its ending point. Set P̃t = P̃0;
• hj – the number of dl+1-short loops after the j th dl-long loop.

Note that P̃j−1 = f
Nj−1
�ε Pj−1 ∈ Ũ and {P0, . . . ,Pt−1} ⊆ {p0, . . . ,ps−1}, {P̃0, . . . , P̃t−1} ⊆ {p̃0,

. . . , p̃s−1}.
The following proposition is a direct consequence of definitions.

Proposition 2.

• Total number of short loops
∑t

j=1 hj = s − t � s − 1.

• Total length of short loops n−∑t
j=1 n∗j − t � (s − t)dl+1n.

• Length of j th generalized loop Nj � n∗j + 1+ (s − 1)dl+1n. (44)

5.3. Restriction to the case of a given shape

Recall that the set of parameters Q = {μ,λ,M1,M2,V , δ, ζ,� = −(lnλ)/(lnμ), s,β,ℵ} is
fixed. Take any shape l ∈ {1, . . . , s}.

We will prove the following estimate for any type Ns = (n1, . . . , ns) of shape l:

ν
{�ε ∣∣ f�ε has a (V, s)-localized periodic orbit of type Ns ,

which is not (μ,ℵ)-trace hyperbolic
}

� Csμ
−hln, (45)

where hl > 0 and Cs > 0 do not depend on type Ns and n= n1 + · · · + ns + s.
Taking hs =minl hl, we have a uniform estimate (i.e. Auxiliary Theorem I):
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ν
{�ε ∣∣ f�ε has a (V, s)-localized periodic orbit of type Ns = (n1, . . . , ns),

which is not (μ,ℵ)-trace hyperbolic
}

� Csμ
−hsn, (46)

where n= n1 + · · · + ns + s.

6. Cones and trace hyperbolicity

In this section we prove the inclusion (25).

6.1. Cones and generalized loop cone condition

Instead of checking (μ,ℵ)-trace hyperbolicity (13), we will check another, more geometric
condition. We have already discussed the latter (cone) condition in Section 3.1 (see Defini-
tion 10).

Definition 16. Denote by KA(p) a vertical cone at point p ∈ V (i.e. in TpV) of the following
form:

KA(p)= {
v̄ = (vx, vy) ∈ TpV

∣∣ |vy |� μ−A|vx |
}
.

Definition 17. Assume that f m
�ε<2s

(p1)= p2. If Df m
�ε<2s

(p1)(KA1(p1))⊂KA2(p2), we will write

KA1(p1) ↪→Df m
�ε<2s

KA2(p2).

Definition 18. We will say that generalized loop cone condition with constants (θ, ξ), 0 < θ � ξ,

holds for an s-loop periodic orbit P= {p1, . . . , pn} if for each i = 0, . . . , t − 1 we have

Kξn(Pi) ↪→
Df

Ni+1
�ε<2s

Kθn(Pi+1).

6.2. Generalized loop cone condition implies trace hyperbolicity

The following lemma shows that the cone condition implies trace hyperbolicity.

Lemma 3. Let β, θ and ξ be sufficiently small, 0 < θ � ξ , and let N be sufficiently large. Suppose
a (V, s)-localized periodic orbit of f�ε<2s

of period n > N satisfies the generalized loop cone
condition with constants (θ, ξ). Then it is (μ,ℵ)-trace hyperbolic, ℵ= 2sθ + 2(1+�)(s − 1)β .

Proof. Let us denote g = f�ε<2s
for brevity. We use the notations from Section 5.2. Since for each

i = 0, . . . , t − 1 the inclusion Kθn(Pi)⊂Kξn(Pi) holds, we have

Kξn(P0) ↪→Dgn Kθn(P0).

It means that there is a unit eigenvector of a linear map Dgn(P0) in Kθn(P0), denoted by
�w ∈Kθn(P0), | �w| = 1.

Denote an eigenvalue, corresponding to �w, by σ1 ∈ R. The second eigenvalue of Dgn(P0)

also has to be real and is denoted by σ2 ∈R.
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We can estimate product of eigenvalues |σ1 · σ2| = |detDgn(P0)|. Type of (V, s)-localized
trajectories and the form of Df (see (9)) we have

|σ1 · σ2| =
∣∣detDgn(P0)

∣∣� λn−sμn−sMs
1 .

In order to estimate the sum |σ1 + σ2| estimate |σ1| first.
For each i = 1, . . . , t + 1 set �wi = DgN1+···+Ni−1( �w), that is, �w1 = �w, �w2 = DgN1( �w) ∈

TP1V, . . . , �wt =Dgn−Nt ( �w) ∈ TPt−1V, �wt+1 =Dgn( �w)= σ1 �w.

Estimate y-component of these vectors ( �w1)y, . . . , ( �wt)y, ( �wt+1)y. First of all, note that
since �wi ∈ Kθn(Pi), we have |( �wi)y | � μ−θn|( �wi)x |. Since |( �wi)x | + |( �wi)y | � | �wi |, we have
(1+μθn)|( �wi)y |� |( �wi)x | + |( �wi)y |� | �wi |, which implies

∣∣( �wi)y
∣∣� 1

1+μθn
| �wi |> 1

2
μ−θn| �wi |.

Now in notations of Section 5.2 we have

| �wi+1| =
∣∣DgNi ( �wi)

∣∣= ∣∣DgNi−n∗i
(
Ln∗i ( �wi)

)∣∣� M
−hi−1
1 λNi−n∗i

∣∣Ln∗i ( �wi)
∣∣

� M
−hi−1
1 λNi−n∗i μn∗i

∣∣( �wi)y
∣∣> 1

2
M
−hi−1
1 λNi−n∗i μn∗i μ−θn| �wi |. (47)

After counting over all the generalized loops and applying Proposition 2 we have:

|σ1|| �w| = | �wt+1|� 1

2t
M
−t−∑t

i=1 hi

1 λ
∑t

i=1(Ni−n∗t )μ
∑t

i=1 n∗i μ−tθn| �w|

� 1

2s
M−s

1 λs+(s−1)dl+1nμn−s−(s−1)dl+1nμ−sθn| �w|
= [

2−sM−s
1 μ−(1+�)s

]
μ(1−sθ−(1+�)(s−1)dl+1)n| �w|. (48)

Since |σ1 · σ2|� λn−sμn−sMs
1 =Ms

1μ(�−1)sμ(1−�)n, we have

|σ2|� 1

|σ1|M
s
1μ(�−1)sμ(1−�)n �

[
2sM2s

1 μ2�s
]
μ(−�+sθ+(1+�)(s−1)dl+1)n.

Now we can estimate |σ1 + σ2|:

|σ1 + σ2|� |σ1| − |σ2|�
[
2−sM−s

1 μ−(1+�)s
]
μ(1−sθ−(1+�)(s−1)dl+1)n

− [
2sM2s

1 μ2�s
]
μ(−�+sθ+(1+�)(s−1)dl+1)n

�
[
2−sM−s

1 μ−(1+�)s
]
μ(1−sθ−(1+�)(s−1)dl+1)n

× [
1− (

22sM3s
1 μs+3�s

)
μ(−1−�+2sθ+2(1+�)(s−1)dl+1)n

]
. (49)

If θ and β are small enough, and n is large enough, then

[
1− (

22sM3s
1 μs+3�s

)
μ(−1−�+2sθ+2(1+�)(s−1)dl+1)n

]
>

1
,

2
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and we have

|σ1 + σ2|>
[
2−s−1M−s

1 μ−(1+�)s
]
μ(1−sθ−(1+�)(s−1)dl+1)n

�
[
2−s−1M−s

1 μ−(1+�)s
]
μ(1−sθ−(1+�)(s−1)β)n

= [
2−s−1M−s

1 μ−(1+�)sμ(sθ+(1+�)(s−1)β)n
]
μ(1−2sθ−2(1+�)(s−1)β)n. (50)

For large n

[
2−s−1M−s

1 μ−(1+�)sμ(sθ+(1+�)(s−1)β)n
]
� 1,

therefore we have

∣∣TrDgn(P0)
∣∣= |σ1 + σ2|> μ(1−2sθ−2(1+�)(s−1)β)n.

Lemma 3 is proven. �
7. Decomposition into scattered pseudotrajectories

In this section we introduce combinatorial constants, decompose s-loop periodic orbits into
the union of some scattered pseudo-orbits and, finally, prove the inclusion (27).

7.1. Choice of combinatorial constants and cone characteristics

Here we provide exact values for the following set of constants:

• {(θl, ξl)}sl=1 – sizes of cones for pseudotrajectories;

• {θl,m}sl,m – sizes of cones for admissible pseudotrajectories;

• {αl,m}sl,m=1 – exponents of sizes of grids and scales;

• {hl}sl=1 – exponents in upper bounds of the measure of sets of “bad” parameters.

Definition 19. Introduce the following notations:

• ξl = θl = dlβ = β(2s+2)(l−1)+2, l = 1, . . . , s;
• θl,m = ξlβ

2(s−m)+2 = β2(sl+l−m+1), l,m= 1, . . . , s;
• αl,m = ξlβ

2(s−m)+1 = β2(sl+l−m)+1, l,m= 1, . . . , s;
• hl = dl+1 = dlβ

2s+2 = β(2s+2)l+1, l = 1, . . . , s. (51)

Remark 11. Since β is small, we have

hl = dl+1 � θl,1 � αl,1 � θl,2 � · · · � θl,s � αl,s � θl = ξl � dl.

The following lemma is a direct consequence of Definition 19.
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Lemma 4. If 0 < β < 1/(3s2 + 2+ (1+�)(s − 1)), then the following inequalities hold for all
l,m= 1, . . . , s:

2
(
s2 − 1

)
dl+1 +

(
s2 − 1

)
αl,m−1 − θl,m <−hl,

2
(
s2 − 1

)
dl+1 +

(
s2 − 1

)
αl,m−1 + ξl − (1+�)

(
dl − (s − 1)dl+1

)
<−hl,

θl,m < αl,m − (1+�)(s − 1)dl+1 − hl,

ξl < (1+�)dl − θl,m − (1+�)(s − 1)dl+1 − hl. (52)

7.2. Cloud decomposition

Lemma 5. Consider a t-tuple of points P = {P0, . . . ,Pt−1} in a metric space M. Fix a sequence
of numbers 0 < γ1 < γ2 < · · ·< γt−1 and a number 0 < c � 1/(t − 1). For some 1 � m � t there
is a decomposition of P into disjoint union of k′ (k′ � m and k′ = t if m= t) subsets

P =P1 �P2 � · · · �Pk′

with the property

dist(Pi ,Pj ) > cγt−m+1 for m > 1 (53)

and

diam(Pi ) � γt−m for m < t. (54)

Remark 12. We shall apply this lemma for a rapidly decreasing with j sequence of γj ’s. In-
formally this means that a finite set of points can be decomposed into disjoint union of subsets
(“clouds”) such that distance between any pair of points in the same “cloud” are much smaller
then distances between “clouds.” In the case k′ = 1 this decomposition contains just one “cloud”
and inequality (53) does not apply. Also in the case k′ = t each “cloud” contains only one point
and inequality (54) does not apply.

Note also that Lemma 5 provides such a decomposition even though in general it is not unique.
We shall apply this lemma with γi = μ−αl,t−in, where (l, n) is fixed and i = 1, . . . , t − 1.

In this section (in the proof of Lemma 5) and in the next two sections we need some notions
from graph theory. Recall them in the following

Definition 20.

1. Graph is a collection of points (vertices) and lines (edges) connecting some of them.
2. A graph is a multigraph if multiple edges are allowed between vertices.
3. An edge of a graph which joins a vertex to itself is called a graph loop.
4. A graph is a simple graph if it contains no multiple edges and no graph loops.
5. A graph is a pseudograph if multiple edges and graph loops are allowed.
6. An oriented graph is a graph in which each edge is oriented.
7. A cycle is a graph which forms a closed path.
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8. A cycle (or a circuit) of a graph is a subset of the graph edge-set which forms a closed path
with pairwise distinct vertices.

9. An oriented cycle is called properly oriented if each of its vertices has one ingoing edge and
another outgoing.

Proof of Lemma 5. Consider a sequence of simple graphs Γ1, . . . ,Γt−1. For each Γm its vertices
are points P0, . . . ,Pt−1, and two vertices are connected by an edge if and only if the distance
between them � cγm. Note that the distance between any two points from the same connected
component of Γm is not greater than (t − 1)cγm � γm.

Let gm be a number of connected components of Γm. Since a graph Γm+1 contains all edges
of the graph Γm, we have gm+1 � gm. Set g0 = t and gt = 1. We have

1= gt � gt−1 � · · ·� g1 � g0 = t.

By the Pigeon hole principle some of the numbers {g0, g1, . . . , gt } must coincide. Suppose
k̃ ∈ {1, . . . , t} is a minimal index such that g

k̃
= g

k̃−1. Then

g
k̃
= g

k̃−1 < g
k̃−2 < · · ·< g2 < g1 < g0 = t,

hence g
k̃
= g

k̃−1 � t − k̃ + 1. Set k′ = g
k̃

and m = t − k̃ + 1. We have k′ � m, and if m = t

then k′ = t .
Decomposition P = P1 �P2 � · · · �Pk′ into k′ connected components of Γ

k̃−1 satisfies (53)
and (54). Indeed, if k̃ > 1 (i.e. m < t), then diameter of any connected component of Γ

k̃−1 is
not greater than (t − 1)γ

k̃−1 � γ
k̃−1 = γt−m. It implies (54). If k̃ < t (i.e. m > 1), then distance

between any points from different connected components of Γ
k̃

is at least cγ
k̃
= cγt−m+1. It

implies (53). Lemma 5 is proven. �
7.3. Decomposition of oriented pseudographs

Now we state two simple lemmas about oriented pseudographs. It is helpful to look at Fig. 4.
The following lemma is obvious.

Lemma 6. Consider a properly oriented cycle. After identification of some vertices we get a
connected oriented pseudograph with the following property: At each vertex the numbers of
ingoing and outgoing edges are the same.

Remark 13. Note that the converse is also true, namely any connected oriented pseudograph
such that at each vertex the number of ingoing edges is equal to the number of outgoing edges
can be represented as a properly oriented cycle with some vertices identified.

Lemma 7. Consider a connected oriented pseudograph such that at each vertex the number of
ingoing edges is equal to the number of outgoing edges. Then it can be decomposed into the
union of oriented cycles in the following way:

• each cycle is a subgraph of the initial graph;
• each cycle is properly oriented;
• each edge belongs to only one cycle (different cycles could have common vertices).
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The proof of this lemma is in Section 14.2.

7.4. Decomposition into scattered cycles

Definition 21. Consider a type Ns = (n1, . . . , ns), |Ns | = n= n1 + · · · + ns + s, having shape
l (in particular, n1 � dln). Set ns+1 = n1 and denote 1 = i0 < i1 < · · · < it(Ns )−1 � s indices
of dl-long loops, i.e. Pj = pij−1. An l-generalized element of Ns is a sequence of consecu-
tive niω , . . . , niω+1−1 bounded by adjacent dl-long ni ’s. Call this sequence the ωth generalized
element and denote it by

Nω
s = (niω , . . . , niω+1−1).

We say Nk = (n′1, . . . , n′k) is an l-subtype of Ns if for some τ � t it consists of some
l-generalized elements of Ns (possibly permuted), i.e. for a subset

{ω0,ω1, . . . ,ωτ−1} ⊆
{
0,1, . . . , t (Ns)− 1

}
,

a permutation on τ elements σ :Sτ → Sτ , we have

Nk =
(
Nωσ(1)

s , . . . ,Nωσ(τ)
s

)
.

If Nk = (n′1, . . . , n′k) is an l-subtype of Ns we denote

Nk ⊆l Ns .

Notice also that if Nk is an l-subtype of Ns , then it has shape (l(Ns), |Ns |) (see Definition 8).

Lemma 8. Any (V, s)-localized orbit of period n and shape l is
– either a union of some periodic μ−αl,1n-pseudo-orbits. Moreover, each one is a generalized

loop of the initial s-loop periodic orbit. Set m= 1 in this case;
– or a union of some ( 1

s
μ−αl,m−1n)-scattered periodic μ−αl,mn-pseudo-orbits for some m ∈

{2,3, . . . , s}. Moreover, each of these pseudo-orbits consists of at most m generalized loops
of the initial s-loop periodic orbit.

Each of these periodic μ−αl,mn-pseudo-orbits has a type which is an l-subtype of Ns and,
therefore, has (l, n)-shape.

Proof. Consider a set P = {P0, . . . ,Pt−1} of starting points of generalized loops. Let the con-
stant c = 1/s and the sequence 0 < γ1 < γ2 < · · · < γt−1 is given by γi = μ−αl,t−in. Apply
Lemma 5 with these constants to P . For a corresponding decomposition P =P1 �P2 � · · · �Pk′
into k′ subsets for some k′ � m � t we have

dist(Pi ,Pj ) > cγt−m+1 = 1

s
μ−αl,m−1n if k′ > 1, and

diam(Pi ) � γt−m = μ−αl,mn for m < t.

Consider the graph Γ whose vertices are points P0, . . . ,Pt−1 and two vertices are connected by
an edge if and only if they are starting point of consecutive generalized loops. An orientation is
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introduced in the natural way. Notice that the graph Γ is a properly oriented cycle. Identifying
vertices that belong to the same set of the decomposition, we get an oriented pseudograph. Ap-
ply Lemma 7 to this pseudograph and decompose the graph Γ into union of properly oriented
cycles. Due to inequalities above, each cycle from this decomposition represents ( 1

s
μ−αl,m−1n)-

scattered periodic μ−αl,mn-pseudo-orbit, if k′ > 1. If k′ = 1, graph Γ has just one vertex, and any
generalized loop is periodic μ−αl,mn-pseudo-orbit (hence, periodic μ−αl,1n-pseudo-orbit).

Each of these periodic μ−αl,mn-pseudo-orbits represented by cycles from decomposition con-
sists of one or several generalized loops of the initial periodic orbit of type Ns , and, therefore,
has a type which is an l-subtype of Ns . This completes the proof of Lemma 8. �
7.5. Cone fitting

Here we prove that Lemma 8 implies the inclusion (27). Indeed, assume that there exists
�ε<2s ∈HB<2s(ζ ) such that

�ε<2s ∈ Bcone
Q

[
s, f,Ns; (θl, ξl)

]
and

�ε<2s /∈
⋃

Nk⊆lNs

⋃
t (Nk)�m�s

Bscatt
Q

[
s, f,Nk, |Ns |, l,m

]
.

This means that f�ε<2s
has an s-loop periodic orbit P= (p0, . . . , pn−1) of period n= |Ns | of type

Ns (having shape l = l(Ns)) such that a generalized loop cone condition with constants (θl, ξl)

does not hold. That is, for some i= 0, . . . , t (Ns)− 1

the inclusion Kξln(Pi) ↪→
Df

Ni
�ε<2s

(Pi)
Kθln(Pi+1) does not hold. (55)

Consider the decomposition of P into the union of periodic μ−αl,mn-pseudo-orbits (which
exists for some 1 � m � s due to Lemma 8). Take a k-loop (k � s) μ−αl,m -pseudo-orbit Z which
contains a point Pi (and, therefore, the generalized loop of P that begins at Pi). This pseudo-orbit
Z has type Nk ⊆l Ns and has t (Nk) � k′ � m generalized loops. Since we assume that

�ε<2s /∈
⋃

Nk⊆lNs

⋃
t (Nk)�m�s

Bscatt
Q [s, f,Nk, n, l,m],

the (l, n)-generalized loop cone condition with constants (2θl,m, ξl) (see Definition 10) holds for
pseudo-orbit Z . In particular (since Pi = Zj is a starting point of a generalized loop from Z),

Kξln(Pi) ↪→
F

Ni
Z,�ε<2s

(Pi)
K2θl,mn(Zj+1).

Note that F
Ni

Z,�ε<2s
(Pi)=Df

Ni

�ε<2s
(Pi) (we identify tangent spaces at Pi+1 and Zj+1). Constants θl

and θl,m were chosen in such a way that 2θl,m < θl (see Definition 19), therefore K2θl,mn ⊂Kθln.
Finally we have

Kξln(Pi) ↪→
Df

Ni
�ε<2s

(Pi)
K2θl,mn(Pi+1)⊂Kθln(Pi+1)

and get a contradiction with (55). This proves inclusion (27).
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8. Class of admissible pseudotrajectories and discretization

So far we reduced the proof to the estimate (28) of the measure of “bad” parameters
Bscatt

Q
[s, f,Nk, n, l,m]. Recall that this is the set of parameters for which there is a k-loop pe-

riodic scattered (non-recurrent) μ−αl,m -pseudotrajectory of type Nk having shape (l, n), such
that an (l, n)-generalized loop cone condition with constants (2θl,m, ξl) fails. In this section,
we replace this set of “bad” parameters by the set Badm

Q
[s, f,Nk, n, l,m] (that is, we prove the

inclusion (30)), see next several sections and Section 3.1 for definitions and description of the
discretization procedure. The advantage of this replacement is that there are only finite number
of admissible pseudo-orbits of a given type for all possible values of parameters. In subsequent
parts of the proof we shall estimate the measure of “bad” parameters associated with a particular
admissible pseudotrajectory and extend this estimate to the set of “bad” parameters associated
with all possible admissible pseudotrajectories of a given type.

8.1. Testing rectangles

For some points from U we can a priori be sure that these points cannot belong to any loop of
given length q + 1. Consider for each q ∈N testing rectangles Πq and Π̃q .

Definition 22. A testing rectangle Πm is a rectangle

Πq =
{
(x, y)

∣∣ x ∈ [1− δ,1+ δ], y ∈ [(1− δ)μ−q, (1+ δ)μ−q
]}⊂U.

A testing rectangle Π̃m is a rectangle

Π̃q =
{
(x, y)

∣∣ x ∈ [(1− δ)λq, (1+ δ)λq
]
, y ∈ [1− δ,1+ δ]}⊂ Ũ .

Remark 14. Note that Lq(Πq)= Π̃q for every q .

The reason why we want to consider these rectangles is the following obvious lemma.

Lemma 9. Let {p0, . . . , pn−1} be an s-loop periodic orbit of type (n1, . . . , ns), n1 + · · · +
ns + s = n. Denote the points of this orbit, which belong to Ũ and U , by p̃0, p̃1, . . . , p̃s−1 and
p0,p2, . . . ,ps−1 respectively. Then

p̃i−1 ∈ Π̃ni
, pi−1 ∈Πni

, i = 1, . . . , s.

8.2. Grids in Πq and in Π̃q

Let us take a small 0 < γ � δ, and consider a grid in Πq of size γμ−q in vertical direction
and of size γ in horizontal direction. Denote this grid by Πq(γ ). Let us also consider a grid
in Π̃q of size γ in vertical direction and of size γ λq in horizontal direction. Let us denote this
grid by Π̃q(γ ).

It is clear that the following lemmas hold.
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Lemma 10. The number of grid points in Πq(γ ), as well as the number of grid points in Π̃q(γ ),
is not greater than

(
2δ

γ
+ 1

)2

= (2δ + γ )2γ−2 < 9δ2γ−2.

Lemma 11. The hyperbolic map Lq sends the grid Πq(γ ) into the grid Π̃q(γ ):

Lq
(
Πq(γ )

)= Π̃q(γ ).

8.3. Admissible pseudo-orbits

Definition 23. A sequence of points R= {r0, r2, . . . , rn−1} ⊂ V is called a γ -admissible k-loop
pseudo-orbit of type Nk = (n1, . . . , nk), |Nk| = n1+ · · · + nk + k = n, associated to �ε (or to the
map f�ε) if

(1) it is a disjoint union of k loops of lengths n1 + 1, n2 + 1, . . . , nk + 1. Denote the starting
points of these loops by r0, . . . , rk−1 ∈ U, and the ending points by r̃0, . . . , r̃k−1 ∈ Ũ , in
such a way that r̃i = Lni (ri );

(2) ri ∈Πni
(γ ), r̃i ∈ Π̃ni

(γ );
(3) dist(G�ε(r̃i ), ri+1 (mod k)) � (3+ 2M1)γ for each i = 0,1, . . . , k − 1.

In other words, γ -admissible pseudo-orbit is a periodic (3+2M1)γ -pseudo-orbit which loops
begin in vertices of corresponding grids.

Definition 24. A γ -admissible pseudo-orbit is �-scattered, if the distance between starting points
of any two loops is at least �.

The definition of admissible k-loop pseudo-orbit is motivated by the following proposition.

Proposition 3. For any k-loop periodic γ -pseudo-orbit {z0, . . . , zn−1} of a map f�ε there exists
a γ -admissible k-loop pseudo-orbit {r0, . . . , rn−1} of the same type, such that dist(ri , zi) � 2γ .
If the initial periodic γ -pseudo-orbit is �-scattered, then a corresponding γ -admissible pseudo-
orbit is (�− 4γ )-scattered.

Proof. Consider points of the orbit {z0, . . . , zn−1} which belong to U , denote them by
z0, . . . , zk−1. By Lemma 9 we have zi ∈ Πni

. Since for each i = 1, . . . , k the rectangle Πni

is divided into the union of small rectangles (of size γ × γμ−ni ), we can take a small rec-
tangle πi ⊂ Πni

which contains a point zi . Take one of the vertices of πi (let it be left upper
vertex, for example) and denote it by ri . Now take a pseudo-orbit {r0, . . . , rn−1} as a union
of loops {r0,Lr0, . . . ,L

n1 r0}, {r1,Lr1, . . . ,L
n2 r1}, . . . , {rk−1,Lrk−1, . . . ,L

nk rk−1}. Since for
each q = 0, . . . , ni we have Lqri ∈ Lqπi, Lqzi ∈ Lqπi , and diam(Lqπi) < 2γ, the property
dist(ri , zi) � 2γ holds.

Show that {r1, . . . , rn} is a γ -admissible pseudo-orbit. Property (1) is guaranteed by our con-
struction. Property (2) is a consequence of Proposition 11. We just need to check property (3).
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Take r̃0 = Ln1 r̃0, . . . , r̃k−1 = Lnk rk−1. By our construction dist(r̃i , z̃i ) � 2γ, therefore (if we
set zk = z0)

dist
(
G�ε(r̃i ), zi+1

)
� dist

(
G�ε(r̃i ),G�ε(z̃i )

)+ γ � 2M1γ + γ.

Since dist(ri+1, zi+1) � 2γ, we finally have

dist
(
G�ε(r̃i ), ri+1

)
� dist

(
G�ε(r̃i ), zi+1

)+ dist(zi+1, ri+1) � (3+ 2M1)γ.

The second part of the statement of Proposition 3 is obvious.
Proposition 3 is proved. �

8.4. Discretization of a generalized loop cone condition

A generalized loop cone condition for pseudo-orbits was introduced in Definitions 9 and 10.
To check an (l, n)-generalized loop cone condition for a k-loop periodic γ -pseudo-orbit

(having shape (l, n)) we just need to check an (l, n)-generalized loop cone condition for a corre-
sponding γ -admissible k-loop pseudo-orbit.

Proposition 4. Fix s,μ,λ,M1,M2, and β < 1/(3s2 + 2+ (1+�)(s − 1)), where �=−(lnλ)/

(lnμ). Take any shape l ∈ {1, . . . , s}. For any constants θ , θ ′, α, ξ , such that

θ < θ ′, θ < α − (1+�)(s − 1)dl+1, ξ < (1+�)dl − θ − (1+�)(s − 1)dl+1 (56)

(where dl = β(2s+2)(l−1)+1 and dl+1 = β(2s+2)l+1), and sufficiently large N the following holds.
For any given type Nk = (n1, . . . , nk), n1+· · ·+nk+ k = n, having shape (l, n), n � N, and for
γ = μ−αn, an existence of a γ -admissible k-loop pseudo-orbit R= {r0, . . . , rn−1} that satisfies
(l, n)-generalized loop cone condition with constants (θ, ξ) implies that any k-loop periodic
γ -pseudo-orbit Z = {z0, . . . , zn−1} such that dist(zi , ri) � 2γ for all i = 0, . . . ,n−1, satisfy the
(l, n)-generalized loop cone condition with constants (θ ′, ξ).

Proof. The proof is technical but more or less straightforward. We are going to estimate the size
of an image of cone Kξn(Zi) under the map F

Ni

Z,�ε<2s
(Zi), which is going to be small. Also we

are going to estimate angle between images of the vertical line under F
Ni

Z,�ε<2s
(Zi) and under

F
Ni

R,�ε<2s
(Ri). It is also going to be small. Since θ < θ ′, and we know that an image of the vertical

line under F
Ni

R,�ε<2s
(Ri) belongs to Kθn(Ri+1), those estimates allow to claim that

Kξn(Zi) ↪→
F

Ni
Z,�ε<2s

(Zi )
Kθ ′n(Zi+1).

First of all we are going to investigate how the size of a cone changes under iterations of a
map. To do that let us define a cone in more general way than it was done by Definition 16.

Definition 25. A cone K =K(v1, v2) between two nonzero vectors v1, v2 ∈ R
2is the following

set:

K = {v̄ | v̄ = a1v1 + a2v2, a1a2 � 0}.
The size of this cone is an angle between v1 and v2. Let us denote it by � K .
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Lemma 12. For any cone K ⊂ R
2 and any linear map A : R2 → R

2 the following inequality
holds:

sin � A(K) � ‖A‖ · ‖A−1‖ · | sin � K|.

Proof. Take two vectors v1 and v2 such that v2 ⊥ (v1 − v2) and K = K(v1, v2). In this case
|sin � K| = |v1 − v2|/|v1|. Since A(K)=K(Av1,Av2), we have

sin � A(K) � |Av1 −Av2|
|Av1| � ‖A‖|v1 − v2|

‖A−1‖−1|v1| = ‖A‖ · ‖A
−1‖ · | sin � K|.

Lemma 12 is proved. �
We need to consider just one generalized loop. Without loss of generality we can proceed

with the first one. Recall that it is length is N1, the length of the first (long) loop is n1 + 1,
the number of short loops is h1. Therefore, the lengths of loops in this generalized loop are
n1 + 1, n2 + 1, . . . , nh1+1 + 1. Note also that n1 > dln and ni � dl+1n for i = 2, . . . , h1 + 1.

The proof of the following lemma is straightforward.

Lemma 13. Size of the cone Kξn is equal to 2 arctan(μξn). Under the iterations of the map L a
cone Kξn changes in the following way:

Kξn ↪→Ln1 Kξn−(1+�)n1 .

Therefore

� Ln1
(
Kξn(Z0)

)= � Kξn−(1+�)n1(Z̃0)= 2 arctan
(
μξn−(1+�)n1

)
.

Since sinϕ = (2 cot(ϕ/2))/(1+ cot2(ϕ/2)), we have

sin � Kξn−(1+�)n1(Z̃0)= 2μ(1+�)n1−ξn

1+μ2((1+�)n1−ξn)
< 2μξn−(1+�)n1 .

Now by Lemma 12 we have

sin �
(
F

Ni−n1
Z,�ε<2s

(
Kξn−(1+�)n1(Z̃0)

))
� M

2h1+2
1

(
μ

λ

)n2+n3+···+nh1+1

sin � Kξn−(1+�)n1(Z̃0)

< 2M
2h1+2
1 μ(1+�)(n2+n3+···+nh1+1) ·μξn−(1+�)n1 . (57)

This implies that (since ϕ ∈ (0,π/2)⇒ ϕ < π
2 sinϕ)

� (FNi
(
Kξn(Z0)

))
< πM

2h1+2
μ(1+�)(

∑h1
i=1 ni+1−n1)+ξn. (58)
Z,�ε<2s 1
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Take v = (0,1) and estimate angle between F
N1
Z,�ε<2s

(Z0)(v) and F
N1
R,�ε<2s

(R0)(v). To do that
we use the inequality

sin � K
(
F

N1
Z,�ε<2s

(Z0)(v),F
N1
R,�ε<2s

(R0)(v)
)
�
|FN1

Z,�ε<2s
(Z0)(v)− F

N1
R,�ε<2s

(R0)(v)|
|FN1

Z,�ε<2s
(Z0)(v)| .

We need to estimate |FN1
Z,�ε<2s

(Z0)(v)| from below and |FN1
Z,�ε<2s

(Z0)(v)− F
N1
R,�ε<2s

(R0)(v)| from

above. It is easy to estimate |FN1
Z,�ε<2s

(Z0)(v)|:
∣∣Ln1(v)

∣∣= μn1,

M−1
1 μn1 �

∣∣Df�ε(Z̃0) ◦Ln1(v)
∣∣� M1μ

n1,

M−1
1 μn1λn2 �

∣∣Ln2 ◦Df�ε(Z̃0) ◦Ln1(v)
∣∣� M1μ

n1+n2 ,

. . .

M−i
1 μn1λn2+···+ni �

∣∣Df�ε(Z̃i) ◦Lni ◦ · · · ◦Df�ε(Z̃0) ◦Ln1(v)
∣∣� Mi

1μ
n1+n2+···+ni ,

M−i
1 μn1λn2+···+ni+1 �

∣∣Lni+1 ◦Df�ε(Z̃i) ◦ · · · ◦Df�ε(Z̃0) ◦Ln1(v)
∣∣� Mi

1μ
n1+···+ni+ni+1 ,

. . .

M
−h1−1
1 μn1λn2+···+nh1+1 �

∣∣FN1
Z,�ε<2s

(Z0)(v)
∣∣� M

h1+1
1 μn1+n2+···+nh1+1 . (59)

To estimate |FN1
Z,�ε<2s

(Z0)(v)− F
N1
R,�ε<2s

(R0)(v)| we use the following obvious lemma.

Lemma 14. For any linear maps A1 and A2 and vectors v1 and v2 the following inequality holds:

|A1v1 −A2v2|� ‖A1‖|v1 − v2| + ‖A1 −A2‖|v2|.

Since dist(z̃i , r̃i ) � 2γ , we have an estimate ‖Df�ε(z̃i ) − Df�ε(r̃i )‖ � 2γM2. Together with
Lemma 14 this gives us:

∣∣Df�ε(Z̃0) ◦Ln1(v)−Df�ε(R̃0) ◦Ln1(v)
∣∣� 2γM2μ

n1,∣∣Df�ε(Z̃1) ◦Ln2 ◦Df�ε(Z̃0) ◦Ln1(v)−Df�ε(R̃1) ◦Ln2 ◦Df�ε(R̃0) ◦Ln1(v)
∣∣

� M1 ·
[
2γM2μ

n1+n2
]+ 2γM2 ·

[
M1μ

n1+n2
]= 4γM1M2μ

n1+n2 ,

. . .∣∣FN1
Z,�ε<2s

(Z0)(v)− F
N1
R,�ε<2s

(R0)(v)
∣∣� 2(h1 + 1)γM

h1
1 M2μ

n1+n2+···+nh1+1 . (60)

This implies

sin � K
(
F

N1
Z,�ε<2s

(Z0)(v),F
N1
R,�ε<2s

(R0)(v)
)
�

2(h1 + 1)γM
h1
1 M2μ

∑h1+1
i=1 ni

M
−h1−1
1 μn1λn2+···+nh1+1

= 2(h1 + 1)γM
2h1+1

μ(1+�)(n2+···+nh1+1). (61)
1
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Therefore

� K
(
F

N1
Z,�ε<2s

(Z0)(v),F
N1
R,�ε<2s

(R0)(v)
)
� π(h1 + 1)γM

2h1+1
1 μ(1+�)(n2+···+nh1+1). (62)

We want to check that

F
N1
Z,�ε<2s

(
Kξn(Z0)

)⊂Kθ ′n(Z1). (63)

We know that FN1(R0)(v) ∈Kθn(R1), so to check the inclusion (63) it is enough to check that

� K
(
F

N1
Z,�ε<2s

(Z0)(v),F
N1
R,�ε<2s

(R0)(v)
)+ � (FN1

Z,�ε<2s

(
Kξn(Z0)

))
<

1

2

(� Kθ ′n(Z1)− � Kθn(R1)
)
. (64)

We have the following estimate (since ϕ ∈ (0,π/4) ⇒ ϕ � π
4 tanϕ)

tan

(
π

2
− 1

2
� Kθn(R1)

)
= μ−θn ⇒ π

2
− 1

2
� Kθn(R1) � π

4
μ−θn.

Also we have (since ϕ ∈ (0,π/2) ⇒ ϕ � tanϕ)

tan

(
π

2
− 1

2
� Kθ ′n(Z1)

)
= μ−θ ′n ⇒ π

2
− 1

2
� Kθ ′n(Z1) � μ−θ ′n.

Therefore

1

2

(� Kθ ′n(Z1)− � Kθn(R1)
)= (

π

2
− 1

2
� Kθn(R1)

)
−
(

π

2
− 1

2
� Kθ ′n(Z1)

)

� π

4
μ−θn −μ−θ ′n = μ−θn

(
π

4
−μ−(θ ′−θ)n

)
. (65)

We have also the following estimate (from (58) and (62)):

� K
(
F

N1
Z,�ε<2s

(Z0)(v),F
N1
R,�ε<2s

(R0)(v)
)+ � (FN1

Z,�ε<2s

(
Kξn(Z0)

))
� π

(
(h1 + 1)γM

2h1+1
1 μ(1+�)(

∑h1
i=1 ni+1) +M

2h1+2
1 μ(1+�)(

∑h1
i=1 ni+1−n1)+ξn

)
� πM2s−2l+1

1

(
(s − l + 1)μ−αnμ(1+�)(s−l)dl+1n +M1μ

(1+�)((s−l)dl+1n−dln)+ξn
)
. (66)

Now inequalities (56) imply that

μθn
(
π(s − l + 1)μ−αnM2s−2l+1

1 μ(1+�)(s−l)dl+1n

+ πM2s−2l+2
1 μ(1+�)((s−l)dl+1n−dln)+ξn

)→ 0 as n→+∞ (67)

and

π −μ−(θ ′−θ)n→ π
as n→+∞, (68)
4 4
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hence

μ−θn

(
π

4
−μ−(θ ′−θ)n

)
> πM2s−2l+1

1

(
(s − l + 1)μ−αnμ(1+�)(s−l)dl+1n +μ(1+�)((s−l)dl+1n−dln)+ξn

)
(69)

for all large n, which implies an inequality (64) for large n.
Proposition 4 is proved. �

8.5. Decomposition into admissible pseudotrajectories

Here we show that Propositions 3 and 4 imply the inclusion (30).
Take �ε<2s ∈ Bscatt

Q
[s, f,Nk, n, l,m]. Consider the case m > 1 (the case m = 1 is similar,

we just need to omit the scattering condition). This means that f�ε<2s
has a k-loop periodic

1
s
μ−αl,m−1n-scattered μ−αl,mn-pseudotrajectory Z of type Nk such that the (l, n)-generalized

loop cone condition with constants (2θl,m, ξl) fails. Consider the μ−αl,mn-admissible pseudo-
trajectory R the same as in Proposition 3. It has the same type Nk and (by Proposition 3) is
( 1

s
μ−αl,m−1n − 4μ−αl,mn)-scattered. Since αl,m−1 � αl,m (see Remark 11), for large enough n

we have (
1

s
μ−αl,m−1n − 4μ−αl,mn

)
>

1

2s
μ−αl,m−1n. (70)

Therefore R is 1
2s

μ−αl,m−1n-scattered μ−αl,mn-admissible periodic pseudotrajectory. Since R

is 2μ−αl,mn-close to Z , the (l, n)-generalized loop cone condition with constants (θl,m, ξl)

fails for R. Indeed, note that inequalities (56) hold if we choose {θl,m,2θl,m,αl,m, ξl} equal
{θ, θ ′, α, ξ} (this is guaranteed by Lemma 4). Hence, if the (l, n)-generalized loop cone condi-
tion with constants (θl,m, ξl) holds for R, if n is large by Proposition 4 the (l, n)-generalized
loop cone condition with constants (2θl,m, ξl) holds for Z , which contradicts to the choice of
pseudotrajectory Z . Thus, �ε<2s ∈ Badm

Q
[s, f,Nk, n, l,m].

Inclusion (30) is proved.

9. Newton Interpolation Polynomials and blow-up along the diagonal in multijet space

Now we present a construction due to Grigoriev and Yakovenko [15] of choosing a con-
venient for dynamics basis in the space of polynomials. The exposition is closely related to
[22, Section 2.2]. This construction is an interpretation of Newton Interpolation Polynomials as
an algebraic blow-up along the diagonal in the multijet space. In order to keep the notations
and formulas simple and put the main ideas in evidence in this section we consider only the
1-dimensional case. See [22, Section 3] for more detailed description.

Fix a positive integer k. Consider the 2k-parameter family of perturbations of a C1 map
f : I → I by polynomials of degree 2k − 1

fε(x)= f (x)+ φε(x), φε(x)=
2k−1∑

εj x
j , (71)
j=0
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where ε = (ε0, . . . , ε2k−1) ∈R
2k . Suppose the perturbation vector ε consists of coordinates from

the cube HB1
<2k(ζ )= {εj ∈R | |εj |< ζ, j = 0,1, . . . ,2k− 1}.

Given n > 0 and a C1 function f : I → R we define an associated function j1,kf : I k →
I k ×R

2k by

j1,kf (x0, . . . , xk−1)=
(
x0, . . . , xk−1, f (x0), . . . , f (xk−1), f

′(x0), . . . , f
′(xk−1)

)
. (72)

In singularity theory this function is called the k-tuple 1-jet of f . The ordinary 1-jet of f ,
usually denoted by j1f (x) = (x, f (x), f ′(x)), maps I to the 1-jet space J 1(I,R) � I × R

2.
The product of k copies of J 1(I,R), called the multijet space, is denoted by

J 1,k(I,R)= J 1(I,R)× · · · ×J 1(I,R)︸ ︷︷ ︸
k times

, (73)

and is equivalent to I k×R
2k after rearranging coordinates. The k-tuple 1-jet of f associates with

each k-tuple of points in I k all the information necessary to determine how close the k-tuple is
to being a periodic orbit, and if so, how much hyperbolicity does the linearization has.

The set

Δn(I)= {{x0, . . . , xn−1} × In ×R
n ⊂ J 1,n(I,R) | ∃ i �= j such that xi = xj

}
(74)

is called the diagonal (or sometimes the generalized diagonal) in the space of multijets. In
singularity theory the space of multijets is defined outside of the diagonal Δn(I) and is usually
denoted by J 1

n (I,R) = J 1,n(I,R) \ Δn(I) (see, e.g., [9]). It is easy to see that a recurrent
trajectory {xk}k∈N is located in a neighborhood of the diagonal Δn(I)⊂ J 1,n(I,R) in the space
of multijets for a sufficiently large n. If {xk}n−1

k=0 is a part of a recurrent trajectory of length n, then
the product of distances along the trajectory

n−2∏
k=0

|xn−1 − xk| (75)

measures how close {xk}n−1
k=0 to the diagonal Δn(I), or how independently one can perturb points

of a trajectory. One can also say that (75) is a quantitative characteristic of how recurrent a
trajectory of length n is. This product is introduced in [22] and is extremely important quantity
for our analysis.

Our goal now is to describe how such perturbations affect the k-tuple 1-jet of f , and since
the operator j1,k is linear in f , for the time being we consider only the perturbations φε and
their k-tuple 1-jets. For each k-tuple {xj }k−1

j=0 there is a natural transformation J 1,k : I k ×R
2k →

J 1,k(I,R) from ε-coordinates to jet-coordinates, given by

J 1,s(x0, . . . , xk−1, ε)= j1,kφε(x0, . . . , xk−1). (76)

Instead of working directly with the transformation J 1,k , we introduce intermediate
u-coordinates based on Newton interpolation polynomials. The relation between ε-coordinates
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Fig. 5. Algebraic blow-up along the diagonal Δk(I).

and u-coordinates is given implicitly by

φε(x)=
2k−1∑
j=0

εj x
j =

2k−1∑
j=0

uj

j−1∏
i=0

(x − xi (mod k)). (77)

Based on this identity, we will define functions D
1,k : I k × R

2k → I k × R
2k and π1,k : I k ×

R
2k → J 1,k(I,R) so that J 1,k = π1,k ◦D

1,k , or in other words the diagram in Fig. 5 commutes.
We will show later that D

1,k is invertible, while π1,k is invertible away from the diagonal Δk(I)

and defines a blow-up along it in the space of multijets J 1,k(I,R).
The intermediate space, which we denote by DD1,k(I,R), is called the space of divided dif-

ferences and consists of k-tuples of points {xj }k−1
j=0 and 2k real coefficients {uj }2k−1

j=0 . Here are
explicit coordinate-by-coordinate formulas defining

π1,k :DD1,k(I,R)→ J 1,k(I,R).

This mapping is given by

π1,k(x0, . . . , xk−1, u0, . . . , u2k−1)

= (
x0, . . . , xk−1, φε(x0), . . . , φε(xk−1),φ

′
ε(x0), . . . , φ

′
ε(xk−1)

)
, (78)

where

φε(x0)= u0,

φε(x1)= u0 + u1(x1 − x0),

φε(x2)= u0 + u1(x2 − x0)+ u2(x2 − x0)(x2 − x1),

...

φε(xk−1)= u0 + u1(xk−1 − x0)+ · · ·
+ uk−1(xk−1 − x0) · · · (xk−1 − xk−2),



ARTICLE IN PRESS YAIMA:2661
JID:YAIMA AID:2661 /FLA [m1+; v 1.59; Prn:15/05/2006; 12:16] P.42 (1-88)

42 A. Gorodetski, V. Kaloshin / Advances in Mathematics ••• (••••) •••–•••
φ′ε(x0)= ∂

∂x

(
2k−1∑
j=0

uj

j∏
i=0

(x − xi (mod k))

)∣∣∣∣
x=x0

,

...

φ′ε(xk−1)= ∂

∂x

(
2k−1∑
j=0

uk

j∏
i=0

(x − xi (mod k))

)∣∣∣∣
x=xk−1

. (79)

These formulas are very useful for dynamics. For a given base map f and initial point x0,
the image fε(x0) = f (x0) + φε(x0) of x0 depends only on u0. Furthermore the image can be
set to any desired point by choosing u0 appropriately—we say then that it depends only and
non-trivially on u0. If x0, x1, and u0 are fixed, the image fε(x1) of x1 depends only on u1, and
as long as x0 �= x1 it depends non-trivially on u1. More generally for 0 � j � k − 1, if distinct
points {xj }kj=0 and coefficients {ui}j−1

i=0 are fixed, then the image fε(xj ) of xj depends only and
non-trivially on uj .

Suppose now that an k-tuple of points {xi}ki=0 not on the diagonal Δk(I) and Newton co-
efficients {ui}k−1

i=0 are fixed. Then derivative f ′ε(x0) at x0 depends only and non-trivially on un.

Likewise for 0 � j � k − 1, if distinct points {xj }k−1
j=0 and Newton coefficients {ui}k+j−1

i=0 are
fixed, then the derivative f ′ε(xj ) at xj depends only and non-trivially on uk+j .

As Fig. 6 illustrates, these considerations show that for any map f and any desired trajec-
tory of distinct points with any given derivatives along it, one can choose Newton coefficients
{uj }2k−1

j=0 and explicitly construct a map fε = f +φε with such a trajectory. Thus we have shown

that π1,k is invertible away from the diagonal Δk(I) and defines a blow-up along it in the space
of multijets J 1,k(I,R).

Next we define the function D
1,k : I k×R

2k →DD1,k(I,R) explicitly using so-called divided
differences. Let g : R→R be a Cr function of one real variable.

Fig. 6. Newton coefficients and their action.
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Definition 26. The first order divided difference of g is defined as

�g(x0, x1)= g(x1)− g(x0)

x1 − x0
(80)

for x1 �= x0 and extended by its limit value as g′(x0) for x1 = x0. Iterating this construction we
define divided differences of the mth order for 2 � m � r ,

�mg(x0, . . . , xm)= �m−1g(x0, . . . , xm−2, xm)−�m−1g(x0, . . . , xm−2, xm−1)

xm − xm−1
(81)

for xm−1 �= xm and extended by its limit value for xm−1 = xm.

A function loses at most one derivative of smoothness with each application of �, so �mg is
at least Cr−m if g is Cr . Notice that �m is linear as a function of g, and one can show that it is a
symmetric function of x0, . . . , xm; in fact, by induction it follows that

�mg(x0, . . . , xm)=
m∑

i=0

g(xi)∏
j �=i (xi − xj )

. (82)

Another identity that is proved by induction will be more important for us, namely

�m xj (x0, . . . , xm)= pj,m(x0, . . . , xm), (83)

where pj,m(x0, . . . , xm) is 0 for m > j and for m � j is the sum of all degree j −m monomials
in x0, . . . , xm with unit coefficients,

pj,m(x0, . . . , xm)=
∑

r0+···+rm=j−m

m∏
i=0

x
ri
i . (84)

The divided differences form coefficients for the Newton interpolation formula. For all C∞
functions g : R→R we have

g(x)=�0g(x0)+�1g(x0, x1)(x − x0)+ · · ·
+�k−1g(x0, . . . , xk−1)(x − x0) · · · (x − xk−2)

+�kg(x0, . . . , xk−1, x)(x − x0) · · · (x − xk−1) (85)

identically for all values of x, x0, . . . , xk−1. All terms of this representation are polynomial in x

except for the last one which we view as a remainder term. The sum of the polynomial terms
is the degree (k − 1) Newton interpolation polynomial for g at {xj }k−1

j=0. To obtain the degree

(2k − 1) interpolation polynomial for g and its derivative at {xj }k−1
j=0, we simply use (85) with k

replaced by 2k and the 2k-tuple of points {xj (mod k)}2k−1
j=0 .

Recall that D
1,k was defined implicitly by (77). We have described how to use divided differ-

ences to construct a degree 2k − 1 interpolating polynomial of the form on the right-hand side
of (77) for an arbitrary C∞ function g. Our interest then is in the case g = φε , which as a degree
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2k− 1 polynomial itself will have no remainder term and coincide exactly with the interpolating
polynomial. Thus D

1,k is given coordinate-by-coordinate by

um =�m

(
2k−1∑
j=0

εj x
j

)
(x0, . . . , xm (mod k))

= εm +
2k−1∑

j=m+1

εjpj,m(x0, . . . , xm (mod s)) (86)

for m= 0, . . . ,2k− 1.
Equation (86) defines a transformation (u0, . . . , u2k−1) = L1

Xk
(ε) on R

2k , where Xk =
(x0, . . . , xk−1) ∈ I k . We call L1

Xk
the Newton map. This map is simply a restriction of D

1,k

to its final 2k coordinates:

D
1,k(Xk, ε)=

(
Xk,L1

Xk
(ε)

)
. (87)

Notice that for fixed Xk , the Newton map is linear and given by an upper triangular matrix
with units on the diagonal. Hence it is Lebesgue measure-preserving and invertible, whether or
not Xk lies on the diagonal Δk(I).

Furthermore, the Newton map L1
Xk

preserves the class of scaled Lebesgue product measures.
In general, we define

Definition 27. A measure μ on R
2k is called a scaled Lebesgue product measure if it is the

product μ= μ0 × · · · × μ2k−1, where each μj is Lebesgue measure on R scaled by a constant
factor (which may depend on the coordinate j ).

Since the L1
Xk

only shears in coordinate directions, we have the following lemma.

Lemma 15. The Newton map L1
Xk

given by (86) preserves all scaled Lebesgue product measures.

Extension of this lemma to 2-dimensional case will be used in Section 10.
We call the basis of monomials

j∏
i=0

(x − xi (mod k)) for j = 0, . . . ,2k − 1 (88)

in the space of polynomials of degree 2k − 1 the Newton basis defined by the k-tuple {xj }k−1
j=0.

The Newton map and the Newton basis, and their analogues in dimension 2, are useful tools for
perturbing trajectories and estimating the measure of “bad” parameter values �ε ∈HB2 (ζ ).
<2k
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10. The multidimensional space of divided differences and dynamically essential
parameters

10.1. Dynamically essential parameters

In Section 9 we defined the space of divided differences DD1,k(I,R)= I k ×R
k in the 1-di-

mensional case, where I can be the interval [−1,1]. In this case in [22], we develop a method of
estimating the measure of “bad” parameters (see Sections 3.3–3.4 there).

Similarly to notations of Section 9, in 2-dimensional case we define the space of divided
differences

DD2,k
(
B2

δ ,R
2)= {(

p0,p1, . . . , pk−1; {�uα}|α|=0, . . . , {�uα}|α|=2k−1
)

∈ B2
δ × · · · ×B2

δ︸ ︷︷ ︸
k times

×R
ν(0,2) × · · · ×R

ν(2k−1,2)
}

= B2
δ × · · · ×B2

δ︸ ︷︷ ︸
k times

×W
u,P0
0,2 ×W

u,P1
1,2 × · · · ×W

u,Pk−1
k−1,2 ×W

u,Pk

k,2

×W
u,Pk

k+1,2 × · · · ×W
u,Pk

2k−1,2, (89)

where B2
δ is the 2-dimensional ball of radius δ, ν(j,2) is double of the number of multiindices

α = (α1, α2) with |α| = j < 2k,

Pj = {p0,p1, . . . , pj−1 (mod k)}, P0 = ∅,

and W
u,Pmin{k,j }
j,2 is the space of homogeneous polynomials of degree j from R

2 to R
2 with

the Newton basis defined below. There are two issues we face that were not a concern for the
1-dimensional Newton basis (88).

10.1.1. Non-uniqueness
It turns out that the choice of a basis in the space of divided differences DD2,k(B2

δ ,R
2) and

the definition of the Newton map

L2
Pk

:
({�εα}|α|<2k

)→ ({�uα}|α|<2k

)
(90)

(defined by (86) in the 1-dimensional case) for a multiindex α ∈ Z
2+ is far from unique. In the

1-dimensional case, the standard basis is {xj }k−1
j=0 and the Newton basis is

{
r−1∏
j=0

(x − xj )

}k−1

r=0

.

In the 2-dimensional case, (p − pj ) = (x − xj , y − yj ) ∈ R
2 is a 2-dimensional vector. For a

fixed coordinate system in R
2, let (p− pj )i denote the ith coordinate of the vector (p− pj ).
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The number of different monomials of the form{
k−1∏
j=0

(p− pj )i(j)

}
{i(0),...,i(k−1)}∈{1,2}k

(91)

is 2k . However the number of homogeneous monomials in 2 variables of degree k, i.e. {pα}|α|=k ,
is equal to k + 1, which is much smaller than 2k for k
 2.

Therefore, among the monomials (91) we need to choose an appropriate basis and define an
appropriate Newton map L2

Pk
. The standard way to choose a Newton basis (see, e.g., [15]) is as

follows. For α ∈ Z
2+, let the Newton basis monomial for the multiindex α be

(p;p0, . . . , p|α|−1 (mod k))
α =

α1−1∏
i1=0

(x − xi1)

α2−1∏
i2=0

(y − yα1+i2). (92)

The Newton basis for W
u,Pk

<2k,2, the space of homogeneous vector-polynomials of degree < 2k,

consists of 2 such monomials (one for each basis vector of R
2) for each α = (α1, α2)

with |α|< 2k. By analogy with identity (77) and definition (86) we implicitly define the 2-di-
mensional Newton map L2

Pk
by identity

∑
|α|<2k

�εαpα ≡
∑
|α|<2k

�uα(p;p0, . . . , p|α|−1 (mod k))
α. (93)

The explicit formula involves taking divided differences with respect to both x and y as in
(80) and will be given by (93).

The standard Newton basis does not fit purposes, as the following example illustrates: p0 =
(1,0), p1 = (0,1), p2 = (1,1). Then for all α with |α| = 2, we have (p2;p0,p1)

α = 0. Thus,
the monomial (p;p0,p1)

α is useless to perturb the image of p2. So we need to define the basis
differently depending on the given sequence Pk .

10.1.2. Dynamically essential coordinates/monomials
After a Newton basis is chosen, one needs to make sure that it is effective for dynamical

purposes. In Section 9 we noticed that in order to perturb by Newton Interpolation Polynomials
in an effective way, we need to make sure that the product of distances

∏k−2
j=0 |pk−1 − pj | is

not too small. Similarly, in the multidimensional case we need at least one Newton monomial
(p;p0, . . . , pk−2)

α with |α| = k−1 not to be too small. The most natural way to choose a “good”
monomial is by taking the maximal coordinates of corresponding vectors. Let v = (v1, v2) ∈R

2

be a nonzero vector. Set

m(v)=
{

1, if|v1|� |v2|,
2, otherwise.

Then ∣∣∣∣∣
k−2∏

(pk−1 − pj )m(pk−1−pj )

∣∣∣∣∣� 2−(k−1)/2
k−2∏
|pk−1 − pj |. (94)
j=0 j=0
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This is a satisfactory estimate, because k (the number of loops) is bounded. For a given Pk =
{p0, . . . , pk−1} we can neglect uniformly bounded distortion factors. Given Pk = {pi}k−1

i=0 of
pairwise distinct points, we call the monomials

Qdyn(p,Pj )=
j−1∏
i=0

(p− pi)m(pj−pi), j = 0, . . . , k− 1, (95)

dynamically essential. These Newton monomials control periodicity (see Fig. 6, line 1). Denote
by P ′j = {pj+1, . . . , pk−1,pj } for j = 0, . . . , k − 1, where P ′k = ∅ and Qdyn(p,P ′k) ≡ 1. Then
for each m= 1,2 and j = 0, . . . , k− 1 set

Q
dyn
m (p,Pj ,P ′j )= (p− pj )m

(
Qdyn(p,Pj )

)2
Qdyn(p,P ′j ). (96)

These Newton monomials control hyperbolicity (see Fig. 6, line 2).
We use these Newton monomials to estimate the measure of “bad” u-parameters.5

10.1.3. Complete set of dynamically essential coordinates/monomials
Dynamically essential Newton monomials introduced in (95) control position of trajectories

(see Fig. 6, line 1) and those in (96) control properties of the linearization (see Fig. 6, line 2).

Definition 28. The complete set of dynamically essential Newton monomials associated with a
k-tuple Pk = {p0, . . . , pk−1} is a collection of 3k pairs of monomials (one for each basis vector
of R

2) given by (95)–(96).

10.1.4. An algorithm of constructing Newton basises
Now we present an elementary scheme of constructing a vast family of Newton basises in the

space of polynomials of given degree and show that at least one of them contains all dynamically
essential monomials.

Consider the positive octant of planar integer grid Z
2+ = {α = (α1, α2) ∈ Z

2 | α1 � 0, α2 � 0}.
Denote |α| = α1 + α2. We say that a grid point α ∈ Z

2+ is equipped if there is a oriented path Γα

from the origin to α consisting of oriented unit segments Γα,j connecting a vertex α′ with either
α′ + (1,0) or α′ + (0,1). Represent Γα =⋃|α|

j=1 Γα,j as the ordered union of these unit segments.
Denote an equipped point by α(Γ ), where this symbol is a point in Z

2+ along with an oriented
path connecting it to the origin. See Fig. 7.

Let Pk = {p0, . . . , pk−1} ⊂ B2
δ be a k-tuple of points and let |α| < 2k. A Newton monomial

associated to an equipped vertex α(Γ ) is defined as follows

(p;p0,p1 . . . , p|α|−1 (mod k))
α(Γ ) =

|α|∏
j=1

(p− pj−1 (mod k))j (Γ ), (97)

where j (Γ ) is 1 if Γj is horizontal and 2 otherwise.
Important to notice that properly choosing equipment Γ we could obtain the complete set of

dynamically essential monomials associated with any k-tuple Pk of pairwise distinct points.

5 We shall imitate estimates (3.26)–(3.34) from [22].
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Fig. 7. Equipped vertices.

Let Ik = ⋃
|α|<2k α(Γ ) be the union of equipped vertices, Pk = {p0, . . . , pk−1} ⊂ B2

δ a

k-tuple. Call {(p;p0, . . . , p|α|−1 (mod k))
α(Γ )}|α|<2k be the set of Newton monomials associated

to Ik and Pk .

Lemma 16. This is a basis in the space W<2k,2 of 2-component polynomials in (x, y) of de-
gree < 2k.

This lemma, proven below, motivates the following

Definition 29. Let Ik = ⋃
|α|<2k α(Γ ) be the union of equipped vertices, Pk = {p0, . . . ,

pk−1} ⊂ B2
δ be a k-tuple, and {(p;p0, . . . , p|α(Γ )|−1 (mod k))

α(Γ )}|α|<2k be the set of Newton
monomials associated to Ik and Pk . We call this basis a dynamical Newton basis if it contains
the complete set of dynamically essential Newton monomials associated with Pk .

Now we define the Newton map associated to an equipped multiindex. Implicitly for the stan-
dard basis it is defined by (93). It requires taking divided differences of functions of 2 variables
(see also [15]) so we need to generalize Definition 26. The definitions below are very much sim-
ilar to 1-dimensional definitions (80)–(85), but notations are a bit cumbersome. Let g : Rn → R

be a C∞-smooth function of n variables (x1, . . . , xn). Our main interest will be the case when g

is a polynomial.

Definition 30. The first order divided difference of g with respect to xi is defined as

�xi
g(x1, . . . , x

′
i , x

′′
i , . . . , xn)= g(x1, . . . , x

′
i , . . . , xn)− g(x1, . . . , x

′′
i , . . . , xn)

x′′i − x′i
(98)

for x′′ �= x′ and extended by its limit value as ∂xi
g(x1, . . . , xi, . . . , xn) for x′′i = x′i = xi .

Clearly, �xi
g is C∞-smooth function of its arguments, because g is C∞-smooth. Therefore,

iterating this construction is possible. This could lead to somewhat awkward notation, since for-
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mally �xk
�xk

makes no sense: one should decide between �x′k�xk
and �x′′k �xk

. Fortunately,
the result will be the same, as an easy computation shows [3]. Moreover, it is clear that the op-
erators �xk

and �xj
commute for k �= j , and therefore we use well-defined multiindex notation:

for α = (α1, α2) ∈ Z
2+ and a function f (x, y) of 2 variables (x, y) we denote �αf =�

α1
x �

α2
y f

the mixed divided difference of order |α| = α1 + α2. Now we need to apply the Definition 30 to
incorporate equipped multiindices {α(Γ )} into this scheme.

Fix an equipped point α(Γ ), |α|< 2k, and a k-tuple Pk = {p0, . . . , pk−1}. We define divided
differences of the |α|th order associated to α(Γ ) inductively as follows.

• Start with a C∞-smooth function of 2 variables h0(x, y). If Γ1 is horizontal, take divided
difference of h0(x, y) with respect to x. Namely, apply (98) with n= 2, g(x1, x2)= h0(x, y),
i = 1, x1 = x, x2 = y, x′1 = x0, x′′1 = x. If Γ1 is vertical, put i = 2, x′2 = y0, x′′2 = y. Now we
obtain a function of 3 variables, denote it by h1(x1, x2, x3).

• Start with a function of 3 variables h1(x1, x2, x3). For determinacy suppose Γ1 is horizontal,
then h1(x1, x2, x3)= h1(x0, x, y)=�xh0(x, y). If Γ2 is horizontal, take divided difference
of h1(x0, x, y) with respect to x. Namely, apply (98) with n= 3, g(x1, x2, x3)= h1(x0, x, y),
i = 2, x1 = x0, x′2 = x1, x′′2 = x, x3 = y. If Γ2 is vertical, take divided difference with respect
to y. Namely, apply (98) with n = 3, g(x1, x2, x3) = h1(x0, x, y), i = 3, x1 = x0, x2 = x,
x′3 = y1, x′′3 = y. Now we obtain a function of 4 variables, denoted it by h2(x1, x2, x3, x4)

and so on.

Let Ik =⋃
|α|<2k α(Γ ) be the union of equipped vertices, Pk = {p0, . . . , pk−1} be a k-tuple,

and {(p;p0, . . . , p|α|−1 (mod k))
α(Γ )}|α|<2k be the set of Newton monomials associated to Ik

and Pk . Now we would like to define an associated Newton map implicitly given by∑
|α|<2k

�εα ≡
∑
|α|<2k

�ua(p;p0, . . . , p|α|−1 (mod k))
α(Γ ), (99)

where (p;p0, . . . , p|α|−1 (mod k))
α(Γ ) is defined in (97).

In the case of trivial specification, i.e. (p;p0, . . . , p|α|−1 (mod k))
α(Γ ) is replaced by (p;p0,

. . . , p|α|−1 (mod k))
α , given by (92), the standard formula for multivariable Newton map is

�uα = �εα +
∑

α≺β, |β|<2k

�εβ pβ1α1(x0, , . . . , xα1 (mod k))pβ2α2(y0, . . . , yα2 (mod k)), (100)

where pβ1α1 (respectively pβ2α2 ) is the homogeneous polynomial in x (respectively in y) of
degree (β1 − α1) (respectively (β2 − α2)) defined by (84) depending on (β1 − α1) (respectively
(β2−α2)) variables out of |β|− |α| (see, e.g., [15,20]). It generalizes the 1-dimensional formula
(86) to the case of 2-variables. However, we are not able to provide a formula of type (92) for a
general specification. We shall give an indirect definition. Namely, we just prove that there is a
linear map of {�εα}|α|<2k into {�uα}|α|<2k satisfying the identity (99).

Open brackets in the right-hand side of (99). Since points p0, . . . , pk−1 are fixed, we could
view both sides as polynomials in x and y. Group terms in the right-hand side according to
monomials pα = xα1yα2 . Compare coefficients of both sides. This leads to equalities

�εα = �uα +
∑

�uβPβ,α(x0, . . . , xβ1−1, y0, . . . , yβ2−1), (101)

α≺β, |β|<2k
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where Pβ,α is a homogeneous polynomial computable using Vieta formulas. This shows that the
linear transformation of {�εα}|α|<2k into {�uα}|α|<2k is given by an upper triangular matrix with
units on the diagonal. This leads to the following

Lemma 17. There is an upper triangular matrix L2
Pk,Ik

= {Qβ,α}|α|,|β|<2k with units on the
diagonal such that for

�uα(Γ ) = �εα +
∑

α≺β, |β|<2k

Qβ,α�εβ (102)

and for any {�εα}|α|<2k and {�uα}|α|<2k given by this formula (99) holds.

Proof. For example, use formula of inversion of a square matrix using complement maximal
minors. �
Definition 31. We call the linear map L2

Pk,Ik
, defined by the matrix {Qβ,α}|α|,|β|<2k , an associated

Newton map to a k-tuple Pk and equipment Ik .

Denote by W
u,Pk,Ik

<2k,2 the space of 2-component vector polynomials of degree < 2k in x and y

with the Newton basis associated with Ik and Pk . The map L2
Pk,Ik

is called a dynamical Newton
map if associated set {(p;p0, . . . , p|α|−1)

α(Γ )}|α|<2k contains the complete set of dynamically
essential Newton monomials associated with Pk and is denoted by

L2,dyn
Pk,Ik

:W<2k,2 →W
u,Pk,Ik

<2k,2 . (103)

Lemma 18. The Newton map L2
Pk,Ik

:W<2k,2 →W
u,Pk,Ik

<2k,2 given by (102) preserves all scaled
Lebesgue product measures.6

Proof. It follows from the fact that the corresponding linear map is given by an upper triangular
matrix with units on the diagonal. �
Proof of Lemma 16. Notice that for any multiindex α = (α1, α2) independently of its equipment
Γα the Newton map (102) is given by an upper triangular matrix with units on the diagonal.
Therefore, this linear map is non-degenerate and {(p;p0, . . . , p|α|−1)

α(Γ )}|α|<2k forms the basis
in W<2k,2. �
11. Discretization Method

In Section 3.1 in Step V we reduced the proof of the results of the paper to the proof of
estimate (31). Then in Step VI we mentioned that this estimate will be proven using Newton
Interpolation Polynomials. Now we split Step VI into two steps.

Step VI A (Collection). Reduction to estimate of the measure of “bad” parameters associated
with a scattered admissible pseudotrajectory of a given type and specified starting points of
generalized loops.

6 See Definition 27 of scaled Lebesgue measures.
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We need to estimate ν<2s{Badm
Q
[s, f,Nk, n, l,m]}. Long loops of pseudotrajectories of

type Nk have lengths n∗1 + 1, . . . , n∗τ + 1, where τ = t (Nk) is the number of generalized loops.
Consider testing rectangles {Πn∗j }τj=1 and grids {Πn∗j (μ

−αl,mn)}τj=1, defined in Sections 8.1

and 8.2, respectively. Pick a set of (2s)−1μ−αl,m−1n-scattered set of points R= {R0, . . . ,Rτ−1},
Rj ∈Πn∗j+1

(μ−αl,mn), consider the set of parameters

Bfixed
Q [s, f,Nk, n, l,m;R] = {�ε<2s ∈HB<2s(ζ )

∣∣ f�ε<2s
has a k-loop

(2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible pseudotrajectory R

of type Nk having shape (l, n), (f�ε<2s
,R) /∈K

{
Q, l(Ns), n, (θl,m, ξ)

}
,

and R is the ordered set of starting points of generalized loops
}
. (104)

For each j the number of points in Πn∗j (μ
−αl,mn) is bounded by 9δ2(μ−2αl,mn) (see

Lemma 10). Thus, the number of different choices of set R is bounded by (9δ2μ−2αl,mn)τ .
Therefore to prove (31) we need to establish the following estimate:

ν<2s

{
Bfixed

Q [s, f,Nk, n, l,m;R]}�
(
9δ2μ2αl,mn

)−τ
C∗s μ−hln. (105)

Step VI B. Reduction to the cone condition for one generalized loop of a scattered admissible
pseudotrajectory of given type and fixed ordered starting points of generalized loops.

Given (2s)−1μ−αl,m−1n-scattered set R as above, define the following set of parameters:

Bfirst
Q [s, f,Nk, n, l,m;R] = {�ε<2s ∈HB<2s(ζ )

∣∣ f�ε<2s
has a k-loop

(2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible pseudotrajectory R

of type Nk having shape (l, n), R is the ordered set of starting points of

generalized loops, and inclusion Kξln(R0) ↪→
F

N1
R,�ε<2s

(R0)
Kθl,mn(R1) fails

}
, (106)

where N1 is a length of the first generalized loop.
For any ordered set of points R = {R0, . . . ,Rτ−1} define a cyclic permutation Shift(R) =

{R1, . . . ,Rτ−1,R0}. Now we have

Bfixed
Q [s, f,Nk, n, l,m;R] ⊂

τ−1⋃
j=0

Bfirst
Q

[
s, f,Nk, n, l,m;Shiftj (R)

]
. (107)

Now we reduce the problem to the proof of the following estimate:

ν<2s

{
Bfirst

Q [s, f,Nk, n, l,m;R]}� 1

s

(
9δ2μ2αl,mn

)−τ
C∗s μ−hln. (108)

To obtain this estimate we apply Fubini reduction from HB<2s(ζ ) to HB<2k(ζ ) first and then use
Newton Interpolation Polynomials.
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11.1. Fubini reduction from HB<2s(ζ ) to HB<2k(ζ )

We reduced the problem to estimate (108) of ν<2s{Bfirst
Q
[s, f,Nk, n, l,m;R]}. Before we ap-

ply Discretization Method we need to reduce this estimate to the estimate of ν<2k-measure of the
following set:

Bfirst
Q [k,f,Nk, n, l,m;R] = {�ε<2k ∈HB<2k(ζ )

∣∣ f�ε<2k
= f + �Φ�ε<2k

has a k-loop

(2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible pseudotrajectory R

of type Nk having shape (l, n), R is the ordered set of starting points of

generalized loops, and inclusion Kξln(R0) ↪→
F

N1
R,�ε<2k

(R0)
Kθl,mn(R1) fails

}
, (109)

where N1 is a length of the first generalized loop.
One can make this Fubini reduction almost in the same way as in Section 3.2. Namely, con-

sider the following decomposition of the space of parameters, perturbations, and the product
measure for k < s:

HB<2s(ζ )=HB<2k(ζ )⊕HB�2k,<2s(ζ ), where

HB�2k,<2s(ζ )= {
ε
q
ij ∈R

∣∣ ∣∣εq
ij

∣∣� ζ, q = 1,2, 0 � i, j, 2k � i + j < 2s
}
,

�ε<2s = (�ε<2k, �ε�2k,<2s) ∈HB<2k(ζ )⊕HB�2k,<2s(ζ ),

Φ
q

�ε<2s
(x, y)=Φ

q

�ε<2k
(x, y)+Φ

q

�ε�2k,<2s
(x, y)=

∑
0�i,j, i+j<2k

ε
q
ij x

iyj +
∑

0�i,j,2k�i+j<2s

ε
q
ij x

iyj ,

ν<2s = ν<2k × ν�2k,<2s , where

ν<2k = ×
0�i,j, i+j<2k

(
ν1
ij × ν2

ij

)
, ν�2k,<2s = ×

0�i,j,2k�i+j<2s

(
ν1
ij × ν2

ij

)
. (110)

Suppose we can get the following estimate

ν<2k

{
Bfirst

Q [k, f̃ ,Nk, n, l,m;R]}� C̃s

(
μ−2αl,mn

)τ
μ−hln, (111)

where f̃ = f(0,�ε�2k,<2s ) = f + �Φ�ε�2k,<2s
, uniformly over all parameters �ε�2k,<2s ∈ HB�2k,<2s .

Since δ is assumed to be small, Fubini Theorem implies estimate (108) with C∗s = sC̃s .
In order to apply the Discretization Method and Newton Interpolation Polynomials we need

to partition the cube of parameters HB<2k(ζ ) into bricks of certain size and derive estimates of
the type (111) in each of those bricks.

11.2. From the cube to a brick of at most standard thickness

Definition 32. We call the set of parameters

HBst
<2k(ζ )=

{
ε
q
ij ∈R

∣∣∣ ∣∣εq
ij

∣∣� ζ

(i!j !)2
, q = 1,2, 0 � i, j, and 2k � i + j < 2s

}

the brick of standard thickness with width ζ .7

7 Cf. [22, Sections 3.1 and 4.4] for similar definitions.
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Denote by HBst
<2k(�ε∗<2k, ζ ) the standard thickness with width ζ centered at �ε∗<2k , i.e. con-

ditions |εq
ij | � ζ/(i!j !)2 are replaced by |εq

ij − (�ε∗)qij | � ζ/(i!j !)2. We shall partition the cube
HB<2k(ζ ) into disjoint bricks of standard thickness with width ζ simply by dividing ij -side of
the brick into (i!j !)2 equal sides. The probability measure ν<2k on HB<2k(ζ ), defined in the pre-
vious section, induces a measure on each brick of standard thickness with width ζ . Fix one brick
HBst

<2k(�ε∗<2k, ζ ). After normalization ν<2k induces the probability on this brick denoted νst
<2k .

Denote by B
first,st
Q

[k, f̃�ε∗<2k
,Nk, n, l,m;R] the intersection of the set Bfirst

Q
[k, f̃ ,Nk, n, l,m;R]

with the brick HBst
<2k(�ε∗<2k, ζ ). If we can prove that the following estimate holds true

νst
<2k

{
B

first,st
Q

[k, f̃�ε∗<2k
,Nk, n, l,m;R]}� C̃s

(
μ−2αl,mn

)τ
μ−hln, (112)

where f̃�ε∗<2k
= f̃ + �Φ�ε∗<2k

, uniformly over all parameters �ε<2k ∈ HB<2k(ζ ), then this implies
estimate (111). We shall prove (112) in Collection Lemma (Section 11.6).

11.3. Decomposition into pseudotrajectories

Now our goal is to estimate the measure of the “bad” set B
first,st
Q

[k,f,Nk, n, l,m;R] and
prove (112). This set consists of parameters for which there is a k-loop scattered (non-recurrent)
admissible pseudotrajectory of type Nk having shape (l, n), given ordered starting points of
generalized loops, and associated cone condition of this pseudotrajectory fails after the first gen-
eralized loop. We apply Discretization Method similar to the one in [22, Sections 3.1–3.4]. For
this purpose we would like to contain the set of “bad” parameters into a finite collection of
subsets each of “bad” parameters corresponding to a single k-loop (2s)−1μ−αl,m−1n-scattered
μ−αl,mn-admissible pseudotrajectory, where αl,m−1 and αl,m are defined in Section 7.1. So fix
type Nk = (n1, . . . , nk) and its shape (l, n). Consider grids Πni

(μ−αl,mn) and Π̃ni
(μ−αl,mn) in

each of testing rectangles Πni
and Π̃ni

for i = 1, . . . , k. Denote

ΠNk

(
μ−αl,mn

)= ⋃
1�i�k

Πni

(
μ−αl,mn

)
and Π̃Nk

(
μ−αl,mn

)= ⋃
1�i�k

Π̃ni

(
μ−αl,mn

)
.

Fix starting points of generalized loops R = {R0, . . . ,Rt−1} and an admissible n-tuple of
points R = {r0, . . . , rn−1}, Rk = R ∩ U = {r0, . . . , rk−1} so that R ⊆ Rk ⊂ ΠNk

(μ−αl,mn),

ri ∈ Πni+1(μ
−αl,mn) for i = 0, . . . , k − 1. Suppose 0 = i0 < i1 < · · · < iτ−1 < k are indices of

starting points of generalized loops in Rk . Since the map f�ε outside Û does not depend on �ε,
a k-tuple Rk ⊂U (if admissible) determines a k-loop admissible pseudo-orbit R uniquely. There-
fore, there is a one-to-one correspondence between n-tuple k-loop admissible pseudo-orbits
R = {r0, . . . , rn−1} and the corresponding intersections Rk = R ∩ U . Thus, we can consider
only (2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible k-tuples Rk ⊂ U . Let R ⊆ {r0, . . . , rk−1}.
Define “bad” parameters corresponding to a μ−αl,mn-pseudotrajectory R as follows

B
first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rk−1}

]= {�ε<2k ∈HBst
<2k(ζ )

∣∣ f�ε<2k
has

a k-loop (2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible pseudotrajectory R

of type Nk having shape (l, n), Rk is the ordered set of starting points of

loops Rk = {r0, . . . , rk−1} ⊂ΠNk
(μ−αl,mn), ri ∈Πni+1(μ

−αl,mn)

for i = 0, . . . , k − 1, and �ε<2k ∈ Bfirst
Q [k,f,Nk, n, l,m;R]}. (113)
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To estimate the measure of B
first,st
Q

[k,f,Nk, n, l,m;R] we need to define additional
sets.8 Consider the definition of parameters �ε<2k for which the map f�ε<2k

has a prescribed
(2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible pseudo-orbit {r0, . . . , rk−1} ⊂ ΠNk

(μ−αl,mn) that
is almost periodic, has appropriate combinatorics, but does not satisfy the cone property after the
first generalized loop. Based on it define a set of parameters �ε<2k for which only a part of length
n′ < n of the μ−αl,mn-pseudotrajectory {r0, . . . , rn′−1} and an ordered set of starting points of
generalized loops are prescribed for f�ε<2k

and {r0, . . . , rn′−1} ∩U = {r0, . . . , rj−1}:

B
first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rj−1}

]
= {�ε<2k ∈HBst

<2k(ζ )
∣∣ there is {rn′ , . . . , rn−1} ⊂ΠNk

(μ−αl,mn) such that {ri}k−1
i=0 defines

a k-loop (2s)−1μ−αl,m−1n-scattered μ−αl,mn-admissible pseudotrajectory associated

to �ε<2k , and �ε<2k ∈ B
first,st
Q

[k,f,Nk, n, l,m;R]}. (114)

Since {i0, . . . , it−1} are indices of starting points of generalized loops, for each j not among
them we have

B
first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rj−1}

]
=

⋃
rj∈Πnj+1 (μ

−αl,mn
)

B
first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rj }

]
(115)

and for each j ∈ {i0, . . . , it−1} we have the corresponding point of pseudotrajectory fixed so

B
first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rj−1}

]
= B

first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rj }

]
. (116)

Let j be the smallest index such that rj is not a starting point of a generalized loop. If such j

does not exist, i.e. all the loops are long, the sets (109) and (113) coincide. Otherwise inductive
application of these formulas gives

B
first,st
Q

[k,f,Nk, n, l,m;R],⋃
rj∈Πnj+1 (μ

−αl,mn
)

B
first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rj }

]
. (117)

The first step is to estimate the measure of B
first,st
Q

[k,f,Nk, n, l,m;R, {r0, . . . , rk−1}] and
then “collect” over admissible k-tuples {r0, . . . , rk−1} and get an estimate of the measure
of B

first,st
Q

[k,f,Nk, n, l,m;R].9

8 See [22, Section 3.2] for a similar construction in a simpler case.
9 We shall follow the same strategy as in [22, Sections 3.3–3.4].
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Fig. 8. Distortion by the Newton map.

11.4. Distortion Lemma

In this section we formulate the Distortion Lemma for a Newton map L2,dyn

R̃k,Ik
defined in (100)

and in the next four sections complete the proof of the key estimate (108) by collecting all
possible scattered admissible “bad” pseudotrajectories defined above (see the Collection Lemma
in Section 11.6).

Consider an ordered k-tuple of points R̃k = {r̃j }k−1
j=0 ⊂ Ũ . Select the complete set of dynami-

cally essential monomials associated with R̃k (see Definition 28) and the dynamical Newton map

L2,dyn

R̃k,Ik
:W<2k,2 →W

u,R̃k,Ik

<2k,2 , defined by (103). By definition the dynamically essential monomi-

als form a subset of basis vectors in W
u,R̃k,Ik

<2k,2 . We now estimate the distortion of the Newton

map L2,dyn

R̃k,Ik
as the map from the standard basis {�εα}|α|<2k in W<2k,2 to the dynamical Newton

basis {�uα,Ik
}|α|<2k in W

u,Rk,Ik

<2k,2 . It helps to have in mind the following picture characterizing the
distortion of the Newton map (see Fig. 8).

Recall that in Section 11.2 we restrict ourself to the brick of standard thickness with width ζ

as space of parameters

HBst
<2k(ζ )=

{
�εij =

(
ε1
ij , ε

2
ij

) ∈R
2
∣∣∣ ∣∣εq

ij

∣∣� ζ

(i!j !)2
, q = 1,2, 0 � i, j, i + j < 2k

}
,

where ζ is small enough to guarantee that G�ε<2k
(Ũ )⊃U for all �ε<2k ∈HBst

<2k ⊂HB<2k(ζ ) and
the family of perturbations is:

G�ε<2k
(x̃, ỹ)=G(x̃, ỹ)+ �Φ�ε<2k

(x̃, ỹ),

�Φ�ε<2k
(x̃, ỹ)=

(
Φ1
�ε<2k

(x̃, ỹ)

Φ2
�ε<2k

(x̃, ỹ)

)
, Φq

ε<2k
(x̃, ỹ)=

∑
0�i,j, i+j<2k

ε
q
ij x̃

i ỹj , q = 1,2. (118)

Distortion Lemma. Let R̃k = {r̃0, . . . , r̃k−1} ⊂ B2
δ be an ordered k-tuple of points in the δ-ball

B2
δ , and L2

˜ :W<2k,2 →W
u,R̃k,Ik

<2k,2 be the Newton map, defined by (100). Then the image of the

Rk,Ik
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brick of standard thickness HBst
<2k(ζ ) with edge ζ is contained in the brick of standard thickness

HBst
<2k(ζ/(1− 4δ)) with edge ζ/(1− 4δ):

L2
R̃k,Ik

(
HBst

<2k(ζ )
)⊂HBst

<2k

(
ζ

1− 4δ

)
⊂W

u,R̃k,Ik

<2k,2 . (119)

In other words, independently of the choice of an k-tuple {r̃0, . . . , r̃k−1} ⊂ B2
δ for any 0 � i < k,

the coefficients ui
α,Ik

have the range of values bounded by |ui
α,Ik
| � ζ/(1− 4δ) in the image

L2
Rk,Ik

(HBst
<2k(ζ )).

Proof. Recall that for {�εα}|α|<2k ∈ HBst
<2k(ζ ), therefore, for each of these α and q = 1,2 we

have that |εq
α|� ζ(α!)−2. We cannot use arguments of the proof of Distortion Lemma from Sec-

tion 3.4 [22], because the Newton map is given by an implicit formula (see Lemma 17 and (102)).
Note that for the standard Newton basis we do have explicit formulas of Newton map (see (86)
and (100) in 1- and 2-dimensional cases, respectively). We shall prove it by backward induction
in |α|. By Lemma 17 we know that for |α| = 2k − 1 we have u

q
α = ε

q
α , q = 1,2. Therefore,

|uq
α|� ζ(α!)−2.
We proceed by inductively decreasing |α|. Fix α such that |α| = 2k − 2. Consider identity

(99) as polynomial equality. Differentiate it α1 times with respect to x and α2 times with respect
to y. We get the following identity:

�εαα1!α2! + �εα+(1,0)(α1 + 1)!α2!x + �εα+(0,1)α1!(α2 + 1)!y

≡ �uαα1!α2! + �uα+(1,0)α1!α2!
(

(α1 + 1)x −
∑
j∈J x

α

xj

)

+ �uα+(0,1)α1!α2!
(

(α2 + 1)y −
∑
j∈J

y
α

yj

)
, (120)

where J x
α and J

y
α are two sets of indices of (α1 + 1) and (α2 + 1) elements. We shall not use

precise form of these sets of indices. Since �uα+(1,0) = �εα+(1,0) and �uα+(0,1) = �εα+(0,1), we could
cancel the corresponding terms. All xj ’s and yj ’s are from the δ-ball. It implies that

∣∣uq
α

∣∣� ∣∣εq
α

∣∣+ (α1 + 1)δ
∣∣uq

α+(0,1)

∣∣+ (α2 + 1)δ
∣∣uq

α+(1,0)

∣∣
= ∣∣εq

α

∣∣+(
α1 + 1

1

)
δ
∣∣uq

α+(0,1)

∣∣+(
α2 + 1

1

)
δ
∣∣uq

α+(1,0)

∣∣.
This implies that

|uq
α|�

ζ

(1− 4δ)(α!)2
, (121)

where we use (1+ 2δ) < (1− 4δ)−1.
Suppose we prove the above estimate for all α such that |α| > m. Fix α such that |α| = m.

Consider identity (99) as the polynomial equality. Differentiate it α1 times with respect to x and
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α2 times with respect to y. In the identity obtained this way plug in x = y = 0 and replace each
xj ’s and yj ’s by its upper bound δ. For q = 1,2 we get the following inequality:

∣∣uq
α

∣∣α1!α2!�
∣∣εq

α

∣∣α1!α2! +
∑

α≺β, |β|<2k

δ|β|−|α|
∣∣uq

β

∣∣(β1

α1

)
α1!

(
β1

α1

)
α2!.

Applying upper bounds (121) on u
q
β we get

∣∣uq
α

∣∣� ζ

(α!)2

(
1+

∑
α≺β, |β|<2k

δ|β|−|α|

1− 4δ

α1!
β1!(β1 − α1)!

α2!
β2!(β2 − α2)!

)
.

Write the right-hand side as the power series of δ and estimates coefficients. Direct verification
shows that the right-hand side is bounded by (121). Indeed, for α ≺ β , |β−α| = 1 the coefficient
next to δ is bounded by

1

α1 + 1
+ 1

α2 + 1
� 4.

For α ≺ β , |β − α| = 2 the coefficient next to δ2 is bounded by

4

[
1

α1 + 1
+ 1

α2 + 1

]
+ 1

(α1 + 1)(α1 + 2)
+ 1

(α1 + 1)(α2 + 1)
+ 1

(α2 + 1)(α2 + 2)
� 16

and so on. This completes the proof of the lemma. �
For a given k-tuple R̃k = {r̃j }k−1

j=0 ⊂ B2
δ , the parallelepiped

Pst
<2k,R̃k,Ik

(ζ )= L2,dyn

R̃k,Ik

(
HBst

<2k(ζ )
)⊂W

u,R̃k,Ik

<2k,2 (122)

is the set of parameters {�uα,Ik
}|α|<2k that correspond to parameters {�εα}|α|<2k from HBst

<2k(ζ ).
In other words, these are the Newton parameters allowed by the family (118) for the k-tuple R̃k .
We already knew by Lemma 18 that Pst

<2k,R̃k,Ik
(ζ ) has the same volume as HBst

<2k(ζ ), but the

Distortion Lemma tells us in addition that the projection of Pst
<2k,R̃k,Ik

(ζ ) onto any coordinate

axis is at most a factor of (1− 4δ)−1 longer than the projection of HBst
<2k(ζ ).

Let R̃j = {r̃i}j−1
i=0 be the j -tuple of first j points of the k-tuple R̃k . We now consider which

Newton parameters are allowed by the family (118) when R̃j is fixed but r̃j , . . . , r̃k−1 are such
that r̃j ∈ Πnj+1(μ

−αl,mn). Since we will only be using the definitions below for admissible

discretized k-tuples R̃k ⊂ Π̃Nk
(μ−αl,mn), we consider only the (finite number of) possibilities

r̃j , . . . , r̃k−1 ⊂ Π̃Nk
(μ−αl,mn). Let

π
u,R̃k,Ik :Wu,R̃k,Ik →W

u,R̃j ,Ij and π
u,R̃j ,Ij :Wu,R̃k,Ik →W

u,R̃j ,Ij
<2k�j <2k,2 �j,2 <2k,j <2k,2 j,2
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be the natural projections onto the space W
u,R̃j ,Ij

�j,2 of 2-component polynomials of degree j

and the space W
u,R̃j ,Ij

j,2 of 2-component homogeneous polynomials of degree j respectively.

Denote the unions over all r̃j , . . . , r̃k−1 ⊂ Π̃Nk
(μ−αl,mn) of the images of Pst

<2k,R̃k,Ik
(ζ ) under

the respective projections π
u,R̃k,Ik

<2k,�j
and π

u,R̃k,Ik

<2k,j by

Pst
<2k,�j,R̃j ,Ij

(ζ )=
⋃

r̃j ,...,r̃k−1⊂Π̃Nk
(μ
−αl,mn

)

π
u,R̃k

<2k,�j

(
Pst

<2k,R̃k,Ik
(ζ )

)⊂W
u,R̃j ,Ij

�j,2 ,

Pst
<2k,j,R̃j ,Ij

(ζ )=
⋃

r̃j ,...,r̃k−1⊂Π̃Nk
(μ
−αl,mn

)

π
u,R̃k,Ik

<2k,j

(
Pst

<2k,R̃k,Ik
(ζ )

)⊂W
u,R̃j ,Ij

j,2 . (123)

11.5. Probability estimates of an elementary event

Consider a set of starting points of loops Rk = {r0, . . . , rk−1} ⊂U of type Nk = (n1, . . . , nk),
shape (l, n), and scale number m, where ri ∈Πni+1(μ

−αl,mn). Let R̃k = {r̃0, . . . , r̃k−1} ⊂ Ũ be
a set of ending points of the corresponding loops, Ik = {α(Γ )}|α|<2k be a set of equipped mul-
tiindices. It defines the family of perturbations by Newton polynomials associated to the k-tuple
Rk and equipped multiindices Ik

f̃�udyn,R̃k,Ik
(x)= f̃ (x)+

∑
|α|<2k

�udyn
α,Ik

(p;p0, . . . , p|α|−1 (mod k))
α(Γ ), (124)

where the Newton monomial (p;p0, . . . , p|α|−1 (mod k))
α(Γ ) is defined in (97) and

�udyn
Ik
= {�udyn

α,Ik

}
|α|<2k

∈ Pst
<2k,R̃k,Ik

(ζ ).

We omit sub-subindex Ik for brevity. We choose equipments of multiindices so that all dynami-
cally essential monomials (95)–(96) are present. It is possible by Lemma 17.

Among the dynamical Newton monomials we have a set of dynamically essential monomials
{Qdyn,q (p, R̃j ), Q

dyn,q
m (p, R̃j , R̃′j )}, j = 0, . . . , k − 1, m = 1,2, and q = 1,2 is an index of

vector component. Dynamically essential monomials have the following degrees:

deg
(
Qdyn,q (p, R̃j )

)= j, deg
(
Q

dyn,q
m (p, R̃j , R̃′j )

)= k + j,

and satisfy the following inequalities:

∣∣Qdyn,q (r̃j , R̃j )
∣∣� 2−j/2

j−1∏
i=0

|r̃j − r̃i |,

∣∣∣∣ ∂

∂x
Q

dyn,q

1 (r̃j , R̃j , R̃′j )
∣∣∣∣� 2−(k+j−1)/2

j−1∏
|r̃j − r̃i |2

k−1∏
|r̃j − r̃i |,
i=0 i=j+1
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∣∣∣∣ ∂

∂y
Q

dyn,q

2 (r̃j , R̃j , R̃′j )
∣∣∣∣� 2−(k+j−1)/2

j−1∏
i=0

|r̃j − r̃i |2
k−1∏

i=j+1

|r̃j − r̃i |. (125)

Recall that by Distortion Lemma the set of Newton parameters Pst
<2k,R̃k,Ik

(ζ ) allowed by the

family (118) is contained in the cube HBst
<2k(ζ/(1− 4δ)) (see (122) for definition). Therefore,

it suffices to consider |udyn,q
α | < ζ/(1− 4δ) for each q = 1,2 and |α| < 2k. We denote �udyn

j,Ik
∈

HBst
q (ζ/(1− 4δ)) if |udyn,q

α,Ik
|< ζ/(1− 4δ) for all |α| = j and q = 1,2, where j = 0, . . . ,2k − 1.

Define νst
j =×|α|=j

(νst,1
α × νst,2

α ).

Due to the choice of Newton polynomials the image f̃�udyn,R̃k,Ik
(r̃0) is independent of �udyn

α,Ik
=

(u
dyn,1
α,Ik

, u
dyn,2
α,Ik

) for all |α|> 0. Therefore the position of f̃�udyn,R̃k,Ik
(r̃0) depends only on �udyn

0,Ik
=

(u
dyn,1
0,Ik

, u
dyn,2
0,Ik

). Recall that ν1
00 and ν2

00 are 1-dimensional Lebesgue measures scaled by 1/(2ζ ).
This gives

νst
0

{
�udyn

0,Ik
∈HBst

0

(
ζ

1− 4δ

) ∣∣∣ ∣∣f̃�udyn,R̃k,Ik
(r̃0)− r1

∣∣� γ

}

�
(

(0!)2

2ζ
2γ

)2

=
(

(0!)2γ

ζ

)2

. (126)

Denote the right-hand side by Prob0(γ, ζ ). To fit notations below we put Prob0(γ, ζ ) =
Prob0(R̃1, γ, ζ, δ).

Fix �udyn
0,Ik

= (u
dyn,1
0,Ik

, u
dyn,2
0,Ik

). Similarly, the position of f̃�udyn,R̃k,Ik
(r̃1) depends only on �udyn

α,Ik
=

(u
dyn,1
α,Ik

, u
dyn,2
α,Ik

) for |α| = 1, i.e. α is either (0,1) or (1,0). Call �udyn
1,Ik

= {�udyn
α,Ik
}|α|=1.

Thus, using the dynamically essential monomials and Distortion Lemma, we get

νst
1

{
�udyn

1,Ik
∈HBst

1

(
ζ

1− 4δ

) ∣∣∣ ∣∣f̃�udyn,R̃k,Ik
(r̃1)− r2

∣∣� γ

}

� (2 · (1!)2γ )2

(2ζ(1− 4δ))2|Qdyn
1 (r̃1, R̃1) ·Qdyn

2 (r̃1, R̃1)|
� 2

(
(1!)2γ

ζ(1− 4δ)

)2

|r̃1 − r̃0|−2. (127)

Denote the right-hand side by Prob1(R̃2, γ, ζ, δ).
Inductively for j = 2, . . . , k − 1, fix �uα,Ik

= (u
dyn,1
α,Ik

, u
dyn,2
α,Ik

) for |α| < j . Then the position

of f̃�udyn,R̃k,Ik
(r̃j ) depends only on �udyn

j = {�udyn
α,Ik
}|α|=j . Moreover, for j = 2, . . . , k − 1 we have

νst
j

{
�udyn
j,Ik

∈HBst
j

(
ζ

1− 4δ

) ∣∣∣ ∣∣f̃�udyn,R̃k,Ik
(r̃j )− rj+1 (mod k)

∣∣� γ

}

� (j !)4γ 2

ζ 2(1− 4δ)2j

∣∣Qdyn,1(r̃j , R̃j ) ·Qdyn,2(r̃j , R̃j )
∣∣−1

� 2j (j !)4γ 2

ζ 2(1− 4δ)2j

j−1∏
i=0

|r̃j − r̃i |−2. (128)

Denote the right-hand side by Probj (R̃j+1, γ, ζ, δ).
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Now consider a cone K =K(r̃i1−1), � K < π/2. Recall that ri1 = R1 is the starting point of
the second generalized loop. We want to estimate the measure of parameters, for which the image
of this cone under Df̃�udyn,R̃k,Ik

(r̃i1−1) does not intersect the cone K∗
θl,mn(ri1)=R2 \Kθl,mn(ri1).

As before we identify tangent spaces at points ri1 and f̃�udyn,R̃k,Ik
(r̃i1−1) with R

2. Note that �udyn
α,Ik

with |α|> k+ i1−1 does not affect to the image of the cone K . Fix parameters {�udyn
α,Ik
}|α|<k+i1−1.

Consider �udyn
k+i1−1,Ik

= {�udyn
α,Ik
}|α|=k+i1−1. We shall prove in Section 11.8 that

νst
k+i1−1

{
�udyn
k+i1−1,Ik

∈HBst
k+i1−1

(
ζ

1− 4δ

) ∣∣∣Df̃�udyn,R̃k,Ik
K(r̃i1−1)∩K∗

θl,mn(ri1 (mod k)) �= {0}
}

� (1− 4δ)−2(k+i1−1)

ζ

(
(k + i1 − 1)!)42(k+i1−1)/2(2M3

1
� K +M1μ

−θl,mn
)

×
i1−2∏
i=0

|r̃i1−1 − r̃i |−2
k−1∏
i=i1

|r̃i1−1 − r̃i |−1. (129)

Denote the right-hand side by Prob-cone(R̃k, i1, n,M1, ζ, δ, θl,m, � K).
Combining estimates (126)–(129) along with Distortion Lemma10 we get

νst
<2k

{
B

first,st
Q

[
k,f,Nk, n, l,m;R, {r0, . . . , rk−1}

]}
� (1− 4δ)−3k2

Prob-cone
(
R̃k, i1, n,M1, ζ, δ, θl,m, � Kmax

)
×

k−1∏
j=0

Probj

(
R̃j+1, (3+ 2M1)μ

−αl,mn, ζ, δ
)
. (130)

We derive an upper estimate on � Kmax in the case under consideration later. One could just keep
in mind that it is of order μ−(θl,m+hl)n and is exponentially small in n (see (156)).

11.6. Collection Lemma

For each j < k, the sets Pst
<2k,�j,R̃j ,Ij

(ζ ) and Pst
<2k,j,R̃j ,Ij

(ζ ) are polyhedrons. Both depend

only on the j -tuple R̃j , the set Ij of equipped multiindices |α| � j , and width ζ of the cube

HBst
<2k(ζ ). The set Pst

<2k,�j,R̃j
(ζ ) consists of all Newton parameters {�uα,Ik

}|α|�j ∈ W
u,R̃j ,Ij

j,2

that are allowed by the family (118) for the j -tuple Rj .
For each j < k, we introduce the family of diffeomorphisms

f̃�udyn
Ik

(j),R̃j ,Ij
(x)= f̃ (x)+

∑
|α|�j

�udyn
α,Ij

(p;p0, . . . , p|α|−1)
α(Γ ), (131)

10 Cf. with [22, Section 3.3].
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where the Newton monomial (p;p0, . . . , p|α|−1)
α(Γ ) is defined in (97), equipment Γ of each

multiindex α is given by the set Ij , and �udyn
Ik

(j)= {udyn
α,Ij

}|α|�j ∈ Pst
<2k,�j,R̃j ,Ij

(ζ ) (cf. (124)).

For each possible continuation R̃k of R̃j , the family f̃�udyn(j),R̃j ,Ij
includes the subfamily

of f̃�udyn,R̃k,Ik
(with �udyn

Ik
∈ Pst

<2k,R̃k,Ik
(ζ )) corresponding to �udyn

α,Ik
= 0 for all |α|> j . However,

the action of f̃�udyn,R̃k,Ik
on r̃0, . . . , r̃j−1 does not depend on r̃j , . . . , r̃k , so for these points the

family f̃�udyn(j),Rj ,Ij
is representative of the entire family f̃�udyn,R̃k,Ik

. This motivates the defini-
tion

T
2,γ

<2k,�j
(f̃ ; r0, . . . , rj−1, rj , rj+1)

=
{
�udyn
Ik

(j) ∈P
<2k,�j,R̃j ,Ij

(ζ )⊂W
u,R̃j ,Ij

�j,2

∣∣ ∣∣f̃�udyn(j),R̃j ,Ij
(r̃i−1)− ri

∣∣� γ

for i = 1, . . . , j + 1
}
. (132)

In a view of the family of perturbations (118) and the form of the map (7) notice that knowing
type Nk of a k-tuple R̃k one can reconstruct the corresponding k-tuple Rk by applying inverse of
the linear map L the prescribed number of times. It provides natural identification of Rk and R̃k .

T
2,γ

<2k,�j
(f̃ ; r0, . . . , rj , rj+1) represents the set of Newton parameters �udyn

Ik
(j)= {�udyn

α,Ik

}
|α|�j

allowed by the family (118) for which r0, . . . , rj is a γ -pseudotrajectory of f̃�udyn(j),R̃j ,Ij
(and

hence of f̃�udyn(j),R̃j ,Ij
for all valid extensions �udyn

Ik
and R̃k of �udyn

Ik
(j) and R̃j ).

In the following lemma, we collect all possible (2s)−1μ−αl,m−1n-scattered μ−αl,mn-pseudo-
trajectories and estimates of “bad” measure corresponding to those μ−αl,mn-pseudotrajectories.
Denote Rj = (R0, . . . ,Rj−1) the first j starting points of generalized loops and define indices
{i0, . . . , iτ−1} as follows R0 = ri0, . . . ,Rt−1 = riτ−1 . According to our notations Rτ =R.

Collection Lemma. With the notations above, for all r̃0 ∈ Πn1(μ
−αl,mn) the measure of the

“bad” parameters satisfies

νst
<2k

{
B

first,st
Q

[k,f,Nk, n, l,m,μ−αl,mn;R]}
� (1− 4δ)

−2k(2k−1)+2
∑t

j=1 ij Prob-cone
(
R̃k, i1, n,M1, ζ, δ, θl,m,4M

2(s−1)
1 μ−(θl,m+hl)n

)
×

τ∏
j=1

Probij−1
(
R̃ij , (3+ 2M1)μ

−αl,mn, ζ, δ
)

�
(
μ−2αl,mn

)τ
C̃sμ

−hln, (133)

where C̃s is some explicitly commutable constant (144) and constants αl,m, θl,m,hl are defined
in (51).

Proof. Denote μ−αl,mn by γn for brevity in the proof below. We prove by backward induction
on j that for r0 ∈Πn1(μ

−αl,mn), . . . , rj ∈Πnj+1(μ
−αl,mn) such that rj is not a starting point of

a generalized loop,
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νst
<2k

{
B

first,st
Q

[
k,f,Nk, n, l,m;R⊆ {r0, . . . , rj } ∪R

]}
� (1− 4δ)−(2k−j)(2k+j+1)+∑tj

l=1 il+k+i1 Prob-cone
(
R̃k, i1, n,M1, ζ, δ, θl,m, � K

)
×

τ∏
l=tj+1

Probil−1
(
R̃il , (3+ 2M1)γn, ζ, δ

)
ν<j

{
T

2,γn

<2k,<j (f̃ ; r0, . . . , rj )
}
μ−2αl,mn, (134)

where tj is the number of starting points of generalized loops among first j points in Rj . In the
case rj is a starting point of a generalized loop we have equality (116). Even though the measure
stays unchanged the above formula changes as indices in terms depending on j change. This
estimate results in the first inequality in (133) for j = 0.

Consider the case j = k − 1. Fix a k-loop (2s)−1μ−αl,m−1n-scattered (non-recurrent) γn-
admissible pseudotrajectory {r0, . . . , rn−1} of type Nk having shape (l, n) whose starting points
of generalized loops R = {R0, . . . ,Rτ−1} ⊂ ΠNk

(γn) ∩ {r0, . . . , rn−1} are fixed. Recall that
we denote by Rk = {r̃0, . . . , r̃k−1} intersection of the pseudotrajectory with Ũ and by R̃ =
{R̃1, . . . , R̃τ−1} the preimages of the above starting points. Notice that R̃k is not uniquely de-
termine by the fixed Rk and depends on �ε<2k . Using formulas (128) and (129), we have

ν
st,dyn
k−1

{
�udyn
k−1,Ik

∈HBst
k−1

(
ζ

1− 4δ

) ∣∣∣ ∣∣f̃u,R̃k,Ik
(r̃k−1)− r0

∣∣� (3+ 2M1)γn

}
� Probk−1

(
R̃k, (3+ 2M1)γn, ζ, δ

)
(135)

and

ν
st,dyn
k+i1−1

{
�ust,dyn
k+i1−1,Ik

∈HBst
k+i1−1

(
ζ

1− 4δ

) ∣∣∣Df̃�udyn,R̃k,Ik
K(r̃i1−1)∩K∗

θl,mn(ri1 (mod k)) �= {0}
}

� Prob-cone(R̃k, i1, n,M1, ζ, δ, θl,m, � Kmax). (136)

We omit HBst
j (respectively k+i1−1)(ζ/(1− 4δ)) in corresponding estimates for brevity. The Fu-

bini Theorem, Lemma 18, and definition (16) of the product measure νst
<2k imply that

ν
st,dyn
<2k

{
B

first,st
Q

[
k,f,Nk, n, l,m;R⊆ {r0, . . . , rk−1} ∪R

]}
� ν

st,dyn
k−1

{�ust,dyn
k−1,Ik

∣∣ ∣∣f̃
u,R̃k,Ik

(r̃k−1)− r0
∣∣� (3+ 2M1)γn

}
×

∏
k�j�2k−1, j �=k+i1−1

νst
j

{
P

<2k,j,R̃k,Ik
(ζ )

}
ν

st,dyn
<k−1

{
T

2,(3+2M1)γn

<2k,<k−1 (f̃ ; r0, . . . , rk−1)
}

× ν
st,dyn
k+i1−1

{
�udyn
k+i1−1,Ik

∣∣Df̃�udyn,R̃k,Ik
K(r̃i1−1)∩K∗

θl,mn(ri1 (mod k)) �= {0}
}

� ν
st,dyn
<k−1

{
T

2,(3+2M1)γn

<2k,<k−1 (f̃ ; r0, . . . , rk−1)
}

Probk−1
(
R̃k, (3+ 2M1)γn, ζ, δ

)
× (1− 4δ)−(3k+1)k+k+i1 Prob-cone(R̃k, i1, n,M1, ζ, δ, θl,m, � Kmax), (137)

where � Kmax is the maximal possible angle of F
N1−1
R,�u<2k

(Kξln(R0)) estimated in (156) from above

by 4M
2(s−1)

μ−(θl,m+hl)n.
1
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The last inequality follows from the Distortion Lemma, which says that for each α such that
|α|� 2k− 2 we have

ν
st,dyn
j

{
Pst

<2k,j,R̃k,Ik
(ζ )

}
� (1− 4δ)−2(j+1). (138)

This yields the required estimate (134) for j = k− 1.
Suppose now that for j + 1, (134) is true and we would like to prove it for j . There are

two different cases: either rj+1 is not a starting point of a generalized loop or it is. Esti-
mates in both cases follow the same strategy of implicit collection. Consider the first case.
Denote by G

2,(3+2M1)γn

<2k,j (f̃ , �udyn
Ik

(j − 1); r0, . . . , rj ) ⊂ Πnj+2(γn) the set of points rj+1 of
the grid Πnj+2(γn) such that the (j + 2)-tuple r0, . . . , rj+1 is a γn-admissible pseudotrajec-

tory associated to some extension �udyn
Ik

(j) ∈ Pst
<2k,�j,R̃j

(ζ ) of �udyn
Ik

(j − 1). In other words,

G
2,(3+2M1)γn

<2k,j (f̃ , �udyn
Ik

(j − 1); r0, . . . , rj ) is the set of all possible continuations of the γn-

admissible pseudotrajectory r0, . . . , rj using all possible Newton parameters �udyn
Ik

(j) allowed
by the family (118).

Now let r0, . . . , rj be a γn-admissible pseudotrajectory associated to �udyn
Ik

(j)= {�udyn
α,Ik
}|α|�j ,

then at most 4 points rj+1 ∈Πnj+2(γn) are within γn of f̃�udyn(j),R̃j ,Ij
(r̃j ). Therefore, for fixed

�udyn
Ik

(j) = {�udyn
α,Ik
}|α|�j ∈ Pst

<2k,�j,R̃k,Ik
(ζ ), each value of �udyn

j,Ik
∈ Pst

<2k,j,R̃k
(ζ ) corresponds to

at most 1 points in G
2,(3+2M1)γn

<2n,j (f̃ , �udyn
Ik

(j−1); r0, . . . , rj ). In the case when a point is exactly in
the middle of 2 or 4 grid points we associate it to the right or the right-top neighbor respectively.
It follows that

∑
rj+1∈G

2,(3+2M1)γn
<2k,j (f̃ ,�udyn(j−1);r0,...,rj )

νst
�j

{
T

2,(3+2M1)γn

<2k,<j+1 (f̃ ; r0, . . . , rj+1)
}

� νst
j

{
Pst

<2k,j,R̃j ,Ij
(ζ )

}
νst
�j−1

{
T

2,(3+2M1)γn

<2k,<j (f̃ ; r0, . . . , rj )
}
. (139)

The Distortion Lemma then implies that

∑
rj+1∈G

2,(3+2M1)γn
<2k,j (f̃ ,�udyn(j−1);r0,...,rj )

νst
�j

{
T

2,(3+2M1)γn

<2k,<j+1 (f̃ ; r0, . . . , rj+1)
}

� (1− 4δ)−2j νst
�j−1

{
T

2,(3+2M1)γn

<2k,<j (f̃ ; r0, . . . , rj )
}
. (140)

Consider the second case when rj+1 is a starting point of a generalized loop. According to
our notations it means j + 1= iq and Rq = rj+1 for some 1 � q � τ . In this case the Distortion
Lemma and estimate (128) imply

νst
�j

{
T

2,(3+2M1)γn

<2k,<j+1 (f̃ ; r0, . . . , rj+1)
}

� Probj

(
R̃j+1, (3+ 2M1)γn, ζ, δ

)
νst
�j−1

{
T

2,(3+2M1)γn

<2k,<j (f̃ ; r0, . . . , rj )
}
. (141)

Inductive application of this formula proves (134). In the case j = 0 we get
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νst
<2k

{
B

first,st
Q

[k,f,Nk, n, l,m;R]}
� (1− 4δ)

−2k(2k−1)+2
∑τ

j=1 ij Prob-cone(R̃k, i1, n,M1, ζ, δ, θl,m, � K)

×
τ∏

j=1

Probij−1
(
R̃ij , (3+ 2M1)γn, ζ, δ

)
. (142)

Apply to the right-hand side Lemma 21. Direct calculation (see (156)) shows that angle of the
cone after the first generalized loop (in our notations of length N1) satisfies

� Kmax = � F
N1−1
R,�u<2k

(
Kξln(R0)

)
< 4M

2(s−1)
1 μ−(θl,m+hl)n. (143)

Put

C̃s =
s−1∏
j=0

(j !)4((2s − 1)!)4
[

24s2+s(3+ 2M1)
2sM3s2

1 ss2+s

(1− 4δ)2s2+4sζ s+1

](
8M2s+1

1 +M1
)
. (144)

Recall that τ � s. Combining (148), (149) with the above estimates we get

νst{Bfirst,st
Q

[k,f,Nk, n, l,m;R]}� C̃sμ
−θl,mn+(s2−1)(αl,m−1+2dl+1)n

(
μ−2αl,mn

)τ
.

By Lemma 4 we have

2
(
s2 − 1

)
dl+1 +

(
s2 − 1

)
αl,m−1 − θl,m <−hl.

For large enough n and (2s)−1μ−αl,mn-scattered set R this leads to the estimate

νst{Bfirst,st
Q

[k,f,Nk, n, l,m;R]}�
(
μ2αl,mn

)−τ
C̃sμ

−hln. (145)

This proves the Collection Lemma. �
11.7. Auxiliary estimates

We are interested only in scattered admissible pseudotrajectories. Recall that R̃⊂ Ũ is a set
of ending points of generalized loops. To get lower estimates of pairwise distances between an
ending point of a generalized loop and another point from the set R̃k = {r̃0, . . . , r̃k−1} ⊂ Ũ we
have applied two following lemmas in the section above.

Lemma 19. For a k-loop γ ′-admissible pseudotrajectory of type Nk , shape (l, n), and for any
pair of points r̃i , r̃j ∈ R̃k such that r̃i ∈ R̃ and r̃j /∈ R̃ the following inequality holds:

|r̃j − r̃i |� M−1
1

(
(1− δ)− (1+ δ)μ−(dl−dl+1)n − 2(3+ 2M1)γ

′μdl+1n
)
μ−dl+1n. (146)

Remark 15. In the case under consideration we have μ−αl,mn-admissible pseudotrajectories.
It means that γ ′ = μ−αl,mn. According to the choice of combinatorial constants dl+1 � αl,m
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(see Sections 5.1, 7.1, 8.3). Therefore, the inequality (146) implies that for (1− δ)− (1+ δ)×
μ−(dl−dl+1)n − 2(3+ 2M1)γ

′μdl+1n > 1/2 (see Section 11.9) we have

|r̃j − r̃i |� 1

2
M−1

1 μ−dl+1n.

Lemma 20. For a k-loop γ ′′-scattered γ ′-admissible pseudotrajectory of type Nk and shape
(l, n) for any pair r̃i , r̃j ∈ R̃ the following inequality holds:

|r̃j − r̃i |� M−1
1

(
1− 2(3+ 2M1)γ

′(γ ′′)−1)γ ′′. (147)

Remark 16. In the case under consideration we have only μ−αl,mn-admissible 1
2s

μ−αl,m−1n-
scattered pseudotrajectories, where αl,m−1 � αl,m (see Sections 5.1, 7.1, 8.3). Therefore, the
inequality (147) implies that for 2(3+ 2M1)μ

(−αl,m+αl,m−1)n < 1/2 (see Section 11.9) we have

|r̃j − r̃i |� (4sM1)
−1μ−αl,m−1n.

Lemma 21. With the notations of Lemmas 19 and 20 above, we have for periodicity

τ∏
j=1

Probij−1
(
R̃ij , (3+ 2M1)μ

−2αl,mn, ζ, δ
)

� 2
∑τ

j=1(ij−1)
(1− 4δ)

−2
∑τ

j=1 ij

s−1∏
j=0

(j !)4ζ−2τ (3+ 2M1)
2τ (4sM1)

τ(τ−1)

× (2M1)
2τ(τ−1)

(
μ−2ταl,mn

)
μτ(τ−1)αl,m−1n+2τ(τ−1)dl+1n, (148)

where {ij }τ−1
j=0 are indices of starting points of generalized loops. For cone property we have

Prob-cone(R̃k, i1, n,M1, ζ, δ, θl,m, � K)

� (1− 4δ)−4k
(
(2s − 1)!)4

ζ−1[25(s−1)M3s−4
1 ss−2](2M3

1
� K +M1μ

−θl,mn
)

×μ2(s−1)dl+1n+(τ−1)αl,m−1n. (149)

Proof. We start by proving (148). Using definitions of the numbers Probi−1(R̃i , (3 +
2M1)μ

−2αl,mn, ζ, δ), {ij }j , and Remarks 15 and 16 we have that

τ∏
j=1

Probij−1
(
R̃ij , (3+ 2M1)μ

−2αl,mn, ζ, δ
)

�
τ∏

j=1

(
(ij − 1)!)4

τ∏
j=1

(
2ij−1(1− 4δ)−2(ij−1)(3+ 2M1)

2ζ−2)
×μ−2ταl,mn

(
4sM1μ

αl,m−1n
)2+4+6+···+2(τ−1)(2M1μ

dl+1n
)2(τ−1)τ

.
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To obtain the second estimate application of (129) shows that we need to estimate the last
two products of distances there. Consider the former of them. Recall that R̃j−1 = r̃ij−1. This
implies that among points {r̃0, r̃1, . . . , r̃ij−2} there are (j − 1) points from R̃ and (ij − j) from
the complement. By Remarks 15 and 16 for large enough n we have an estimate

ij−2∏
q=0

|r̃ij−1 − r̃q |−2 �
(
2sM1μ

αl,m−1n
)2(j−1)(2M1μ

dl+1n
)2(ij−j)

�
(
4sM1μ

αl,m−1n
)2(j−1)(2M1μ

dl+1n
)2(k−τ) �

(
4sM1μ

αl,m−1n
)2(j−1)(2M1μ

dl+1n
)2(s−1)

.

Recall that R̃0 = r̃i1−1. Using the above estimates we estimate the following product:

i1−2∏
j=0

|r̃i1−1 − r̃j |−2
k−1∏
j=i1

|r̃i1−1 − r̃j |−1

�
(
2M1μ

dl+1n
)2(i1−1)(4sM1μ

αl,m−1n
)τ−1(2M1μ

dl+1n
)k−i1−τ+1

�
[
24s−4M3s−4

1 ss−2]μ2(s−1)dl+1n+(τ−1)αl,m−1n.

This completes the proof of the lemma. �
We shall prove Lemmas 19, 20, and estimate (129) in the next Section 11.8.

11.8. The proof of auxiliary estimate

This section is devoted to the proof of estimate (129) and Lemmas 19, 20 from Section 21.
We start with the proof of (129). Consider an image

Df̃
u,R̃k,Ik

(r̃i1−1)K(r̃i1−1)=K{�uα}|α|=k+i1−1(ri1).

Recall that M1 is an upper bound on C1-norm of f̃�u,R̃k,Ik
and its inverse, where �u is allowed by

the family (9). For any set of parameters {�uα}|α|=k+i1−1 by Lemma 12 we have

� K{�uα}|α|=k+i1−1(ri1) � 2M2
1
� K(r̃i1−1).

Consider a cone K̂(ri1) which is wider than K∗
θl,mn(ri1) by 2M2

1
� K(r̃i1−1) on both sides, in

particular,

� K̂(ri1)= � K∗
θl,mn(ri1)+ 4M2

1
� K(r̃i1−1),

and

sin
1

2
� K̂(ri1)= sin

(
1

2
K∗

θl,mn(ri1)+ 2M2
1
� K(r̃i1−1)

)

< sin

(
1

2
K∗

θl,mn(ri1)

)
+ sin

(
2M2

1
� K(r̃i1−1)

)
< 2M2

1
� K(r̃i1−1)+μ−θl,mn. (150)
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Take any unit vector (a, b) ∈K(r̃i1−1), a
2 + b2 = 1. If Df̃�u,R̃k,Ik

(r̃q)
(
a
b

)
/∈ K̂(ri1) then

Df̃�u,R̃k,Ik
K(r̃i1−1)∩K∗

θl,mn(ri1)= {0}. (151)

Denote

Df̃�u,R̃k,Ik
(r̃i1−1)

(
a

b

)
=
(

ã

b̃

)
.

It is enough to check that |b̃|/
√

ã2 + b̃2 > sin 1
2
� K̂(ri1) to claim that (151) holds. We have

√
ã2 + b̃2 =

∣∣∣∣Df̃�u,R̃k,Ik
(r̃q)

(
a

b

)∣∣∣∣� M1,

therefore it is enough to estimate the measure of parameters for which

|b̃|> M1μ
−θl,mn + 2M3

1
� K(r̃i1−1) > M1 sin

1

2
� K̂(ri1).

We have

Df̃�u,R̃k,Ik
(r̃i1−1)

=
(

A+ u1
α1

∂
∂x

Q
dyn
1 (r̃i1−1, R̃i1−1, R̃′i1−1) B + u1

α2
∂
∂y

Q
dyn
2 (r̃i1−1, R̃i1−1, R̃′i1−1)

C + u2
α1

∂
∂x

Q
dyn
1 (r̃i1−1, R̃i1−1R̃′i1−1) D+ u2

α2
∂
∂y

Q
dyn
2 (r̃i1−1, R̃i1−1, R̃′i1−1)

)
, (152)

where A,B,C,D do not depend on {�uαm}m=1,2. Notice that by construction of dynamical New-
ton monomials we have

∂

∂x
Q

dyn
1 (r̃i1−1, R̃i1−1, R̃′i1−1)=

∂

∂y
Q

dyn
2 (r̃i1−1, R̃i1−1, R̃′i1−1)

=
i1−1−2∏

i=0

|r̃i1−1 − r̃i |−2
2k−1∏
j=i1

|r̃i1−1 − r̃i |−1. (153)

Now we have

Df̃�u,R̃k,Ik
(r̃i1−1)

(
a

b

)
=
(

ã

b̃

)

=
(

Aa +Bb+ a u1
α1

∂
∂x

Q
dyn
1 (r̃i1−1, R̃i1−1, R̃′i1−1)+ bu1

α2
∂
∂y

Q
dyn
2 (r̃i1−1, R̃i1−1, R̃′i1−1)

Ca +Db+ au2
α1

∂
∂x

Q
dyn
1 (r̃i1−1, R̃i1−1, R̃′i1−1)+ bu2

α2
∂
∂y

Q
dyn
2 (r̃i1−1, R̃i1−1, R̃′i1−1)

)
.

Since a2+b2 = 1, either |a|� 1/
√

2, or |b|� 1/
√

2. Assume that |a|� 1/
√

2 (opposite case
is similar). In this case we get an estimate
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νst
k+i1−1

{�udyn
k+i1−1 ∈Pst

<2k,k+i1−1,R̃k
(ζ )

∣∣Df̃
u,R̃k,Ik

K(r̃i1−1)∩K∗
θl,mn(ri1 (mod k)) �= {0}

}
� (1− 4δ)−2(k+i1−1)

ζ

√
2

2M3
1
� K +M1μ

−θl,mn

| ∂
∂x

Q
dyn
1 (r̃i1−1, R̃i1−1, R̃′i1−1)|

� (1− 4δ)−2(k+i1−1)
(
(k + i1 − 1)!)4

ζ−12(k+i1−1)/2(2M3
1
� K +M1μ

−θl,mn
)

×
i1−2∏
i=0

|r̃i1−1 − r̃i |−2
k−1∏
i=i1

|r̃i1−1 − r̃i1−1|−1. (154)

This proves (129).
Now we derive an upper estimate on � K . Take the cone Kξln(R0). We want to consider the

cone F
N1−1
R,�ε<2k

(Kξln(R0)) as a cone K in a statement above. Let us estimate its size. The image of
the cone Kξln(R0) under Ln1 is a cone Kξln−(1+�)n1 , and we have

sin � Kξln−(1+�)n1 < 2μξln−(1+�)n1 < 2μξln−(1+�)dln.

After application of the map along short loops we have

sin � F
N1−1
R,�ε<2k

(
Kξln(R0)

)
� M

2h1
1

(
μ

λ

)n2+···+nh1+1

sin � Kξln−(1+�)n1

< 2M
2(k−t)
1 μ(k−t)dl+1n(1+�)μξn−(1+�)dln

� 2M
2(s−1)
1 μ((s−1)(1+�)dl+1+ξl−(1+�)dl )n, (155)

and finally applying Lemma 4 we have

� F
N1−1
R,�ε<2k

(
Kξln(R0)

)
< 4M

2(s−1)
1 μ((s−1)(1+�)dl+1+ξl−(1+�)dl )n

< 4M
2(s−1)
1 μ−(θl,m+hl)n. (156)

This proves estimate (143).

Proof of Lemma 19. By definition of admissible pseudotrajectory∣∣G�ε(r̃i )− ri+1 (mod k)

∣∣� (3+ 2M1)γ
′ and

∣∣G�ε(r̃j )− rj+1 (mod k)

∣∣� (3+ 2M1)γ
′.

For any point (in particular, for ri+1 (mod k)) from testing rectangle Πni+1 (mod k)+1 its
y-coordinate � (1+ δ)μ−ni+1 (mod k)+1 .

For any point (in particular, for rj+1 (mod k)) from testing rectangle Πnj+1 (mod k)+1 its
y-coordinate � (1− δ)μ−nj+1 (mod k)+1 . Therefore

|ri+1 (mod k) − rj+1 (mod k)|� (1− δ)μ−nj+1 (mod k)+1 − (1+ δ)μ−ni+1 (mod k)+1

� (1− δ)μ−dl+1n − (1+ δ)μ−dln

= (
(1− δ)− (1+ δ)μ−(dl−dl+1)n

)
μ−dl+1n. (157)
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This gives the following:

∣∣G�ε(r̃i )−G�ε(r̃j )
∣∣

� |ri+1 (mod k) − rj+1 (mod k)| −
∣∣G�ε(r̃i )− ri+1 (mod k)

∣∣− ∣∣G�ε(r̃j )− rj+1 (mod k)

∣∣
�
(
(1− δ)− (1+ δ)μ−(dl−dl+1)n − 2(3+ 2M1)γ

′μdl+1n
)
μ−dl+1n. (158)

Finally we get

|r̃i − r̃j |� M−1
1

∣∣G�ε(r̃i )−G�ε(r̃j )
∣∣

� M−1
1

(
(1− δ)− (1+ δ)μ−(dl−dl+1)n − 2(3+ 2M1)γ

′μdl+1n
)
μ−dl+1n. (159)

Lemma 19 is proved. �
Proof of Lemma 20. By definition of admissible pseudotrajectory∣∣G�ε(r̃i )− ri+1 (mod k)

∣∣� (3+ 2M1)γ
′ and

∣∣G�ε(r̃j )− rj+1 (mod k)

∣∣� (3+ 2M1)γ
′.

By definition of a scattered pseudotrajectory we have

|ri+1 (mod k) − rj+1 (mod k)|� γ ′′.

This implies

∣∣G�ε(r̃i )−G�ε(r̃j )
∣∣

� |ri+1 (mod k) − rj+1 (mod k)| −
∣∣G�ε(r̃i )− ri+1 (mod k)

∣∣− ∣∣G�ε(r̃j )− rj+1 (mod k)

∣∣
� γ ′′ − 2(3+ 2M1)γ

′. (160)

Finally we have

|r̃i − r̃j |� M−1
1

(
1− 2(3+ 2M1)γ

′(γ ′′)−1)γ ′′
Lemma 20 is proven. �
11.9. Estimates of constants in Auxiliary Theorem I

The last estimate in (133) gives Auxiliary Theorem I, as explained in Section 3.1. To finish
the proof we just need to estimate the constants Cs , hs(ℵ) and N∗(s,ℵ).

Estimate hs(ℵ) first. We can take hs(ℵ) = minl=1,...,s hl . By our choice (Definition 19)
hl = β(2s+2)l+1, therefore minl hl = hs = β(2s+2)s+1. So we can take

hs = β2s2+2s+1 = (
5s2ℵ−1(1+�)

)−(2s2+2s+1)
.

To estimate Cs note that we can take Cs � (s!s2s)C∗s (to ensure that (28) implies (26)),
C∗s = sC̃s (to ensure that (108) implies (105)), and C̃s given by (144). This implies that we
can take Cs = exp(s2(A+ 9 ln s)), where A depends on {M1, δ, ζ } only.
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To estimate how large N∗(s,ℵ) should be taken, let us recall that we made an assumption
that period n is large enough in the proof of Lemma 3, in the proof of Proposition 4, assuming
that inequality (70) holds, and in Remarks 15 and 16. In all these cases the assumption could
be written in the form A1A

−s
2 μ−A3n < 1, where constants A1,A2 > 0 depend on parameters W

only, and A3 � hs = (5s2ℵ−1(1+�))−(2s2+2s+1). Therefore all these assumptions follows from
the condition n > N∗(s,ℵ) > (lnA1 − s lnA2)/(A3 lnμ). In particular, we can take

N∗(s,ℵ)= Bs
(
5s2ℵ−1(1+�)

)2s2+2s+1
,

where B depends on parameters W only.

12. Prevalence of hyperbolicity of localized periodic orbits

In this section we prove Auxiliary Theorem II stated in Section 4.3.

12.1. Hyperbolicity of linear operators

Recall that a linear operator A : RN → R
N is hyperbolic if it has no eigenvalues on the unit

circle {|z| = 1} ⊂ C. Denote by | · | the Euclidean norm in C
N . Define the hyperbolicity of a

linear operator L by

Hyp(A)= inf
φ∈[0,1)

inf|v|=1

∣∣Av− exp(2πiφ)v
∣∣. (161)

It is clear that a linear operator A is hyperbolic if and only if Hyp(A)= 0.
This notion of hyperbolicity (in some cases more appropriate than the minimum distance of

the eigenvalues of A from the unit circle in C) was introduced and studied in [22]. In particular,
we need the following statements proved in Appendix D of [22].

Lemma 22. For any pair of linear operators L and � of R
N into itself, hyperbolicity satisfies

the estimate

Hyp(L+�) � Hyp(L)− ‖�‖. (162)

Proof. By the definition of hyperbolicity,

Hyp(L+�)= inf
φ∈[0,1)

inf‖v‖=1

∣∣(L+�)v− exp(2πiφ)v
∣∣. (163)

By triangle inequality, for all v ∈R
N ,∣∣(L+�)v − exp(2πiφ)v

∣∣� ∣∣Lv − exp(2πiφ)v
∣∣− |�v|. (164)

This implies the statement of Lemma 22. �
Proposition 5. [22, Proposition A.5] Let r � 1 � K be positive numbers and A,B be linear
operators of R

N into itself given by N ×N matrices from MN(R) with real entries. Consider an
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N2-parameter family {AU =A+UB}
U∈CN2

(r)
, where CN2

(r) is the cube in MN(R) whose en-

tries are bounded in absolute value by r . Suppose that ‖B‖, ‖B−1‖� K . Then for the Lebesgue
product probability measure μr,N2 on the cube CN2

(r) and all 0 < γ � min(r,1), we have

μr,N2

{
U ∈ CN2

(r) |Hyp(AU) � γ
}

� C(N)K2N2
γ

r2
, (165)

where the constant C(N) depends only on N .

12.2. Completely scattered periodic orbits of given type

Set initial parameters of the problem W = {μ,λ,M1,M2,V , δ, ζ }. Introduce the following
sets in space of parameters HB<2s(ζ ):

X
non-hyp
W

[f, s, s′] = {�ε ∈HB<2s(ζ )
∣∣ f�ε has a non-hyperbolic (V, s′)-localized periodic orbit

}
.

(166)

Recall that ν<2s is the Lebesgue product probability measure on HB<2s(ζ ), as defined by (12).
Auxiliary Theorem II is equivalent to the following equality:

ν<2s

{
s⋃

s′=1

X
non-hyp
W

[f, s, s′]
}
= 0.

Therefore we need to show that for each s′ = 1, . . . , s

ν<2s

{
X

non-hyp
W

[f, s, s′]}= 0. (167)

To show that perturbations of f do not have non-hyperbolic s′-loop periodic orbits for
ν<2s′ -almost every perturbation, our method requires to consider polynomial perturbations of
degree 2s′ − 1. Therefore we can reduce the space of parameters for s′ < s in the following way.
Introduce the sets:

Xred
W [f, s′] = {�ε ∈HB<2s′(ζ )

∣∣ f�ε has a non-hyperbolic (V, s′)-localized periodic orbit
}
. (168)

Using Fubini reduction from Section 3.2 one can show that if f̃ (x̃, ỹ)= f (x̃, ỹ)+ �Φ�ε�2s′,<2s
(x̃, ỹ)

and

ν<2s′
{
Xred

W [f̃ , s′]}= 0 (169)

for all �ε�2s′,<2s , then (167) holds. So we need to prove (169) in order to prove Auxiliary Theo-
rem II.

Definition 33. An (V, s′)-localized periodic orbit is called ρ-completely scattered if the distance
between starting points of any two different loops is at least ρ.
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Define

Xscatt
W [f̃ ,Ns′ , ρ] =

{�ε<2s′ ∈HB<2s′(ζ )
∣∣ f�ε has a non-hyperbolic (V, s)-localized ρ-completely

scattered periodic orbit of type Ns′
}
. (170)

For any s′-loop periodic orbit it is ρ-scattered for some ρ > 0. Therefore Xred
W
[f̃ , s′] can be

decomposed into the countable union

X
reg
W
[f̃ , s′] =

⋃
m∈N

⋃
Ns′

Xscatt
W

[
f̃ ,Ns′ ,

1

m

]
.

Therefore we reduce (169) and, therefore, Auxiliary Theorem II to the following statement:

For each type Ns′ and each ρ > 0 we have ν<2s′
{
Xscatt

W [f̃ ,Ns′ , ρ]
}= 0. (171)

12.3. Admissible periodic orbits of small hyperbolicity

To prove (171) we fix type Ns′ = (n1, . . . , ns′), ρ > 0, and consider grids of a small size
γ � ρ (see Sections 8.1–8.3). By Proposition 3 for any ρ-completely scattered s′-loop periodic
orbit P= {p0, . . . , pn−1} of a map f�ε<2s′ there exists a γ -admissible (see Definition 23) periodic
pseudo-orbit R = {r0, . . . , rn−1} of the same type which is (ρ − 4γ )-completely scattered and
dist(pi, ri) � 2γ , i = 0, . . . , n− 1.

Calculations similar to (60) show that∥∥Df n
�ε<2s′ (p0)− Fn

R,�ε<2s′ (r0)
∥∥�

[
2s′Ms′−1

1 M2μ
n−s′]γ,

so (by Lemma 22) if Hyp(Df n
�ε (p0))= 0 then

Hyp
(
Fn

R,�ε<2s′ (r0)
)
�
[
2s′Ms′−1

1 M2μ
n−s′]γ.

Define the following sets

Xadm
W [f̃ ,Ns′ , ρ, γ ] = {�ε ∈HB<2s′(ζ )

∣∣ f�ε<2s′ has a γ -admissible (ρ − 4γ )-completely

scattered (V, s′)-localized periodic orbit R of type Ns′ such that

Hyp
(
Fn

R,�ε<2s′ (r0)
)
�
[
2s′Ms′−1

1 M2μ
n−s′]γ }. (172)

We have for all γ < ρ/10

Xadm
W [f̃ ,Ns′ , ρ, γ ] ⊃Xscatt

W [f̃ ,Ns′ , ρ].

A set Xscatt
W
[f̃ ,Ns′ , ρ] does not depend on γ , and

ν<2s′
{
Xscatt

W [f̃ ,Ns′ , ρ]
}

� ν<2s′
(
Xadm

W [f̃ ,Ns′ , ρ, γ ]).
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Therefore to prove that ν<2s′ {Xscatt
W
[f̃ ,Ns′ , ρ]} = 0 it is enough to show that

ν<2s′
{
Xadm

W [f̃ ,Ns′ , ρ, γ ]}� C(f̃ ,W,Ns′ , ρ)γ. (173)

Take any ρ-completely scattered γ -admissible pseudo-orbit R = {r0, . . . , rn−1} of type Ns′ .
Recall that we denote the intersection of R with U (with Ũ ) by Rs′ = {r0, . . . , rs′−1} (by
R̃s′ = {r̃0, . . . , r̃s′−1} respectively). Note that the entire pseudo-orbit R is uniquely defined by
the choice of set Rs′ = {r0, . . . , rs−1}, where ri ∈Πni+1(γ ). By Lemma 10 there exist at most
(9δ2γ−2)s

′
different sets Rs′ with this property. For each Rs′ = {r0, . . . , rs−1}, ri ∈ Πni+1(γ ),

which is (ρ − 4γ )-scattered (that is, dist(ri , rj ) � ρ − 4γ for each pair i �= j ), define a set of
parameters

Xfixed
W [f̃ , γ,Rs′ ] =

{�ε ∈HB<2s′(ζ )
∣∣ f�ε has a γ -admissible (V, s′)-localized periodic

orbit R such that Rs′ is the ordered set of starting points of its loops and

Hyp
(
Fn

R,�ε<2s′ (r0)
)
�
[
2s′Ms′−1

1 M2μ
n−s′]γ }. (174)

We will prove that for any (ρ − 4γ )-completely scattered set Rs′ and γ � ρ we have

ν<2s′
{
Xfixed

W [f̃ , γ,Rs′ ]
}

� C∗(f̃ ,W,Ns′ , ρ)γ 2s′+1. (175)

This will imply that

ν<2s′
{
Xadm

W [f̃ ,Ns′ , ρ, γ ]}
� ν<2s′

( ⋃
{Rs′ |Rs′ is (ρ−4γ )-completely scattered}

Xfixed
W [f̃ , γ,Rs′ ]

)

�
(
9δ2γ−2)s′ ·C∗(f̃ ,W,Ns′ , ρ)γ 2s′+1 = C(f̃ ,W,Ns′ , ρ)γ, (176)

which is exactly the required estimate (173). Therefore we reduced the proof of Auxiliary Theo-
rem II to the estimate (175).

12.4. Newton Interpolation Polynomials and estimates of the measure of “bad” parameters

To prove (175) we follow exactly the same strategy as to prove (108). The key element is
application of Discretization Method from Section 11. Actually we need just estimates from
Section 11.5. Combining estimates (126)–(128) for j = 0, . . . , s′ − 1 we get an estimate of prob-
ability of Rs′ being γ -admissible pseudo-orbit. To estimate probability of non-hyperbolicity we
apply Proposition 5 with matrix N = 2, the unperturbed 2 × 2 matrix A = Fn

R,0(r0), matrix
B = Const ·Fn−1

R,0 (r0), and U = {uq
αm}q,m=1,2. Indeed, calculation from Section 11.8 and, in par-

ticular, expression (152) shows that the corresponding composition of linearizations Fn
R,�ε<2s′

(r0)

written in dynamical Newton basis has the form (152) and by (153) we have that

Const=
s′−1∏

|r̃s′ − r̃j |−2.
j=0
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Now we substitute (129), the family (152), and the proof of it by (5), the family

{
Fn

R,�ε<2s′ (r0)= Fn
R,0(r0)+ConstU · Fn−1

R,0 (r0)
}
U∈C4(ζ/(1−4δ))

,

and Proposition 5. We get

ν2s′−1

{
�udyn

2s′−1,Ik
∈HB2s′−1

(
ζ

1− 4δ

) ∣∣∣ Hyp
(
Fn

R,�ε<2s′ (r0)
)
�
[
2s′Ms′−1

1 M2μ
n−s′]γ}

� (1− 4δ)−2s′

ζ 2
2s′[2s′Ms′−1

1 M2μ
n−s′] M8n

1

s′−1∏
j=0

|r̃s′ − r̃j |−2γ. (177)

Denote the right-hand side by Prob-non-hyp(Rs′, n,M1, ζ, δ, γ ).
Combining (126–128) for q = 0, . . . , s′ − 1 we derive an analog of (130)

ν<2s′
{
Xfixed

W [f̃ , γ,Rs′ ]
}

� (1− 4δ)−2s′(2s′+1)Prob-non-hyp(R̃s′ , n,M1, ζ, δ, γ )

×
s′−1∏
j=0

Probj (R̃j+1, γ, ζ, δ). (178)

Products of distances in {Probj }j and in Prob-non-hyp are bounded from below by powers
of (ρ − 4γ ). Provided that γ � ρ we could replace (ρ − 4γ ) by ρ/2. All the other constants
depend on parameters of the problem W and are uniform. This proves (175) and, therefore,
complete the proof of Auxiliary Theorem II.

13. Nonlinear results

13.1. The proof of the main result for a non-resonant saddle fixed point

Consider a Cr smooth diffeomorphism f :M → M of a smooth compact surface M

with r � 2. Suppose p′ = f (p′) is a non-resonant saddle fixed point, i.e. eigenvalues |λ|< 1 <

|μ| of Df (p′) have no integer relations λn1μn2 = 1. Suppose it has a homoclinic tangency at
some point q ′. Let q̃ ′ = f−1(q ′). Since p′ is non-resonant, by Sternberg’s linearization theorem,
in a small neighborhood of p′ there is a Cr smooth normal coordinate system (x, y) such that
f (x, y) = (λx,μy) in it. Extend the coordinate neighborhood by iterating forward and back-
ward until the first time it contains q̃ and q respectively. Denote such a neighborhood by V ′′ and
call a normal neighborhood. Similarly extend the coordinate neighborhood by iterating forward
and backward until the first time it contains q̃ and f (q) respectively. Denote it by V ′. By def-
inition V ′ does not contain q (see Fig. 9). Consider a neighborhood U ′ (respectively Ũ ′ ⊂ Û ′)
of q ′ (respectively q̃ ′) such that f (U ′) ∩U ′ = ∅ (respectively f−1(Û ′) ∩ Û ′ = ∅), f (Ũ ′)⊃ U ′,
and f (Û) ∩ V = ∅. Consider the normal chart T :V ′′ → R

2 as a subset of R
2 and denote it by

T (V ′)= V . Denote T (q̃ ′)= q̃, T (q ′)= q, and T (p′)= p respectively. As the result we get Cr

smooth transition maps from Ũ ′ ⊂ Û ′ (respectively U ′) into Ũ ⊂ Û (respectively U ), both are
restrictions of T .
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Fig. 9. A non-resonant saddle fixed point.

The family of perturbations (9) becomes

f�ε(x′, y′)=
{

f0(x
′, y′), if (x′, y′) ∈ V ′ \ Û ′,

T −1 ◦G�ε ◦ T (x′, y′), if (x′, y′) ∈ Ũ ′.
(179)

In the linearized coordinates this family has the following form:

f�ε(x, y)=
{

L(x, y), if (x, y) ∈ V \ Û ,

G�ε(x, y), if (x, y) ∈ Ũ .
(180)

Then Theorems A, B, A′, and B′ holds true for this family.

Remark 17. Probably it would be more natural to consider the following family of perturbations

f�ε(x′, y′)=
{

f0(x
′, y′), if (x′, y′) ∈ V ′ \U ′,

G′�ε(x
′, y′), if (x′, y′) ∈ Ũ ′. (181)

It seems that our method still works for this family. However, this leads to variety of technical
complications in the proof so we omit detailed explanation.

13.2. Statement of the main result for saddle periodic points with homoclinic tangency

Consider a Cr smooth diffeomorphism f :M → M of a smooth compact surface M

with r � 2. Suppose p′ = f k(p′) is a non-resonant saddle periodic point for some integer k, i.e.
eigenvalues |λ|< 1 < |μ| of Df k(p′) have no integer relations λn1μn2 = 1. Denote by Ws(p′)
and Wu(p′) stable and unstable manifolds of p′. Suppose p′ has a homoclinic tangency at some
point q ′, i.e. Ws(p′) and Wu(p′) contain and do not transverse at q ′. Let q̃ ′ = f−k(q ′). Since p′
is non-resonant, by Sternberg’s linearization theorem, in a small neighborhood of p′ there is a
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Cr smooth normal coordinate system (x, y)⊂ Ṽ ′ such that f k(x, y)= (λx,μy). Extend the co-
ordinate neighborhood by iterating forward and backward until the first time it contains q̃ and q

respectively. Denote such a neighborhood by V ′′0 (p′). Similarly extend the coordinate neighbor-
hood by iterating forward and backward until the first time it contains q̃ and f (q) respectively.
Denote it by V ′0(p′) and call a normal neighborhood. By definition V ′0(p′) does not contain q

(see Fig. 9). Consider images of V ′0(p′), denoted V ′j (p′) = f j (V ′(p′)) for j = 1, . . . , k − 1.

Even by decreasing V ′0(p′) we cannot not claim that V ′j (p′)’s are pairwise disjoint.11 Consider

a neighborhood U ′ (respectively Ũ ′ ⊂ Û ′) of q ′ (respectively q̃ ′) such that f (U ′) ∩U ′ = ∅ (re-
spectively f−1(Û ′) ∩ Û ′ = ∅), f (Ũ ′) ⊃ U ′, f (Û ′) ∩ V ′ = ∅, and both U ′ and Ũ ′ are disjoint
from

⋃k−1
j=0 V ′j (p′). This is always possible to achieve by decreasing corresponding V ’s and U ’s,

because q ′ and q̃ ′ belongs to Ws(p′) ∩Wu(p′) and therefore, cannot belong to Ws(f j (p′)) or
Wu(f j (p′)) for j = 1, . . . , k − 1. Indeed, under forward (respectively backward) f k-iterates it
should converge only to p. After such a choice of U ′ and Ũ ′ we reduce the case of a saddle
periodic point with a homoclinic tangency to the case of a saddle fixed point with a homoclinic
tangency. Namely, we consider only V-localized sets for f k (not f !) defined as in Definition 1
with f replaced by f k .

Consider the normal neighborhood T :V ′′0 (p′) → R
2 as a subset of R

2 and denote it by
T (V ′(p′)) = V . Denote T (q̃ ′) = q̃ , T (q ′) = q , and T (p′) = p respectively. As the result we
get Cr smooth transition map from Ũ ′ ⊂ Û ′ and U ′ into Ũ ⊂ Û and U respectively, which
we also denote by T . Consider the images f k−1(Ũ ′) = Ũ ′k−1 ⊂ f k−1(Û ′) = Û ′k−1. The maps

T ◦f 1−k induces charts on Ũ ′k−1 and Û ′k−1. Notice that because of the way charts are defined the

map f k−1 restricted to Û ′ is the identity map. With respect to these charts we consider the fam-
ily of maps of perturbations of the form (179) with T replaced by T ◦ f 1−k and the family {f�ε}
replaced by the family {f k

�ε }. The rest of the proof is the same as in Section 13.1.

14. Auxiliary computations

14.1. Proof of Addendum 2.1

Proof of Addendum 2.1. We need to choose a sequence {Ns(ℵ)}s in such a way that the series
(42) is convergent. For any period n and cyclicity s there exists at most ns different types Ns ,
|Ns | = n, so it is enough to require the convergence of the following series:∑

s∈N

∑
n�Ns (ℵ)

nsCsμ
−hs (ℵ)n. (182)

It is enough to choose Ns(ℵ) in such a way that for some s0 ∈ N the following inequality holds
for each s � s0: ∑

n�Ns (ℵ)

nsCsμ
−hs (ℵ)n < e−s . (183)

This is equivalent to the following:

11 Moreover, there are examples when this property have to fail.
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∞∑
m=0

(
m+Ns(ℵ)

)s
Csμ

−hs (ℵ)(m+Ns (ℵ)) < e−s , or (184)

∞∑
m=0

exp
{
s2(A+ 9 ln s)+ s ln

(
m+Ns(ℵ)

)+ s − β2s2+2s+1(lnμ)
(
m+Ns(ℵ)

)}
< 1,

where β =ℵ/(5s2(1+�)). Since ln(m+Ns(ℵ)) � ln(Ns(ℵ))+m/Ns(ℵ), we have

∞∑
m=0

exp
{
s2(A+ 9 ln s)+ s ln

(
m+Ns(ℵ)

)+ s − β2s2+2s+1(lnμ)
(
m+Ns(ℵ)

)}
� exp

{
s2(A+ 9 ln s)+ s ln

(
Ns(ℵ)

)+ s − β2s2+2s+1(lnμ)Ns(ℵ)
}

×
∞∑

m=0

exp

[(
s

Ns(ℵ)
− β2s2+2s+1(lnμ)

)
m

]
. (185)

We can set the following condition in advance:

Ns(ℵ) >
2s

β2s2+2s+1 lnμ
. (186)

In this case

∞∑
m=0

exp

[(
s

Ns(ℵ)
− β2s2+2s+1 lnμ

)
m

]
�

∞∑
m=0

(
exp

(
−1

2
β2s2+2s+1 lnμ

)
m

)

= 1

1− exp(− 1
2β2s2+2s+1 lnμ)

. (187)

Take s0 such that for s � s0 the inequality holds β2s2+2s+1 lnμ < 1. For any y ∈ (0,1) the in-
equality holds 1/(1− e−y) < 2y−1. This implies that the value (185) for s � s0 can be estimated
from above by

4

β2s2+2s+1 lnμ
exp

{
s2(A+ 9 ln s)+ s + s ln

(
Ns(ℵ)

)− β2s2+2s+1(lnμ)Ns(ℵ)
}
. (188)

To estimate (188) we use the following lemma.

Lemma 23. Given s ∈N, for any X1,X2,X3 > 0 such that

X2 + lnX1 − s lnX3 > s ln(3s), (189)

and for any N � 3sX−1
3 (X2 + lnX1 − s lnX3) the inequality holds

X1 exp(X2 + s lnN −X3N) < 1.
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Proof. Substitution Ñ =X3N reduce the statement of Lemma 23 to the following one.
For any X1,X2,X3 > 0 such that (189) holds and for any Ñ � 3s(X2 + lnX1 − s lnX3) the

inequality holds

X1 exp(X2 − s lnX3 + s ln Ñ − Ñ) < 1. (190)

Inequality (190) is equivalent to the inequality

X2 + lnX1 − s lnX3 + s ln Ñ − Ñ < 0.

Denote Y =X2+ lnX1− s lnX3. Note that we reduced the proof of Lemma 23 to the following
one. �
Lemma 24. Given s ∈N, for any Y > s ln(3s) and Ñ � 3sY the inequality holds

Y + s ln Ñ − Ñ < 0. (191)

Proof. Set Ñ = 3sY�, where � � 1. Inequality (191) is equivalent to the inequality

Y + s ln(3s)+ s lnY + s ln�− 3sY� < 0. (192)

We will prove that

Y + s ln(3s)+ s lnY − 3sY < 0 and (193)

s ln�− 3sY (�− 1) � 0. (194)

Sum of these two inequalities gives (192) and, therefore, this will prove Lemma 24.
Let us show that (193) holds.

−Y + s ln(3s) < 0

$⇒ Y(1− 2s)+ s ln(3s) < 0

$⇒ Y + s ln(3s)+ sY − 3sY < 0

$⇒ Y + s ln(3s)+ s lnY − 3sY < 0. (195)

Now let us show that (194) holds.

∀s ∈N 1 < s ln(3s) < Y

$⇒ 1− 3Y < 0

$⇒ s − 3sY < 0

$⇒ s(�− 1)− 3sY (�− 1) � 0

$⇒ s ln�− 3sY (�− 1) � 0. (196)

Lemma 24 (and, therefore, Lemma 23) is proved. �
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Apply Lemma 23 to

X1 = 4

β2s2+2s+1 lnμ
, X2 = s2(A+ 9 ln s)+ s, X3 = β2s2+2s+1 lnμ. (197)

Check the condition (189) for s � s0:

X1 � 2, X3 � 1

2
$⇒ X2 + lnX1 − s lnX3 > X2 > As2 > s ln(3s)

for any A > 3. Therefore the quantity (188) is less than 1 (and, hence, the inequality (183) holds)
for any

Ns(ℵ) � 3s
(5s2ℵ−1(1+�))2s2+2s+1

lnμ

(
s2(A+ 9 ln s)+ s + ln 4− (s + 1) ln lnμ

− (
2s2 + 2s + 1

)
(s + 1)

(
lnℵ− ln

(
5s2)− ln(1+�)

))
. (198)

In particular, we can take

Ns(ℵ)= 3s
(
Bs4 − (

2s2 + 2s + 1
)
(s + 1) lnℵ) (5s2ℵ−1(1+�))2s2+2s+1

lnμ
,

where B = B(W) depends on parameters of the problem. It is clear that in this case condition
(186) holds and we can satisfy the requirement Ns(ℵ) > N∗(s,ℵ) (increasing B, if necessary).
Addendum 2.1 is proved. �
14.2. Proof of Lemma 7

The proof is by induction on the number of edges. Lemma 7 holds for a graph loop, i.e. a graph
with one edge and one vertex.

Now take a connected oriented pseudograph such that at each vertex the number of ingoing
edges is equal to the number of outgoing edges. Take any vertex and let us construct an oriented
path without repeating edges. After each edge added to the path check whether any two vertices
of the path coincide. If no two vertices coincide, we can continue to construct the path. Indeed,
at each vertex the number of ingoing edges is equal to the number of outgoing edges. Therefore
at last vertex of the path at least one edge is outgoing. The number of edges of the initial pseudo-
graph is finite, so at some moment two vertices of the path coincide. Hence the part of the path
which begins and ends at this vertex is a cycle, and by construction this cycle is properly oriented.
Remove the edges of this cycle from the initial pseudograph. For any vertex or no edges were
removed either one ingoing and one outgoing edge were removed. Therefore for each connected
component of the rest (if the rest does contain any edges) the claim of lemma can be applied by
induction. This completes the proof of Lemma 7.

15. Notations

• L – linear part of the map;
• 0 < λ < 1 < μ – eigenvalues of L, �=−(lnλ)/(lnμ);
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• f – initial map;
• q, q̃ = f−1(q) – homoclinic points;
• {f�ε} – family of maps under consideration;
• G – parabolic part of the initial map;
• {G�ε} – corresponding family;
• U, Ũ – neighborhoods of q and q̃;
• δ – size of U and Ũ ;
• V – a neighborhood of a homoclinic contour;
• Λ – maximal invariant set of f in V ;
• P= {p0, . . . , pn−1} – a periodic point of f�ε;
• n – period of a periodic orbit;
• s and s′ � s – number of loops of periodic orbits;
• k � s – number of loops of a pseudotrajectories under consideration;
• (Φ1

�ε ,Φ2
�ε ) – family of analytic perturbation;

• (Φ1
�ε<2s

,Φ2
�ε<2s

) – family of perturbations by polynomials of degree 2s − 1;

• �ε = {εk
ij } – family of parameters;

• �ε<2s = {εk
ij }i+j<2s – family of parameters of degree 2s − 1;

• HB(ζ ) – the space of parameters for unbounded cyclicity;
• HB<2s(ζ ) – the space of parameters for cyclicity s;
• ζ – size of the cube of parameters;
• M1,M2 – C1 and C2-norms of the family, respectively;
• νk

ij – probability measure on the interval [−ζ, ζ ] & εk
ij ;

• ν – probability measure on HB<2s(ζ );
• N – lower bound of periods of periodic orbits under consideration;
• ℵ,C – constants in a definition of (C,μ,ℵ)-trace hyperbolic point;
• Ns = (n1, . . . , ns) – type of an s-loop periodic orbit of type Ns ;
• |Ns | = n1 + · · · + ns + s – period of an s-loop periodic orbit of type Ns ;
• Ps = {p0, . . . ,ps−1} – points of an intersection of a periodic s-loop orbit P with a neighbor-

hood U ;
• P̃s = {p̃0, . . . , p̃s−1} – points of an intersection of a periodic s-loop orbit P with a neighbor-

hood Ũ ;
• hs ,Cs,C

∗
s ,C′s – constants in estimates of the measure of “bad” parameters for a given type

of periodic orbits;
• β, {di}, {bi} – constants in a definition of short and long loops;
• l = l(Ns) – shape of a periodic orbit of type Ns ;
• Nk ⊆l Ns – an l-subtype of a type Ns ;
• t – number of generalized loops;
• τ = t (Nk) – number of generalized loops of scattered pseudo-orbit;
• Nj – length of j th generalized loop;
• n∗j + 1 – length of the j th long loop;
• P = {P0, . . . ,Pt−1} – starting points of generalized loops;
• P̃j = f−1(Pj+1) – ending point of the j th generalized loop;
• hj – the number of short loops in j th generalized loop;
• KA(P ) – vertical cone at point P ;
• � KA(P ) – width (an angle) of KA(P );
• ({θl,m}s , ξ) – sizes of cones;
l=1
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• Πn – testing rectangle;
• Π̃n – image of a testing rectangle Πn under Ln;
• Πn(γ ), Π̃n(γ ) – grids of size γ × γμ−n in Πn and of size γ λn × γ in Π̃n, respectively;
• {αl,i}sl=1 – exponents of sizes of grids;
• {γi}t−1

i=0 – scales, γt−i = μ−αl,in, where (l, n) is type;
• m – scale number;
• k′ – number of clouds in Cloud decomposition;
• Z = {z0, . . . , zn−1} – k-loop pseudotrajectory;
• n – period of a pseudotrajectory;
• Zk = {z0, . . . , zk−1} – intersection of Z with U ;
• Z̃k = {z̃0, . . . , z̃k−1} – intersection of Z with Ũ ;
• R= {r0, . . . , rn−1} – admissible pseudotrajectory of period n;
• R= {R0, . . . ,Rt−1} – starting points of generalized loops of an admissible pseudotrajectory;
• Rk = {r0, . . . , rk−1} – intersection of R with U ;
• R̃k = {r̃0, . . . , r̃k−1} – intersection of R with Ũ ;
• FN

Z,�ε(p) – composition of differentials of f�ε in N subsequent points of Z starting at p ∈Z ;
• i0, i1, . . . , iτ−1 – indices of starting points of generalized loops of admissible pseudo-orbit;
• τj – the number of starting points of generalized loops among first j points Rj of admissible

pseudo-orbit;
• Wk,2 – the space of 2-component homogeneous polynomials of degree k in (x, y);
• W

u,Rk

k,2 – the space of 2-component homogeneous polynomials of degree k in (x, y) vanishing
at all the points Rk with the standard basis;

• L2
Rk

– the Newton map of W�2s,2 to W
u,Rk

�2s,2;
• m(v) – the index of maximal component of vector v;
• (p;p0, . . . , pk−1)

α – the standard Newton monomial, where |α| = k;
• α(Γ ) – a symbol which stands for a multiindex α = (α1, α2) ∈ Z

2+ and an oriented right-up
path Γα connecting α with the origin;

• Is – the union of symbols α(Γ ) over all |α|� s;
• (p;p0, . . . , pk−2)

α(Γ ) – the Newton monomial associated with the corresponding oriented
path Γα ;

• Q
dyn
0 (r,Rk) – the dynamically essential Newton monomial vanishing at Rk ;

• Qdyn
Rk
= {Qdyn(p, R̃1),Q

dyn
m (p, R̃1, R̃′1), . . . ,Qdyn(p, R̃k), Q

dyn
m (p, R̃k, R̃′k)}, where m =

1,2 – complete set of dynamically essential monomials;
• W

dyn,Rk

k,2 – the space of 2-component homogeneous polynomials of degree k in (x, y) van-

ishing at all the points Rk with the basis containing Qdyn
Rk

;

• L2,dyn
Rk

– the dynamical Newton map of W�2s,2 to W
dyn,Rk

�2s,2 ;
• pk,m(x0, . . . , xm) – homogeneous polynomial of all monomials of degree k−m in x0, . . . , xm

with unit coefficients;
• DD2,s(B2,R

2) – the space of divided differences;
• N – the set of positive integer numbers;
• Z+ – the set of nonnegative integer numbers.
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Appendix A. Infinite number of localized sinks of bounded cyclicity and Kupka–Smale
property

Definition 34. A diffeomorphism f :M →M of a closed manifold M is called a Kupka–Smale
diffeomorphism, if

(1) all periodic points of f are hyperbolic;
(2) for any two (not necessarily different) periodic points the stable manifold of one is transversal

to the unstable manifold of the other.

Suppose that M is a closed manifold of dimension d � 2, f :M → M is a diffeomor-
phism with hyperbolic periodic point p of period k, i.e. f k(p) = p. Denote dimWu(p) = du,
dimWs(p) = ds , then du + ds = d . Let q ∈ Wu(p) ∩Ws(p) \ p be a homoclinic point. For
small ρ we define a neighborhood Uρ(q) of a homoclinic orbit {f i(q)}i∈Z in the following way.
Set q̃ = f−k(q). Let V ′ρ(p) be a ρ-neighborhood of p. Since p is a hyperbolic periodic point
and ρ is small, one can assume that f k|V ′

ρ′ (p) is topologically conjugated to Df k(p). There are

integers n1 and n2 such that f kn1(q) ∈ V ′ρ(p) and f−kn2(q̃) ∈ V ′ρ(p). Choose a small neighbor-

hood U(q) of q such that f kn1(U(q))⊂ V ′ρ(p). Choose a small neighborhood Ũ(q̃) of q̃ such

that f−kn2(Ũ(q̃))⊂ V ′ρ(p) and f k(Ũ(q̃))⊂U(q). Finally, set

Vρ(p)= V ′ρ(p)

kn1⋃
i=0

f i
(
U(q)

) k−1⋃
i=−kn2

f i
(
Ũρ(q)

)
.

Definition of (U(q), s)-localized periodic orbits is the same as in Definition 3 with V = Vρ(p)

and U =U(q).

Proposition 6. Suppose a C1-diffeomorphism f :M → M has a hyperbolic periodic point
p ∈M with a homoclinic point q . Consider a neighborhood Vρ(p), associated with this homo-
clinic point defined above. For any s ∈ N existence of an infinite number of (U(q), s)-localized
sinks implies that f is not a Kupka–Smale diffeomorphism.

Proof. Consider a sequence of (U(q), s)-localized sinks. Numerate them. Each sink intersects
a neighborhood U(q) at s points, denoted by {pm,pm, . . . ,pm

s } for mth sink. Set pm = pm.
1 2 s+1 1
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Denote p̃i
l = f−k(pi

l+1) ∈ Ũ (q), l = 1, . . . , s. For each i ∈N and l = 1, . . . , s there exists Ni
l ∈N

such that

f kNi
l
(
pi

l

)= p̃i
l .

One can choose a subsequence in such a way that the corresponding sequence of finite sets has a
limit:

{
pi

1,pi
2, . . . ,pi

s

}→ {
p∗1,p∗2, . . . ,p∗s

}
as i→+∞.

It is clear that the following lemma holds.

Lemma 25. For each 1 � l � s there exists a limit limi→∞Ni
l =N∗

l ∈N∪ {∞}, and

p∗l ∈Ws(p) ⇔ p̃∗l ∈Wu(p) ⇔ N∗
l =∞.

Since a limit of a sequence of periodic points of the same period has to be a non-hyperbolic
periodic point we have: if all the limit points {p∗1,p∗2, . . . ,p∗s } does not belong to Ws(p), then the
map f is not a Kupka–Smale diffeomorphism.

Assume that t points out of s points {p∗1,p∗2, . . . ,p∗s } belong to Ws(p) for some t � 1. Denote
them by {q1,q2, . . . ,qt } ⊆ {p∗1,p∗2, . . . ,p∗s }. This implies that t out of s points {p̃∗1, p̃∗2, . . . , p̃∗s }
belong to Wu(p). Denote them by {q̃1, q̃2, . . . , q̃t } ⊆ {p̃∗1, p̃∗2, . . . , p̃∗s }. Set qt+1 = q1, q̃t+1 = q̃1,
N#

max = (s − t)+∑
N∗l �=∞N∗

l . For each j = 1, . . . , t there exists N#
j � N#

max such that

f
kN#

j (q̃j )= qj+1.

In particular, all {q1,q2, . . . ,qt } and {q̃1, q̃2, . . . , q̃t } are homoclinic points.
To show absence of sinks we shall construct an invariant cone field for f in an open subset

of Vρ(p) so that trajectories {pi
j }1�j�m visit it for large i. Below we construct both: an invariant

cone field and a subset.
There exists a continuous invariant (under f k) splitting of a tangent bundle of Vρ(p), TxM =

Es
x ⊕ Eu

x for all x ∈ Vρ(p), dimEs
x = ds and dimEu

x = du. By iterations of f k (respectively
f−k) we can extend this splitting to U(q) (respectively Ũ (q̃)). Assume that stable and unstable
manifolds of the points q1,q2, . . . ,qt intersect transversally (otherwise f is not Kupka–Smale),

i.e. Df
kN#

j (Eu
q̃j

)⊕ Es
qj+1

= Tqj+1M . Consider a cone field in Ũ(q̃) (respectively U(q)) of the
following form:

∀x ∈ Ũ (q̃) K̃u
x (A)= {

v ∈ TxM
∣∣ v = vu + vs, vu ∈Eu

x , vs ∈Es
x,

∣∣vu
∣∣� A

∣∣vs
∣∣},

∀y ∈U(q) Ku
y (A)= {

v ∈ TyM
∣∣ v = vu + vs, vu ∈Eu

y , vs ∈Es
y,

∣∣vu
∣∣� A−1

∣∣vs
∣∣}.

Since Df
kN#

j (Eu
q̃j

)⊕Es
qj+1

= Tqj+1M, for A large enough and each j = 1, . . . , t we have

Df
kN#

j
(
K̃u

q (A)
)⊂Ku

q (A).

j j+1
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Take small δ > 0 and consider δ-neighborhoods Uδ(q̃j ), j = 1, . . . , t . Due to the continuity of
stable and unstable subbundles, if A is large and δ is small enough, for all x ∈ Ũδ(q̃j ) we have

Df
kN#

j
(
K̃u

x (A)
)⊂Ku

f
kN#

j (x)

(A).

Decreasing δ, if necessary, we can also get the following property. For any point y ∈ Uδ(q̃j )

such that for some positive integer Ny the finite orbit {y,f k(y), . . . , f Nyk(y)} forms a one loop,
i.e. belongs to a set

Vρ(p)

n1⋃
i=1

f ik
(
U(q)

) 0⋃
i=−n2

f ik
(
Ũ (q̃)

)
,

and with f ik(y) ∈U(q) only for i =Ny the following inclusion holds

Df Nyk
(
Ku

y (A)
)⊂ K̃u

f Nyk(y)
(A).

Moreover,

∀v ∈Ku
y (A)

∣∣Df Nyk(v)
∣∣� 2M

N#
max

1 |v|,

where M1 =max{‖f ‖C1 ,‖f−1‖C1}.
Therefore for any s-loop periodic orbit P from the initial subsequence whose intersection

with U(q) is close enough to the set {p∗1,p∗2, . . . ,p∗s } we have the following combinatorics. By
construction return P∩U are either close to {q1,q2, . . . ,qt } and belong to their δ-neighborhood
or do not belong there and length of the corresponding loops following after them is bounded.
More exactly, the sum of lengths of all such loops is bounded by N#

max. This implies distortion
of vectors is bounded and, therefore, for any y ∈Uδ(qj ) that is a starting point of a loop,

∀v ∈Ku
y (A)

∣∣Df
kNy+kN#

j (v)
∣∣� 2|v| and

Df
kNy+kN#

j (v) ∈Ku

f
kNy+kN#

j (y)

(A).

Therefore, some vectors in its tangent space are expanding after each “generalized” loop, i.e.
a loop starting at Uδ(qi ) and ending at Uδ(qj ) for some 1 � i, j � t . This is impossible for a
sink. This contradiction proves Proposition 6. �
Appendix B. Estimate of measure of “non-hyperbolic” parameters

Here we reproduce the proof of Proposition 5 (Proposition A.5. from [22]).

Proof of Proposition 5. For 0 < γ � 1 and φ ∈ [0,1), define the sets of non-γ -hyperbolic
matrices by
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NHγ

N(R)= {
L ∈MN(R) |Hyp(L) � γ

}
,

NHγ,φ

N (R)=
{
L ∈MN(R)

∣∣ inf|v|=1

∣∣(L− exp(2πiφ)
)
v
∣∣� γ

}
. (198)

Then

NHγ

N(R)=
⋃

φ∈[0,1)

NHγ,φ

N (R). (199)

We claim that

NHγ

N(R)⊂
⋃

j=0,...,[5/γ ]−1

NH2γ,j/[5/γ ]
N (R). (200)

Indeed, suppose that L ∈ NHγ

N(R). Then for some number φ ∈ [0,1) and vector v ∈ RN with
|v| = 1, we have |(L− exp(2πiφ))v| � γ . Let j be the nearest integer to [5/γ ]φ and let φγ =
j/[5/γ ]; then φ − φγ � 1/(2(5/γ − 1)) < γ/(2π). Thus

∣∣(L− exp(2πiφγ )
)
v
∣∣� ∣∣(L− exp(2πiφ)

)
v
∣∣+ ∣∣exp(2πiφ)− exp(2πiφγ )

∣∣� 2γ, (201)

and L ∈ NH2γ,j/[π/γ+1]
N (R) as claimed.

Next, we claim that every matrix in NH2γ,j/[5/γ ]
N (R) lies within 2γ of a matrix in

NH0,j/[5/γ ]
N (R), where we use the Euclidean (RN2

) norm on MN(R) (not the matrix norm).

Consider L ∈NH
2γ,j/[5/γ ]
N (R), φ ∈ [0,1), and v ∈R

N with |v| = 1 and

∣∣(L− exp
(
2πij/[5/γ ]))v∣∣� 2γ.

Let w = (L − exp(2πij/[5/γ ]))v and let M ∈MN(R) be the matrix whose kth row is wkv,
where wk is the kth coordinate of w. Then the Euclidean norm of M is |w|� 2γ and Mv = w,
so that (L−M − exp(2πij/[5/γ ]))v = 0 and hence L−M ∈ NH0,j/[5/γ ]

N (R).
We complete the estimate (165) by estimating for each j the number of γ -balls needed to

cover NH0,j/[5/γ ]
N (R) within an appropriate bounded domain. It then follows from the previous

paragraph that if we inflate each of these balls to the concentric ball of radius 3γ , the collection
of larger balls will cover NH2γ,j/[5/γ ]

N (R), and from the paragraph before that the union over j

of these covers will then cover NHγ

N(R). To this end, we show that each NH0,j/[5/γ ]
N (R) is a real

algebraic set and compute its codimension.12 Then we will apply an estimate of Yomdin [42] on
the number of γ -balls necessary to cover a given algebraic set by polynomials of known degree.

Notice that

NH0,φ
N (R)= {

L ∈MN(R) | det
(
L− exp(2πiφ)Id

)= 0
}
. (202)

12 Unfortunately NH0
N

(R), in contrast to NH0,j/[5/γ ]
N

(R), is not algebraic.
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We split into the two cases exp(2πiφ) ∈R (that is, φ = 0 or 1/2) and exp(2πiφ) /∈R. In the first
case, the equation det(L± Id)= 0 is a polynomial of degree N in the entries of L, so NH0,0

N (R)

and NH0,1/2
N (R) are real algebraic sets defined by a single polynomial of degree N .

In the second case, decompose the equation det(L − exp(2πiφ)Id) = 0 into two parts:
Re[det(L − exp(2πiφ)Id)] = 0 and Im[det(L − exp(2πiφ)Id)] = 0. Each part is given by a
real polynomial of degree N . Furthermore, these two polynomials are algebraically indepen-
dent, since otherwise Re[det(L− exp(2πiφ)Id)] and Im[det(L− exp(2πiφ)Id)] would satisfy
some polynomial relationship which would imply that det(L − exp(2πiφ)Id) takes on values
only in some real algebraic subset of the complex plane. However, for N � 2 (which is neces-
sary for complex eigenvalues), by considering real diagonal matrices L we see that the values
of det(L− exp(2πiφ)Id) contain an open set in C. Therefore, NH0,φ

N (R) is a real algebraic set
given by two algebraically independent polynomials of degree N .

Covering Lemma for Algebraic Sets. [42, Lemma 4.6] Let V ⊂ R
m be an algebraic set given

by k algebraically independent polynomials p1, . . . , pk of some degrees d1, . . . , dk respectively,
i.e. V = {x ∈Rm | p1(x)= 0, . . . , pk(x)= 0}. Let Cm

A (s) be the cube in Rm with side 2s centered
at some point A. Then for γ � s, the number of γ -balls necessary to cover V ∩Cm

A (s) does not
exceed C(D,m)(2s/γ )m−k , where the constant C(D,m) depends only on the dimension m and
product of degrees D =∏

i di .

Remark 18. Some additional arguments based on Bezout’s Theorem give an upper estimate
of C(D,m) by 2mD for γ sufficiently small.

To complete the proof of Proposition 5, we apply the Covering Lemma for Algebraic Sets to
each NH0,j/[5/γ ](R), where j = 0, . . . , [5/γ ] − 1, with m=N2, s =Kr , and A as in the state-
ment of the proposition. (Notice that if U ∈ CN2

(r) then A+UB ∈ CN2

A (Kr), so we need only
cover the part of NH0,j/[5/γ ](R) lying in the latter set.) In the case that j/[5/γ ] = 0 or 1/2,
we have k = 1, d1 = N , and D = N , so the number of covering γ -balls is bounded by
C(N,N2)(2Kr/γ )N

2−1. In the case of other j , we have k = 2, d1 = d2 = N , and D = N2,
so the number of covering γ -balls is bounded by C(N2,N2)(2Kr/γ )N

2−2. The number of j ’s
of the second type is less than 5/γ . Combining all these estimates along with (200) we get
that NHγ (R) ∩ CN2

A (Kr) can be covered by C(N2,N2)(2 + 5/(2Kr))(2Kr/γ )N
2−1 balls of

radius 3γ .
Finally, notice that the preimage of a ball of radius 3γ under the map U �→ A+UB is con-

tained in a ball of radius 3Kγ , whose μr,N2 -measure is less than (3Kγ/r)N
2
. Therefore the

total measure of 3Kγ -balls needed to cover the set {U ∈ CN2
(r) |Hyp(A+UB) � γ } is at most

C(N)K2N2
γ /r2, where the constant C(N) depends only on N .

Proposition 5 is proved. �
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