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A classical result

Theorem: (Coppersmith 1995) If one knows a factor p ≥ N1/2 of
N to within an error bounded by N1/4, one can find p exactly in
polynomial time.

The method: Use LLL to produce quickly a rational function
h(x) ∈ Q(x) which must have p as a root. The constraints on
h(x) which are used to force this are on the next slide.

Capacity theory: Work of FSCR = (Fekete, Szëgo, Cantor,
Rumely) and others leads to systematic way to decide whether
there are h(x) satisfying these constraints.

One implication: One cannot use such h(x) to improve N1/4 to
Nβ for any β > 1/4.
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Rational functions which constrain factors of N

Given: An integer N and an approximation p̃ to a divisor of N.

Goal: For a given ε > 0, determine if there is a factor p|N so

|p − p̃| < Nε.

We might as well assume p̃ ≥ N1/2.

Let Z = the ring of all algebraic integers.
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Idea: Try to find a non-zero h(x) = hε(x) ∈ Q(x) such that:

(1) h(P) ∈ Z whenever N = PQ and P,Q ∈ Z.

(2) |h(t)| < 1 if t ∈ R and |p̃ − t| ≤ Nε.

One would like to find h(x) in polynomial time (depending on ε).

Then: If p|N in Z and |p̃ − p| ≤ Nε then

h(p) ∈ Z ∩Q = Z and |h(p)| < 1

so h(p) = 0. We can find roots of h(x) quickly, and one is p.
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Why N1/4 is optimal

D. Cantor’s capacity theory on the projective line P1 implies:

Theorem There is a function N(ε) so that for N > N(ε) the
following is true:

(A) If ε < 1/4 there is a rational function hε(x) ∈ Q(x) satisfying
both of the constraints (1) and (2).

(B) If ε > 1/4, no such hε(x) exists when p̃ = N1/2. So one
cannot use this method to find p in this case if ε > 1/4.

Facts:

(1) If p̃ = Nλ for some 1/2 ≤ λ < 1 then one can make an hε(x)
for all ε < λ/2.

(2) In case (A) one can find an hε(x) quickly using LLL. More on
this later.
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Capacity theory and divisors of N
Heuristic: Auxiliary functions provide a ‘magnifying glass’ for
detecting divisors of N which lie in particular subsets of [0,N]
and/or satisfy congruence constraints.

Questions:

(1) (Existence) Given a set of constraints on divisors, when does
there exist an auxiliary h(x) (the magnifying glass) which will
work?

(2) (Algorithms) When one exists, can it be found quickly?

Classical capacity theory gives a very nice answer to (1) for a very
wide class of constraints. When h(x) exists, one can show this by a
Minkowski argument.

To deal with (2), one needs to convert the Minkowski existence
proof to the problem of finding a small vector in a lattice. This
amounts to showing a certain convex symmetric body is closely
approximated by a generalized ellipsoid.
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A jargon-free cartoon of how capacity theory works

Suppose we want to know if there is a polynomial 0 6= h(x) ∈ Z[x ]
which has sup norm less than 1 on an interval [a, b] on the real line.

One approach is to consider:

Vn = the real vector space of all m(x) ∈ R[x ] of degree ≤ n.

Ln = the lattice of h(x) ∈ Vn ∩ Z[x ].

Cn = the convex symmetric subset of all m(x) ∈ Vn with

sup{|m(x)| : x ∈ [a, b]} < 1.

Minkowski: If Vol(Cn) ≥ 2ncovol(Vn/Ln) then there is a non-zero
h(x) ∈ Cn ∩ Ln of the kind we seek.

Capacity theory computes Vol(Cn) asymptotically as n→∞ in
this and much more general contexts.
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A deeper theorem

In the above context, Fekete and Szegö proved that if Vol(Cn) has
an asymptotic growth rate that is too small (by a natural margin)
for the above Minkowski argument to produce an h(x), then in
fact no such h(x) can exist.

They did this by producing infinitely many algebraic integers α
which have all their conjugates in [a, b]. These α are roots of some
other special ‘oscillating’ polynomials constructed first with real
coefficients via potential theory and then corrected to have integer
coefficients.

If the h(x) we were looking for existed, it would have all of these α
as roots, and this is not possible.
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Cantor and Rumely’s work

Cantor and Rumely generalized all of this to rational functions
h(x) on algebraic curves over global fields.

They considered h(x) which have all their poles in a prescribed set,
and which have bounded absolute values on prescribed subsets of
the complex and v -adic points of the curve. Here v ranges over all
finite places of the global field over which the curve is defined.

In the classical case, the curve is the projective line P1 over Q, and
the only poles are at infinity (so one is talking about polynomials).

A subtlety in the theory has to do with the pole orders of h(x).
Cantor and Rumely used game theory to define a number, the
capacity, which determines whether or not one can succeed in
constructing an h(x) of the above kind.
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Crypto-capacity theory

When the Minkowski argument says an h(x) must exist, the
question capacity has not addressed until now is how hard it is to
construct.

Following Coppersmith et al, one would like to use LLL to
construct h(x) quickly.

Suppose in the example of polynomials with sup norm less than 1
on [a, b], the convex symmetric set Cn miraculously turned out to
be a sphere. Then finding a point of Cn ∩ Ln amounts to finding
an element of the lattice Ln which has (close to) minimal length.
Now use LLL!

In general, if Cn is close enough to an ellipsoid, relative to some
choice of basis for Vn, then one can reduce the problem to finding
a close-to-minimal length vector in Ln relative to a suitable positive
definite inner product. This step is non-trivial, and puts additional
conditions on the kinds of conditions one can impose on h(x).
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Some other problems to which capacity theory applies

Small solutions of congruences
Input:

f (x) = xd + cd−1x
d−1 + · · ·+ c1x + c0 in Z[x ] and N ≥ 1

Theorem: (Coppersmith, 1996) One can find all r ∈ Z such that

(∗) |r | ≤ N1/d and f (r) ≡ 0 mod N

in polynomial time.

Point: One can find small solutions of polynomial congruences
quickly.

Method: Construct 0 6= h(x) ∈ Q[x ] using LLL so h(r) = 0.

Theme: Capacity theory predicts when such h(x) exist and
explains why 1/d is optimal.
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Bivariate polynomials

Input: f (x , y) =
∑

0≤i ,j≤d ci ,jx
iy j in Z[x , y ], irreducible.

Bounds X and Y on |x | and |y |, respectively.

Set W = maxi ,j |ci ,j |X iY j

Theorem: (Coppersmith 1996) One can find in polynomial time
all (x0, y0) ∈ Z2 such that f (x0, y0) = 0 and |x0| ≤ X and |y0| ≤ Y

provided that XY ≤W
3
2d .

Point: One can find small integral points on plane curves quickly.

Optimize this: Rumely’s capacity theory on curves can determine
whether there are auxiliary rational functions of the kind
Coppersmith uses that must vanish on small integral points.

Unknown: Is the Theorem optimal?
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The future?
A rational function h(x) on a curve C gives a finite flat map
C → P1.

In higher dimensions, Chinburg, Moret-Bailly, Pappas and Taylor
have been considering a new capacity theory based on considering
finite flat maps from an m-dimensional variety X to Pm.

This has application to the following “common g.c.d.” problem.
Suppose we are given an integer N and integer approximations
a1, . . . , am to divisors d1, . . . , dm of N with a large g.c.d.. In other
words, there are “small” integers r1, . . . , rm with di = (ai + ri )|N
and

gcd(N, a1 + r1, . . . , am + rm) ≥ Nβ

for some 0 < β < 1. Heninger has experimental results on finding
such r = (r1, . . . , rm) when

|ri | < N(1+o(1))βm+1/m and β >>
1√

ln(N)
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Warning: This slide rated NT-13
To apply higher dimensional capacity theory to this problem, one
lets X = Pm over Q and one lets D be the hyperplane at infinity.
Let Am = Pm − D.

One considers adelic sets

E =
∏
v

Ev ⊂
∏
v

Am(Qv )

where v runs over all places of Q. If v is finite, Ev is the annulus
of (r1, . . . , rm) ∈ Am(Qv ) with |N|v ≤ |ai + ri |v ≤ 1. If v is the
infinite place, Ev is the polydisc of (r1, . . . , rm) ∈ Am(Qv ) with
|ri |v < Nε.

Effectively constructed finite flat maps h : X → Pm which send
such E to polydiscs of generalized radius less than 1 must send
r = (r1, . . . , rm) as above to (0, . . . , 0). The determination of all
such r then comes down to finding the fiber of such h over
(0, . . . , 0).
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Summary

Suppose you have a number theoretic or cryptographic problem in
which auxiliary rational functions are used to find solutions.

1. Capacity theory is a technique for determining whether or not
such rational functions exist.

2. Capacity theory is also useful for setting up an LLL search for
such rational functions. On curves, it predicts the spaces of
functions to use and which kinds of generalized ellipsoids to
construct in order to convert the problem to that of finding a
short vector in a lattice.
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Sectional capacity theory. (These slides rated NT-XXX)
K = global field, v ∈ M(K ) = places of K , Kv ⊂ K v .

X/K projective normal connected variety, dimension δ.

D = effective ample divisor on X . An adelic set is
E =

∏
v∈M(K) Ev where

Ev ⊂ X (K v ) is stable under Gal(K v/Kv )

Ev is bounded away from D(K v ) in the v -adic metric from a
projective embedding of X .

For almost all finite v , Ev is the set of z ∈ X (K v ) which don’t
reduce mod v to the reduction of a point of D(K v ).

Sectional Capacity: 0 ≤ S(E,D) ∈ R.
Main Property: S(E,D) < 1 implies ∃ a rational function
h(x) ∈ K (X ) on X regular off D so ∀v ∈ M(K ), ∀x ∈ Ev one has
|h(x)|v ≤ 1, with |h(x)|v < 1 if v is archimedean.
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The idea behind sectional capacity

We are given X , D and E =
∏

v∈M(K) Ev as before.

Sectional capacity measures the rate of growth with n

of the volume of the adelic functions on X with two properties:

(1) They have poles no worse than nD, and

(2) They have v -adic sup norm ≤ 1 on Ev for all v .

Point: If this rate of growth with n is large, an adelic Minkowski

argument shows there is a global function h(x) ∈ K (X ) for which

(1) and (2) hold for some n.
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Details of how to define sectional capacity

Given X , D and E =
∏

v∈M(K) Ev as before.

For 1 ≤ n ∈ Z let H0(nD) = H0(X ,OX (nD)) ⊂ K (X )

Example: X = P1
Q and D = {∞}. Then

H0(nD) = {h(x) = b0 + b1x + · · · bnx
n : bi ∈ Q}

Let Fn(Ev ) be the set of hv ∈ H0(nD)v = Kv ⊗F H0(nD) such
that |hv (x)|v ≤ 1 (resp. |hv (x)|v < 1) if x ∈ Ev if v is
non-archimedean (reps. if v is archimedean).
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Let AK =
∏′

v∈M(K) Kv be the adeles of K .

Choose any Haar measure ψ on H0(nD)A = AK ⊗K H0(nD).
Then H0(nD) is a discrete subset of H0(nD)A with finite covolume
ψ(H0(nD)A/H

0(nD))) with respect to ψ

Example: In the P1 case, AQ is the set of α =
∏

v αv ∈
∏

v Qv

such that αv ∈ Zv for all but finitely many non-archimedean v .
We have H0(nD)A =

∏′
v H0(nD)v . A natural choice for ψ is∏

v ψv where
(i) for finite v , ψv is the Haar measure on the polynomials
H0(nD)v in x of degree ≤ n with coefficients in Qv which gives
the polynomials with coefficients in Zv volume 1;
(ii) if v is the infinite place, the polynomials with integral
coefficients have covolume 1 inside the space H0(nD)v of real
polynomials of degree ≤ n.
Exercise: ψ(H0(nD)A/H

0(nD))) = 1 in the P1 case.

Ted Chinburg Capacity Theory and Cryptography



Back to the general case!
Define

Fn(E) = H0(nD)A ∩
∏

v∈M(K)

Fn(Ev ).

λn(E,D) =
ψ(Fn(E))

ψ(H0(nD)A/H0(nD)))
.

The sectional capacity S(E,D) ≥ 0 of E with respect to D is
defined by

ln(S(E,D)) = − lim
n→∞

n−(δ+1)(δ + 1)! ln(λn(E,D)).

where δ = dim(X ).

Point: S(E,D) < 1 means the volume of Fn(E) grows quickly
with n.
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Sectional capacity supported on a divisor

We are interested in constructing global functions on X which are

regular off of D and which have bounded sup norms on all the Ev .

To do this, we can replace D by any divisor D ′ in the set T (D)

of all divisors with the same support as D. Let |D ′| > 0

be the δ-fold self intersection number of D ′.

Define Sγ(E, supp(D)) to be the infimum of

Sγ(U,X ′1)|X
′
1|−(δ+1)/δ

over all open adelic neighborhoods U of E and over all D ′ ∈ T (D).
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Fekete Szego Theorems

We will say that a function h(x) ∈ F (X ) is (E,D) bounded

if it is regular off of D and if it its v -adic sup norm on Ev is ≤ 1

(resp < 1) if v is non-archimedean (reap. if v is non-archimedean).

Theorem: (Fekete-Szego 1920’s, Cantor 1981, Rumely 1989)
Suppose δ = dim(X ) = 1 so that X is a curve.

(1) If S(E, supp(D)) < 1 there is a (E,D) bounded function.

(2) If S(E, supp(D)) > 1, there is no such function.
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Theorem: (Chinburg 1991; Rumely, Lau and Varley 2000) For X
of any dimension if S(E, supp(D)) < 1 then there is (E,D)
bounded function.

Conjecture: (Chinburg, Moret-Bailly, Pappas, Taylor 2013) For X
of any dimension, if S(E, supp(D)) > 1 then there is no (E,D)
bounded function.
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