Lattice Cryptography: Introduction and Open Problems

Daniele Micciancio

Department of Computer Science and Engineering University of California, San Diego

August 2015

Point Lattices

• The simplest example of lattice is $\mathbb{Z}^n = \{(x_1, \dots, x_n) \colon x_i \in \mathbb{Z}\}$

Point Lattices

- The simplest example of lattice is $\mathbb{Z}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}\}$
- Other lattices are obtained by applying a linear transformation

$$\mathbf{B} \colon \mathbf{x} = (x_1, \dots, x_n) \mapsto \mathbf{B} \mathbf{x} = x_1 \cdot \mathbf{b}_1 + \dots + x_n \cdot \mathbf{b}_n$$

Lattice Cryptography

- Lenstra, Lenstra, Lovasz (1982): The "LLL" paper "Factoring Polynomials with Rational Coefficients"
 - Algorithmic breakthrough
 - Efficient approximate solution of lattice problems
 - Exponential approximation factor, but very good in practice
 - Killer App: Cryptanalysis

Lattice Cryptography

- Lenstra, Lenstra, Lovasz (1982): The "LLL" paper "Factoring Polynomials with Rational Coefficients"
 - Algorithmic breakthrough
 - Efficient approximate solution of lattice problems
 - Exponential approximation factor, but very good in practice
 - Killer App: Cryptanalysis
- Ajtai (1996): "Generating Hard Instances of Lattice Problems"
 - Marks the beginning of the modern use of lattices in the design of cryptographic functions

Ajtai's paper (quotes)

- "cryptography . . . generation of a specific instance of a problem in NP which is thought to be difficult".
 - "NP-hard problems"
 - "very famous question (e.g., prime factorization)."

"Unfortunately 'difficult to solve' means ... in the worst case"

- "no guidance about how to create [a hard instance]"
- "possible solution"
 - 1 "find a set of randomly generated problems", and
 - "show that if there is an algorithm which [works] with a positive probability, then there is also an algorithm which solves the famous problem in the worst case."
- "In this paper we give such a class of random problems."

Example: Discrete Logrithm (DLOG)

- p: a prime
- \mathbb{Z}_p^* : multiplicative group
- ullet $g\in\mathbb{Z}_p^*$: generator of (prime order sub-)group $G=\{g^i\colon i\in\mathbb{Z}\}\subseteq\mathbb{Z}_p^*$
- Input: $h = g^i \mod p$

DLOG Problem

Given p, g, h, recover i (modulo q = o(g))

Example: Discrete Logrithm (DLOG)

- p: a prime
- \mathbb{Z}_p^* : multiplicative group
- ullet $g\in\mathbb{Z}_p^*$: generator of (prime order sub-)group $G=\{g^i\colon i\in\mathbb{Z}\}\subseteq\mathbb{Z}_p^*$
- Input: $h = g^i \mod p$

DLOG Problem

Given p, g, h, recover i (modulo q = o(g))

Random Self Reducibility

If you can solve DLOG for random g and h (with some probability), then you can solve it for any g, h in the worst-case.

• Given arbitrary g, h

- Given arbitrary g, h
- ② Compute $g' = g^a$ and $h' = h^{ab}$ for random $a, b \in \mathbb{Z}_q^*$.

- Given arbitrary g, h
- ② Compute $g' = g^a$ and $h' = h^{ab}$ for random $a, b \in \mathbb{Z}_q^*$.
- On Notice:
 - $g', h' \in G$ are (almost) uniformly random
 - $h' = h^{ab} = g^{iab} = (g')^{ib}$

- Given arbitrary g, h
- ② Compute $g' = g^a$ and $h' = h^{ab}$ for random $a, b \in \mathbb{Z}_q^*$.
- On Notice:
 - $g', h' \in G$ are (almost) uniformly random
 - $h' = h^{ab} = g^{iab} = (g')^{ib}$
- $\bullet \ \mathsf{Find} \ j = \mathsf{DLOG}(g',h') = ib$

- Given arbitrary g, h
- ② Compute $g' = g^a$ and $h' = h^{ab}$ for random $a, b \in \mathbb{Z}_q^*$.
- On Notice:
 - $g', h' \in G$ are (almost) uniformly random
 - $h' = h^{ab} = g^{iab} = (g')^{ib}$
- $\bullet \ \mathsf{Find} \ j = \mathsf{DLOG}(g',h') = ib$
- **1** Output j/b (mod q).

- Given arbitrary g, h
- **②** Compute $g' = g^a$ and $h' = h^{ab}$ for random $a, b \in \mathbb{Z}_q^*$.
- On Notice:
 - $g', h' \in G$ are (almost) uniformly random
 - $h' = h^{ab} = g^{iab} = (g')^{ib}$
- $\bullet \ \mathsf{Find} \ j = \mathsf{DLOG}(g',h') = ib$
- **5** Output $j/b \pmod{q}$.

Conclusion

We know how to choose $g, h \in G$.

But, how do we choose G?

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows superpolynomially (or exponentially) in n.

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows superpolynomially (or exponentially) in n.

• Similarly, one may conjecture that the complexity of DLOG grows superpolynomially in $n = \log p$ or $n = \log |G|$.

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows superpolynomially (or exponentially) in n.

- Similarly, one may conjecture that the complexity of DLOG grows superpolynomially in $n = \log p$ or $n = \log |G|$.
- This is not the same:
 - For any n, there are (exponentially) many primes p.
 - Typically, p is chosen at random among all n-bit primes
 - Assumption is still average-case: DLOG is hard for random *p*.

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows superpolynomially (or exponentially) in n.

- Similarly, one may conjecture that the complexity of DLOG grows superpolynomially in $n = \log p$ or $n = \log |G|$.
- This is not the same:
 - For any n, there are (exponentially) many primes p.
 - Typically, p is chosen at random among all n-bit primes
 - Assumption is still average-case: DLOG is hard for random p.
- We do not know how to reduce $DLOG(\mathbb{Z}_p^*)$ to $DLOG(\mathbb{Z}_q^*)$. RSR provides no guidance on how to choose p.

Alternative assumption

 $\mathsf{DLOG}(p_n)$ is hard when p_n is the smallest prime $> 2^n$.

- Equivalent to worst-case family of problems (indexed by n)
- Ad-hoc: problem definition seems rather arbitrary

Alternative assumption

 $\mathsf{DLOG}(p_n)$ is hard when p_n is the smallest prime $> 2^n$.

- Equivalent to worst-case family of problems (indexed by n)
- Ad-hoc: problem definition seems rather arbitrary

There is more:

 Lattice problems in dimension n reduce to lattice problems in dimension m > n:

No such reduction for DLOG:

$$DLOG(p_n) \stackrel{?}{\Longrightarrow} DLOG(p_{n+1})$$

Other (natural) representations:

$$G = (\mathbb{Z}_p^*, \cdot) \equiv (\mathbb{Z}_{p-1}, +)$$

but "DLOG" in $(\mathbb{Z}_{p-1},+)$ is easy.

Other (still natural) groups:

$$G=\mathbb{Z}_{pq}^*$$

Other (natural) representations:

$$G = (\mathbb{Z}_p^*, \cdot) \equiv (\mathbb{Z}_{p-1}, +)$$

but "DLOG" in $(\mathbb{Z}_{p-1},+)$ is easy.

Other (still natural) groups:

$$G=\mathbb{Z}_{pq}^*$$

Question

Assume one of $DLOG(\mathbb{Z}_p)$ and $DLOG(\mathbb{Z}_{p \cdot q})$ is polynomial time solvable, and one is not. Which group family would you choose?

Other (natural) representations:

$$G = (\mathbb{Z}_p^*, \cdot) \equiv (\mathbb{Z}_{p-1}, +)$$

but "DLOG" in $(\mathbb{Z}_{p-1},+)$ is easy.

• Other (still natural) groups:

$$G=\mathbb{Z}_{pq}^*$$

Question

Assume one of $DLOG(\mathbb{Z}_p)$ and $DLOG(\mathbb{Z}_{p\cdot q})$ is polynomial time solvable, and one is not. Which group family would you choose?

Chinese Reminder Theorem (CRT): $\mathbb{Z}_{pq} \approx \mathbb{Z}_p \times \mathbb{Z}_q$

$$DLOG(\mathbb{Z}_p^*) \Longrightarrow DLOG(\mathbb{Z}_{pq}^*).$$

Reduction in the other direction requires factoring.

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_a^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$

Ajtai's one-way function (SIS)

- ullet Parameters: $m,n,q\in\mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $x \in \{0, 1\}^m$
- Output: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$

Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$
- Output: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$

Theorem (A'96)

For $m > n \lg q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \mod q$ is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...

• The kernel set $\Lambda^{\perp}(\mathbf{A})$ is a lattice

$$\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m \colon \mathbf{A}\mathbf{z} = \mathbf{0} \pmod{q}\}$$

• Collisions $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} \pmod{q}$ can be represented by a single vector $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \{-1, 0, 1\}$ such that

$$\mathbf{z} = \mathbf{x} - \mathbf{y}$$

• The kernel set $\Lambda^{\perp}(\mathbf{A})$ is a lattice

$$\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m \colon \mathbf{A}\mathbf{z} = \mathbf{0} \pmod{q}\}$$

• Collisions $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} \pmod{q}$ can be represented by a single vector $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \{-1, 0, 1\}$ such that

$$Az = Ax - Ay = 0 \mod q$$

• The kernel set $\Lambda^{\perp}(\mathbf{A})$ is a lattice

$$\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m \colon \mathbf{A}\mathbf{z} = \mathbf{0} \pmod{q}\}$$

• Collisions $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} \pmod{q}$ can be represented by a single vector $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \{-1, 0, 1\}$ such that

$$Az = Ax - Ay = 0 \mod q$$

• Collisions are lattice vectors $\mathbf{z} \in \Lambda^{\perp}(\mathbf{A})$ with small norm $\|\mathbf{z}\|_{\infty} = \max_{i} |z_{i}| = 1$.

• The kernel set $\Lambda^{\perp}(\mathbf{A})$ is a lattice

$$\Lambda^{\perp}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m \colon \mathbf{A}\mathbf{z} = \mathbf{0} \pmod{q}\}$$

• Collisions $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} \pmod{q}$ can be represented by a single vector $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \{-1, 0, 1\}$ such that

$$Az = Ax - Ay = 0 \mod q$$

- Collisions are lattice vectors $\mathbf{z} \in \Lambda^{\perp}(\mathbf{A})$ with small norm $\|\mathbf{z}\|_{\infty} = \max_{i} |z_{i}| = 1$.
- ... there is a much deeper and interesting relation between breaking $f_{\mathbf{A}}$ and lattice problems.

Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \lambda_1$

Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \lambda_1$

Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \lambda_1$

Definition (Shortest Vector Problem, SVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector $\mathbf{B}\mathbf{x}$ (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{B}\mathbf{x}\| \leq \gamma \lambda_1$

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \le \mu$ from the target

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \mu$ from the target

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \mu$ from the target

Closest Vector Problem

Definition (Closest Vector Problem, CVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \gamma \mu$ from the target

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \leq \lambda_n$

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \leq \lambda_n$

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \leq \lambda_n$

Definition (Shortest Independent Vectors Problem, SIVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}\mathbf{x}_1, \dots, \mathbf{B}\mathbf{x}_n$ of length (at most) $\max_i \|\mathbf{B}\mathbf{x}_i\| \leq \gamma \lambda_n$

Minimum distance

$$\begin{array}{rcl} \lambda_1 & = & \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ & = & \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\| \end{array}$$

Minimum distance

$$\begin{array}{rcl} \lambda_1 &=& \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ &=& \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\| \end{array}$$

Minimum distance

$$\begin{array}{rcl} \lambda_1 & = & \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ & = & \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\| \end{array}$$

• Successive minima (i = 1, ..., n)

$$\lambda_i = \min\{r : \dim \text{span}(\mathcal{B}(r) \cap \mathcal{L}) \ge i\}$$

Minimum distance

$$\begin{array}{rcl} \lambda_1 & = & \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ & = & \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\| \end{array}$$

• Successive minima (i = 1, ..., n)

$$\lambda_i = \min\{r : \dim \text{span}(\mathcal{B}(r) \cap \mathcal{L}) \ge i\}$$

Minimum distance

$$\begin{array}{rcl} \lambda_1 & = & \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ & = & \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\| \end{array}$$

• Successive minima (i = 1, ..., n)

$$\lambda_i = \min\{r : \dim \operatorname{span}(\mathcal{B}(r) \cap \mathcal{L}) \geq i\}$$

- \mathbb{Z}^n : $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 1$
- Always: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Consider a lattice Λ , and

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.

How much noise is needed?

$$\|\mathbf{r}\| \le \sqrt{n} \cdot \lambda_n/2$$

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \le \sqrt{n} \cdot \lambda_n/2$$

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \le \sqrt{n} \cdot \lambda_n/2$$

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \le \sqrt{n} \cdot \lambda_n/2$$

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \le \sqrt{n} \cdot \lambda_n/2$$

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed? [MR]

$$\|\mathbf{r}\| \leq (\log n) \cdot \sqrt{n} \cdot \lambda_n/2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n}\lambda_n$.
- $\mathbf{a} \in \mathbb{R}^n/\Lambda$ is uniformly distributed.

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed? [MR]

$$\|\mathbf{r}\| \le (\log n) \cdot \sqrt{n} \cdot \lambda_n/2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n}\lambda_n$.
- $\mathbf{a} \in \mathbb{R}^n/\Lambda$ is uniformly distributed.
- Think of $\mathbb{R}^n \approx \frac{1}{q} \Lambda$ [GPV'07]

Average-case hardness (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i \in \frac{1}{q}\Lambda$, where
 - $\mathbf{v}_i \in \Lambda$ is a random lattice point
 - ${f r}_i$ is a random error vector of length $\|{f r}_i\| pprox \sqrt{n} \lambda_n$
- $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m] pprox rac{1}{q} \mathbf{\Lambda}^m \equiv \mathbb{Z}_q^{n imes m}$
- ullet Assume we can find a short lattice vector $\mathbf{z} \in \mathbb{Z}^m$

$$\mathbf{A}\mathbf{z}=\mathbf{0}$$

Average-case hardness (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i \in \frac{1}{q}\Lambda$, where
 - $\mathbf{v}_i \in \Lambda$ is a random lattice point
 - ${f r}_i$ is a random error vector of length $\|{f r}_i\| pprox \sqrt{n} \lambda_n$
- $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m] \approx \frac{1}{q} \Lambda^m \equiv \mathbb{Z}_q^{n \times m}$
- Assume we can find a short lattice vector $\mathbf{z} \in \mathbb{Z}^m$

$$\sum (\mathbf{v}_i + \mathbf{r}_i)z_i = \sum \mathbf{a}_i z_i = \mathbf{A}\mathbf{z} = \mathbf{0}$$

Average-case hardness (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i \in \frac{1}{q}\Lambda$, where
 - $\mathbf{v}_i \in \Lambda$ is a random lattice point
 - \mathbf{r}_i is a random error vector of length $\|\mathbf{r}_i\| \approx \sqrt{n}\lambda_n$
- $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m] pprox rac{1}{q} \mathbf{\Lambda}^m \equiv \mathbb{Z}_q^{n imes m}$
- Assume we can find a short lattice vector $\mathbf{z} \in \mathbb{Z}^m$

$$\sum (\mathbf{v}_i + \mathbf{r}_i)z_i = \sum \mathbf{a}_i z_i = \mathbf{A}\mathbf{z} = \mathbf{0}$$

• Rearranging the terms yields a lattice vector

$$\sum \mathbf{v}_i z_i = -\sum \mathbf{r}_i z_i$$

of length at most $\|\sum \mathbf{r}_i z_i\| \approx \sqrt{m} \cdot \max \|\mathbf{r}_i\| \approx n \cdot \lambda_n$

Shortcomings of Ajtai's function

Expressivity:

- Ajtai's proof requires $m > n \log q$
- ullet The function $f_{f A}:\{0,1\}^m o \mathbb{Z}_q^n$ is not injective
- Enough for one-way functions, collision resistant hashing, some digital siguatures, commitments, identification, etc.
- ... but (public key) encryption seem to require stronger assumptions.
- 1996: Ajtai-Dwork cryptosystem, based on the "unique" Shortest Vector Problem.

Efficiency:

- The matrix/key $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ requires $\Omega(n^2)$ storage (and computation)
- 1996: NTRU Cryptosystem, efficient, but not supported by security proof from worst-case lattice problems.

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}) = \mathbf{A}\mathbf{s} \mod q$

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \mod q$
- Learning with Errors: Given **A** and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover **s**.

Learning with errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \in \mathbb{Z}_q^n$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \mod q$
- Learning with Errors: Given **A** and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover **s**.

Theorem (Regev'05)

The function $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case even for quantum computers.

Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Candidate OWF

Key: a hard lattice $\ensuremath{\mathcal{L}}$

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$

Candidate OWF

Key: a hard lattice \mathcal{L} Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$

• $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective

Candidate OWF

Key: a hard lattice \mathcal{L} Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$

• $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective

• $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective

Candidate OWF

Key: a hard lattice \mathcal{L} Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$

• $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective

• $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective

• $\beta \ge \mu$: $f_{\mathcal{L}}$ is surjective

Candidate OWF

Key: a hard lattice \mathcal{L} Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$

• $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective

• $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective

• $\beta \ge \mu$: $f_{\mathcal{L}}$ is surjective

• $\beta \gg \mu$: $f_{\mathcal{L}}(\mathbf{x})$ is almost uniform

Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$

- $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective
- $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective
- $\beta \geq \mu$: $f_{\mathcal{L}}$ is surjective
- $\beta \gg \mu$: $f_{\mathcal{L}}(\mathbf{x})$ is almost uniform

Question

Are these functions cryptographically hard to invert?

Special Versions of CVP

Definition (Closest Vector Problem (CVP))

Given $(\mathcal{L}, \mathbf{t}, d)$, with $\mu(\mathbf{t}, \mathcal{L}) \leq d$, find a lattice point within distance d from \mathbf{t} .

- If *d* is arbitrary, then one can find the closest lattice vector by binary search on *d*.
- Bounded Distance Decoding (BDD): If $d < \lambda_1(\mathcal{L})/2$, then there is at most one solution. Solution is the closest lattice vector.
- Absolute Distance Decoding (ADD): If $d \ge \rho(\mathcal{L})$, then there is always at least one solution. Solution may not be closest lattice vector.

Computational problems on random lattices

Ajtai's class of random lattices an their duals:

$$\mathbf{A} \in \mathbb{Z}^{n \times m}$$

$$\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q\}$$

$$\Lambda_q(\mathbf{A}) = \mathbf{A}^T \mathbb{Z}^n + q \mathbb{Z}^m$$

Inverting Ajtai's function $\mathbf{A}\mathbf{x} = \mathbf{b}$

- Solution x always exist, but it is hard to find
- ullet Average case version of ADD on random $\Lambda_q^\perp({f A})$

Solving LWE $\mathbf{sA} + \mathbf{x} = \mathbf{b}$

- For small enough **x**, solution is unique
- Average case version of BDD on random dual lattice $\Lambda_q(\mathbf{A})$.

ADD input: \mathcal{L} and arbitrary \mathbf{t}

- Compute short vectors $\mathbf{V} = \mathsf{SIVP}(\mathcal{L})$
- Use **V** to find a lattice vector within distance $\sum_{i} \frac{1}{2} ||\mathbf{v}_{i}|| \leq (n/2) \lambda_{n} \leq n\rho \text{ from } \mathbf{t}$

BDD input: t close to \mathcal{L}

BDD input: t close to \mathcal{L}

 $\bullet \ \mathsf{Compute} \ \boldsymbol{V} = \mathsf{SIVP}(\mathcal{L}^*)$

BDD input: \boldsymbol{t} close to \mathcal{L}

- ullet Compute $oldsymbol{V} = \mathsf{SIVP}(\mathcal{L}^*)$
- For each $\mathbf{v}_i \in \mathcal{L}^*$, find the layer $L_i = \{\mathbf{x} \mid \mathbf{x} \cdot \mathbf{v}_i = c_i\}$ closest to \mathbf{t}

BDD input: t close to \mathcal{L}

- ullet Compute $oldsymbol{V} = \mathsf{SIVP}(\mathcal{L}^*)$
- For each $\mathbf{v}_i \in \mathcal{L}^*$, find the layer $L_i = {\mathbf{x} \mid \mathbf{x} \cdot \mathbf{v}_i = c_i}$ closest to \mathbf{t}
- Output $L_1 \cap L_2 \cap \cdots \cap L_n$

BDD input: \mathbf{t} close to \mathcal{L}

- ullet Compute $oldsymbol{V} = \mathsf{SIVP}(\mathcal{L}^*)$
- For each $\mathbf{v}_i \in \mathcal{L}^*$, find the layer $L_i = {\mathbf{x} \mid \mathbf{x} \cdot \mathbf{v}_i = c_i}$ closest to \mathbf{t}
- Output $L_1 \cap L_2 \cap \cdots \cap L_n$
- Output is correct as long as

$$\mu(\mathbf{t}, \mathcal{L}) \le \frac{\lambda_1}{2n} \le \frac{1}{2\lambda_n^*} \le \frac{1}{2\|\mathbf{v}_i\|}$$

Special Versions of SVP and SIVP

- GapSVP: compute (or approximate) the value λ_1 without necessarily finding a short vector
- GapSIVP: compute (or approximate) the value λ_n without necessarily finding short linearly independent vectors
- Transference Theorem $\lambda_1 \approx 1/\lambda_n^*$: GapSVP can be (approximately) solved by solving GapSIVP in the dual lattice, and vice versa

Problems

- Exercise: Computing λ_1 (or λ_n) exactly is as hard as SVP (or SIVP)
- Open Problem: Reduce approximate SVP (or SIVP) to approximate GapSVP (or GapSIVP)

Relations among lattice problems

- SIVP \approx ADD [MG'01]
- SVP \leq CVP [GMSS'99]
- SIVP ≤ CVP [M'08]
- BDD ≤ SIVP
- CVP \lesssim SVP [L'87]
- GapSVP \approx GapSIVP [LLS'91,B'93]
- GapSVP \lesssim BDD [LM'09]

Relations among lattice problems

- SIVP \approx ADD [MG'01]
- SVP ≤ CVP [GMSS'99]
- SIVP ≤ CVP [M'08]
- BDD ≤ SIVP
- CVP \lesssim SVP [L'87]
- GapSVP \approx GapSIVP [LLS'91,B'93]
- ullet GapSVP \lesssim BDD [LM'09]

Open Problems

- Does the ability to approximate λ_1 helps in solving SVP?
- Does the ability to approximate λ_n helps in solving SIVP?
- Is there a reduction from CVP/SVP to SIVP?
 - Yes, for the exact version of the problems [M. 08]
 - Open for approximation version
- Is there a classical (nonquantum) reduction from SIVP/ADD to GapSVP/BDD?

Efficient Lattice Cryptography from Structured Lattices

Idea

Use structured matrix

$$\boldsymbol{A} = [\boldsymbol{A}^{(1)} \mid \ldots \mid \boldsymbol{A}^{(m/n)}]$$

where $\mathbf{A}^{(i)} \in \mathbb{Z}_q^{n imes n}$ is circulant

$$\mathbf{A}^{(i)} = \begin{bmatrix} a_1^{(i)} & a_n^{(i)} & \cdots & a_2^{(i)} \\ a_2^{(i)} & a_1^{(i)} & \cdots & a_3^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ a_n^{(i)} & a_{n-1}^{(i)} & \cdots & a_1^{(i)} \end{bmatrix}$$

- "Generalized Compact Knapsacks and Efficient One-Way Functions" (Micciancio, FOCS 2002)
- Efficient version of Ajtai's connection:
 - $O(n \log n)$ space and time complexity
 - Provable security: guidance on how to choose random instances.

Theorem

"CyclicSIS" is hard to invert on average, assuming the worst-case hardness of lattice problems over "cyclic" lattices.

Ideal Lattices and Algebraic number theory

- Isomorphism: $\mathbf{A}^{cyc} \leftrightarrow \mathbb{Z}[X]/(X^n-1)$
- Cyclic SIS:

$$f_{\mathbf{a}_1,\ldots,\mathbf{a}_k}(\mathbf{u}_1,\ldots,\mathbf{u}_k) = \sum_i \mathbf{a}_i(X) \cdot \mathbf{u}_i(X) \pmod{X^n-1}$$

where $a_i, u_i \in R = \mathbb{Z}[X]/(X^n - 1)$.

- More generally, use $R = \mathbb{Z}[X]/p(X)$ for some monic polynomial $p(X) \in \mathbb{Z}[X]$
- If p(X) is irreducible, then finding collisions to f_a for random a is as hard as solving lattice problems in the worst case in ideal lattices
- Can set R to the ring of integers of K = Q[X]/p(X).

How to choose p(X)/R?

RingSIS (Lyubashevsky, PhD Thesis, UCSD 2008)

- define $f_{\mathbf{a}}(\mathbf{u}) = \sum_{i} \mathbf{a}_{i}(X) \cdot u_{i}(X)$
- Notice: no reduction modulo p(X)!
- If $f_a(\mathbf{u}) = f_a(\mathbf{u}')$ in $\mathbb{Z}[X]$, then $f_a(\mathbf{u}) = f_a(\mathbf{u}') \pmod{p(X)}$.
- Conclusion: breaking f is at least as hard as solving lattices problems in ideal lattices for any p(X).

How to choose p(X)/R?

RingSIS (Lyubashevsky, PhD Thesis, UCSD 2008)

- define $f_{\mathbf{a}}(\mathbf{u}) = \sum_{i} \mathbf{a}_{i}(X) \cdot u_{i}(X)$
- Notice: no reduction modulo p(X)!
- If $f_a(\mathbf{u}) = f_a(\mathbf{u}')$ in $\mathbb{Z}[X]$, then $f_a(\mathbf{u}) = f_a(\mathbf{u}') \pmod{p(X)}$.
- Conclusion: breaking f is at least as hard as solving lattices problems in ideal lattices for any p(X).

RingLWE:

- Most applications require not only hardness of inverting f_a , but also pseudorandomness of output $f_a(\mathbf{u})$
- [Lyubashevsky,Peikert,Regev'10]: For cyclotomic p(X), hardness of inverting f_a implies pseudorandomness of $f_a(\mathbf{u})$.
- [Lauter'15] constructs polynomial rings where inverting f_a is conceivably hard, but $f_a(\mathbf{u})$ is easily distinguished from random.

Classical Hardness of LWE

• [P'09, BLPRS'13] There is a classical reduction from GapSVP to LWE when $q=2^{O(n)}$, or LWE dimension $d=O(n^2)$

Open Problems

- Is there a more efficient reduction from GapSVP to LWE?
- Is there a classical reduction from SIVP to LWE?
- Is there a reduction from SVP/SIVP to LWE on ideal lattices?

More Open Problems - Tonight 7:30pm

- Bring your own open problems to share!
- Send email to

daniele@cs.ucsd.edu

with estimated time for scheduling.

...or, just talk to me over lunch or coffee break.

More Open Problems - Tonight 7:30pm

- Bring your own open problems to share!
- Send email to

daniele@cs.ucsd.edu with estimated time for scheduling.

• ...or, just talk to me over lunch or coffee break.

Thank you!