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@ The simplest example of lattice is Z"

= {(Xl, ..

S Xn): X € L}

«O>» «F>r «=» «E)» Q>




Point Lattices

@ The simplest example of lattice is Z" = {(x1,...,xn): xi € Z}

@ Other lattices are obtained by applying a linear transformation

B: x=(x1,...,%,) = Bx=x3-by+--+x,-b,

(©,1) ‘ N/

(1,0)
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Lattice Cryptography

cryptanalysis crypto design
{1982 1996 | {today

o Lenstra, Lenstra, Lovasz (1982) : The “LLL" paper
“Factoring Polynomials with Rational Coefficients”
o Algorithmic breakthrough
o Efficient approximate solution of lattice problems
e Exponential approximation factor, but very good in practice
o Killer App: Cryptanalysis
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Lattice Cryptography

cryptanalysis crypto design
{1982 1996 | {today

@ Lenstra, Lenstra, Lovasz (1982) : The “LLL" paper
“Factoring Polynomials with Rational Coefficients”
o Algorithmic breakthrough
o Efficient approximate solution of lattice problems
e Exponential approximation factor, but very good in practice
o Killer App: Cryptanalysis
e Ajtai (1996) : “Generating Hard Instances of Lattice Problems”

e Marks the beginning of the modern use of lattices in the design of
cryptographic functions
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Ajtai's paper (quotes)

@ ‘“cryptography ...generation of a specific instance of a problem in NP
which is thought to be difficult”.

o “NP-hard problems”
e ‘“very famous question (e.g., prime factorization).”
“Unfortunately ‘difficult to solve’ means ... in the worst case”
@ "no guidance about how to create [a hard instance]”
@ “possible solution”

@ 'find a set of randomly generated problems”, and

@ ‘“show that if there is an algorithm which [works] with a positive
probability, then there is also an algorithm which solves the famous
problem in the worst case.”

@ “In this paper we give such a class of random problems.”
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Example: Discrete Logrithm (DLOG)

@ p: a prime
e Zy: multiplicative group
® g € Zj,: generator of (prime order sub-)group G = {ghiiez}C z;
e Input: h=g' modp
DLOG Problem
Given p, g, h, recover i (modulo g = o(g)) J
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Example: Discrete Logrithm (DLOG)

@ p: a prime
e Zy: multiplicative group
® g € Zj,: generator of (prime order sub-)group G = {ghiiez}C z;
e Input: h=g' modp
DLOG Problem
Given p, g, h, recover i (modulo g = o(g))

Random Self Reducibility

If you can solve DLOG for random g and h (with some probability), then
you can solve it for any g, h in the worst-case.
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DLOG: Random Self Reducibility (RSR)

© Given arbitrary g, h
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DLOG: Random Self Reducibility (RSR)

© Given arbitrary g, h
@ Compute g’ = g2 and h' = h?? for random a, b € Zy.
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DLOG: Random Self Reducibility (RSR)

© Given arbitrary g, h
@ Compute g’ = g2 and h' = h?? for random a, b € Zy.

© Notice:

o g',h € G are (almost) uniformly random
o h = hab — giab — (g/)ib
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DLOG: Random Self Reducibility (RSR)

© Given arbitrary g, h
@ Compute g’ = g2 and h' = h?? for random a, b € Zy.

© Notice:

o g',h € G are (almost) uniformly random
o h = hab — giab — (g/)ib

© Find j = DLOG(g', W) = ib

Daniele Micciancio (UCSD) Lattice Cryptography: Introduction and Open August 2015 6 /32



DLOG: Random Self Reducibility (RSR)

© Given arbitrary g, h
@ Compute g’ = g2 and h' = h?? for random a, b € Zy.

© Notice:
o g',h € G are (almost) uniformly random
o I = h? = gi*b = (g')P

Q Find j = DLOG(g',n') = ib

@ Output j/b (mod q).
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DLOG: Random Self Reducibility (RSR)

© Given arbitrary g, h
@ Compute g’ = g2 and h' = h?? for random a, b € Zy.

© Notice:
o g',h € G are (almost) uniformly random

o W = hab — giab — (g/)ib
Q Find j = DLOG(g',n') = ib
@ Output j/b (mod q).

Conclusion

We know how to choose g, h € G.
But, how do we choose G?
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DLOG vs Lattices (1)

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows
superpolynomially (or exponentially) in n.
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Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows
superpolynomially (or exponentially) in n.

@ Similarly, one may conjecture that the complexity of DLOG grows
superpolynomially in n = log p or n = log |G|.
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DLOG vs Lattices (1)

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows
superpolynomially (or exponentially) in n.

@ Similarly, one may conjecture that the complexity of DLOG grows
superpolynomially in n = log p or n = log |G|.
@ This is not the same:

o For any n, there are (exponentially) many primes p.
o Typically, p is chosen at random among all n-bit primes
e Assumption is still average-case: DLOG is hard for random p.
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DLOG vs Lattices (1)

Lattice Assumption

The complexity of solving lattice problems in n-dimensional lattices grows
superpolynomially (or exponentially) in n.

@ Similarly, one may conjecture that the complexity of DLOG grows
superpolynomially in n = log p or n = log |G|.
@ This is not the same:

o For any n, there are (exponentially) many primes p.
o Typically, p is chosen at random among all n-bit primes
e Assumption is still average-case: DLOG is hard for random p.

@ We do not know how to reduce DLOG(Zj,) to DLOG(Zy).
RSR provides no guidance on how to choose p.
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DLOG vs Lattices (2)

Alternative assumption
DLOG(pn) is hard when pj, is the smallest prime > 2". J

e Equivalent to worst-case family of problems (indexed by n)

@ Ad-hoc: problem definition seems rather arbitrary
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DLOG vs Lattices (2)

Alternative assumption
DLOG(pn) is hard when pj, is the smallest prime > 2".

e Equivalent to worst-case family of problems (indexed by n)

@ Ad-hoc: problem definition seems rather arbitrary

There is more:

o Lattice problems in dimension n reduce to lattice problems in
dimension m > n:

B O

Bl= 0T

@ No such reduction for DLOG:

DLOG(p,) == DLOG(pp+1)
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DLOG vs Lattices (3)

@ Other (natural) representations:
G = (Zp,) = (Zp-1,+)

but “DLOG" in (Zp—1,+) is easy.
@ Other (still natural) groups:

G =Zpg
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DLOG vs Lattices (3)

@ Other (natural) representations:
G = (Zp,) = (Zp-1,+)

but “DLOG" in (Zp—1,+) is easy.
@ Other (still natural) groups:

G =Zpg

Question

Assume one of DLOG(Zp) and DLOG(Zp.q) is polynomial time solvable,
and one is not. Which group family would you choose?
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DLOG vs Lattices (3)

@ Other (natural) representations:
G = (Zp,) = (Zp-1,+)
but “DLOG" in (Zp—1,+) is easy.
@ Other (still natural) groups:
G =Zpq

Question

Assume one of DLOG(Zp) and DLOG(Zp.q) is polynomial time solvable,
and one is not. Which group family would you choose?

Chinese Reminder Theorem (CRT): Zpq ~ Zp X Zq
DLOG(Z,) = DLOG(Z).

Reduction in the other direction requires factoring.
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o Parameters: m,n, q € Z
o Key: A€ Zg ™

C s )
o Input: x € {0,1}™

«O>» «Fr « =>»

« =

DA




Ajtai’s one-way function (SIS)

Parameters: m,n,q € Z
Key: A € Zg=™

Input: x € {0,1}"

Output: fa(x) = Ax mod g
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Ajtai’s one-way function (SIS)

Parameters: m,n,q € Z
Key: A € Zg*"

Input: x € {0,1}™

Output: fa(x) = Ax mod g

Theorem (A'96)

For m > nlg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fa(x) = Ax mod q is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID
schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...
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Relation to lattices

o The kernel set AL(A) is a lattice
A (A)={zcZ™ Az=0 (mod q)}

e Collisions Ax = Ay (mod g) can be represented by a single vector
z=x—ye€ {—1,0,1} such that

z= x— Yy

Daniele Micciancio (UCSD) Lattice Cryptography: Introduction and Open August 2015 11 / 32



Relation to lattices

o The kernel set AL(A) is a lattice
A (A)={zcZ™ Az=0 (mod q)}
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Relation to lattices

o The kernel set AL(A) is a lattice
A (A)={zcZ™ Az=0 (mod q)}

e Collisions Ax = Ay (mod g) can be represented by a single vector
z=x—ye€ {—1,0,1} such that

Az = Ax — Ay =0 mod g

o Collisions are lattice vectors z € A+(A) with small norm
|z|lcc = max;|zj| = 1.
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Relation to lattices

The kernel set AL(A) is a lattice

A (A)={zcZ™ Az=0 (mod q)}

Collisions Ax = Ay (mod q) can be represented by a single vector
z=x—ye€ {—1,0,1} such that

Az = Ax — Ay =0 mod g

Collisions are lattice vectors z € A-(A) with small norm
|z|lcc = max;|zj| = 1.

@ ... there is a much deeper and interesting relation between breaking
fa and lattice problems.
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Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)
Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € Zk) of
length (at most) ||Bx|| < A1

by
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Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € Zk) of
length (at most) ||Bx|| < A1

N -
°
° ° N °
°
° °
° ® ° ° ®
Bx — 5b; — 2by o o
° °
° Ay . N °
°
° 0
» bl ° °
°
° °
3 °
N °
N °
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Shortest Vector Problem

Definition (Shortest Vector Problem, SVP,)
Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € Zk) of
length (at most) ||Bx|| < A1
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Closest Vector Problem

Definition (Closest Vector Problem, CVP)
Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||Bx — t|| < u from the target

by
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Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
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Closest Vector Problem

Definition (Closest Vector Problem, CVP.)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
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Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < A,

by
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Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP.)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi,...,Bx, of length (at most) max; ||Bx;|| < vA,
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Minimum Distance and Successive Minima

@ Minimum distance

[ ]
A = min X — e
1 x}yeﬁﬁyﬂ yl . N\
. [ ]
= min x| /
x€L,x#0 °
° (]
[ ]
° ° ° ‘
° ° ¢
° ° ¢
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Minimum Distance and Successive Minima

@ Minimum distance

N = i -
1 x}y&lg#yllx yll .

= min |lxl

xeL,x#0 ././
A1 «
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Minimum Distance and Successive Minima

@ Minimum distance

A1 = i — o ° ’
1= min k=l .
= min, Il : -
xeL,x °
A1 ‘
@ Successive minima (i =1,...,n) : J n
Ai = min{r : dim span(B(r) N L) > i} . °
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Minimum Distance and Successive Minima

@ Minimum distance

A1 = i — . ° ’
1= min k=l .
= min x| ’ .
x€L,x#0
2 | My .
@ Successive minima (i =1,...,n) * J .
Ai = min{r : dim span(B(r) N L) > i} . .
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Minimum Distance and Successive Minima

@ Minimum distance

A = i — . . .
. N ,
= min x| . _
xeL,x#0

2 A1 ]
@ Successive minima (i =1,...,n) . J . ‘

Ai = min{r : dim span(B(r)N L) > i} R .

e Examples . .

o Z": )\1:)\2:...:)\,,:1
o Always: Ay < A <. <\,
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Consider a lattice A, and

o -
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Blurring a lattice

Consider a lattice A, and add noise to each .
lattice point until the entire space is covered. . . . C
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Blurring a lattice

Consider a lattice A, and add noise to each . ° N
lattice point until the entire space is covered. b . . c
° X S .
[ ] O ¢ N
How much noise is needed? h . .
o
r
Il < Vi An/2 S velas o
[ ] O °
[ ]
@ Each point in a € R” can be written o c

a=v+rwhereve Land |||~ /nh,. @
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Blurrin

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- An /2

@ Each point in a € R” can be written
a=v+rwhereve L and |r]| = /n\,.

o F - E E DA

August 2015 16 / 32
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

e < VN An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

o & = E E DA
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

rll < V- An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

o & = E E DA
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

[I¥l] < (logn) - v/n- An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

e a € R"/A is uniformly distributed.

o & = E E DA
Lattice Cryptography: Introduction and Open August 2015 16 / 32
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

¥l < (log n) - v/ - An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

e a € R"/A is uniformly distributed.
o Think of R" ~ 2A [GPV'07]

o F = = £ DA
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Average-case hardness (sketch)

@ Generate random points a; = v; +r; € %/\, where

e v; € Ais a random lattice point
e r; is a random error vector of length [|r;|| &~ /nA,

° A:[al,...,am]z%AmEngm

@ Assume we can find a short lattice vector z € Z™

Az=0
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e v; € Ais a random lattice point
e r; is a random error vector of length [|r;|| &~ /nA,

° A:[al,...,am]z%AmEngm

@ Assume we can find a short lattice vector z € Z™

Z(V,’ + r,-)z,- = Za,-z,- =Az=0
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Average-case hardness (sketch)

@ Generate random points a; = v; +r; € %/\, where

e v; € Ais a random lattice point
e r; is a random error vector of length [|r;|| &~ /nA,

° A:[al,...,am]z%AmEngm

@ Assume we can find a short lattice vector z € Z™

Z(V,’ + r,-)z,- = Za,-z,- =Az=0

@ Rearranging the terms yields a lattice vector

E VzZj = — E rizi

of length at most || > rizi|| &~ \/m - max||r;|| = n- A\,
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Shortcomings of Ajtai’s function

Expressivity:
@ Ajtai's proof requires m > nlog q
® The function fa : {0,1}™ — Zg is not injective

@ Enough for one-way functions, collision resistant hashing, some digital
siguatures, commitments, identification, etc.

... but (public key) encryption seem to require stronger assumptions.

(]

1996: Ajtai-Dwork cryptosystem, based on the “unique” Shortest
Vector Problem.

Efficiency:
o The matrix/key A € Z}*™ requires (n?) storage (and computation)

@ 1996: NTRU Cryptosystem, efficient, but not supported by security
proof from worst-case lattice problems.
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° AEZ;an'sezg,eegm.
4
qI

e ga(s )=As
wa

mod q

- n—

X
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Learning with errors (LWE)

o AcZI" se Ll ecEm

o ga(s;e) =As+emod g
=
@ Learning with Errors: Given A

and ga(s,e), recover s.
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Learning with errors (LWE)

o A7 s Ll ecEM
o ga(s;e) =As+emod g

=
@ Learning with Errors: Given A

and ga(s,e), recover s.

Theorem (Regev'05)

The function ga(s,e) is hard to m A + e [=/b
invert on the average, assuming

SIVP is hard to approximate in the
worst-case even for quantum N
computers.
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Candidate OWF
Key: a hard lattice £
Input: x, [|x|| </

«O>» «Fr « =>»

« =




SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod L

Xeo
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < B
Output: fz(x) = x mod L

e 3 < A\1/2: fr is injective
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < B
Output: fz(x) = x mod L

e 3 < A\1/2: fr is injective
@ 3> A\ /2: fz is not injective
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < B
Output: fz(x) = x mod L

e 3 < A\1/2: fr is injective
@ 3> A\ /2: fz is not injective
o 3 > u: fr is surjective
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod L

e 3 < A\1/2: fr is injective

@ 3> A\ /2: fz is not injective

@ 3> pu: fg is surjective

e (> p: fr(x) is almost uniform
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < B
Output: fz(x) = x mod L

e 3 < A\1/2: fr is injective
@ 3> A\ /2: fz is not injective
@ [ > p: fr is surjective

e (> p: fr(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?
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Special Versions of CVP

Definition (Closest Vector Problem (CVP))
Given (L, t,d), with pu(t, £) < d, find a lattice point within distance d
from t.

o If d is arbitrary, then one can find the closest lattice vector by binary
search on d.

@ Bounded Distance Decoding (BDD): If d < A1(L£)/2, then there is at
most one solution. Solution is the closest lattice vector.

@ Absolute Distance Decoding (ADD): If d > p(L), then there is always
at least one solution. Solution may not be closest lattice vector.
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Computational problems on random lattices

Ajtai's class of random lattices an their duals:

A c ZnXm
AL(A) = {xeZ™:Ax=0mod g}
N(A) = ATZ" 4 qz™

Inverting Ajtai's function Ax =b

@ Solution x always exist, but it is hard to find

@ Average case version of ADD on random /\qL(A)
Solving IWEsA+x=Db

@ For small enough x, solution is unique

@ Average case version of BDD on random dual lattice Ag(A).
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ADD reduces to SIVP

ADD input: £ and arbitrary t

e Compute short vectors V = SIVP(L)

@ Use V to find a lattice vector within distance

S %HV,H < (n/2)\, < np from t

] .. ,,.,,‘ v x._j.t
— “ o4
,.7,, 8 e &
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BDD reduces to SIVP

BDD input: t close to £ i . .
] . °
T
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BDD reduces to SIVP

BDD input: t close to £

e Compute V = SIVP(L*) ’ . Vi. : ) . )
e o ] 0 @ L :
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BDD reduces to SIVP

BDD input: t close to £ e e o
o Compute V = SIVP(L?) Cov
@ For each v; € L*, find the layer . . .

Li ={x|x-v; =c} closest to t
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BDD reduces to SIVP

BDD input: t close to £ * * ¢
e Compute V = SIVP(L*)
@ For each v; € L*, find the layer
Li ={x|x-v; =c} closest to t
o Output LyNlyn---NL,
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BDD reduces to SIVP

BDD input: t close to £
e Compute V = SIVP(L*)
@ For each v; € L*, find the layer
Li ={x|x-v; =c} closest to t
o Output LyNlyn---NL,

@ OQutput is correct as long as
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Special Versions of SVP and SIVP

@ GapSVP: compute (or approximate) the value A; without necessarily
finding a short vector

@ GapSIVP: compute (or approximate) the value A, without necessarily
finding short linearly independent vectors

o Transference Theorem A1 ~ 1/\}: GapSVP can be (approximately)
solved by solving GapSIVP in the dual lattice, and vice versa

Problems
o Exercise: Computing A1 (or A\,) exactly is as hard as SVP (or SIVP)

e Open Problem: Reduce approximate SVP (or SIVP) to approximate
GapSVP (or GapSIVP)
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Relations among lattice problems

o SIVP ~ ADD [MG'01] (GapSVP J{GapSIVP J—
e SVP < CVP [GMSS'99)]
o SIVP < CVP [M'08]

e BDD < SIVP SIvp o
o CVP < SVP [L'87]
o GapSVP =~ GapSIVP

[LLS'91,B'03]
o GapSVP < BDD [LM'09]  (SVP CVP)
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Relations among lattice problems

o SIVP ~ ADD [MG'01] (GapSVP }—{ GapSIVP }—;

o SVP < CVP [GMSS'99]

e SIVP < CVP [M'08]

e BDD < SIVP Svp 55

o CVP < SVP [L'87]

o GapSVP ~ GapSIVP
[LLS'91,B'93]

e GapSVP < BDD [LM'09] SVP CvP
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Open Problems

Does the ability to approximate A; helps in solving SVP?

Does the ability to approximate A, helps in solving SIVP?
Is there a reduction from CVP/SVP to SIVP?

o Yes, for the exact version of the problems [M. 08]
e Open for approximation version

Is there a classical (nonquantum) reduction from SIVP/ADD to
GapSVP/BDD?
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Efficient Lattice Cryptography from Structured Lattices

dea | RORNO RN G
Use structured matrix L n 2,
O R ) R ()

Al) — 2 1 3

A=[AQ) | | A/ : : : :
where Al) ¢ Zg*" is circulant a) 351'21 e agi)

@ “Generalized Compact Knapsacks and Efficient One-Way Functions”
(Micciancio, FOCS 2002)
o Efficient version of Ajtai's connection:

e O(nlog n) space and time complexity
o Provable security: guidance on how to choose random instances.

Theorem

“CyclicSIS” is hard to invert on average, assuming the worst-case hardness
of lattice problems over “cyclic” lattices.
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Ideal Lattices and Algebraic number theory

@ Isomorphism: AY¢ « Z[X]/(X" — 1)
@ Cyclic SIS:

far,...a (U1, uk) = Za;(X) -ui(X) (mod X" —1)

where a;, u; € R = Z[X]/(X" — 1).

@ More generally, use R = Z[X]/p(X) for some monic polynomial
p(X) € ZIX]

e If p(X) is irreducible, then finding collisions to f, for random a is as
hard as solving lattice problems in the worst case in ideal lattices

@ Can set R to the ring of integers of K = Q[X]/p(X).
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How to choose p(X)/R?

RingSIS (Lyubashevsky, PhD Thesis, UCSD 2008)
o define fo(u) = >, a;(X) - ui(X)
@ Notice: no reduction modulo p(X)!
o If f(u) = f(v') in Z[X], then f(u) = fo(v’) (mod p(X)).

@ Conclusion: breaking f is at least as hard as solving lattices problems
in ideal lattices for any p(X).

Daniele Micciancio (UCSD) Lattice Cryptography: Introduction and Open August 2015 30/ 32



How to choose p(X)/R?

RingSIS (Lyubashevsky, PhD Thesis, UCSD 2008)
o define fo(u) = >, a;(X) - ui(X)
@ Notice: no reduction modulo p(X)!
o If f(u) = f(v') in Z[X], then f(u) = fo(v’) (mod p(X)).
@ Conclusion: breaking f is at least as hard as solving lattices problems
in ideal lattices for any p(X).
RingLWE:
@ Most applications require not only hardness of inverting f,, but also
pseudorandomness of output f,(u)

o [Lyubashevsky,Peikert,Regev'10]: For cyclotomic p(X), hardness of
inverting f, implies pseudorandomness of f,(u).

@ [Lauter'15] constructs polynomial rings where inverting f, is
conceivably hard, but f,(u) is easily distinguished from random.
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Classical Hardness of LWE

e [P'09, BLPRS'13] There is a classical reduction from GapSVP to
LWE when g = 29(") or LWE dimension d = O(n?)
Open Problems
@ Is there a more efficient reduction from GapSVP to LWE?
@ Is there a classical reduction from SIVP to LWE?
o Is there a reduction from SVP/SIVP to LWE on ideal lattices?
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More Open Problems — Tonight 7:30pm

@ Bring your own open problems to share!

@ Send email to
daniele@cs.ucsd.edu
with estimated time for scheduling.

@ ...or, just talk to me over lunch or coffee break.
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More Open Problems — Tonight 7:30pm

@ Bring your own open problems to share!

@ Send email to
daniele@cs.ucsd.edu
with estimated time for scheduling.

@ ...or, just talk to me over lunch or coffee break.

Thank you!
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