
Cryptography via Burnside Groups

Antonio R. Nicolosi

Stevens Institute of Technology

Based on work w/ G.Baumslag, N.Fazio, K.Iga, L.Perret, V.Shpilrain and W.E.Skeith III

Mathematics of Cryptography September 1, 2015. University of California, Irvine, CA

Talk Preview

Goal
Identify viable intractability assumptions from combinatorial group theory

Evidence of (average-case) hardness (random self-reducibility)

Cryptographically useful

Approach

Generalize well-established crypto assumptions (LPN/LWE) to a
group-theoretic setting

Study instantiation in suitable non-commutative groups

Antonio R. Nicolosi Cryptography via Burnside Groups

Outline

1 Background
Burnside Groups (Bn)
Learning Burnside Homomorphisms with Noise (Bn-LHN)

2 Random Self-Reducibility of Bn-LHN

3 Cryptography (Minicrypt) via Burnside Groups

Antonio R. Nicolosi Cryptography via Burnside Groups

Outline

1 Background
Burnside Groups (Bn)
Learning Burnside Homomorphisms with Noise (Bn-LHN)

2 Random Self-Reducibility of Bn-LHN

3 Cryptography (Minicrypt) via Burnside Groups

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Problem (Informal)

Are groups whose elements all have finite order
necessarily finite?
What is their combinatorial structure?

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4)3 = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Groups (cont’d)

Characterizing B(n,m) not so easy . . .

B(n,2) Finite and abelian, isomorphic to (Fn
2,+)

B(n,3) Finite, non-commutative, much larger than (Fn
3,+)

B(n,4) Finite
B(n,5) Unknown
B(n,6) Finite
B(n,7) Unknown

...
...

B(n,m), m “large” Infinite

Will focus on B(n,3) (simplest case beyond vector spaces)
Notation: Bn

.
= B(n, 3)

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Groups (cont’d)

Characterizing B(n,m) not so easy . . .

B(n,2) Finite and abelian, isomorphic to (Fn
2,+)

B(n,3) Finite, non-commutative, much larger than (Fn
3,+)

B(n,4) Finite
B(n,5) Unknown
B(n,6) Finite
B(n,7) Unknown

...
...

B(n,m), m “large” Infinite

Will focus on B(n,3) (simplest case beyond vector spaces)
Notation: Bn

.
= B(n, 3)

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn: Burnside Groups of Exponent 3

Bn: “Most generic” group with n generators where the order of all
non-identity elements is 3

Generators x1, . . . , xn

Elements are sequences of xi and x−1
i

Exponent condition: ∀w ∈ Bn, www = 1 (?)

Q: “Most generic”!?
A: The only non-trivial identities in Bn are those implied by (?)

⇒ Bn non-commutative
xixj 6= xjxi for any two distinct generators (i 6= j)

⇒ Group operation in Bn defined “formally”
To “multiply” w1,w2 ∈ Bn, just concatenate them
Simplifications may arise at the interface of w1 and w2

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn: Burnside Groups of Exponent 3

Bn: “Most generic” group with n generators where the order of all
non-identity elements is 3

Generators x1, . . . , xn

Elements are sequences of xi and x−1
i

Exponent condition: ∀w ∈ Bn, www = 1 (?)

Q: “Most generic”!?
A: The only non-trivial identities in Bn are those implied by (?)

⇒ Bn non-commutative
xixj 6= xjxi for any two distinct generators (i 6= j)

⇒ Group operation in Bn defined “formally”
To “multiply” w1,w2 ∈ Bn, just concatenate them
Simplifications may arise at the interface of w1 and w2

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn: Burnside Groups of Exponent 3

Bn: “Most generic” group with n generators where the order of all
non-identity elements is 3

Generators x1, . . . , xn

Elements are sequences of xi and x−1
i

Exponent condition: ∀w ∈ Bn, www = 1 (?)

Q: “Most generic”!?
A: The only non-trivial identities in Bn are those implied by (?)

⇒ Bn non-commutative
xixj 6= xjxi for any two distinct generators (i 6= j)

⇒ Group operation in Bn defined “formally”
To “multiply” w1,w2 ∈ Bn, just concatenate them
Simplifications may arise at the interface of w1 and w2

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn: Burnside Groups of Exponent 3

Bn: “Most generic” group with n generators where the order of all
non-identity elements is 3

Generators x1, . . . , xn

Elements are sequences of xi and x−1
i

Exponent condition: ∀w ∈ Bn, www = 1 (?)

Q: “Most generic”!?
A: The only non-trivial identities in Bn are those implied by (?)

⇒ Bn non-commutative
xixj 6= xjxi for any two distinct generators (i 6= j)

⇒ Group operation in Bn defined “formally”
To “multiply” w1,w2 ∈ Bn, just concatenate them
Simplifications may arise at the interface of w1 and w2

Antonio R. Nicolosi Cryptography via Burnside Groups

Basic Commutators

In Bn, xixj 6= xjxi for any two distinct generators (i 6= j)
However, always possible to get xixj = xjxi [xi , xj] by defining

[xi , xj]
.

= x−1
i x−1

j xixj

Call [xi , xj] a 2-commutator
Similarly, define a 3-commutator [xi , xj , xk] as

[xi , xj , xk]
.

= [[xi , xj], xk]

In general, may define `-commutators inductively, but in Bn all
`-commutators vanish for ` ≥ 4,

[xi , xj , xk , xh] = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Basic Commutators

In Bn, xixj 6= xjxi for any two distinct generators (i 6= j)
However, always possible to get xixj = xjxi [xi , xj] by defining

[xi , xj]
.

= x−1
i x−1

j xixj

Call [xi , xj] a 2-commutator
Similarly, define a 3-commutator [xi , xj , xk] as

[xi , xj , xk]
.

= [[xi , xj], xk]

In general, may define `-commutators inductively, but in Bn all
`-commutators vanish for ` ≥ 4,

[xi , xj , xk , xh] = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Basic Commutators

In Bn, xixj 6= xjxi for any two distinct generators (i 6= j)
However, always possible to get xixj = xjxi [xi , xj] by defining

[xi , xj]
.

= x−1
i x−1

j xixj

Call [xi , xj] a 2-commutator
Similarly, define a 3-commutator [xi , xj , xk] as

[xi , xj , xk]
.

= [[xi , xj], xk]

In general, may define `-commutators inductively, but in Bn all
`-commutators vanish for ` ≥ 4,

[xi , xj , xk , xh] = 1

Antonio R. Nicolosi Cryptography via Burnside Groups

Commutators Identities in Bn

[xi , xj , xk , xh] = 1 implies:
3-commutators commute with all w ∈ Bn:

[xi , xj , xk]w = w [xi , xj , xk]

2-commutators commute among themselves:

[xk , xh][xi , xj] = [xi , xj][xk , xh]

Other commutator identities in Bn:

[xj , xi] = [xi , xj]
−1 = [xi , x−1

j] = [x−1
i , xj] [xi , xj , xi] = 1

[xi , xj , xk] = [xk , xj , xi]
−1 [xi , xj , xk] = [xj , xk , xi] = [xk , xi , xj]

[upshot: w.l.o.g, generators always sorted within commutator]

Antonio R. Nicolosi Cryptography via Burnside Groups

Commutators Identities in Bn

[xi , xj , xk , xh] = 1 implies:
3-commutators commute with all w ∈ Bn:

[xi , xj , xk]w = w [xi , xj , xk]

2-commutators commute among themselves:

[xk , xh][xi , xj] = [xi , xj][xk , xh]

Other commutator identities in Bn:

[xj , xi] = [xi , xj]
−1 = [xi , x−1

j] = [x−1
i , xj] [xi , xj , xi] = 1

[xi , xj , xk] = [xk , xj , xi]
−1 [xi , xj , xk] = [xj , xk , xi] = [xk , xi , xj]

[upshot: w.l.o.g, generators always sorted within commutator]

Antonio R. Nicolosi Cryptography via Burnside Groups

Commutators Identities in Bn

[xi , xj , xk , xh] = 1 implies:
3-commutators commute with all w ∈ Bn:

[xi , xj , xk]w = w [xi , xj , xk]

2-commutators commute among themselves:

[xk , xh][xi , xj] = [xi , xj][xk , xh]

Other commutator identities in Bn:

[xj , xi] = [xi , xj]
−1 = [xi , x−1

j] = [x−1
i , xj] [xi , xj , xi] = 1

[xi , xj , xk] = [xk , xj , xi]
−1 [xi , xj , xk] = [xj , xk , xi] = [xk , xi , xj]

[upshot: w.l.o.g, generators always sorted within commutator]

Antonio R. Nicolosi Cryptography via Burnside Groups

Normal Form in Bn

In general, elements in non-commutative groups may have
multiple equivalent forms

E.g., xix−1
j xi = xjx−1

i xj

In Bn, commutator identities imply that any w ∈ Bn can always be
written uniquely as:

w =
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

where αi , βi,j , γi,j,k ∈ {−1,0,1}, for all 1 ≤ i < j < k ≤ n

Antonio R. Nicolosi Cryptography via Burnside Groups

Normal Form in Bn

In general, elements in non-commutative groups may have
multiple equivalent forms

E.g., xix−1
j xi = xjx−1

i xj

In Bn, commutator identities imply that any w ∈ Bn can always be
written uniquely as:

w =
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

where αi , βi,j , γi,j,k ∈ {−1,0,1}, for all 1 ≤ i < j < k ≤ n

Antonio R. Nicolosi Cryptography via Burnside Groups

Example: The Structure of B2

Cayley graph of B2 (left): nodes ≡ elements;
edges ≡ multiplication by a generator
(green: x1; purple: x2)
B2 has 27 elements, of the form

xα1
1 xα2

2 [x1, x2]β1,2 , α1, α2, β1,2 ∈ F3

Isomorphic to Heisenberg Group H1(F3):1 α1 β1,2
0 1 α2
0 0 1

 ∈ GL(3,F3)

Beware of hasty generalization: for n ≥ 3,
Bn 6∼= Hm(F3)

No known poly(n)-order representation of Bn

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn

Recall the normal form in Bn:
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

O(n) O(n2) O(n3)

To multiply two elements w1 and w2, first concatenate them . . .

. . . then reduce back to normal by reordering commutators via
O(n3) three-stage collecting process (next)

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn

Recall the normal form in Bn:
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

O(n) O(n2) O(n3)

To multiply two elements w1 and w2, first concatenate them . . .

. . . then reduce back to normal by reordering commutators via
O(n3) three-stage collecting process (next)

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn

Recall the normal form in Bn:
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

O(n) O(n2) O(n3)

To multiply two elements w1 and w2, first concatenate them . . .

. . . then reduce back to normal by reordering commutators via
O(n3) three-stage collecting process (next)

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn

Recall the normal form in Bn:
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

O(n) O(n2) O(n3)

To multiply two elements w1 and w2, first concatenate them . . .

. . . then reduce back to normal by reordering commutators via
O(n3) three-stage collecting process (next)

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn

Recall the normal form in Bn:
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

O(n) O(n2) O(n3)

To multiply two elements w1 and w2, first concatenate them . . .

. . . then reduce back to normal by reordering commutators via
O(n3) three-stage collecting process (next)

Antonio R. Nicolosi Cryptography via Burnside Groups

The Collecting Process (1/3)

Stage 1
Aggregate 3-commutators in w1 and w2, adding matching exponents mod 3

Time: O(1) per 3-commutator, total O(n3)

Antonio R. Nicolosi Cryptography via Burnside Groups

The Collecting Process (2/3)

Stage 2
Move 2-commutators in w1 to the right of generators in w2

Each 2-commutator traveling right incurs O(n) (constant-time) swaps with
generators in w2.

Time: O(n) per 2-commutator, total O(n3)

Antonio R. Nicolosi Cryptography via Burnside Groups

The Collecting Process (3/3)

Stage 3
Restore lexicographic order among generators

Fixing each out-of-order generator takes O(n) swaps, and each swap creates
a 2-commutator.
Before moving on to the next generator, these O(n) 2-commutators must
travel rightward (similarly to step 2 above), which takes O(n2) steps

Time: O(n2) per generator, total O(n3)

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Groups: Recap

Compact normal form:

n∏
i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

⇒ |Bn| = 3n+(n
2)+(n

3)

Efficient (O(n3)) group operation
Cubic in security parameter, but linear in input size
Similar (somewhat simpler) process to compute inverses (omitted)

Non-commutative, but enjoys several useful identities
www = 1 for any w ∈ Bn

[xi , xj , xk , xh] = 1 for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Groups: Recap

Compact normal form:

n∏
i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

⇒ |Bn| = 3n+(n
2)+(n

3)

Efficient (O(n3)) group operation
Cubic in security parameter, but linear in input size
Similar (somewhat simpler) process to compute inverses (omitted)

Non-commutative, but enjoys several useful identities
www = 1 for any w ∈ Bn

[xi , xj , xk , xh] = 1 for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Groups: Recap

Compact normal form:

n∏
i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

⇒ |Bn| = 3n+(n
2)+(n

3)

Efficient (O(n3)) group operation
Cubic in security parameter, but linear in input size
Similar (somewhat simpler) process to compute inverses (omitted)

Non-commutative, but enjoys several useful identities
www = 1 for any w ∈ Bn

[xi , xj , xk , xh] = 1 for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

Antonio R. Nicolosi Cryptography via Burnside Groups

Burnside Groups: Recap

Compact normal form:

n∏
i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k

⇒ |Bn| = 3n+(n
2)+(n

3)

Efficient (O(n3)) group operation
Cubic in security parameter, but linear in input size
Similar (somewhat simpler) process to compute inverses (omitted)

Non-commutative, but enjoys several useful identities
www = 1 for any w ∈ Bn

[xi , xj , xk , xh] = 1 for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

Antonio R. Nicolosi Cryptography via Burnside Groups

Learning With Errors (LWE)

The LWE Setting

s ∈ Fn
q

Ψn: a discrete gaussian distribution over Fq centered at 0

AΨn
s : distribution on Fn

q × Fq whose samples are pairs (a,b)

where a $← Fn
q ,b = s · a + e,e $← Ψn

Fn
q 3 a

Fq

s ·

?
3 b

≈ s · a

?
= s · a + e, e $← Ψn

LWE Assumption

AΨn
s ≈

PPT
U(Fn

q × Fq)

Antonio R. Nicolosi Cryptography via Burnside Groups

LWE over Groups:
Learning Homomorphisms w/ Noise

Vector Spaces Groups

Fn
q 3 a Gn 3 a

Fq

s ·

?
3 b = s · a + e

≈ s · a

?
Pn

ϕ

?
3 b = ϕ(a)e

≈ ϕ(a)

?

Learning With Errors Learning Homomorphisms w/ Noise

secret linear functional s · secret (Gn,Pn)-homomorphism ϕ

Discrete gaussian noise e “small” Pn-noise e $← Ψn

Antonio R. Nicolosi Cryptography via Burnside Groups

Learning Homomorphisms with Noise (LHN)

The LHN Setting

Groups Gn, Pn

Distributions Γn, Ψn,Φn over Gn, Pn, hom(Gn,Pn), resp.
AΨn
ϕ (for ϕ ∈ hom(Gn,Pn)): Distribution over Gn × Pn whose

samples are pairs (a,b) where a $← Γn, e $← Ψn, b = ϕ(a)e

Gn 3 a

Pn

ϕ

?
3 b

≈ ϕ(a)

?
= ϕ(a)e

LHN Assumption

AΨn
ϕ ≈

PPT
U(Gn × Pn), ϕ

$← Φn

Antonio R. Nicolosi Cryptography via Burnside Groups

LWE As an Instance of LHN

Gn := (Fn
p,+) and Γn := U(Fn

p)

Pn := (Fp,+) and Ψn := discrete gaussian
ϕ := s · and Φn := U(hom(Fn

p,Fp))

Fn
p 3 a Gn 3 a

Fp

s ·

?
3 b

≈ s · a

?
Pn

ϕ

?
3 b

≈ ϕ(a)

?

‖ ‖

s · a + e ϕ(a)e

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br)

Bn
≈ ϕ $← hom(Bn,Br) - Br

a $← U(Bn) - ϕ(a)e, (e $← Ψn)

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br),

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br)

Bn
≈ ϕ $← hom(Bn,Br) - Br

a $← U(Bn) - ϕ(a)
∏r

i=1 xvi
σ(i), (v $← U(Fr

3), σ
$← Sr)

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br),

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br)

Bn
≈ ϕ $← hom(Bn,Br) - Br

a $← U(Bn) - ϕ(a)e, (e $← Br)

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br),

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br)

Bn
≈ ϕ $← hom(Bn,Br) - Br

a $← U(Bn) - ϕ(a)e, (e $← Br)

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br), ϕ

$← hom(Bn,Br)

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br)

Bn
≈ ϕ $← hom(Bn,Br) - Br

a $← U(Bn) - ϕ(a)e, (e $← Br)

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br), any ϕ ∈ Epi(Bn,Br)

Antonio R. Nicolosi Cryptography via Burnside Groups

Outline

1 Background
Burnside Groups (Bn)
Learning Burnside Homomorphisms with Noise (Bn-LHN)

2 Random Self-Reducibility of Bn-LHN

3 Cryptography (Minicrypt) via Burnside Groups

Antonio R. Nicolosi Cryptography via Burnside Groups

Random Self-Reducibility (RSR) of Bn-LHN

Worst-case-to-average-case reduction for Bn-LHN: Solving
random instances not easier than solving an arbitrary instance

Why does random self-reducibility matter?
Hallmark of robust crypto assumptions (SIS, LWE, DLog, RSA)

Desirable “all-or-nothing” hardness property: Either the problem is
easy for (almost) all keys, or it is intractable for (almost) all keys

Critical for actual cryptosystems: Generation of cryptographic keys
amounts to sampling hard instances of underlying computational
problem: by RSR ensures random instance suffices

Antonio R. Nicolosi Cryptography via Burnside Groups

Understanding Burnside Homomorphisms

In Bn-LHN, secret key is a (Bn,Br)-homomorphism ϕ

⇒ Need to study hom(Bn,Br)

Key fact: All Burnside groups are relatively free
For any group P of exponent 3, any mapping of generators
x1, . . . , xn into P extends uniquely to a (Bn,P)-homomorphism
So |hom(Bn,P)| = |P|n

For P = Br (r � n), | hom(Bn,Br)| = 3(r+(r
2)+(r

3))n

⇒ The key space in Bn-LHN is exponential in n (security parameter)

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianization in Bn

Abelianization of Bn ≡ Quotient by its commutator subgroup:

[Bn,Bn]
.

= {
∏

i
v−1

i w−1
i viwi : vi ,wi ∈ Bn}

Bn/[Bn,Bn] ∼= (Fn
3,+)

Abelianization map ρn : Bn → Bn/[Bn,Bn] ∼= (Fn
3,+)

ρn :
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k 7→ (α1, α2, . . . , αn)

Abelianization of a (Bn,Br)-homomorphism ϕ

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianization in Bn

Abelianization of Bn ≡ Quotient by its commutator subgroup:

[Bn,Bn]
.

= {
∏

i
v−1

i w−1
i viwi : vi ,wi ∈ Bn}

Bn/[Bn,Bn] ∼= (Fn
3,+)

Abelianization map ρn : Bn → Bn/[Bn,Bn] ∼= (Fn
3,+)

ρn :
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k 7→ (α1, α2, . . . , αn)

Abelianization of a (Bn,Br)-homomorphism ϕ

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianization in Bn

Abelianization of Bn ≡ Quotient by its commutator subgroup:

[Bn,Bn]
.

= {
∏

i
v−1

i w−1
i viwi : vi ,wi ∈ Bn}

Bn/[Bn,Bn] ∼= (Fn
3,+)

Abelianization map ρn : Bn → Bn/[Bn,Bn] ∼= (Fn
3,+)

ρn :
n∏

i=1

xαi
i

∏
i<j

[xi , xj]
βi,j

∏
i<j<k

[xi , xj , xk]γi,j,k 7→ (α1, α2, . . . , αn)

Abelianization of a (Bn,Br)-homomorphism ϕ

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [i.e.,(a, ϕ(a)e)] ≈

PPT
U(Bn × Br)

ρ

?

≡

U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr)

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [i.e.,(a, ϕ(a)e)] ≈

PPT
U(Bn × Br)

ρ

?

≡

U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr)

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [i.e.,(a, ϕ(a)e)] ≈

PPT
U(Bn × Br)

[ρ(a), ϕ(ρ(a)) + ρ(e)]

ρ

?

≡

U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr)

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances

Antonio R. Nicolosi Cryptography via Burnside Groups

Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [i.e.,(a, ϕ(a)e)] ≈

PPT
U(Bn × Br)

AU(Fr
3)

ϕ = U(Fn
3)× U(Fr

3)

ρ

?

≡ U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr)

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances

Antonio R. Nicolosi Cryptography via Burnside Groups

RSR for Bn-LHN: Intuition

Two main steps:
1 Start with a generic partial key-randomization trick

2 Show that this randomization is complete in the case of Bn-LHN
with surjective secret key (ϕ ∈ Epi(Bn,Br))

Antonio R. Nicolosi Cryptography via Burnside Groups

Step 1: Domain Reshuffling

Lemma

Let α be a Gn-permutation, and (a,b) ∈ Gn × Pn be an LHN-instance
sampled according to AΨn

ϕ (b = ϕ(a)e for e $← Ψn). Let a′ .= α−1(a).
Then (a′,b) ∈ Gn × Pn is sampled according to AΨn

ϕ◦α

Proof.
Observe that

(a′,b) =
(
a′, ϕ(a) · e

)
=
(
a′, ϕ ◦ α(α−1(a)) · e

)
=
(
a′, ϕ ◦ α(a′) · e

)

Antonio R. Nicolosi Cryptography via Burnside Groups

Step 1: Domain Reshuffling

Lemma

Let α be a Gn-permutation, and (a,b) ∈ Gn × Pn be an LHN-instance
sampled according to AΨn

ϕ (b = ϕ(a)e for e $← Ψn). Let a′ .= α−1(a).
Then (a′,b) ∈ Gn × Pn is sampled according to AΨn

ϕ◦α

Proof.
Observe that

(a′,b) =
(
a′, ϕ(a) · e

)
=
(
a′, ϕ ◦ α(α−1(a)) · e

)
=
(
a′, ϕ ◦ α(a′) · e

)

Antonio R. Nicolosi Cryptography via Burnside Groups

Step 2: Completeness for Surjections

Domain Reshuffling provides some partial randomization for an
instantiation of the abstract LHN problem

For any AΨn
ϕ , can transform an AΨn

ϕ -instance into an AΨn
ϕ◦α-instance,

for any permutation α

In the case of Bn-LHN, this simple randomization is complete for
the set of surjective homomorphisms:

Lemma

(∀ϕ,ϕ∗ ∈ Epi(Bn,Br))(∃α ∈ Aut(Bn))[ϕ∗ = ϕ ◦ α]

Antonio R. Nicolosi Cryptography via Burnside Groups

Proving Completeness

Claim
Given an arbitrary epimorphism ϕ and a target epimorphism ϕ∗, there
exist an automorphism α such that ϕ∗ = ϕ ◦ α

Proof Idea
Freeness of Bn ⇒ ∃ β ∈ hom(Bn,Bn) such that ϕ∗ = ϕ ◦ β

a2
. . .

zn

z2

t1
t2

tn

. . .

ϕ

Bn Bn

ϕ∗

Br

β

. . .

an

◦
◦
◦

◦
◦
◦
◦

◦
◦
◦
◦

◦a1z1

Technical hurdle: β need not be an automorphism!
Solution: “Patch” β into α ∈ Aut(Bn)

Antonio R. Nicolosi Cryptography via Burnside Groups

Proving Transitivity

“Patching argument” (omitted) hinges upon following technical lemma:

Lemma
Surjections ϕ : Bn → Br are precisely the maps whose abelianization
ϕ is also surjective

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Proof (ϕ ∈ Epi(Bn,Br) =⇒ ϕ ∈ Epi(Fn
3,Fr

3)): Diagram chase

Antonio R. Nicolosi Cryptography via Burnside Groups

Proving Transitivity (cont’d)

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Proof (ϕ ∈ Epi(Fn
3,Fr

3) =⇒ ϕ ∈ Epi(Bn,Br))

Let {x1, . . . , xn} be Bn gener’s; define yi = ϕ(xi) and ti = ρr (yi)

Thesis amounts to proving {y1, . . . , yn} generates Br

By nilpotency of Br (cf. next Lemma), suffices to show {t1, . . . , tn}
generates Fr

3

Diagram chase shows ρr ◦ ϕ surj.⇒ {t1, . . . , tn} generates Fr
3

Antonio R. Nicolosi Cryptography via Burnside Groups

Proving Transitivity: Generating Sets of Br

Lemma
Let G be a nilpotent group. If {y1, . . . , ym} generates G modulo the
commutator subgroup [G,G], then {y1, . . . , ym} generates G.

Since Br has nilpotency class 3, and Br/[Br ,Br] ∼= Fr
3, we get:

Corollary

Let ρr : Br → Fr
3 denote abelianization, and y1, . . . , ym ∈ Br . Then

{y1, . . . , ym} generates Br iff {ρr (y1), . . . , ρr (ym)} generates Fr
3.

Antonio R. Nicolosi Cryptography via Burnside Groups

Outline

1 Background
Burnside Groups (Bn)
Learning Burnside Homomorphisms with Noise (Bn-LHN)

2 Random Self-Reducibility of Bn-LHN

3 Cryptography (Minicrypt) via Burnside Groups

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-Based Symmetric-Key Cryptosystem

Encryption

Fix an element τ ∈ Br such that the shortest sequence of xi and x−1
i

to express it is “large” (Cayley norm ‖ · ‖C)

t ∈ {0,1} : Encϕ(t) = (a, bτ t) a $← Bn,e
$← Br ,b = ϕ(a)e

Decryption

Decϕ(a,b′) =

{
0 if ‖ϕ(a)−1b′‖C “small”
1 o/w

Bn-Based Public-Key Cryptosystem?

Challenge: Control noise in products of ϕ(ai)ei ’s

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-Based Symmetric-Key Cryptosystem

Encryption

Fix an element τ ∈ Br such that the shortest sequence of xi and x−1
i

to express it is “large” (Cayley norm ‖ · ‖C)

t ∈ {0,1} : Encϕ(t) = (a, bτ t) a $← Bn,e
$← Br ,b = ϕ(a)e

Decryption

Decϕ(a,b′) =

{
0 if ‖ϕ(a)−1b′‖C “small”
1 o/w

Bn-Based Public-Key Cryptosystem?

Challenge: Control noise in products of ϕ(ai)ei ’s

Antonio R. Nicolosi Cryptography via Burnside Groups

Bn-Based Symmetric-Key Cryptosystem

Encryption

Fix an element τ ∈ Br such that the shortest sequence of xi and x−1
i

to express it is “large” (Cayley norm ‖ · ‖C)

t ∈ {0,1} : Encϕ(t) = (a, bτ t) a $← Bn,e
$← Br ,b = ϕ(a)e

Decryption

Decϕ(a,b′) =

{
0 if ‖ϕ(a)−1b′‖C “small”
1 o/w

Bn-Based Public-Key Cryptosystem?

Challenge: Control noise in products of ϕ(ai)ei ’s

Antonio R. Nicolosi Cryptography via Burnside Groups

Summary

Algebraic generalization of the LWE problem to an abstract
group-theoretic setting

Exploration of the cryptographic viability of Burnside groups
Technical lemmas about homomorphisms between Burnside
groups of exponent three

Evidence to the hardness of the Bn-LHN problem of
Random Self-Reducibility:
Solving random instances is as hard as solving arbitrary ones

Antonio R. Nicolosi Cryptography via Burnside Groups

Thank You!

Antonio R. Nicolosi Cryptography via Burnside Groups

	Background
	Burnside Groups (Bn)
	Learning Burnside Homomorphisms with Noise (Bn-LHN)

	Random Self-Reducibility of Bn-LHN
	Cryptography (Minicrypt) via Burnside Groups

