Cryptography via Burnside Groups

Antonio R. Nicolosi

Stevens Institute of Technology

Based on work w/ G.Baumslag, N.Fazio, K.Iga, L.Perret, V.Shpilrain and W.E.Skeith III

Goal

Identify viable intractability assumptions from combinatorial group theory

- Evidence of (average-case) hardness (random self-reducibility)
- Cryptographically useful

Approach

- Generalize well-established crypto assumptions (LPN/LWE) to a group-theoretic setting
- Study instantiation in suitable non-commutative groups

Background

- Burnside Groups (B_n)
- Learning Burnside Homomorphisms with Noise (B_n-LHN)

2 Random Self-Reducibility of *B_n*-LHN

Cryptography (Minicrypt) via Burnside Groups

Outline

Background

- Burnside Groups (B_n)
- Learning Burnside Homomorphisms with Noise (B_n-LHN)

2 Random Self-Reducibility of *B_n*-LHN

3 Cryptography (Minicrypt) via Burnside Groups

- Are groups whose elements all have finite order necessarily finite?
- What is their combinatorial structure?

B(n, m): "Most generic" group with n generators where the order of all elements divides m

- Generators x₁,..., x_n (like indeterminates in a multivariate poly)
- Elements are sequences of x_i and x_i⁻
- Empty sequence is the identity element of the group
- Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$
- Examples:
 - $x_1 x_4^{-1} x_1 \in B(4,3), \quad x_1^{-1} x_4^{-1} \in B(4,3)$
 - $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (*B*(4, 3) is not abelian)
 - On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

 B(n, m): "Most generic" group with n generators where the order of all elements divides m

- Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
- Elements are sequences of x_i and x_i⁻
- Empty sequence is the identity element of the group
- Exponent condition: For every $w \in B(n, m)$ it holds that $|w^m = 1|$
- Examples:
 - $x_1 x_4^{-1} x_1 \in B(4,3), \quad x_1^{-1} x_4^{-1} \in B(4,3)$
 - $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (*B*(4,3) is not abelian)
 - On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}

Empty sequence is the identity element of the group

- Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$
- Examples:
 - $x_1 x_4^{-1} x_1 \in B(4,3), \quad x_1^{-1} x_4^{-1} \in B(4,3)$
 - $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (*B*(4,3) is not abelian)
 - On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i⁻¹
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $w^m = 1$
- Examples:
 - $x_1 x_4^{-1} x_1 \in B(4,3), \quad x_1^{-1} x_4^{-1} \in B(4,3)$
 - $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (B(4, 3) is not abelian)
 - On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i⁻¹
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $|w^m = 1|$
- Examples:
 - $x_1 x_4^{-1} x_1 \in B(4,3), \quad x_1^{-1} x_4^{-1} \in B(4,3)$
 - $x_1^2 = x_1^{-1}$, but $x_1x_4^{-1}x_1 \neq x_1^{-1}x_4^{-1} = x_1x_1x_4^{-1}$ (*B*(4, 3) is not abelian) • On the other hand:

 $x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $|w^m = 1|$
- Examples:
 - $x_1x_4^{-1}x_1 \in B(4,3), \quad x_1^{-1}x_4^{-1} \in B(4,3)$
 - $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (*B*(4, 3) is not abelian) • On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i⁻¹
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $|w^m = 1|$
- Examples:

•
$$x_1 x_4^{-1} x_1 \in B(4,3)$$
, $x_1^{-1} x_4^{-1} \in B(4,3)$
• $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (*B*(4,3) is not abelian)
• On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

- B(n, m): "Most generic" group with n generators where the order of all elements divides m
 - Generators x_1, \ldots, x_n (like indeterminates in a multivariate poly)
 - Elements are sequences of x_i and x_i^{-1}
 - Empty sequence is the identity element of the group
 - Exponent condition: For every $w \in B(n, m)$ it holds that $|w^m = 1|$
- Examples:

•
$$x_1 x_4^{-1} x_1 \in B(4,3), \quad x_1^{-1} x_4^{-1} \in B(4,3)$$

- $x_1^2 = x_1^{-1}$, but $x_1 x_4^{-1} x_1 \neq x_1^{-1} x_4^{-1} = x_1 x_1 x_4^{-1}$ (*B*(4,3) is not abelian)
- On the other hand:

$$x_1 x_4^{-1} x_1 = x_4 x_1^{-1} x_4$$
, since $x_1 x_4^{-1} x_1 x_4^{-1} x_1 x_4^{-1} = (x_1 x_4^{-1})^3 = 1$

• Characterizing *B*(*n*, *m*) not so easy ...

<i>B</i> (<i>n</i> ,2)	Finite and abelian, isomorphic to $(\mathbb{F}_2^n, +)$
<i>B</i> (<i>n</i> , 3)	Finite, non-commutative, much larger than $(\mathbb{F}_3^n, +)$
<i>B</i> (<i>n</i> , 4)	Finite
<i>B</i> (<i>n</i> ,5)	Unknown
<i>B</i> (<i>n</i> ,6)	Finite
<i>B</i> (<i>n</i> ,7)	Unknown
:	:
<i>B</i> (<i>n</i> , <i>m</i>), <i>m</i> "large"	Infinite

Will focus on B(n,3) (simplest case beyond vector spaces)
 Notation: B_n = B(n,3)

- Characterizing *B*(*n*, *m*) not so easy ...
 - B(n,2)Finite and abelian, isomorphic to $(\mathbb{F}_2^n, +)$ B(n,3)Finite, non-commutative, much larger than $(\mathbb{F}_3^n, +)$ B(n,4)FiniteB(n,5)UnknownB(n,6)FiniteB(n,7)Unknown \vdots \vdots
 - B(n, m), m "large" Infinite
- Will focus on B(n,3) (simplest case beyond vector spaces)
 - Notation: $B_n \doteq B(n,3)$

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x₁,..., x_n
 - Elements are sequences of x_i and x_i⁻¹
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?

A: The only non-trivial identities in B_n are those implied by (\star)

- $\Rightarrow B_n$ non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x₁,..., x_n
 - Elements are sequences of x_i and x_i⁻¹
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?

A: The only non-trivial identities in B_n are those implied by (\star)

- $\Rightarrow B_n$ non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x₁,..., x_n
 - Elements are sequences of x_i and x_i⁻¹
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?

A: The only non-trivial identities in B_n are those implied by (\star)

 \Rightarrow B_n non-commutative

• $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$

- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

- B_n: "Most generic" group with n generators where the order of all non-identity elements is 3
 - Generators x₁,..., x_n
 - Elements are sequences of x_i and x_i⁻¹
 - Exponent condition: $\forall w \in B_n$, www = 1 (*)
- Q: "Most generic"!?

A: The only non-trivial identities in B_n are those implied by (\star)

- \Rightarrow *B_n* non-commutative
 - $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- \Rightarrow Group operation in B_n defined "formally"
 - To "multiply" $w_1, w_2 \in B_n$, just concatenate them
 - Simplifications may arise at the interface of w₁ and w₂

Basic Commutators

- In B_n , $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_i x_j = x_j x_i [x_i, x_j]$ by defining

$$[x_i, x_j] \doteq x_i^{-1} x_j^{-1} x_i x_j$$

Call $[x_i, x_j]$ a **2-commutator**

Similarly, define a 3-commutator [x_i, x_j, x_k] as

$$[x_i, x_j, x_k] \doteq [[x_i, x_j], x_k]$$

• In general, may define ℓ -commutators inductively, but in B_n all ℓ -commutators vanish for $\ell \ge 4$,

$$[x_i, x_j, x_k, x_h] = 1$$

Basic Commutators

- In B_n , $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_i x_j = x_j x_i [x_i, x_j]$ by defining

$$[x_i, x_j] \doteq x_i^{-1} x_j^{-1} x_i x_j$$

Call $[x_i, x_j]$ a **2-commutator**

• Similarly, define a 3-commutator [*x_i*, *x_j*, *x_k*] as

$$[\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k] \doteq [[\mathbf{x}_i, \mathbf{x}_j], \mathbf{x}_k]$$

• In general, may define ℓ -commutators inductively, but in B_n all ℓ -commutators vanish for $\ell \ge 4$,

$$[x_i, x_j, x_k, x_h] = 1$$

Basic Commutators

- In B_n , $x_i x_j \neq x_j x_i$ for any two distinct generators $(i \neq j)$
- However, always possible to get $x_i x_j = x_j x_i [x_i, x_j]$ by defining

$$[x_i, x_j] \doteq x_i^{-1} x_j^{-1} x_i x_j$$

Call $[x_i, x_j]$ a **2-commutator**

• Similarly, define a 3-commutator [x_i, x_j, x_k] as

$$[\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k] \doteq [[\mathbf{x}_i, \mathbf{x}_j], \mathbf{x}_k]$$

• In general, may define ℓ -commutators inductively, but in B_n all ℓ -commutators vanish for $\ell \ge 4$,

$$[x_i, x_j, x_k, x_h] = 1$$

Commutators Identities in *B_n*

• $[x_i, x_j, x_k, x_h] = 1$ implies:

• 3-commutators commute with all $w \in B_n$:

$$[\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k] \mathbf{w} = \mathbf{w} [\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k]$$

• 2-commutators commute among themselves:

$$[x_k, x_h][x_i, x_j] = [x_i, x_j][x_k, x_h]$$

• Other commutator identities in *B_n*:

$$[x_j, x_i] = [x_i, x_j]^{-1} = [x_i, x_j^{-1}] = [x_i^{-1}, x_j]$$

$$[x_i, x_j, x_i] = 1$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_i]^{-1}$$

$$[x_i, x_j, x_k] = [x_j, x_k, x_i] = [x_k, x_i, x_j]$$

[upshot: w.l.o.g, generators always sorted within commutator]

Commutators Identities in *B_n*

• $[x_i, x_j, x_k, x_h] = 1$ implies:

• 3-commutators commute with all $w \in B_n$:

$$[\mathbf{X}_i, \mathbf{X}_j, \mathbf{X}_k] \mathbf{W} = \mathbf{W} [\mathbf{X}_i, \mathbf{X}_j, \mathbf{X}_k]$$

• 2-commutators commute among themselves:

$$[x_k, x_h][x_i, x_j] = [x_i, x_j][x_k, x_h]$$

Other commutator identities in B_n:

$$[x_j, x_i] = [x_i, x_j]^{-1} = [x_i, x_j^{-1}] = [x_i^{-1}, x_j]$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_i]^{-1}$$

$$[x_i, x_j, x_k] = [x_j, x_k, x_i] = [x_k, x_i, x_j]$$

[upshot: w.l.o.g, generators always sorted within commutator]

Commutators Identities in *B_n*

• $[x_i, x_j, x_k, x_h] = 1$ implies:

• 3-commutators commute with all $w \in B_n$:

$$[\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k] \mathbf{w} = \mathbf{w} [\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k]$$

• 2-commutators commute among themselves:

$$[x_k, x_h][x_i, x_j] = [x_i, x_j][x_k, x_h]$$

• Other commutator identities in *B_n*:

$$[x_j, x_i] = [x_i, x_j]^{-1} = [x_i, x_j^{-1}] = [x_i^{-1}, x_j]$$

$$[x_i, x_j, x_i] = 1$$

$$[x_i, x_j, x_k] = [x_k, x_j, x_i]^{-1}$$

$$[x_i, x_j, x_k] = [x_j, x_k, x_i] = [x_k, x_i, x_j]$$

[upshot: w.l.o.g, generators always sorted within commutator]

Normal Form in B_n

 In general, elements in non-commutative groups may have multiple equivalent forms

• *E.g.*,
$$x_i x_j^{-1} x_i = x_j x_i^{-1} x_j$$

• In B_n , commutator identities imply that any $w \in B_n$ can always be written uniquely as:

$$W = \prod_{i=1}^{n} x_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

where $\alpha_i, \beta_{i,j}, \gamma_{i,j,k} \in \{-1, 0, 1\}$, for all $1 \le i < j < k \le n$

Normal Form in B_n

 In general, elements in non-commutative groups may have multiple equivalent forms

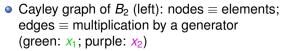
• *E.g.*,
$$x_i x_j^{-1} x_i = x_j x_i^{-1} x_j$$

 In B_n, commutator identities imply that any w ∈ B_n can always be written uniquely as:

$$\mathbf{w} = \prod_{i=1}^{n} \mathbf{x}_{i}^{\alpha_{i}} \prod_{i < j} [\mathbf{x}_{i}, \mathbf{x}_{j}]^{\beta_{i,j}} \prod_{i < j < k} [\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}]^{\gamma_{i,j,k}}$$

where $\alpha_i, \beta_{i,j}, \gamma_{i,j,k} \in \{-1, 0, 1\}$, for all $1 \le i < j < k \le n$

Example: The Structure of B₂



B₂ has 27 elements, of the form

$$x_1^{\alpha_1}x_2^{\alpha_2}[x_1,x_2]^{\beta_{1,2}}, \alpha_1, \alpha_2, \beta_{1,2} \in \mathbb{F}_3$$

Isomorphic to Heisenberg Group H₁(F₃):

$$\begin{pmatrix} 1 & \alpha_1 & \beta_{1,2} \\ 0 & 1 & \alpha_2 \\ 0 & 0 & 1 \end{pmatrix} \in GL(3,\mathbb{F}_3)$$

- Beware of hasty generalization: for $n \ge 3$, $B_n \ncong H_m(\mathbb{F}_3)$
- No known poly(n)-order representation of B_n

• Recall the normal form in *B_n*:

$$\prod_{i=1}^{n} \mathbf{x}_{i}^{\alpha_{i}} \prod_{i < j} [\mathbf{x}_{i}, \mathbf{x}_{j}]^{\beta_{i,j}} \prod_{i < j < k} [\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

 ... then reduce back to normal by reordering commutators via O(n³) three-stage collecting process (next)

• Recall the normal form in B_n:

$$\prod_{i=1}^n x_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

 ... then reduce back to normal by reordering commutators via *O*(n³) three-stage collecting process (*next*)

• Recall the normal form in B_n:

$$\prod_{i=1}^n x_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

 ... then reduce back to normal by reordering commutators via O(n³) three-stage collecting process (next)

• Recall the normal form in B_n:

$$\prod_{i=1}^{n} \mathbf{x}_{i}^{\alpha_{i}} \prod_{i < j} [\mathbf{x}_{i}, \mathbf{x}_{j}]^{\beta_{i,j}} \prod_{i < j < k} [\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

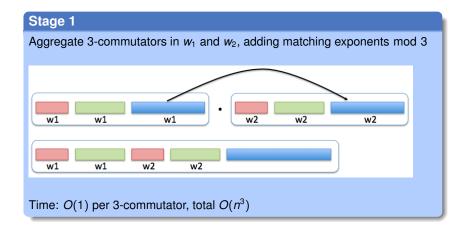
 ...then reduce back to normal by reordering commutators via O(n³) three-stage collecting process (next)

• Recall the normal form in B_n:

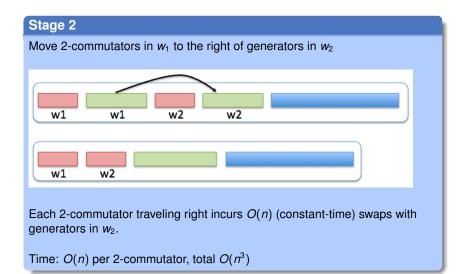
$$\prod_{i=1}^{n} \mathbf{x}_{i}^{\alpha_{i}} \prod_{i < j} [\mathbf{x}_{i}, \mathbf{x}_{j}]^{\beta_{i,j}} \prod_{i < j < k} [\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{x}_{k}]^{\gamma_{i,j,k}}$$

• To multiply two elements w_1 and w_2 , first concatenate them ...

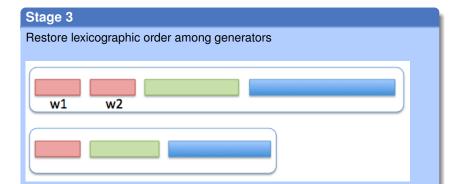
 ... then reduce back to normal by reordering commutators via O(n³) three-stage collecting process (next)



The Collecting Process (2/3)



The Collecting Process (3/3)



Fixing each out-of-order generator takes O(n) swaps, and each swap creates a 2-commutator.

Before moving on to the next generator, these O(n) 2-commutators must travel rightward (similarly to step 2 above), which takes $O(n^2)$ steps

Time: $O(n^2)$ per generator, total $O(n^3)$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $X_1^{-1}X_3X_1[X_2, X_3][X_2, X_3, X_1]X_2[X_1, X_2, X_3] =$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_2, x_3, x_1]x_2[x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] =$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $X_1^{-1}X_3X_1[X_2, X_3][X_2, X_3, X_1]X_2[X_1, X_2, X_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3][x_1, x_2, x_3] =$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $X_1^{-1}X_3X_1[X_2, X_3][X_2, X_3, X_1]X_2[X_1, X_2, X_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3][x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3]^{-1} =$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $X_1^{-1}X_3X_1[X_2, X_3][X_2, X_3, X_1]X_2[X_1, X_2, X_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3][x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3]^{-1} =$ $x_1^{-1}x_3x_1x_2[x_2, x_3][x_1, x_2, x_3]^{-1} =$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $X_1^{-1}X_3X_1[X_2, X_3][X_2, X_3, X_1]X_2[X_1, X_2, X_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3][x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3]^{-1} =$ $X_1^{-1}X_3X_1X_2[X_2, X_3][X_1, X_2, X_3]^{-1} =$ $x_1^{-1}x_1x_3[x_3, x_1]x_2[x_2, x_3][x_1, x_2, x_3]^{-1} =$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1]x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3]x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3]x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1]x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} [x_1, x_2, x_3]^{-1} [x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3]^{-1} [x_3]^{-1} [x_3]^{-1} [x_3]^{$$

 $X_1^{-1}X_3[X_2, X_3] \cdot X_1X_2[X_1, X_2, X_3] =$ $X_1^{-1}X_3X_1[X_2, X_3][X_2, X_3, X_1]X_2[X_1, X_2, X_3] =$ $x_1^{-1}x_3x_1[x_2, x_3][x_1, x_2, x_3]x_2[x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3][x_1, x_2, x_3] =$ $x_1^{-1}x_3x_1[x_2, x_3]x_2[x_1, x_2, x_3]^{-1} =$ $x_1^{-1}x_3x_1x_2[x_2, x_3][x_1, x_2, x_3]^{-1} =$ $x_1^{-1}x_1x_3[x_3, x_1]x_2[x_2, x_3][x_1, x_2, x_3]^{-1} =$ $x_3[x_1, x_3]^{-1}x_2[x_2, x_3][x_1, x_2, x_3]^{-1} =$ $x_3x_2[x_1, x_3]^{-1}[x_1, x_3, x_2]^{-1}[x_2, x_3][x_1, x_2, x_3]^{-1} =$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_3, x_2]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3, x_3]^{-1} = \\ x_3 x_3[x_1, x_3]^{-1} [x_3, x_3]^{-1} [x_3]^{-1} [x_3] = \\ x_$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3[x_1, x_3]^{-1} x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_2, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_2, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3]^{-1} [x_3]^{-1}$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_3, x_2]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3]^{-1} [x_$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_3, x_2]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_1, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_3]^{-1} [x_3$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_3, x_2]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_2, x_3]^{-1} [x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3]^{-1} [x_3]^{-$$

$$\begin{aligned} x_1^{-1} x_3[x_2, x_3] & \cdot & x_1 x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_2, x_3, x_1] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3][x_1, x_2, x_3] x_2[x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3][x_1, x_2, x_3] = \\ x_1^{-1} x_3 x_1[x_2, x_3] x_2[x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_3 x_1 x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_1^{-1} x_1 x_3[x_3, x_1] x_2[x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_3, x_2]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_1, x_2, x_3][x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_3 x_2[x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1} [x_2, x_3][x_1, x_2, x_3]^{-1} = \\ x_2 x_3[x_3, x_2][x_1, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_2 x_3[x_1, x_3]^{-1} [x_2, x_3]^{-1} [x_2, x_3] = \\ x_3 x_3[x_1, x_3]^{-1} [x_3]^{-1} [x_3]^{-1}$$

$$\prod_{i=1}^{n} X_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

$\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$

Efficient (O(n³)) group operation

- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_j, x_k, x_h] = 1$ for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

 $\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$

• Efficient $(O(n^3))$ group operation

- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_j, x_k, x_h] = 1$ for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

 $\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$

• Efficient $(O(n^3))$ group operation

- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - [*x_i*, *x_j*, *x_k*, *x_h*] = 1 for any choice of generators

Q: What computational tasks are hard over Burnside groups?!

$$\prod_{i=1}^n X_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}}$$

 $\Rightarrow |B_n| = 3^{n+\binom{n}{2}+\binom{n}{3}}$

• Efficient $(O(n^3))$ group operation

- Cubic in security parameter, but linear in input size
- Similar (somewhat simpler) process to compute inverses (omitted)
- Non-commutative, but enjoys several useful identities
 - www = 1 for any $w \in B_n$
 - $[x_i, x_j, x_k, x_h] = 1$ for any choice of generators
- Q: What computational tasks are hard over Burnside groups?!

Learning With Errors (LWE)

The LWE Setting

- $\mathbf{s} \in \mathbb{F}_q^n$
- Ψ_n : a discrete gaussian distribution over \mathbb{F}_q centered at 0
- A_s^{ψ_n}: distribution on F_qⁿ × F_q whose samples are pairs (a, b) where a ^s ∈ F_qⁿ, b = s ⋅ a + e, e ^s ∨_n

LWE Assumption

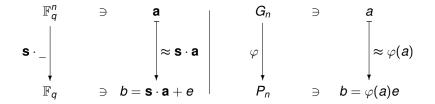
$$\mathbf{A}^{\Psi_n}_{\mathbf{s}} \underset{_{\mathrm{PPT}}}{\approx} \mathbf{U}(\mathbb{F}_q^n \times \mathbb{F}_q)$$

Antonio R. Nicolosi Cryptography via Burnside Groups

LWE over Groups: Learning Homomorphisms w/ Noise

Vector Spaces

Groups



Learning With Errors

Learning Homomorphisms w/ Noise

secret linear functional $\mathbf{s} \cdot _$ Discrete gaussian noise *e* secret (G_n , P_n)-homomorphism φ "small" P_n -noise $e \stackrel{s}{\leftarrow} \Psi_n$

Learning Homomorphisms with Noise (LHN)

The LHN Setting

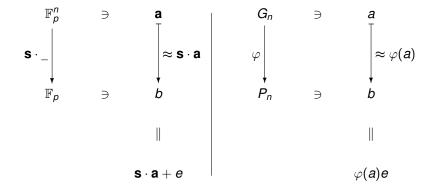
- Groups G_n, P_n
- Distributions Γ_n , Ψ_n , Φ_n over G_n , P_n , hom (G_n, P_n) , resp.
- A^{Ψ_n}_φ (for φ ∈ hom(G_n, P_n)): Distribution over G_n × P_n whose samples are pairs (a, b) where a ^s Γ_n, e ^s Ψ_n, b = φ(a)e

$$\begin{array}{cccc} G_n & \ni & a \\ \varphi \\ & & & \\ P_n & \ni & b & = & \varphi(a)e \end{array}$$

LHN Assumption

$$\mathbf{A}_{\varphi}^{\Psi_{n}} \underset{\mathrm{PPT}}{\approx} \mathbf{U}(G_{n} \times P_{n}), \qquad \varphi \overset{s}{\leftarrow} \Phi_{n}$$

LWE As an Instance of LHN



•
$$G_n := B_n$$
, $P_n := B_r$ (*r* small constant, *e.g.*, *r* = 4)

•
$$\Gamma_n := \mathbf{U}(B_n)$$

•
$$\Phi_n := \mathbf{U}(\hom(B_n, B_r))$$

•
$$\Psi_n := \left[\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \sigma \stackrel{s}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$$

(dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\diamond}{\leftarrow} \hom(B_n, B_r)} B_r$$
$$a \stackrel{\diamond}{\leftarrow} \mathbf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{\diamond}{\leftarrow} \Psi_n)$$

 $\mathcal{B}_n extsf{-LHN}$ Assumption $\mathbf{A}^{\mathcal{B}_r}_arphi \cong \mathbf{U}(B_n imes B_r),$

.

•
$$\Gamma_n := \mathbf{U}(B_n)$$

•
$$\Phi_n := \mathbf{U}(\hom(B_n, B_r))$$

•
$$\Psi_n := \begin{bmatrix} \mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{s}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \end{bmatrix}$$
 (*S_r*: *r*-permutations)
(dist. over *B_r*-elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \xleftarrow{s} \mathsf{hom}(B_n, B_r)} B_r$$
$$a \xleftarrow{s} \mathsf{U}(B_n) \longmapsto \varphi(a) \prod_{i=1}^r x_{\sigma(i)}^{v_i}, \quad (\mathbf{v} \xleftarrow{s} \mathsf{U}(\mathbb{F}_3^r), \sigma \xleftarrow{s} S_r)$$

 $egin{aligned} B_n extsf{-LHN} extsf{Assumption}\ \mathbf{A}^{\mathcal{B}_r}_arphi & pprox_{ extsf{PPT}} extsf{U}(B_n imes B_r), \end{aligned}$

•
$$G_n := B_n$$
, $P_n := B_r$ (*r* small constant, *e.g.*, *r* = 4)

•
$$\Gamma_n := \mathbf{U}(B_n)$$

•
$$\Phi_n := \mathbf{U}(\hom(B_n, B_r))$$

•
$$\Psi_n := \left[\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \sigma \stackrel{s}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$$

(dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{\diamond}{\leftarrow} \hom(B_n, B_r)} B_r$$
$$a \stackrel{\diamond}{\leftarrow} \mathbf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{\diamond}{\leftarrow} B_r)$$

B_n-LHN Assumption

$$\mathbf{A}_{\varphi}^{\mathcal{B}_{r}} \underset{\text{PPT}}{\approx} \mathbf{U}(B_{n} \times B_{r}),$$

•
$$G_n := B_n$$
, $P_n := B_r$ (r small constant, e.g., $r = 4$)

•
$$\Gamma_n := \mathbf{U}(B_n)$$

•
$$\Phi_n := \mathbf{U}(\hom(B_n, B_r))$$

•
$$\Psi_n := \begin{bmatrix} \mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{s}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \end{bmatrix}$$
 (*S_r*: *r*-permutations)
(dist. over *B_r*-elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{s}{\leftarrow} \hom(B_n, B_r)} B_r$$
$$a \stackrel{s}{\leftarrow} \mathbf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{s}{\leftarrow} B_r)$$

B_n-LHN Assumption

$$\mathbf{A}^{\mathcal{B}_r}_{\varphi} \underset{\text{PPT}}{\approx} \mathbf{U}(B_n \times B_r), \qquad \varphi \xleftarrow{\hspace{0.5mm}} \mathsf{hom}(B_n, B_r)$$

•
$$G_n := B_n$$
, $P_n := B_r$ (*r* small constant, *e.g.*, *r* = 4)

•
$$\Gamma_n := \mathbf{U}(B_n)$$

•
$$\Phi_n := \mathbf{U}(\hom(B_n, B_r))$$

•
$$\Psi_n := \left[\mathbf{v} \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \sigma \stackrel{s}{\leftarrow} S_r : \prod_{i=1}^r x_{\sigma(i)}^{v_i} \right] \quad (S_r: r\text{-permutations})$$

(dist. over B_r -elements of Cayley-norm $\leq r =: \mathcal{B}_r$)

$$B_n \xrightarrow{\approx \varphi \stackrel{s}{\leftarrow} \hom(B_n, B_r)} B_r$$
$$a \stackrel{s}{\leftarrow} \mathbf{U}(B_n) \longmapsto \varphi(a)e, \quad (e \stackrel{s}{\leftarrow} B_r)$$

B_n-LHN Assumption

$$\mathbf{A}_{\varphi}^{\mathcal{B}_r} \underset{_{\mathrm{ppr}}}{\approx} \mathbf{U}(B_n \times B_r), \qquad \text{any} \quad \varphi \in \mathrm{Epi}(B_n, B_r).$$

1 Background

- Burnside Groups (B_n)
- Learning Burnside Homomorphisms with Noise (*B_n*-LHN)

2 Random Self-Reducibility of *B_n*-LHN

3 Cryptography (Minicrypt) via Burnside Groups

Random Self-Reducibility (RSR) of *B_n***-LHN**

- Worst-case-to-average-case reduction for B_n-LHN: Solving random instances not easier than solving an arbitrary instance
- Why does random self-reducibility matter?
 - Hallmark of robust crypto assumptions (SIS, LWE, DLog, RSA)
 - Desirable "all-or-nothing" hardness property: Either the problem is easy for (almost) all keys, or it is intractable for (almost) all keys
 - Critical for actual cryptosystems: Generation of cryptographic keys amounts to sampling hard instances of underlying computational problem: by RSR ensures random instance suffices

Understanding Burnside Homomorphisms

- In B_n -LHN, secret key is a (B_n, B_r) -homomorphism φ
- \Rightarrow Need to study hom(B_n, B_r)
 - Key fact: All Burnside groups are relatively free
 - For any group *P* of exponent 3, any mapping of generators x_1, \ldots, x_n into *P* extends uniquely to a (B_n, P) -homomorphism
 - So $|hom(B_n, P)| = |P|^n$
 - For $P = B_r$ ($r \ll n$), $|\hom(B_n, B_r)| = 3^{\binom{r+\binom{r}{2}}{\binom{r}{3}}n}$

 \Rightarrow The key space in B_n-LHN is exponential in n (security parameter)

Abelianization in B_n

• Abelianization of $B_n \equiv$ Quotient by its commutator subgroup:

$$[B_n, B_n] \doteq \{\prod_i v_i^{-1} w_i^{-1} v_i w_i : v_i, w_i \in B_n\}$$
$$B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$$

• Abelianization map $\rho_n : B_n \to B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$

$$\rho_n: \prod_{i=1}^n x_i^{\alpha_i} \prod_{i < j} [x_i, x_j]^{\beta_{i,j}} \prod_{i < j < k} [x_i, x_j, x_k]^{\gamma_{i,j,k}} \mapsto (\alpha_1, \alpha_2, \dots, \alpha_n)$$

• Abelianization of a (B_n, B_r) -homomorphism φ

Abelianization in B_n

• Abelianization of $B_n \equiv$ Quotient by its commutator subgroup:

$$[B_n, B_n] \doteq \{\prod_i v_i^{-1} w_i^{-1} v_i w_i : v_i, w_i \in B_n\}$$
$$B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$$

• Abelianization map $\rho_n : B_n \to B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$

$$\rho_n:\prod_{i=1}^n x_i^{\alpha_i} \prod_{i< j} [x_i, x_j]^{\beta_{i,j}} \prod_{i< j< k} [x_i, x_j, x_k]^{\gamma_{i,j,k}} \mapsto (\alpha_1, \alpha_2, \ldots, \alpha_n)$$

• Abelianization of a (B_n, B_r) -homomorphism φ

Abelianization in B_n

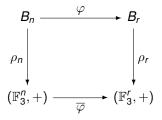
• Abelianization of $B_n \equiv$ Quotient by its commutator subgroup:

$$[B_n, B_n] \doteq \{\prod_i v_i^{-1} w_i^{-1} v_i w_i : v_i, w_i \in B_n\}$$
$$B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$$

• Abelianization map $\rho_n : B_n \to B_n/[B_n, B_n] \cong (\mathbb{F}_3^n, +)$

$$\rho_n:\prod_{i=1}^n x_i^{\alpha_i} \prod_{i< j} [x_i, x_j]^{\beta_{i,j}} \prod_{i< j< k} [x_i, x_j, x_k]^{\gamma_{i,j,k}} \mapsto (\alpha_1, \alpha_2, \ldots, \alpha_n)$$

• Abelianization of a (B_n, B_r) -homomorphism φ



Abelianizing B_n -LHN *vs.* LWE with p = 3

Q: Does abelianization reduce B_n-LHN to LWE over 𝔽₃?

• Recall: $a \stackrel{s}{\leftarrow} U(B_n), e = \prod_{i=1}^r x_{\sigma(i)}^{v_i}$ $(v_1, \dots, v_r) \stackrel{s}{\leftarrow} U(\mathbb{F}_3^r), \sigma \stackrel{s}{\leftarrow} S_r$

Abelianizing B_n -LHN *vs.* LWE with p = 3

• Q: Does abelianization reduce B_n -LHN to LWE over \mathbb{F}_3 ?

$$\mathbf{A}_{\varphi}^{\mathcal{B}_{r}} \quad [i.e.,(a,\varphi(a)e)] \approx \mathbf{U}(B_{n} \times B_{r})$$

Recall: a ^{\$}→ U(B_n), e = ∏^r_{i=1} x^{v_i}_{σ(i)} (v₁,..., v_r) ^{\$→} U(𝔅^r₃), σ ^{\$→} S_r
 Top row represents the B_n-LHN assumption

Abelianizing B_n -LHN *vs.* LWE with p = 3

• Q: Does abelianization reduce B_n -LHN to LWE over \mathbb{F}_3 ?

$$\begin{array}{c|c} \mathbf{A}_{\varphi}^{\mathcal{B}_{r}} & [i.e.,(a,\varphi(a)e)] & \approx & \mathbf{U}(\mathcal{B}_{n}\times\mathcal{B}_{r}) \\ & & & & \\ & & & & \\ \rho \\ & & & & \\ & &$$

- Recall: $a \stackrel{s}{\leftarrow} \mathbf{U}(B_n), e = \prod_{i=1}^r x_{\sigma(i)}^{v_i} \qquad (v_1, \dots, v_r) \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{s}{\leftarrow} S_r$
- Top row represents the *B_n*-LHN assumption
- Bottom row shows the result of abelianization

Abelianizing B_n -LHN *vs.* LWE with p = 3

• Q: Does abelianization reduce B_n -LHN to LWE over \mathbb{F}_3 ?

$$\mathbf{A}_{\varphi}^{\mathcal{B}_{r}} \quad [i.e.,(a,\varphi(a)e)] \approx \mathbf{U}(\mathcal{B}_{n} \times \mathcal{B}_{r})$$

$$\begin{array}{c} \rho \\ \rho \\ \varphi \\ \mathbf{A}_{\overline{\varphi}}^{\mathbf{U}(\mathbb{F}_{3}')} = \mathbf{U}(\mathbb{F}_{3}'') \times \mathbf{U}(\mathbb{F}_{3}') \equiv \mathbf{U}(\mathbb{F}_{3}'' \times \mathbb{F}_{3}') \end{array}$$

- Recall: $a \stackrel{s}{\leftarrow} \mathbf{U}(B_n), e = \prod_{i=1}^r x_{\sigma(i)}^{v_i} \qquad (v_1, \dots, v_r) \stackrel{s}{\leftarrow} \mathbf{U}(\mathbb{F}_3^r), \ \sigma \stackrel{s}{\leftarrow} S_r$
- Top row represents the B_n-LHN assumption
- Bottom row shows the result of abelianization
- Bottom distributions identical—cannot be distinguished!
- \Rightarrow Abelianization does not help recognize B_n -LHN instances

Two main steps:

1 Start with a generic partial key-randomization trick

② Show that this randomization is complete in the case of B_n-LHN with surjective secret key (φ ∈ Epi(B_n, B_r))

Lemma

Let α be a G_n -permutation, and $(a, b) \in G_n \times P_n$ be an LHN-instance sampled according to $\mathbf{A}_{\varphi}^{\Psi_n}$ ($b = \varphi(a)e$ for $e \stackrel{s}{\leftarrow} \Psi_n$). Let $a' \doteq \alpha^{-1}(a)$. Then $(a', b) \in G_n \times P_n$ is sampled according to $\mathbf{A}_{\varphi_{\alpha}}^{\Psi_n}$

Proof.

Observe that

$$(a', b) = (a', \varphi(a) \cdot e)$$
$$= (a', \varphi \circ \alpha(\alpha^{-1}(a)) \cdot e)$$
$$= (a', \varphi \circ \alpha(a') \cdot e)$$

Lemma

Let α be a G_n -permutation, and $(a, b) \in G_n \times P_n$ be an LHN-instance sampled according to $\mathbf{A}_{\varphi}^{\Psi_n}$ ($b = \varphi(a)e$ for $e \stackrel{s}{\leftarrow} \Psi_n$). Let $a' \doteq \alpha^{-1}(a)$. Then $(a', b) \in G_n \times P_n$ is sampled according to $\mathbf{A}_{\varphi \circ \alpha}^{\Psi_n}$

Proof.

Observe that

$$(\mathbf{a}', \mathbf{b}) = (\mathbf{a}', \varphi(\mathbf{a}) \cdot \mathbf{e})$$
$$= (\mathbf{a}', \varphi \circ \alpha(\alpha^{-1}(\mathbf{a})) \cdot \mathbf{e})$$
$$= (\mathbf{a}', \varphi \circ \alpha(\mathbf{a}') \cdot \mathbf{e})$$

Step 2: Completeness for Surjections

- Domain Reshuffling provides some partial randomization for an instantiation of the abstract LHN problem
 - For any A^{ψn}_φ, can transform an A^{ψn}_φ-instance into an A^{ψn}_{φoα}-instance, for any permutation α
- In the case of B_n-LHN, this simple randomization is complete for the set of surjective homomorphisms:

Lemma

 $(\forall \varphi, \varphi^* \in \mathsf{Epi}(B_n, B_r))(\exists \alpha \in \mathsf{Aut}(B_n))[\varphi^* = \varphi \circ \alpha]$

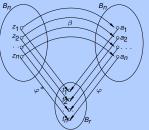
Proving Completeness

Claim

Given an arbitrary epimorphism φ and a target epimorphism φ^* , there exist an automorphism α such that $\varphi^* = \varphi \circ \alpha$

Proof Idea

• Freeness of $B_n \Rightarrow \exists \beta \in hom(B_n, B_n)$ such that $\varphi^* = \varphi \circ \beta$



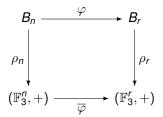
- Technical hurdle: β need not be an automorphism!
- Solution: "Patch" β into $\alpha \in Aut(B_n)$

Proving Transitivity

"Patching argument" (omitted) hinges upon following technical lemma:

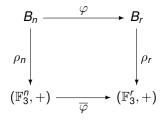
Lemma

Surjections $\varphi : B_n \to B_r$ are precisely the maps whose abelianization $\overline{\phi}$ is also surjective



Proof $(\varphi \in \text{Epi}(B_n, B_r) \Longrightarrow \overline{\varphi} \in \text{Epi}(\mathbb{F}_3^n, \mathbb{F}_3^r))$: Diagram chase

Proving Transitivity (cont'd)



Proof $(\overline{\varphi} \in \operatorname{Epi}(\mathbb{F}_3^n, \mathbb{F}_3^r) \Longrightarrow \varphi \in \operatorname{Epi}(B_n, B_r))$

- Let $\{x_1, \ldots, x_n\}$ be B_n gener's; define $y_i = \varphi(x_i)$ and $t_i = \rho_r(y_i)$
- Thesis amounts to proving {y₁,..., y_n} generates B_r
- By nilpotency of B_r (cf. next Lemma), suffices to show {t₁,..., t_n} generates P₃^r
- Diagram chase shows $\rho_r \circ \varphi$ surj. $\Rightarrow \{t_1, \ldots, t_n\}$ generates \mathbb{F}_3^r

Proving Transitivity: Generating Sets of *B_r*

Lemma

Let G be a nilpotent group. If $\{y_1, \ldots, y_m\}$ generates G modulo the commutator subgroup [G, G], then $\{y_1, \ldots, y_m\}$ generates G.

Since B_r has nilpotency class 3, and $B_r/[B_r, B_r] \cong \mathbb{F}_3^r$, we get:

Corollary

Let $\rho_r : B_r \to \mathbb{F}_3^r$ denote abelianization, and $y_1, \ldots, y_m \in B_r$. Then $\{y_1, \ldots, y_m\}$ generates B_r iff $\{\rho_r(y_1), \ldots, \rho_r(y_m)\}$ generates \mathbb{F}_3^r .

1 Background

- Burnside Groups (B_n)
- Learning Burnside Homomorphisms with Noise (*B_n*-LHN)

2 Random Self-Reducibility of *B_n*-LHN

Cryptography (Minicrypt) via Burnside Groups

B_n-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_r$ such that the shortest sequence of x_i and x_i^{-1} to express it is *"large"* (Cayley norm $\|\cdot\|_c$)

 $t \in \{0,1\}$: $\mathsf{Enc}_{\varphi}(t) = (a, b\tau^t)$ $a \stackrel{s}{\leftarrow} B_n, e \stackrel{s}{\leftarrow} \mathcal{B}_r, b = \varphi(a)e$

Decryption

$$\mathsf{Dec}_{\varphi}(a,b') = egin{cases} 0 & ext{if } \| arphi(a)^{-1}b' \|_{\mathcal{C}} ext{ "small"} \ 1 & ext{o/w} \end{cases}$$

B_n-Based Public-Key Cryptosystem?

Challenge: Control noise in products of $\varphi(a_i)e_i$'s

B_n-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_r$ such that the shortest sequence of x_i and x_i^{-1} to express it is *"large"* (Cayley norm $\|\cdot\|_c$)

$$t \in \{0,1\}$$
: $\mathsf{Enc}_{\varphi}(t) = (a, b\tau^t)$ $a \stackrel{s}{\leftarrow} B_n, e \stackrel{s}{\leftarrow} \mathcal{B}_r, b = \varphi(a)e$

Decryption

$$\mathsf{Dec}_{\varphi}(a,b') = egin{cases} 0 & ext{if } \| \varphi(a)^{-1}b' \|_{\mathcal{C}} \ ``small'' \ 1 & ext{o/w} \end{cases}$$

B_n-Based Public-Key Cryptosystem?

Challenge: Control noise in products of $\varphi(a_i)e_i$'s

B_n-Based Symmetric-Key Cryptosystem

Encryption

Fix an element $\tau \in B_r$ such that the shortest sequence of x_i and x_i^{-1} to express it is *"large"* (Cayley norm $\|\cdot\|_c$)

$$t \in \{0,1\}$$
: $\mathsf{Enc}_{\varphi}(t) = (a, b\tau^t)$ $a \stackrel{s}{\leftarrow} B_n, e \stackrel{s}{\leftarrow} \mathcal{B}_r, b = \varphi(a)e$

Decryption

$$\mathsf{Dec}_{\varphi}(a,b') = egin{cases} 0 & ext{if } \| arphi(a)^{-1}b' \|_{\mathcal{C}} \ ``small" \ 1 & ext{o/w} \end{cases}$$

B_n-Based Public-Key Cryptosystem?

Challenge: Control noise in products of $\varphi(a_i)e_i$'s

- Algebraic generalization of the LWE problem to an abstract group-theoretic setting
- Exploration of the cryptographic viability of Burnside groups
 - Technical lemmas about homomorphisms between Burnside groups of exponent three
- Evidence to the hardness of the *B_n*-LHN problem of
 - Random Self-Reducibility: Solving random instances is as hard as solving arbitrary ones

Thank You!