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Talk Preview

Goal
Identify viable intractability assumptions from combinatorial group theory

Evidence of (average-case) hardness (random self-reducibility)

Cryptographically useful

Approach

Generalize well-established crypto assumptions (LPN/LWE) to a
group-theoretic setting

Study instantiation in suitable non-commutative groups
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Burnside Problem (Informal)

Are groups whose elements all have finite order
necessarily finite?
What is their combinatorial structure?
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Free Burnside group of exponent m

B(n,m): “Most generic” group with n generators where the order
of all elements divides m

Generators x1, . . . , xn (like indeterminates in a multivariate poly)
Elements are sequences of xi and x−1

i
Empty sequence is the identity element of the group
Exponent condition: For every w ∈ B(n,m) it holds that wm = 1

Examples:
x1x−1

4 x1 ∈ B(4, 3), x−1
1 x−1

4 ∈ B(4, 3)
x2

1 = x−1
1 , but x1x−1

4 x1 6= x−1
1 x−1

4 = x1x1x−1
4 (B(4, 3) is not abelian)

On the other hand:

x1x−1
4 x1 = x4x−1

1 x4, since x1x−1
4 x1x−1

4 x1x−1
4 = (x1x−1

4 )3 = 1
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Burnside Groups (cont’d)

Characterizing B(n,m) not so easy . . .

B(n,2) Finite and abelian, isomorphic to (Fn
2,+)

B(n,3) Finite, non-commutative, much larger than (Fn
3,+)

B(n,4) Finite
B(n,5) Unknown
B(n,6) Finite
B(n,7) Unknown

...
...

B(n,m), m “large” Infinite

Will focus on B(n,3) (simplest case beyond vector spaces)
Notation: Bn

.
= B(n, 3)
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Bn: Burnside Groups of Exponent 3

Bn: “Most generic” group with n generators where the order of all
non-identity elements is 3

Generators x1, . . . , xn

Elements are sequences of xi and x−1
i

Exponent condition: ∀w ∈ Bn, www = 1 (?)

Q: “Most generic”!?
A: The only non-trivial identities in Bn are those implied by (?)

⇒ Bn non-commutative
xixj 6= xjxi for any two distinct generators (i 6= j)

⇒ Group operation in Bn defined “formally”
To “multiply” w1,w2 ∈ Bn, just concatenate them
Simplifications may arise at the interface of w1 and w2
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Basic Commutators

In Bn, xixj 6= xjxi for any two distinct generators (i 6= j)
However, always possible to get xixj = xjxi [xi , xj ] by defining

[xi , xj ]
.

= x−1
i x−1

j xixj

Call [xi , xj ] a 2-commutator
Similarly, define a 3-commutator [xi , xj , xk ] as

[xi , xj , xk ]
.

= [[xi , xj ], xk ]

In general, may define `-commutators inductively, but in Bn all
`-commutators vanish for ` ≥ 4,

[xi , xj , xk , xh] = 1
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Commutators Identities in Bn

[xi , xj , xk , xh] = 1 implies:
3-commutators commute with all w ∈ Bn:

[xi , xj , xk ]w = w [xi , xj , xk ]

2-commutators commute among themselves:

[xk , xh][xi , xj ] = [xi , xj ][xk , xh]

Other commutator identities in Bn:

[xj , xi ] = [xi , xj ]
−1 = [xi , x−1

j ] = [x−1
i , xj ] [xi , xj , xi ] = 1

[xi , xj , xk ] = [xk , xj , xi ]
−1 [xi , xj , xk ] = [xj , xk , xi ] = [xk , xi , xj ]

[upshot: w.l.o.g, generators always sorted within commutator]
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Normal Form in Bn

In general, elements in non-commutative groups may have
multiple equivalent forms

E.g., xix−1
j xi = xjx−1

i xj

In Bn, commutator identities imply that any w ∈ Bn can always be
written uniquely as:

w =
n∏

i=1

xαi
i

∏
i<j

[xi , xj ]
βi,j

∏
i<j<k

[xi , xj , xk ]γi,j,k

where αi , βi,j , γi,j,k ∈ {−1,0,1}, for all 1 ≤ i < j < k ≤ n
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Example: The Structure of B2

Cayley graph of B2 (left): nodes ≡ elements;
edges ≡ multiplication by a generator
(green: x1; purple: x2)
B2 has 27 elements, of the form

xα1
1 xα2

2 [x1, x2]β1,2 , α1, α2, β1,2 ∈ F3

Isomorphic to Heisenberg Group H1(F3):1 α1 β1,2
0 1 α2
0 0 1

 ∈ GL(3,F3)

Beware of hasty generalization: for n ≥ 3,
Bn 6∼= Hm(F3)

No known poly(n)-order representation of Bn
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Group operation in Bn

Recall the normal form in Bn:
n∏

i=1

xαi
i

∏
i<j

[xi , xj ]
βi,j

∏
i<j<k

[xi , xj , xk ]γi,j,k

O(n) O(n2) O(n3)

To multiply two elements w1 and w2, first concatenate them . . .

. . . then reduce back to normal by reordering commutators via
O(n3) three-stage collecting process (next)
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The Collecting Process (1/3)

Stage 1
Aggregate 3-commutators in w1 and w2, adding matching exponents mod 3

Time: O(1) per 3-commutator, total O(n3)
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The Collecting Process (2/3)

Stage 2
Move 2-commutators in w1 to the right of generators in w2

Each 2-commutator traveling right incurs O(n) (constant-time) swaps with
generators in w2.

Time: O(n) per 2-commutator, total O(n3)
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The Collecting Process (3/3)

Stage 3
Restore lexicographic order among generators

Fixing each out-of-order generator takes O(n) swaps, and each swap creates
a 2-commutator.
Before moving on to the next generator, these O(n) 2-commutators must
travel rightward (similarly to step 2 above), which takes O(n2) steps

Time: O(n2) per generator, total O(n3)
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Group operation in Bn: Example

x−1
1 x3[x2, x3] · x1x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x2, x3, x1]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3][x1, x2, x3]x2[x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3][x1, x2, x3] =

x−1
1 x3x1[x2, x3]x2[x1, x2, x3]−1 =

x−1
1 x3x1x2[x2, x3][x1, x2, x3]−1 =

x−1
1 x1x3[x3, x1]x2[x2, x3][x1, x2, x3]−1 =

x3[x1, x3]−1x2[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x3, x2]−1[x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x1, x2, x3][x2, x3][x1, x2, x3]−1 =
x3x2[x1, x3]−1[x2, x3][x1, x2, x3][x1, x2, x3]−1 =
x2x3[x3, x2][x1, x3]−1[x2, x3] =
x2x3[x2, x3]−1[x1, x3]−1[x2, x3] =
x2x3[x1, x3]−1[x2, x3]−1[x2, x3] =
x2x3[x1, x3]−1
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Burnside Groups: Recap

Compact normal form:

n∏
i=1

xαi
i

∏
i<j

[xi , xj ]
βi,j

∏
i<j<k

[xi , xj , xk ]γi,j,k

⇒ |Bn| = 3n+(n
2)+(n

3)

Efficient (O(n3)) group operation
Cubic in security parameter, but linear in input size
Similar (somewhat simpler) process to compute inverses (omitted)

Non-commutative, but enjoys several useful identities
www = 1 for any w ∈ Bn

[xi , xj , xk , xh] = 1 for any choice of generators

Q: What computational tasks are hard over Burnside groups?!
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Learning With Errors (LWE)

The LWE Setting

s ∈ Fn
q

Ψn: a discrete gaussian distribution over Fq centered at 0

AΨn
s : distribution on Fn

q × Fq whose samples are pairs (a,b)

where a $← Fn
q ,b = s · a + e,e $← Ψn

Fn
q 3 a

Fq

s ·

?
3 b

≈ s · a

?
= s · a + e, e $← Ψn

LWE Assumption

AΨn
s ≈

PPT
U(Fn

q × Fq)
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LWE over Groups:
Learning Homomorphisms w/ Noise

Vector Spaces Groups

Fn
q 3 a Gn 3 a

Fq

s ·

?
3 b = s · a + e

≈ s · a

?
Pn

ϕ

?
3 b = ϕ(a)e

≈ ϕ(a)

?

Learning With Errors Learning Homomorphisms w/ Noise

secret linear functional s · secret (Gn,Pn)-homomorphism ϕ

Discrete gaussian noise e “small” Pn-noise e $← Ψn
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Learning Homomorphisms with Noise (LHN)

The LHN Setting

Groups Gn, Pn

Distributions Γn, Ψn,Φn over Gn, Pn, hom(Gn,Pn), resp.
AΨn
ϕ (for ϕ ∈ hom(Gn,Pn)): Distribution over Gn × Pn whose

samples are pairs (a,b) where a $← Γn, e $← Ψn, b = ϕ(a)e

Gn 3 a

Pn

ϕ

?
3 b

≈ ϕ(a)

?
= ϕ(a)e

LHN Assumption

AΨn
ϕ ≈

PPT
U(Gn × Pn), ϕ

$← Φn
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LWE As an Instance of LHN

Gn := (Fn
p,+) and Γn := U(Fn

p)

Pn := (Fp,+) and Ψn := discrete gaussian
ϕ := s · and Φn := U(hom(Fn

p,Fp))

Fn
p 3 a Gn 3 a

Fp

s ·

?
3 b

≈ s · a

?
Pn

ϕ

?
3 b

≈ ϕ(a)

?

‖ ‖

s · a + e ϕ(a)e
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Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br ))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br )

Bn
≈ ϕ $← hom(Bn,Br ) - Br

a $← U(Bn) - ϕ(a)e, (e $← Ψn)

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br ),
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Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br ))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br )

Bn
≈ ϕ $← hom(Bn,Br ) - Br

a $← U(Bn) - ϕ(a)
∏r

i=1 xvi
σ(i), (v $← U(Fr

3), σ
$← Sr )

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br ),
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Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br )

Bn
≈ ϕ $← hom(Bn,Br ) - Br

a $← U(Bn) - ϕ(a)e, (e $← Br )

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br ), ϕ

$← hom(Bn,Br )

Antonio R. Nicolosi Cryptography via Burnside Groups



Bn-LHN: Instantiating LHN over Burnside Groups

Gn := Bn, Pn := Br (r small constant, e.g., r = 4)
Γn := U(Bn)

Φn := U(hom(Bn,Br ))

Ψn :=
[
v $← U(Fr

3), σ
$← Sr :

∏r
i=1 xvi

σ(i)

]
(Sr : r -permutations)

(dist. over Br -elements of Cayley-norm ≤ r =: Br )

Bn
≈ ϕ $← hom(Bn,Br ) - Br

a $← U(Bn) - ϕ(a)e, (e $← Br )

Bn-LHN Assumption

ABr
ϕ ≈

PPT
U(Bn × Br ), any ϕ ∈ Epi(Bn,Br )
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Burnside Groups (Bn)
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2 Random Self-Reducibility of Bn-LHN

3 Cryptography (Minicrypt) via Burnside Groups
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Random Self-Reducibility (RSR) of Bn-LHN

Worst-case-to-average-case reduction for Bn-LHN: Solving
random instances not easier than solving an arbitrary instance

Why does random self-reducibility matter?
Hallmark of robust crypto assumptions (SIS, LWE, DLog, RSA)

Desirable “all-or-nothing” hardness property: Either the problem is
easy for (almost) all keys, or it is intractable for (almost) all keys

Critical for actual cryptosystems: Generation of cryptographic keys
amounts to sampling hard instances of underlying computational
problem: by RSR ensures random instance suffices
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Understanding Burnside Homomorphisms

In Bn-LHN, secret key is a (Bn,Br )-homomorphism ϕ

⇒ Need to study hom(Bn,Br )

Key fact: All Burnside groups are relatively free
For any group P of exponent 3, any mapping of generators
x1, . . . , xn into P extends uniquely to a (Bn,P)-homomorphism
So |hom(Bn,P)| = |P|n

For P = Br (r � n), | hom(Bn,Br )| = 3(r+(r
2)+(r

3))n

⇒ The key space in Bn-LHN is exponential in n (security parameter)
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Abelianization in Bn

Abelianization of Bn ≡ Quotient by its commutator subgroup:

[Bn,Bn]
.

= {
∏

i
v−1

i w−1
i viwi : vi ,wi ∈ Bn}

Bn/[Bn,Bn] ∼= (Fn
3,+)

Abelianization map ρn : Bn → Bn/[Bn,Bn] ∼= (Fn
3,+)

ρn :
n∏

i=1

xαi
i

∏
i<j

[xi , xj ]
βi,j

∏
i<j<k

[xi , xj , xk ]γi,j,k 7→ (α1, α2, . . . , αn)

Abelianization of a (Bn,Br )-homomorphism ϕ

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?
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Abelianization in Bn

Abelianization of Bn ≡ Quotient by its commutator subgroup:

[Bn,Bn]
.

= {
∏

i
v−1

i w−1
i viwi : vi ,wi ∈ Bn}

Bn/[Bn,Bn] ∼= (Fn
3,+)

Abelianization map ρn : Bn → Bn/[Bn,Bn] ∼= (Fn
3,+)

ρn :
n∏

i=1

xαi
i

∏
i<j

[xi , xj ]
βi,j

∏
i<j<k

[xi , xj , xk ]γi,j,k 7→ (α1, α2, . . . , αn)
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Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?
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Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [ i.e.,(a, ϕ(a)e) ] ≈

PPT
U(Bn × Br )

ρ

?

≡

U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr )

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances
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Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [ i.e.,(a, ϕ(a)e) ] ≈

PPT
U(Bn × Br )

[ ρ(a), ϕ(ρ(a)) + ρ(e) ]

ρ

?

≡

U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr )

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances
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Abelianizing Bn-LHN vs. LWE with p = 3

Q: Does abelianization reduce Bn-LHN to LWE over F3?

ABr
ϕ [ i.e.,(a, ϕ(a)e) ] ≈

PPT
U(Bn × Br )

AU(Fr
3)

ϕ = U(Fn
3)× U(Fr

3)

ρ

?

≡ U(Fn
3 × Fr

3)

ρ

?

Recall: a $← U(Bn), e =
∏r

i=1 xvi
σ(i) (v1, . . . , vr )

$← U(Fr
3), σ

$← Sr

Top row represents the Bn-LHN assumption

Bottom row shows the result of abelianization

Bottom distributions identical—cannot be distinguished!

⇒ Abelianization does not help recognize Bn-LHN instances
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RSR for Bn-LHN: Intuition

Two main steps:
1 Start with a generic partial key-randomization trick

2 Show that this randomization is complete in the case of Bn-LHN
with surjective secret key (ϕ ∈ Epi(Bn,Br ))
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Step 1: Domain Reshuffling

Lemma

Let α be a Gn-permutation, and (a,b) ∈ Gn × Pn be an LHN-instance
sampled according to AΨn

ϕ (b = ϕ(a)e for e $← Ψn). Let a′ .= α−1(a).
Then (a′,b) ∈ Gn × Pn is sampled according to AΨn

ϕ◦α

Proof.
Observe that

(a′,b) =
(
a′, ϕ(a) · e

)
=
(
a′, ϕ ◦ α(α−1(a)) · e

)
=
(
a′, ϕ ◦ α(a′) · e

)
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Step 2: Completeness for Surjections

Domain Reshuffling provides some partial randomization for an
instantiation of the abstract LHN problem

For any AΨn
ϕ , can transform an AΨn

ϕ -instance into an AΨn
ϕ◦α-instance,

for any permutation α

In the case of Bn-LHN, this simple randomization is complete for
the set of surjective homomorphisms:

Lemma

(∀ϕ,ϕ∗ ∈ Epi(Bn,Br ))(∃α ∈ Aut(Bn))[ϕ∗ = ϕ ◦ α]
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Proving Completeness

Claim
Given an arbitrary epimorphism ϕ and a target epimorphism ϕ∗, there
exist an automorphism α such that ϕ∗ = ϕ ◦ α

Proof Idea
Freeness of Bn ⇒ ∃ β ∈ hom(Bn,Bn) such that ϕ∗ = ϕ ◦ β

a2
. . .

zn

z2

t1
t2

tn

. . .

ϕ

Bn Bn

ϕ∗

Br

β

. . .

an

◦
◦
◦

◦
◦
◦
◦

◦
◦
◦
◦

◦a1z1

Technical hurdle: β need not be an automorphism!
Solution: “Patch” β into α ∈ Aut(Bn)
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Proving Transitivity

“Patching argument” (omitted) hinges upon following technical lemma:

Lemma
Surjections ϕ : Bn → Br are precisely the maps whose abelianization
ϕ is also surjective

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Proof (ϕ ∈ Epi(Bn,Br ) =⇒ ϕ ∈ Epi(Fn
3,Fr

3)): Diagram chase
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Proving Transitivity (cont’d)

Bn
ϕ - Br

(Fn
3,+)

ρn

?

ϕ
- (Fr

3,+)

ρr

?

Proof (ϕ ∈ Epi(Fn
3,Fr

3) =⇒ ϕ ∈ Epi(Bn,Br ))

Let {x1, . . . , xn} be Bn gener’s; define yi = ϕ(xi ) and ti = ρr (yi )

Thesis amounts to proving {y1, . . . , yn} generates Br

By nilpotency of Br (cf. next Lemma), suffices to show {t1, . . . , tn}
generates Fr

3

Diagram chase shows ρr ◦ ϕ surj.⇒ {t1, . . . , tn} generates Fr
3
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Proving Transitivity: Generating Sets of Br

Lemma
Let G be a nilpotent group. If {y1, . . . , ym} generates G modulo the
commutator subgroup [G,G], then {y1, . . . , ym} generates G.

Since Br has nilpotency class 3, and Br/[Br ,Br ] ∼= Fr
3, we get:

Corollary

Let ρr : Br → Fr
3 denote abelianization, and y1, . . . , ym ∈ Br . Then

{y1, . . . , ym} generates Br iff {ρr (y1), . . . , ρr (ym)} generates Fr
3.
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Bn-Based Symmetric-Key Cryptosystem

Encryption

Fix an element τ ∈ Br such that the shortest sequence of xi and x−1
i

to express it is “large” (Cayley norm ‖ · ‖C)

t ∈ {0,1} : Encϕ(t) = (a, bτ t ) a $← Bn,e
$← Br ,b = ϕ(a)e

Decryption

Decϕ(a,b′) =

{
0 if ‖ϕ(a)−1b′‖C “small”
1 o/w

Bn-Based Public-Key Cryptosystem?

Challenge: Control noise in products of ϕ(ai )ei ’s
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Summary

Algebraic generalization of the LWE problem to an abstract
group-theoretic setting

Exploration of the cryptographic viability of Burnside groups
Technical lemmas about homomorphisms between Burnside
groups of exponent three

Evidence to the hardness of the Bn-LHN problem of
Random Self-Reducibility:
Solving random instances is as hard as solving arbitrary ones
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Thank You!
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