A Simple Framework for Noise-Free Construction of Fully Homomorphic Encryption from a Special Class of Non-Commutative Groups

Koji Nuida

National Institute of Advanced Industrial Science and Technology (AIST), Japan (Japan Science and Technology Agency (JST) PRESTO Researcher)

Mathematics of Cryptography @ UCI September 1, 2015

伺 ト イ ヨ ト イ ヨ ト

- Proposal of FHE without bootstrapping, based on non-commutative groups (ePrint 2014/097)
 - Homomorphic operators from commutator with rerandomized inputs
 - Constructing underlying groups by group presentations (generators and their relations)
 - "Obfuscating" group structure by random transformations of group presentation
- Candidate choice of groups
 - Attacks for inappropriate groups

- Introduction
- Idea for Homomorphic Operation
- Towards Secure Instantiation

A 1

3 × 4 3 ×

Introduction

- Idea for Homomorphic Operation
- Towards Secure Instantiation

向下 イヨト イヨト

э

Fully Homomorphic Encryption (FHE)

• PKE + "any computation on encrypted data"

- "Homomorphic operation" on ciphertexts
- In this talk: Plaintext $m \in \{0,1\}$, and

Dec(Enc(m)) = m $Dec(NOT(c)) = \neg Dec(c)$ $Dec(AND(c_1, c_2)) = Dec(c_1) \land Dec(c_2)$

except negligible error prob.

(1) マント (1) マント (1) マント

Example: [van Dijk et al. EC'10]

• Ciphertext for $m \in \{0,1\}$: c = pq + 2r + m

•
$$Dec(c) = (c \mod p) \mod 2$$

 Homomorphic + and × preserve shapes of ciphertexts, but "noise" r amplified

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: [van Dijk et al. EC'10]

• Ciphertext for $m \in \{0,1\}$: c = pq + 2r + m

• $Dec(c) = (c \mod p) \mod 2$

- Homomorphic + and × preserve shapes of ciphertexts, but "noise" r amplified
- Finally yielding dec. failure! (Somewhat HE)
 - Noise reduction required: "Bootstrapping" ([Gentry STOC'09])

- Opened the heavy door to FHE, but:
 - Computationally inefficient (despite e.g., [Ducas–Micciancio EC'15])
 - Syntax less analogical to classical HE
 - Problem of circular security

- Opened the heavy door to FHE, but:
 - Computationally inefficient (despite e.g., [Ducas–Micciancio EC'15])
 - Syntax less analogical to classical HE
 - Problem of circular security

• Goal: FHE without bootstrapping

No (acknowledged) solutions so far

Non-Commutative Groups and Commutator

- We use finite **non-commutative** groups G
 - Multiplicative, with identity element $1 = 1_G$
- **Commutator** defined on *G*:

$$[g,h] = g \cdot h \cdot g^{-1} \cdot h^{-1}$$

- Realize homomorphic operators in group \overline{G}
 - By composing group operators in \overline{G}
- "Lift" the structure to large group G
 - With "trapdoor" homomorphism $\varphi \colon G \twoheadrightarrow \overline{G}$
 - Homomorphic operators are "compatible" with φ , hence lifted to G
- "Obfuscate" group structure of G

Introduction

• Idea for Homomorphic Operation

• Towards Secure Instantiation

向下 イヨト イヨト

æ

•
$$[g, h] = g \cdot h \cdot g^{-1} \cdot h^{-1}$$

• $(g = 1 \text{ or } h = 1) \text{ implies } [g, h] = 1$

• Similar to: (b = 0 or b' = 0) implies $b \wedge b' = 0$

• Starting point of this work

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\overline{c} = (\overline{c_1}, \overline{c_2}) \in \overline{G} \times \overline{G}$ associated to $m \in \{0, 1\}$:
 - "<u>Class-0</u>" if $\overline{c_2} = 1$, "<u>Class-1</u>" if $\overline{c_2} = \overline{c_1}$
 - And $\overline{c_1} \neq 1$, to distinguish two classes
- Our NOT operator:

$$\overline{c} \mapsto (\overline{c_1}, \overline{c_1} \cdot (\overline{c_2})^{-1})$$

Switching class-0 and class-1

伺下 イヨト イヨト

Homomorphic AND Operator?

- Given: Class- $m \overline{c}$ and class- $m' \overline{d}$
- Our homomorphic AND operator?

$$?? \quad (\overline{c}, \overline{d}) \mapsto \overline{e}, \ \overline{e_i} = [\overline{c_i}, \overline{d_i}] \ (i = 1, 2) \quad ??$$

Homomorphic AND Operator?

- Given: Class- $m \overline{c}$ and class- $m' \overline{d}$
- Our homomorphic AND operator?

??
$$(\overline{c}, \overline{d}) \mapsto \overline{e}, \ \overline{e_i} = [\overline{c_i}, \overline{d_i}] \ (i = 1, 2)$$
 ??

• \overline{e} is almost class- $(m \land m')$:

• m = 0 implies $\overline{c_2} = 1$, $\overline{e_2} = 1$ $(0 \land m' = 0)$ • m' = 0 implies $\overline{d_2} = 1$, $\overline{e_2} = 1$ $(m \land 0 = 0)$ • m = m' = 1 implies $\overline{c_2} = \overline{c_1}$ and $\overline{d_2} = \overline{d_1}$, so $\overline{e_2} = \overline{e_1} (1 \land 1 = 1)$

・ 同 ト ・ 三 ト ・ 三 ト

Homomorphic AND Operator?

- Given: Class- $m \overline{c}$ and class- $m' \overline{d}$
- Our homomorphic AND operator?

??
$$(\overline{c}, \overline{d}) \mapsto \overline{e}, \ \overline{e_i} = [\overline{c_i}, \overline{d_i}] \ (i = 1, 2)$$
 ??

• \overline{e} is almost class- $(m \land m')$:

• m = 0 implies $\overline{c_2} = 1$, $\overline{e_2} = 1$ $(0 \land m' = 0)$ • m' = 0 implies $\overline{d_2} = 1$, $\overline{e_2} = 1$ $(m \land 0 = 0)$ • m = m' = 1 implies $\overline{c_2} = \overline{c_1}$ and $\overline{d_2} = \overline{d_1}$, so $\overline{e_2} = \overline{e_1} (1 \land 1 = 1)$

• But $\overline{e_1} \neq 1$ not guaranteed (e.g., $\overline{c_1} = \overline{d_1}$)

- 4 同 ト 4 ヨ ト 4 ヨ ト

• ToDo: Avoid commuting $\overline{c_1}, \overline{d_1}$ in inputs

伺下 イヨト イヨト

3

Homomorphic AND Operator

- ToDo: Avoid commuting $\overline{c_1}, \overline{d_1}$ in inputs
- Solution: "Rerandomize" the inputs as

$$\overline{e_1} = [\overline{g} \cdot \overline{c_1} \cdot (\overline{g})^{-1}, \overline{d_1}]$$
$$\overline{e_2} = [\overline{g} \cdot \overline{c_2} \cdot (\overline{g})^{-1}, \overline{d_2}]$$

 $(\overline{g} \in \overline{G} \text{ common and uniformly random})$ • $\overline{e_2}$ still OK; $\overline{g} \cdot 1 \cdot (\overline{g})^{-1} = 1$, common \overline{g} used

- ToDo: Avoid commuting $\overline{c_1}, \overline{d_1}$ in inputs
- Solution: "Rerandomize" the inputs as

$$\overline{e_1} = [\overline{g} \cdot \overline{c_1} \cdot (\overline{g})^{-1}, \overline{d_1}]$$
$$\overline{e_2} = [\overline{g} \cdot \overline{c_2} \cdot (\overline{g})^{-1}, \overline{d_2}]$$

 $(\overline{g} \in \overline{G} \text{ common and uniformly random})$ • $\overline{e_2}$ still OK; $\overline{g} \cdot 1 \cdot (\overline{g})^{-1} = 1$, common \overline{g} used • $\overline{e_1}$ will be OK if \overline{G} is appropriate

• **Definition** \overline{G} is commutator-separable, if there is an exceptional subset $1 \in X \subset \overline{G}$ with:

- **Definition** \overline{G} is commutator-separable, if there is an exceptional subset $1 \in X \subset \overline{G}$ with:
 - $|X|/|\overline{G}|$ negligible (so is $1/|\overline{G}|$)
 - Correctness of Enc

• **Definition** \overline{G} is commutator-separable, if there is an exceptional subset $1 \in X \subset \overline{G}$ with: • $|X|/|\overline{G}|$ negligible (so is 1/|G|) Correctness of Enc. • For any $x, y \in \overline{G} \setminus X$, $\Pr[[gxg^{-1}, y] \in X] \le \text{neg.}$ where $g \in \overline{G}$ is uniformly random • AND keeps $\overline{c_1} \notin X$ (hence $\overline{c_1} \neq 1$)

・ 同 ト ・ ヨ ト ・ ヨ ト

• **Definition** \overline{G} is commutator-separable, if there is an exceptional subset $1 \in X \subset \overline{G}$ with: • $|X|/|\overline{G}|$ negligible (so is 1/|G|) Correctness of Enc. • For any $x, y \in \overline{G} \setminus X$, $\Pr[[gxg^{-1}, y] \in X] \le \text{neg.}$ where $g \in \overline{G}$ is uniformly random • AND keeps $\overline{c_1} \notin X$ (hence $\overline{c_1} \neq 1$) • Examples: $SL_2(\mathbb{F}_q)$, $PSL_2(\mathbb{F}_q)$, 1/q neg.

Examples of \overline{G}

•
$$\Pr[[gxg^{-1}, y] \in X] \le \frac{|X| \cdot |Z_{\overline{G}}(x)| \cdot |Z_{\overline{G}}(y)|}{|\overline{G}|},$$

where $Z_{\overline{G}}(x) = \{z \in \overline{G} \mid xz = zx\}$

・ロト ・回ト ・ヨト ・ヨト

æ

Examples of \overline{G}

•
$$\Pr[[gxg^{-1}, y] \in X] \leq \frac{|X| \cdot |Z_{\overline{G}}(x)| \cdot |Z_{\overline{G}}(y)|}{|\overline{G}|},$$

where $Z_{\overline{G}}(x) = \{z \in \overline{G} \mid xz = zx\}$
• $|\operatorname{SL}_2(\mathbb{F}_q)| = q(q^2 - 1)$
• For $\overline{G} = \operatorname{SL}_2(\mathbb{F}_q), |Z_{\overline{G}}(x)| \leq 2q$ for $x \neq \pm I$

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

Examples of \overline{G}

•
$$\Pr[[gxg^{-1}, y] \in X] \le \frac{|X| \cdot |Z_{\overline{G}}(x)| \cdot |Z_{\overline{G}}(y)|}{|\overline{G}|},$$

where $Z_{\overline{G}}(x) = \{z \in \overline{G} \mid xz = zx\}$
• $|\operatorname{SL}_2(\mathbb{F}_q)| = q(q^2 - 1)$

- For $\overline{G} = \operatorname{SL}_2(\mathbb{F}_q), \ |Z_{\overline{G}}(x)| \leq 2q$ for $x \neq \pm l$
- Hence commutator-separable, with X = {±1}
 So is PSL₂(F_a) = SL₂(F_a)/{±1}, X = 1

・ 同 ト ・ ヨ ト ・ ヨ ト

3

The Scheme

- Given: φ: G → Ḡ (Ḡ commutator-separable), uniformly random sampling algorithms Sample_G for G and Sample_N for N = ker φ
- $\mathsf{pk} = (G, \mathsf{Sample}_G, \mathsf{Sample}_H), \mathsf{sk} = \varphi$
- $\operatorname{Enc}(m) = (c_1, c_1^m \cdot h), \ c_1 \leftarrow G, \ h \leftarrow N$
- $\mathsf{Dec}(c = (c_1, c_2)) = \begin{cases} 0 & \text{if } \varphi(c_2) = \overline{c_2} = 1_{\overline{G}} \\ 1 & \text{otherwise} \end{cases}$
- $NOT(c) = (c_1, c_1 \cdot c_2^{-1})$
- $\mathsf{AND}(c,d) = ([gc_1g^{-1},d_1],[gc_2g^{-1},d_2]), g \leftarrow G$

イロト イポト イラト イラト 一日

• Motivation: Can we use S_n or A_n as \overline{G} ?

- 4 回 2 - 4 □ 2 - 4 □

3

Generalization

- Motivation: Can we use S_n or A_n as \overline{G} ?
- Let \overline{G} be finite, non-commutative and simple
- <u>Fact</u> [Guralnick–Robinson '06] Pr[[x, y] = 1] $\leq |\overline{G}|^{-1/2}$ for $x, y \leftarrow \overline{G}$

Generalization

- Motivation: Can we use S_n or A_n as \overline{G} ?
- Let \overline{G} be finite, non-commutative and simple
- <u>Fact</u> [Guralnick–Robinson '06] Pr[[x, y] = 1] $\leq |\overline{G}|^{-1/2}$ for $x, y \leftarrow \overline{G}$
- Assumption For $1 \neq x \in \overline{G}$, distribution of $\overline{F(x)} = (g_1 x g_1^{-1})^{\varepsilon_1} \cdots (g_\ell x g_\ell^{-1})^{\varepsilon_\ell}$ for random $g_i \in \overline{G}, \ \varepsilon_i \in \mathbb{Z}$ is statistically close to uniform

• \overline{G} is generated by such $g_i x g_i^{-1}$

伺 とう ほう く きょう

Generalization

- Motivation: Can we use S_n or A_n as \overline{G} ?
- Let \overline{G} be finite, non-commutative and simple
- <u>Fact</u> [Guralnick–Robinson '06] Pr[[x, y] = 1] $\leq |\overline{G}|^{-1/2}$ for $x, y \leftarrow \overline{G}$
- Assumption For $1 \neq x \in \overline{G}$, distribution of $\overline{F(x)} = (g_1 x g_1^{-1})^{\varepsilon_1} \cdots (g_\ell x g_\ell^{-1})^{\varepsilon_\ell}$ for random $g_i \in \overline{G}, \ \varepsilon_i \in \mathbb{Z}$ is statistically close to uniform

• \overline{G} is generated by such $g_i x g_i^{-1}$

• Then AND $(\overline{c}, \overline{d}) = \overline{e}, \overline{e_i} = [F(\overline{c_i}), F(\overline{d_i})]$ (with common randomness for i = 1, 2)

イロト イポト イヨト イヨト

- Introduction
- Idea for Homomorphic Operation
- Towards Secure Instantiation

同 ト イヨ ト イヨ ト

3

- <u>Fact</u> [Dixon '08] For finite group H and sufficiently large L (depending only on |H|), for uniformly random (x_i)^L_{i=1} except neg. prob., ∏^L_{i=1}(x_i or 1) is statistically close to uniform
- Sample_G and Sample_N are constructed from sufficiently many random elements of G and N

Choose G and N with short group presentations
Yielding short presentation for N × G
Define G = N × G, with projection φ: G → G

- Choose \overline{G} and N with short group presentations
 - Yielding short presentation for $N \times \overline{G}$
- **2** Define $G = N \times \overline{G}$, with projection $\varphi \colon G \twoheadrightarrow \overline{G}$
- "Obfuscate" presentation for G by random iteration of Tietze transformations
 - sk is the record of transformations,
 - or generators of \overline{G} , to check whether $g \in N$

- Choose \overline{G} and N with short group presentations
 - Yielding short presentation for $N imes \overline{G}$
- Define $G = N \times \overline{G}$, with projection $\varphi \colon G \twoheadrightarrow \overline{G}$
- "Obfuscate" presentation for G by random iteration of Tietze transformations
 - sk is the record of transformations,
 - or generators of \overline{G} , to check whether $g \in N$
- (Apply Knuth–Bendix Completion Algorithm to yield efficient group operation in obfuscated G)

Group Presentation

- Determines a group (up to isomorphism) by generators and their fundamental relations
- Examples:

•
$$\mathbb{Z}/n\mathbb{Z} = \langle x \mid x^n = 1 \rangle$$

• $\mathbb{Z}/15\mathbb{Z} = \langle x, y \mid x^3 = y^5 = [x, y] = 1 \rangle$
• $S_4 = \langle s_1, s_2, s_3 \mid s_1^2 = s_2^2 = s_3^2 = (s_1s_2)^3 = (s_2s_3)^3 = (s_1s_3)^2 = 1 \rangle$

高 とう モン・ く ヨ と

Group Presentation

- Determines a group (up to isomorphism) by generators and their fundamental relations
- Examples:

•
$$\mathbb{Z}/n\mathbb{Z} = \langle x \mid x^n = 1 \rangle$$

• $\mathbb{Z}/15\mathbb{Z} = \langle x, y \mid x^3 = y^5 = [x, y] = 1 \rangle$
• $S_4 = \langle s_1, s_2, s_3 \mid s_1^2 = s_2^2 = s_3^2 = (s_1s_2)^3 = (s_2s_3)^3 = (s_1s_3)^2 = 1 \rangle$

<u>Fact</u> [Guralnick et al. '08] SL₂(F_q) and some finite simple groups have short presentations (length O(log q) for SL₂(F_q), q prime)

- Changes presentation, keeping the group unchanged (up to isomorphism)
 - Add an already satisfied relation
 - Remove a redundant relation
 - Add a new generator expressed by old generators
 - Remove a generator which can be expressed by other generators

• Start from
$$\langle x,y \mid x^3=y^5=xyx^{-1}y^{-1}=1
angle$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

▲□ ▶ ▲ □ ▶ ▲ □ ▶

▲□ ▶ ▲ □ ▶ ▲ □ ▶

▲□ ▶ ▲ □ ▶ ▲ □ ▶

▲□ ▶ ▲ □ ▶ ▲ □ ▶

a Start from
$$\langle x, y \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1 \rangle$$
a $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, z = xy \rangle$
a $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, x = zy^{-1} \rangle$
a $\langle y, z \mid (zy^{-1})^3 = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
b $\langle y, z \mid (zy^{-1})^3 = z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
a $\langle y, z \mid (zy^{-1})^3 = z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
b $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Start from
$$\langle x, y \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1 \rangle$$
 $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, z = xy \rangle$
 $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, x = zy^{-1} \rangle$
 $\langle y, z \mid (zy^{-1})^3 = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid (zy^{-1})^3 = z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Start from
$$\langle x, y \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1 \rangle$$
 $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, z = xy \rangle$
 $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, x = zy^{-1} \rangle$
 $\langle y, z \mid (zy^{-1})^3 = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid (zy^{-1})^3 = z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1, y = z^6 \rangle$
 $\langle z \mid z^3z^{-18} = z^{30} = zz^6z^{-1}z^{-6} = 1 \rangle$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Start from
$$\langle x, y \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1 \rangle$$
 $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, z = xy \rangle$
 $\langle x, y, z \mid x^3 = y^5 = xyx^{-1}y^{-1} = 1, x = zy^{-1} \rangle$
 $\langle y, z \mid (zy^{-1})^3 = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid (zy^{-1})^3 = z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1 \rangle$
 $\langle y, z \mid z^3y^{-3} = y^5 = zyz^{-1}y^{-1} = 1, y = z^6 \rangle$
 $\langle z \mid z^{3}z^{-18} = z^{30} = zz^6z^{-1}z^{-6} = 1 \rangle$
 $\langle z \mid z^{15} = 1 \rangle$ (This process is reversible)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Necessary Conditions for Groups

• If
$$g = (g_1, g_2), h = (h_1, h_2) \in G = N \times \overline{G},$$

 $g \neq h$ and $g_1 = h_1$, then $1 \neq g^{-1}h \in \overline{G}$,
a part of trapdoor information

• By birthday paradox, $\sqrt{|N|}$ must be large

伺 ト イヨト イヨト

Necessary Conditions for Groups

• If
$$g = (g_1, g_2)$$
, $h = (h_1, h_2) \in G = N \times \overline{G}$,
 $g \neq h$ and $g_1 = h_1$, then $1 \neq g^{-1}h \in \overline{G}$,
a part of trapdoor information

- By birthday paradox, $\sqrt{|N|}$ must be large
- "Equations" in N satisfied with high prob. (but not in \overline{G}) can distinguish $c_2 \in N$ and $c_2 \in G$
 - If N commutative, xy = yx with prob. 1
 - If $N = A_p$ (p prime), $x^p = 1$ with prob. 2/p
 - Hence these groups cannot be used

・ 同 ト ・ ヨ ト ・ ヨ ト …

- In $\operatorname{SL}_2(\mathbb{F}_q)$ (q prime), $\Pr[\operatorname{ord}(x) = k] \le \operatorname{neg.}$ unless $k \mid q \pm 1$ and $k \approx q$ or k = q
 - Such *k* would be difficult to find, if *q* is hidden (by Tietze transformations)

- In $\operatorname{SL}_2(\mathbb{F}_q)$ (q prime), $\Pr[\operatorname{ord}(x) = k] \le \operatorname{neg.}$ unless $k \mid q \pm 1$ and $k \approx q$ or k = q
 - Such k would be difficult to find, if q is hidden (by Tietze transformations)
- $N = \operatorname{SL}_2(\mathbb{F}_q)$, $\overline{G} = \operatorname{SL}_2(\mathbb{F}_{q'})$ would be good
 - Or *N* being simple groups of Lie type (or their semidirect products)?

・ 同 ト ・ 三 ト ・ 三 ト

- In $\operatorname{SL}_2(\mathbb{F}_q)$ (q prime), $\Pr[\operatorname{ord}(x) = k] \le \operatorname{neg.}$ unless $k \mid q \pm 1$ and $k \approx q$ or k = q
 - Such k would be difficult to find, if q is hidden (by Tietze transformations)
- $N = \operatorname{SL}_2(\mathbb{F}_q)$, $\overline{G} = \operatorname{SL}_2(\mathbb{F}_{q'})$ would be good
 - Or *N* being simple groups of Lie type (or their semidirect products)?
- **Problem:** "Non-artificial" construction? (without group presentations)

・ 同 ト ・ ヨ ト ・ ヨ ト

- [Ostrovsky–Skeith III CRYPTO'08]: HE with non-commutative simple group as plaintext space implies FHE without bootstrapping
- The strategy based on Tietze transformation would be applicable to realize it as well

- Proposal of FHE without bootstrapping, based on non-commutative groups (ePrint 2014/097)
 - Homomorphic operators from commutator with rerandomized inputs
 - Constructing underlying groups by group presentations (generators and their relations)
 - "Obfuscating" group structure by random transformations of group presentation
- Candidate choice of groups
 - Attacks for inappropriate groups