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Where We Left Off

Short Generator of a Principal Ideal Problem (SG-PIP)

I Given a Z-basis of a principal ideal I = 〈g〉 ⊆ R where g is “rather
short,” find g (up to trivial symmetries).

Theorem

In prime-power cyclotomic rings R of degree n, SG-PIP is solvable in
classical subexponential 2n

2/3
and quantum polynomial time.

Algorithm: SG-PIP = SG-G ◦ G-PIP

1 Find some generator, given a principal ideal (G-PIP)

2 Find the promised short generator, given an arbitrary generator (SG-G)
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What Does This Mean for Ring-Based Crypto?

I A few works [SV’10,GGH’13,LSS’14,CGS’14] are classically weakened, and
quantumly broken.

these works ≤ SG-PI-SVP ≤ SG-PIP

I Most ring-based crypto is so far unaffected, because its security is
lower-bounded by harder/more general problems:

SG-PI-SVP ≤ PI-SVP ≤ I-SVP ≤ Ring-SIS/LWE ≤ most crypto

NTRU also lies somewhere above SG-PI-SVP.

I Attack crucially relies on existence of an “unusually short” generator.
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Agenda

Animating question: How far can we push these attack techniques?

1 Rarity of principal ideals having short generators.

2 Extend SG-PIP attack to non-cyclotomic number fields?

3 Use SG-PIP to attack NTRU? Ring-LWE?
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Rarity of Principal Ideals with Short Generators

Facts

1 Less than a n−Ω(n) fraction of principal ideals I have a generator g s.t.
‖g‖ ≤ λ1(I) · poly(n).

2 A “typical” principal ideal’s shortest generator g has norm
‖g‖ ≥ λ1(I) · 2

√
n.

So the SG-PIP attack usually approximates PI-SVP quite poorly.

I For simplicity, normalize s.t. N(I) = 1, so
√
n ≤ λ1(I) ≤ n.

I Let G = {generators of I} = g ·R∗.
Then Log(G) = Log(g) + Log(R∗) is a coset of the log-unit lattice.

I To have ‖g‖ ≤ poly(n), we need every

log|σi(g)| ≤ O(log n) =⇒ ‖Log(g)‖1 ≤ r = O(n log n).

I Volume of such g is 2n

n! · r
n = O(log n)n.

Volume of log-unit lattice (regulator) is Θ(
√
n)n.
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SG-PIP Beyond Cyclotomics

I To recover the short generator from any generator of I ⊆ R, it suffices
to have a “good” basis of (a dense enough sublattice of) LogR∗.

(For cyclotomics: standard basis of the cyclotomic units.)

I Can we get such a basis for other number rings?

I In general, can preprocess R in 2rank(LogR∗) time.
Then can quickly solve many instances of SG-PIP in R.

I In particular cases, we can do much better.

E.g., multiquadratic K = Q(
√
d1, . . . ,

√
dk) for appropriate di. Facts:

F unit rank = 2k − 1 = number of quadratic subfields Q(
√
dI), I ⊆ [k] \ ∅.

F fund units of the Q(
√
dI) generate a finite-index subgroup of O∗

K .

(See, e.g., Keith Conrad’s ‘blurb’ on Dirichlet’s unit theorem for proofs.)

F How “good” are these units? How small is their finite index?

I Other number rings? E.g., Z[x]/(xp − x− 1) has many easy units:
x, Φd(x) for d|(p− 1), . . .
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WARNING:
No theorems beyond this point!
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