Recovering Short Generators of Principal Ideals: Extensions and Open Problems

Chris Peikert
University of Michigan and Georgia Tech

2 September 2015
Math of Crypto @ UC Irvine

Where We Left Off

Short Generator of a Principal Ideal Problem (SG-PIP)

- Given a \mathbb{Z}-basis of a principal ideal $\mathcal{I}=\langle g\rangle \subseteq R$ where g is "rather short," find g (up to trivial symmetries).

Where We Left Off

Short Generator of a Principal Ideal Problem (SG-PIP)

- Given a \mathbb{Z}-basis of a principal ideal $\mathcal{I}=\langle g\rangle \subseteq R$ where g is "rather short," find g (up to trivial symmetries).

Theorem
 In prime-power cyclotomic rings R of degree n, SG-PIP is solvable in classical subexponential $2^{n^{2 / 3}}$ and quantum polynomial time.

Where We Left Off

Short Generator of a Principal Ideal Problem (SG-PIP)

- Given a \mathbb{Z}-basis of a principal ideal $\mathcal{I}=\langle g\rangle \subseteq R$ where g is "rather short," find g (up to trivial symmetries).

```
Theorem
In prime-power cyclotomic rings \(R\) of degree \(n\), SG-PIP is solvable in classical subexponential \(2^{n^{2 / 3}}\) and quantum polynomial time.
```


Algorithm: SG-PIP = SG-G ○ G-PIP

(1) Find some generator, given a principal ideal (G-PIP)
(2) Find the promised short generator, given an arbitrary generator (SG-G)

What Does This Mean for Ring-Based Crypto?

- A few works [SV'10,GGH'13,LSS'14,CGS'14] are classically weakened, and quantumly broken.

$$
\text { these works } \leq \text { SG-PI-SVP } \leq \text { SG-PIP }
$$

What Does This Mean for Ring-Based Crypto?

- A few works [SV'10,GGH'13,LSS'14,CGS'14] are classically weakened, and quantumly broken.

$$
\text { these works } \leq \text { SG-PI-SVP } \leq \text { SG-PIP }
$$

- Most ring-based crypto is so far unaffected, because its security is lower-bounded by harder/more general problems:

$$
\text { SG-PI-SVP } \leq \mathrm{PI}-\mathrm{SVP} \leq \mathrm{I}-\mathrm{SVP} \leq \text { Ring-SIS } / \text { LWE } \leq \text { most crypto }
$$

NTRU also lies somewhere above SG-PI-SVP.

What Does This Mean for Ring-Based Crypto?

- A few works [SV'10,GGH'13,LSS'14,CGS'14] are classically weakened, and quantumly broken.

$$
\text { these works } \leq \text { SG-PI-SVP } \leq \text { SG-PIP }
$$

- Most ring-based crypto is so far unaffected, because its security is lower-bounded by harder/more general problems:

$$
\text { SG-PI-SVP } \leq \mathrm{PI}-\mathrm{SVP} \leq \mathrm{I}-\mathrm{SVP} \leq \text { Ring-SIS } / \text { LWE } \leq \text { most crypto }
$$ NTRU also lies somewhere above SG-PI-SVP.

- Attack crucially relies on existence of an "unusually short" generator.

Agenda

Animating question: How far can we push these attack techniques?
(1) Rarity of principal ideals having short generators.
(2) Extend SG-PIP attack to non-cyclotomic number fields?
(3) Use SG-PIP to attack NTRU? Ring-LWE?

Rarity of Principal Ideals with Short Generators

Facts

(1) Less than a $n^{-\Omega(n)}$ fraction of principal ideals \mathcal{I} have a generator g s.t.

$$
\|g\| \leq \lambda_{1}(\mathcal{I}) \cdot \operatorname{poly}(n)
$$

(2) A "typical" principal ideal's shortest generator g has norm

$$
\|g\| \geq \lambda_{1}(\mathcal{I}) \cdot 2^{\sqrt{n}}
$$

So the SG-PIP attack usually approximates PI-SVP quite poorly.

Rarity of Principal Ideals with Short Generators

Facts

(1) Less than a $n^{-\Omega(n)}$ fraction of principal ideals \mathcal{I} have a generator g s.t.

$$
\|g\| \leq \lambda_{1}(\mathcal{I}) \cdot \operatorname{poly}(n)
$$

(2) A "typical" principal ideal's shortest generator g has norm

$$
\|g\| \geq \lambda_{1}(\mathcal{I}) \cdot 2^{\sqrt{n}}
$$

So the SG-PIP attack usually approximates PI-SVP quite poorly.

- For simplicity, normalize s.t. $N(\mathcal{I})=1$, so $\sqrt{n} \leq \lambda_{1}(\mathcal{I}) \leq n$.

Rarity of Principal Ideals with Short Generators

Facts

(1) Less than a $n^{-\Omega(n)}$ fraction of principal ideals \mathcal{I} have a generator g s.t.

$$
\|g\| \leq \lambda_{1}(\mathcal{I}) \cdot \operatorname{poly}(n)
$$

(2) A "typical" principal ideal's shortest generator g has norm

$$
\|g\| \geq \lambda_{1}(\mathcal{I}) \cdot 2^{\sqrt{n}}
$$

So the SG-PIP attack usually approximates PI-SVP quite poorly.

- For simplicity, normalize s.t. $N(\mathcal{I})=1$, so $\sqrt{n} \leq \lambda_{1}(\mathcal{I}) \leq n$.
- Let $G=\{$ generators of $\mathcal{I}\}=g \cdot R^{*}$.

Then $\log (G)=\log (g)+\log \left(R^{*}\right)$ is a coset of the log-unit lattice.

Rarity of Principal Ideals with Short Generators

Facts

(1) Less than a $n^{-\Omega(n)}$ fraction of principal ideals \mathcal{I} have a generator g s.t.

$$
\|g\| \leq \lambda_{1}(\mathcal{I}) \cdot \operatorname{poly}(n)
$$

(2) A "typical" principal ideal's shortest generator g has norm

$$
\|g\| \geq \lambda_{1}(\mathcal{I}) \cdot 2^{\sqrt{n}}
$$

So the SG-PIP attack usually approximates PI-SVP quite poorly.

- For simplicity, normalize s.t. $N(\mathcal{I})=1$, so $\sqrt{n} \leq \lambda_{1}(\mathcal{I}) \leq n$.
- Let $G=\{$ generators of $\mathcal{I}\}=g \cdot R^{*}$.

Then $\log (G)=\log (g)+\log \left(R^{*}\right)$ is a coset of the log-unit lattice.

- To have $\|g\| \leq \operatorname{poly}(n)$, we need every

$$
\log \left|\sigma_{i}(g)\right| \leq O(\log n) \Longrightarrow\|\log (g)\|_{1} \leq r=O(n \log n)
$$

Rarity of Principal Ideals with Short Generators

Facts

(1) Less than a $n^{-\Omega(n)}$ fraction of principal ideals \mathcal{I} have a generator g s.t.

$$
\|g\| \leq \lambda_{1}(\mathcal{I}) \cdot \operatorname{poly}(n)
$$

2 A "typical" principal ideal's shortest generator g has norm

$$
\|g\| \geq \lambda_{1}(\mathcal{I}) \cdot 2^{\sqrt{n}} .
$$

So the SG-PIP attack usually approximates PI-SVP quite poorly.

- For simplicity, normalize s.t. $N(\mathcal{I})=1$, so $\sqrt{n} \leq \lambda_{1}(\mathcal{I}) \leq n$.
- Let $G=\{$ generators of $\mathcal{I}\}=g \cdot R^{*}$.

Then $\log (G)=\log (g)+\log \left(R^{*}\right)$ is a coset of the log-unit lattice.

- To have $\|g\| \leq \operatorname{poly}(n)$, we need every

$$
\log \left|\sigma_{i}(g)\right| \leq O(\log n) \Longrightarrow\|\log (g)\|_{1} \leq r=O(n \log n)
$$

- Volume of such g is $\frac{2^{n}}{n!} \cdot r^{n}=O(\log n)^{n}$.

Volume of log-unit lattice (regulator) is $\Theta(\sqrt{n})^{n}$.

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$. (For cyclotomics: standard basis of the cyclotomic units.)

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.
(For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$. (For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?
- In general, can preprocess R in $2^{\left.\text {rank(} \log R^{*}\right)}$ time. Then can quickly solve many instances of SG-PIP in R.

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.
(For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?
- In general, can preprocess R in $2^{\left.\text {rank(} \log R^{*}\right)}$ time.

Then can quickly solve many instances of SG-PIP in R.

- In particular cases, we can do much better.
E.g., multiquadratic $K=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{k}}\right)$ for appropriate d_{i}. Facts:

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.
(For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?
- In general, can preprocess R in $2^{\left.\text {rank(} \log R^{*}\right)}$ time.

Then can quickly solve many instances of SG-PIP in R.

- In particular cases, we can do much better.
E.g., multiquadratic $K=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{k}}\right)$ for appropriate d_{i}. Facts:
\star unit rank $=2^{k}-1=$ number of quadratic subfields $\mathbb{Q}\left(\sqrt{d_{I}}\right), I \subseteq[k] \backslash \emptyset$.

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.
(For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?
- In general, can preprocess R in $2^{\left.\text {rank(} \log R^{*}\right)}$ time.

Then can quickly solve many instances of SG-PIP in R.

- In particular cases, we can do much better.
E.g., multiquadratic $K=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{k}}\right)$ for appropriate d_{i}. Facts:
\star unit rank $=2^{k}-1=$ number of quadratic subfields $\mathbb{Q}\left(\sqrt{d_{I}}\right), I \subseteq[k] \backslash \emptyset$.
\star fund units of the $\mathbb{Q}\left(\sqrt{d_{I}}\right)$ generate a finite-index subgroup of \mathcal{O}_{K}^{*}. (See, e.g., Keith Conrad's 'blurb' on Dirichlet's unit theorem for proofs.)

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.
(For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?
- In general, can preprocess R in $2^{\left.\text {rank(} \log R^{*}\right)}$ time.

Then can quickly solve many instances of SG-PIP in R.

- In particular cases, we can do much better.
E.g., multiquadratic $K=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{k}}\right)$ for appropriate d_{i}. Facts:
\star unit rank $=2^{k}-1=$ number of quadratic subfields $\mathbb{Q}\left(\sqrt{d_{I}}\right), I \subseteq[k] \backslash \emptyset$.
\star fund units of the $\mathbb{Q}\left(\sqrt{d_{I}}\right)$ generate a finite-index subgroup of \mathcal{O}_{K}^{*}.
(See, e.g., Keith Conrad's 'blurb' on Dirichlet's unit theorem for proofs.)
* How "good" are these units? How small is their finite index?

SG-PIP Beyond Cyclotomics

- To recover the short generator from any generator of $\mathcal{I} \subseteq R$, it suffices to have a "good" basis of (a dense enough sublattice of) $\log R^{*}$.
(For cyclotomics: standard basis of the cyclotomic units.)
- Can we get such a basis for other number rings?
- In general, can preprocess R in $2^{\left.\text {rank(} \log R^{*}\right)}$ time.

Then can quickly solve many instances of SG-PIP in R.

- In particular cases, we can do much better.
E.g., multiquadratic $K=\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{k}}\right)$ for appropriate d_{i}. Facts:
\star unit rank $=2^{k}-1=$ number of quadratic subfields $\mathbb{Q}\left(\sqrt{d_{I}}\right), I \subseteq[k] \backslash \emptyset$.
\star fund units of the $\mathbb{Q}\left(\sqrt{d_{I}}\right)$ generate a finite-index subgroup of \mathcal{O}_{K}^{*}.
(See, e.g., Keith Conrad's 'blurb' on Dirichlet's unit theorem for proofs.)
* How "good" are these units? How small is their finite index?
- Other number rings? E.g., $\mathbb{Z}[x] /\left(x^{p}-x-1\right)$ has many easy units: $x, \Phi_{d}(x)$ for $d \mid(p-1), \ldots$

WARNING:
 No theorems beyond this point!

