
Math 199A—Fall 2016
Final Exam Exercises

Part 1, #1-10; Part 2, #11-20; Part 3, #21-23
Your choice of any 10 of the 23 problems will be due on December 9, 2016

(Extensions of this deadline are possible)

Part 1 #1-10

1. (Transfer Seminar #9) Fix two matrices a, b in Mn(C) and define δa,b(x) = [[a, b], x]. Then
δa,b is a derivation with respect to triple bracket multiplication. (Use the notation [abc] or
[a, b, c] for [[a, b], c])

Discussion: Let δ denote δa,b. It must be shown that

δ[xyz]
?
= [δx, y, z] + [x, δy, z] + [x, y, δz]

Write this as LHS
?
= RHS1 +RHS2 +RHS3. Then

LHS = δ[[x, y], z] = [[a, b], [[x, y], z]] = [ab− ba, [xy − yx, z]]
= . . .

= abxyz − abyxz − abzyx+ abzyx+ 12 other terms

RHS1 = [[[a, b], x], y], z] = [[(ab− ba)x− x(ab− ba), y], z]

= . . .

= (ab− ba)xyz − x(ab− ba)yz + 12 other terms

( we consider (ab− ba)xyz as two terms)

etc.

2. (Transfer Seminar #10) Fix two matrices a, b in Mm,n(C) and define δa,b(x) = {abx}−{bax}.
Then δa,b is a derivation with respect to triple circle multiplication. ({abc} denotes (ab∗c +
cb∗a)/2, but for purposes of this problem it is sufficient to let {abc} denote ab∗c+ cb∗a.)

Discussion: Let δ denote δa,b. It must be shown that

δ{xyz} ?
= {δx, y, z}+ {x, δy, z}+ {x, y, δz}

Write this as LHS
?
= RHS1 +RHS2 +RHS3. Then

LHS = δ{xyz} = {ab{xyz}} − {ba{xyz}}
= ab∗(xy∗z + zy∗x) + (xy∗z + zy∗x)b∗a+ 4 other terms

( we consider ab∗(xy∗z + zy∗x) as two terms)

RHS1 = {δx, y, z} = {{abx}yz} − {{bax}yz}
= (ab∗x+ xb∗a)y∗z + zy∗(ab∗x+ xb∗a) + 4 other terms

etc.

3. (Transfer Seminar #11) Show that Mn(R) is a Lie triple system with respect to triple bracket
multiplication. In other words, show that the three axioms for Lie triple systems are satisfied
if abc denotes [[a, b], c] = (ab− ba)c− c(ab− ba) (a, b and c denote matrices). (Use the notation
[abc] for [[a, b], c]) The axioms for a Lie triple system are

• [aab] = 0
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• [abc] + [bca] + [cab] = 0

• [de[abc]] = [[dea]bc] + [a[deb]c] + [ab[dec]]

Discussion: Note that the third axiom holds by quoting Problem 1.

[aab] = [[a, a], b] = [a2 − a2, b] = [0, b] = 0

[abc] = [[a, b], c] = [ab− ba, c] = abc− bac− cab+ cba

etc.

4. (Transfer Seminar #12) Show that Mm,n(R) is a Jordan triple system with respect to triple
circle multiplication. In other words, show that the two axioms for Jordan triple systems are
satisfied if abc denotes (ab∗c + cb∗a)/2 (a, b and c denote matrices). (Use the notation {abc}
for (ab∗c+ cb∗a)/2. As in Problem 2, for purposes of this problem it is sufficient to let {abc}
denote ab∗c+ cb∗a.) The axioms for a Jordan triple system are

• {abc} = {cba}
• {de{abc}} = {{dea}bc} − {a{edb}c}+ {ab{dec}}

Discussion: The first axiom is trivial: {abc} = ab∗c+ cb∗a = cb∗a+ ab∗c = {cba}.

Write the second axiom as LHS
?
= RHS1 +RHS2 +RHS3. Then

LHS = {de{abc}} = de∗(ab∗c+ cb∗a) + (ab∗c+ cb∗a)e∗d

RHS1 = {{dea}bc} = (de∗a+ ae∗d)b∗c+ cb∗(de∗a+ ae∗d)

etc. (remember that (xy∗z)∗ = z∗yx∗)

5. (Transfer Seminar #14) Let us write δa,b for the linear process δa,b(x) = {abx} − {bax} in a
Jordan triple system. Show that δa,b is a derivation of the Jordan triple system by using the
axioms for Jordan triple systems. The axioms for a Jordan triple system are

• {abc} = {cba}
• {de{abc}} = {{dea}bc} − {a{edb}c}+ {ab{dec}}

Discussion: Let δ denote δa,b. It must be shown that

δ{xyz} ?
= {δx, y, z}+ {x, δy, z}+ {x, y, δz}

Write this as LHS
?
= RHS1 +RHS2 +RHS3. Then

LHS = δ{xyz} = {ab{xyz}} − {ba{xyz}}
= {{abx}yz} − {x{bay}z}+ {xy{abz}}
−{{bax}yz}+ {x{aby}z} − {xy{baz}}

RHS1 = {δx, y, z} = {{abx}yz} − {{bax}yz}

etc.

6. (Transfer Seminar #15) On the Jordan algebra Mn(R) with the circle product a ◦ b = (ab +
ba)/2, define a triple product 〈abc〉 = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗. Show that Mn(R)
is a Jordan triple system with this triple product.

Discussion: Show that 〈abc〉 = (ab∗c+ cb∗a)/2 and then quote Problem 4.

〈abc〉 =

(
ab∗+b∗a

2

)
c+ c

(
ab∗+b∗a

2

)
2

+ two other terms
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7. (Transfer Seminar #18) In an associative triple system F (of the second kind) with triple
product denoted 〈abc〉, define a binary product ab to be 〈aub〉, where u is a fixed element.
Show that the triple system F becomes an associative algebra with this product. Suppose
further that 〈uua〉 = 〈auu〉 = a for all a. Show that we get a unital involutive algebra with
unit u and involution a] = 〈uau〉.
Discussion: The product ab = 〈aub〉 is linear in each variable, so F , with this product is an
algebra. The axioms for an associative triple system of a second kind are

〈〈xyz〉uv〉 = 〈x〈uzy〉v〉 = 〈xy〈zuv〉〉.

Use the associative triple system axioms to show that

• (ab)c = a(bc)

If u is an element of F which satisfies 〈uua〉 = 〈auu〉 = a for all a, then

• ua = au = a

• (ab)] = b]a]

(ab)] = 〈u〈aub〉u〉 = 〈〈ubu〉au〉 = 〈ub〈uau〉〉 = 〈b]au〉 = 〈uba]〉, and
b]a] = 〈〈ubu〉u〈uau〉〉. (You’re almost there!)

8. (Transfer Seminar #19) In a Lie algebra with product denoted by [a, b], define a triple product
[abc] to be [[a, b], c]. Show that the Lie algebra becomes a Lie triple system with this triple
product. (Meyberg Lectures, chapter 6, example 1, page 43)

Discussion: The axioms for a Lie triple system are

(i) [aab] = 0

(ii) [abc] + [bca] + [cab] = 0

(iii) [de[abc]] = [[dea]bc] + [a[deb]c] + [ab[dec]]

The axioms for a Lie algebra are

(iv) [a, a] = 0

(v) [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

Let us rewrite (v) as
[c, [a, b]] = [a, [c, b]] + [[c, a], b] (1)

which makes it easier to remember: for a fixed element c, the linear transformation x 7→ [c, x]
is a derivation of the Lie algebra.

You need to prove that (iv) and (v) imply (i), (ii) and (iii). Check that (i) is immediate from
(iv) and (ii) is immediate from (v). You need to show that (1) can be used to prove (iii). Write
(iii) as

LHS
?
= RHS1 +RHS2 +RHS3.

Then

LHS = [de[abc]] = [[d, e]︸︷︷︸
x

, [[a, b]︸︷︷︸
y

, c︸︷︷︸
z

]] = [[x, y], z] + [y, [x, z]]

= [[[d, e], [a, b]], c] + [[a, b], [d, e], c]]︸ ︷︷ ︸
RHS3

(a good start!)

Now look at [[d, e]︸︷︷︸
x

, [ a︸︷︷︸
y

, b︸︷︷︸
z

]] = [[x, y], z] + [y, [x, z]], etc. and

[[[d, e], [a, b]], c] = −[ c︸︷︷︸
x

, [[d, e]︸︷︷︸
y

, [a, b]︸︷︷︸
z

]] = −[[x, y], z]− [y, [x, z]], etc. to finish the proof.
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9. (Transfer Seminar #20) Let A be an algebra (associative, Lie, or Jordan; it doesn’t matter).
Show that the set D := Der (A) of all derivations of A is a Lie subalgebra of End (A)−. That
is, D is a linear subspace of the vector space of linear transformations on A, and if D1, D2 ∈ D,
then D1D2 −D2D1 ∈ D.

Discussion: Let T = D1D2 − D2D1. T is obviously a linear transformation. Show that
T (ab) = aT (b) + T (a)b.

10. (Meyberg Chapter 2 #6, page 17) For any associative algebra A, consider the Peirce decompo-
sition A = A11 ⊕A10 ⊕A01 ⊕A00 with respect to an idempotent c. (Later, we will consider a
Peirce decomposition in Jordan algebras (which are not associative.) Prove that AiiAii ⊂ Aii

for i = 1, 0, A11A10 ⊂ A10, A11A01 = {0}, and so on, that is, AijAkl = {0} if j 6= k and
AijAjk ⊂ Aik.

Discussion: It is required to prove that

• Ai1A1j ⊂ Aij for i, j = 0, 1

i j Ai1A1j ⊂ Aij

1 1 A11A11 = {(cxc)cyc : x, y ∈ A} ⊂ A11

1 0 A11A10 = {(cxc)cy(1− c) : x, y ∈ A} ⊂ A10

0 1
0 0

• Ai0A0j ⊂ Aij for i, j = 0, 1

i j Ai1A1j ⊂ Aij

1 1
1 0
0 1
0 0

• Ai1A0j = {0} for i, j = 0, 1

i j Ai1A0j = {0}
1 1 A11A01 = {(cxc)(1− c)yc : x, y ∈ A} = {0}
1 0 A11A00 = {(cxc)(1− c)y(1− c) : x, y ∈ A} = {0}
0 1
0 0

• Ai0A1j = {0} for i, j = 0, 1

i j Ai0A1j = {0}
1 1
1 0
0 1
0 0
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Part 2 #11-20

11. (Meyberg Chapter 2 #1, page 12) If x is an element of an associative algebra A such that
Id− L(x) is invertible, and y := (Id− L(x))−1x, then xy = yx.

Discussion: The suggestion in Meyberg’s notes on page 12 does not seem helpful. Instead
let us take our cue from Lemma 2 on page 11, which states that a nilpotent element in a
unital algebra is quasi-invertible. (See Remark 1 on page 12.) Suppose first, for purposes of
motivation, that x is nilpotent, that is xn = 0 for some n > 1. Then L(x)n = L(xn) = 0 also,
and so

(Id− L(x))−1 = Id + L(x) + L(x)2 + · · ·+ L(x)n−1,

y = (Id− L(x))−1x = (Id + L(x) + L(x)2 + · · ·+ L(x)n−1)x = x+ x2 + · · ·+ xn−1

and it follows that xy = yx. To prove this for arbitrary x (not necessarily nilpotent) you need
to show, using advanced calculus, that

y = (Id− L(x))−1x = (Id + L(x) + L(x)2 + · · ·+ L(x)n + · · ·)x
= x+ x2 + · · ·+ xn + · · ·

and the infinite series converges. To do this, note that A is a finite dimensional vector space so
is isomorphic to Φn (=Rn or Cn) and the series converges if |x| < 1, where |x| is the Euclidean
length of x, namely, if x = (x1, . . . , xn), then

|x| =

(
n∑

i=1

|xi|2
)1/2

.

12. (Meyberg Chapter 2 #3 and #4, page 15) In an associative algebra A, let B(x, y) := Id−L(xy)
(i) Prove that for x, y, u ∈ A, B(u− x− uyx,−y) = B(u,−y)B(x, y), and therefore if u− x−
xyu ∈ Rad(A), then B(x, y) is left invertible.
(ii) suppose x, y, u ∈ A are such that u− x− xyu ∈ Rad(A). Prove B(x, y) is right invertible.

Discussion: I will give a complete proof of (i): Lemma 4 on page 12-13 of Meyberg’s notes
states that x is quasi-invertible in Ay if and only if B(x, y) is invertible in End (A). By Lemma 3
on page 11 of Meyberg this is equivalent to the existence of u ∈ A such that u−x = xyu = uyx.
Let z denote u − x − xyu. By the definition of RadA, z is quasi-invertible in Ay for every
y ∈ A and therefore B(z, y) is invertible for every y ∈ A, so

IdA = B(z,−y)−1B(z,−y) = B(z,−y)−1B(u,−y)︸ ︷︷ ︸
left inverse of B(x,y)

B(x, y).

13. (Meyberg Chapter 3 #1, page 22) Prove Theorem 1 on page 22:

Theorem 1 Let F be a triple system. Then
(i) A subset U ⊂ F is an ideal if and only if U is the kernel of some homomorphism.
(ii) If f : F → F ′ is a homomorphism, then f(F ) ' F/ ker f
(iii) If U and V are ideals of F , then (U + V )/U ' U/(U ∩ V )

Discussion: (i) Assume that U is an ideal. Let F ′ = F/U , denote x + U by x, and define a
triple product

〈x, y, z〉 = 〈x+ U, y + U, z + U〉 := 〈xyz〉+ U.

Show that this triple product is well defined, that is, if x = x′, y = y′, z = z′, then 〈xyz〉+U =
〈x′y′z′〉+ U . Recall that x = x′ means there is u ∈ U such that x = x′ + u.

Show that the triple product is trilinear, that is, 〈x+ x′, y, z〉 = 〈x, y, z〉+ 〈x′, y, z〉, etc.
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Let f : F → F ′ be the quotient map f(x) = x = x+U . Show that f is a triple homomorphism
with kernel U .

Conversely, prove that if f : F → F ′ is a triple homomorphism, then ker f is an ideal.

(ii) Define ϕ : f(F ) → F/ ker f by ϕ(f(x) = x = x + ker f . Show that ϕ is well-defined,
one-to-one, onto, linear, and multiplicative.

(iii) Define ψ : (U + V )/V → U/(U ∩ V ) by ϕ(u + v + V ) = u + U ∩ V . Show that ψ is
well-defined, one-to-one, onto, linear, and multiplicative.

14. (Meyberg Chapter 3 #4, page 24) If A is an algebra which is made into a triple system by
the definition 〈abc〉 = (ab)c, prove that every derivation of A as an algebra is a derivation of
A as a triple system, and every homomorphism of A as an algebra (into another algebra B)
is a homomorphism of the triple system (A, 〈abc〉 = (ab)c) into the triple system (B, 〈xyz〉 =
(xy)z).

Discussion: A derivation D of A satisfies D(ab) = aD(b) + D(a)b and a homomorphism ϕ
of A satisfies ϕ(ab) = ϕ(a)ϕ(b). A triple derivation δ of A satisfies δ(〈xyz〉) = 〈δ(x), y, z〉 +
〈x, δ(y), z〉+〈x, y, δ(z)〉, and a triple homomorphism ψ ofA satisfies ϕ(〈xyz〉) = 〈ψ(x), ψ(y), ψ(z)〉.

15. (Meyberg Chapter 3 #2-part 1, page 23)

(i) Subtriples and homomorphic images of solvable triple systems are solvable
(ii) If U is an ideal in F , then F is solvable if and only if U and F/U are solvable.
(iii) If U and V are solvable ideals in a triple system F , then U + V is a solvable ideal.

Discussion: A triple system F is solvable if F (n) = 0 for some n ≥ 1, where F (0) := F and
F (n+1) := 〈F (n), F (n), F (n)〉.
(i) If G is a subtriple of F , show by induction that G(n) ⊂ F (n). If f : F → F ′ is a triple
homomorphism, then with G := f(F ) ⊂ F ′, show by induction that G(n) = f(F (n)).

(ii) If F is solvable, then U and F/U are solvable by (i). To show the converse, show first by
induction that (F/U)(k) = (F (k) +U)/U as vector spaces. Then show that F/U being solvable
implies F (n) ⊂ U for some n ≥ 1. Now use the assumption that U is solvable.

(iii) Show first that U + V is an ideal. Then use the (i), (ii), and Problem 13(iii).

16. (Meyberg Chapter 3 #2-part 2, page 23)

(i) Let I be an ideal in the quotient triple F/V . Show that I = F/V where V ⊂ U ⊂ F , U is
an ideal in F , and V is an ideal in U .
(ii) If F is Noetherian (every non empty set of ideals has a maximal element), then F has a
unique maximal solvable idealR(F ) which contains all other solvable ideals, and R(F/R(F))={0}.
(iii) If U is an ideal in F , and R(F/U) = {0}, then R(F ) ⊂ U .

Discussion: (i) Let U = {a ∈ F : a+ V ∈ I}, verify that U is an ideal in F and V is an ideal
in U . Then show that I = (U + V )/V as sets and use Problem 13(iii).

(ii) Let R(F ) be a maximal element of the set of solvable ideals of F . If R′ is a solvable ideal,
then R(F ) +R′ is a solvable ideal containing R(F ),. . .

A solvable ideal of F/R(F ) is of the form G/R(F ), where G is an ideal in F , and R(F ) is an
ideal in G. Show that G is solvable and then use Problem 13(iii) to show that R(F/R(F )) = 0.

(iii) If ϕ : F → F/U is the quotient homomorphism, consider ϕ(R(F )).

17. (Meyberg Chapter 3 #3, page 23)

(i) If F is a triple system which satisfies (a2n+1)2m+1 = a(2n+1)(2m+1) for all m,n > 0 and
a ∈ F , then the sum of two nil ideals is a nil ideal.
(ii) In any triple system F , there is a maximal nil ideal N(F ).
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(iii) If a triple system F satisfies (a2n+1)2m+1 = a(2n+1)(2m+1) for all m,n > 0 and a ∈ F ,
then F has a unique maximal nil ideal (called the nil radical).

Discussion: Powers in a triple system are defined inductively by a1 = a, a3 = 〈aaa〉, a5 =
〈a3aa〉, . . . , a2(n+1)+1 = 〈a2n+1aa〉, and a subsystem U of F is nil if every one of its elements
is nilpotent, that is, for each a ∈ U , a2n+1 = 0 for some n > 0 which depends on a.

(i) If G and H are ideals in F , show by induction that if g ∈ G and h ∈ H, then (g+h)2n+1 =
g2n+1 + d where d ∈ H. Now use the fact that G and H are nil together with the assumption.
(You can also imitate Meyberg pp 6-7 and page 2 of my informal notes for Meyberg pp. 6-7)

(ii) and (iii) Use Zorn’s lemma; (Imitate Meyberg pp 6-7 and pp. 3-4 of my informal notes for
Meyberg pp. 6-7)

18. (Meyberg Chapter 4 #2, page 28) Prove the two identities for an associative triple system M .

(4.12) `(x, y)`(u, v) = `(〈xyu〉, v) = `(x, 〈vuy〉)
(4.13) r(x, y)r(u, v) = r(x, 〈yuv〉, v) = r(〈uyx〉, v),

where `(x, y) and r(x, y) are defined on page 28 as follows: L(x, y)z = 〈xyz〉 = R(z, y)x,

`(x, y) = (L(x, y), L(y, x)) ∈ EndM ⊕ (EndM)op,

r(x, y) = (R(y, x), R(x, y)) ∈ (EndM ⊕ (EndM)op)op

Discussion: I will give a complete proof of (4.12):

`(x, y)`(u, v) = (L(x, y), L(y, x))(L(u, v), L(v, u)) = (L(x, y)L(u, v), L(v, u)L(y, x))
(remember, the product in (EndM)op is reversed).

Now use (4.9): L(x, y)L(z, u) = L(〈xyz〉, u〉 = L(x, 〈uzy〉) to obtain

L(x, y)L(u, v) = L(〈xyu〉, v) = L(x, 〈vuy〉),

L(v, u)L(y, x) = L(〈vuy〉, x) = L(v, 〈xyu〉).

By definition,
`(〈xyu〉, v) = (L(〈xyu〉, v), L(v, 〈xyu〉)),

`(x, 〈vuy〉) = (L(x, 〈vuy〉), L(〈vuy〉, x)).

So `(x, y)`(u, v) = (L(x, y)L(u, v), L(v, u)L(y, x))

= (L(x, 〈vuy〉), L(〈vuy〉, x))

= `(x, 〈vuy〉).
Also `(x, y)`(u, v) = (L(〈xyu〉, v), L(v, 〈xyu〉))

= `(〈xyu〉, v).

To prove (4.13), remember that the product r(x, y)r(u, v) is taken in (EndM ⊕ (EndM)op)op,
that is,

r(x, y)r(u, v) = (R(y, x), R(x, y)) ◦ (R(v, u), R(u, v))

= (R(v, u), R(u, v)(R(y, x), R(x, y))

= (R(v, u)R(y, x), R(x, y)R(u, v))

(remember, the product in (EndM)op is reversed).

Now use (4.10): R(v, u)R(z, y) = R(〈zuv〉, y) = R(v, 〈uzy〉).

7



19. (Meyberg Chapter 4 #1-part 1, page 27) Prove the statements (i)-(iii) in the Discussion below,
which are used in Problem #20. (Problems 19 and 20 were discussed in class on November 18
and some details of their solutions has been posted on the website. )

Discussion: The axiom for an associative triple system of the first kind is

((4.1) on page 25) 〈xy〈uvw〉〉 = 〈〈xyu〉vw〉 = 〈x〈yuv〉w〉.

We let Ẽ = EndF ⊕ (EndF )op, which is an algebra with unit E = (IdF , IdF ). Recall that the
product in Ẽ is, for A = (A1, A2), B = (B1, B2) ∈ Ẽ, given by

AB = (A1B1, B2A2).

Recall that if A is an associative algebra and V is a vector space, then we say that V is a
left-A-module if there is a bilinear map A × V 3 (T, v) 7→ T · v ∈ V satisfying the axiom
(T1T2) · v = T1 · (T2v). We say that V is a right-A-module if there is a bilinear map A× V 3
(T, v) 7→ v · T ∈ V satisfying the axiom v · (T1T2) = (v · T1) · T2. A vector space V which
is both a left A-module and a right A-module is said to be an A-bimodule if in addition
(T1 · v) · T2 = T1 · (v · T2).

The vector space F is a left-Ẽ-module and a right-Ẽ-module as follows: if A = (A1, A2) ∈ Ẽ,
and x ∈ F ,

A · x = A1x (left module action) and x ·A = A2x (right module action).

(i) Check that A · (B · x) = (AB) · x (left module axiom)
(ii) Check that (x ·A) ·B = x · (AB) (right module axiom)
(iii) Check that (A · x) ·B = A · (x ·B) (bimodule axiom)

20. (Meyberg Chapter 4 #1-part 2, page 27) Prove the statements (i)-(iii) in the Discussion below,
which constitues a proof of Theorem 1 on page 27.

Theorem 1 Let F be an associative triple system of the first kind. Then Ã := L⊕F (with L
defined below and on page 26) is an associative algebra with unit element (with multiplication
defined below and on page 27) and there is a linear isomorphism f of F into A, such that
f(〈xyz〉) = (f(x)f(y))f(z).

Discussion: Let
L0 = span {λ(x, y) : x, y ∈ F} ⊂ Ẽ

where λ(x, y) = (L(x, y), R(y, x)) ∈ Ẽ. We have

((4.5) on page 25) λ(x, y)λ(u, v) = λ(x, 〈yuv〉) = λ(〈xyu〉, v).

Therefore, L0 is a subalgebra of Ẽ and we define a subalgebra L of Ẽ with unit E1 = (IdM , IdM )
by L = ΦE1 + L0. We define the multiplication in Ã = L⊕ F by

(A, x)(B, y) = (AB + λ(x, y), A · y + x ·B).

(i) Show that this product is bilinear, that is

((A, x) + (A′, x′))(B, y) = (A, x)(B, y) + (A′, x′)(B, y)

and
(A, x)((B, y) + (B′, y′)) = (A, x)(B, y) + (A, x)(B′, y′).

(ii) Prove that the product is associative, that is,

((A, x)(B, y))(C, z) = (A, x)((B, y)(C, z)).

and therefore Ã becomes an associative triple system of the first kind with the triple product
〈(A, x), (B, y), (C, z)〉 = (A, x)(B, y)(C, z).

(iii) Show that the function f : F → Ã defined by f(x) = (0, x) is a triple homomorphism of
F into the triple system Ã, that is, f(x)f(y)f(z) = f(〈xyz〉).
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Part 3 #21-23

21. (Meyberg Chapter 4 #3, page 29) Prove the statements (i)-(ii) in the Discussions below, which
are used in Problem 22.

Discussion: Let M be an associative triple system of the second kind. Note that by Lemma
3(i) on page 29, M is a left L-module and a right R-module. L was defined and M was shown
to be a left and a right L-module in Problem 20; R is defined on page 29 of Meyberg, as
follows.

Let R0 = span {r(x, y) : x, y ∈M} ⊂ (Ẽ)op where r(x, y) = (R(y, x), R(x, y)) ∈ (Ẽ)op.

By (4.13) in Problem 18, R0 is a subalgebra of (Ẽ)op and we define a subalgebra R of Ẽ with
unit E2 = (IdM , IdM ) by R = ΦE2 + R0 ⊂ (Ẽ)op. (Note that we have changed the name of
the unit of L from E to E1 in Problem 20.)

(Note that Ẽ and (Ẽ)op have a natural involution: (A,B) 7→ (A,B) := (B,A). This fact will
be used in Problem 23.)

We have already shown the left L-module action on M in Problem 19 (Ignore the right L-
module action for purposes of this problem), namely, if A = (A1, A2) ∈ L ⊂ Ẽ, and x ∈ M ,
A · x = A1x. As for the right R-module action, if B = (B1, B2) ∈ R ⊂ (Ẽ)op and x ∈ M ,
x ·B = B1x.

(i) Show that M is a left L-module (done in Problem 19), a right R-module, and an (L,R)-
bimodule. (You will need to use (4.11) on page 28 of Meyberg.)

More discussion: Note that by Lemma 3(ii) on page 29, M is a right L-module and a left
R-module (M is an isomorphic copy of M). Here are the module actions:
If A = (A1, A2) ∈ L ⊂ Ẽ, and x ∈M ,

x ·A = A2x (=a right module action of L ⊂ Ẽ on M).

If B = (B1, B2) ∈ R ⊂ (Ẽ)op, and x ∈M ,

B · x = B2x (=a left module action of R ⊂ (Ẽ)op on M).

(ii) Show that M is a left R-module, a right L-module, and an (R,L)-bimodule. (You will
need to use (4.11) on page 28 of Meyberg.)

22. (Meyberg Chapter 4 #4-part 1, page 31) Let M be an associative triple system of the second
kind. Let Ã := L⊕M ⊕M ⊕R (L was defined in Problem 20 and on page 26 of Meyberg, R
was defined in Problem 21 and on page 29 of Meyberg, and M is an isomorphic copy of M).
Prove the statements (i)-(ii).

(i) Ã is an associative algebra with unit element E = (E1, 0, 0, E2), with multiplication defined
on page 30 as follows:

(A, x, y,B)(A′, x′, y′.B′) = (AA′ + `(x, y′)︸ ︷︷ ︸
∈L

, A · x′ + x ·B′︸ ︷︷ ︸
∈M

, y ·A′ +B · y′︸ ︷︷ ︸
∈M

, r(y, x′) +BB′︸ ︷︷ ︸
∈R

). (2)

(ii) Ã0 := L0 ⊕M ⊕M ⊕R0 (with L0 and R0 defined in Problems 20 and 21 respectively and
on page 28) is an ideal in Ã.

To help remember the formula (2), think of it as “matrix multiplication”:[
A x
y B

] [
A′ x′

y′ B′

]
=

[
AA′ + `(x, y′) A · x′ + x ·B′
y ·A′ +B · y′ r(y, x′) +BB′

]
.

To prove (i), you need to show bilinearity, for example:[
A x
y B

]([
A′ x′

y′ B′

]
+

[
A′′ x′′

y′′ B′′

])
=

[
A x
y B

] [
A′ x′

y′ B′

]
+

[
A x
y B

] [
A′′ x′′

y′′ B′′

]
,
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and associativity:([
A x
y B

] [
A′ x′

y′ B′

])[
A′′ x′′

y′′ B′′

]
=

[
A x
y B

]([
A′ x′

y′ B′

] [
A′′ x′′

y′′ B′′

])
.

To prove (ii), you need to show:[
`(x, y) z
w r(u, v)

] [
A′ x′

y′ B′

]
∈ Ã0 and

[
A′ x′

y′ B′

] [
`(x, y) z
w r(u, v)

]
∈ Ã0,

23. (Meyberg Chapter 4 #4-part 2, page 31) With the notation of Problem 22, prove (iii)-(v).

(iii) There is an involution u 7→ u on A, defined in the statement of Theorem 2 on page 30 and
as follows:

j(u) = j

([
A x
y B

])
= u =

[
A y
x B

]
.

Recall from page 29 of Meyberg that if A = (A1, A2) ∈ Ẽ, then A = (A2, A1), and from page
8 of Meyberg that an involution of Ã is a linear map j : Ã → Ã such that j(uv) = j(v)j(u)
and j(j(u)) = u for u, v ∈ Ã.

Since it is obvious that j : u 7→ u defined above is linear and satisfies j(j(u)) = u, to prove
(iii) you need to show that

j

(([
A x
y B

] [
A′ x′

y′ B′

]))
=

[
A′ y′

x′ B′

] [
A y
x B

]
.

(iv) there is a linear isomorphism f of M into Ã, such that f(〈xyz〉) = f(x)f(y)f(z).

To prove (iv), let f(x) =

[
0 x
0 0

]
, and calculate f(x)f(y)f(z).

(v) The Peirce components of Ã with respect to the idempotent Ẽ1 =

[
E1 0
0 0

]
are

Ã11 = L , Ã10 = M , Ã01 = M , Ã00 = R.

For examples,

Ã11 = Ẽ1ÃẼ1 = {
[
E1 0
0 0

] [
A x
y B

] [
E1 0
0 0

]
:

[
A x
y B

]
∈ Ã}

= {
[
E1AE1 0

0 0

]
:

[
A x
y B

]
∈ Ã} = {

[
A 0
0 0

]
:

[
A x
y B

]
∈ Ã} = L;

and

Ã10 = Ẽ1Ã(1− Ẽ1)

= {
[
E1 0
0 0

] [
A x
y B

]
−
[
E1 0
0 0

] [
A x
y B

] [
E1 0
0 0

]
:

[
A x
y B

]
∈ Ã}

= {
[
E1 0
0 0

] [
A x
y B

]
−
[
A 0
0 0

]
:

[
A x
y B

]
∈ Ã}

= {
[
A x
0 0

]
−
[
A 0
0 0

]
:

[
A x
y B

]
∈ Ã}

= {
[

0 x
0 0

]
:

[
A x
y B

]
∈ Ã} = M.

The rest is up to you.
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