Math 199B-Winter 2017

Final Exam Exercises
Problems will be due on March 24, 2017
(Extensions of this deadline are possible)

Part 1 Chapter 7 \#1-5

1. (Chapter 7, Exercise 1 page 66)

If \mathcal{F} is a Jordan algebra over the field $\Phi(=\mathbf{R}$ or $\mathbf{C})$, then the unital algebra $\widehat{\mathcal{F}}=\Phi \oplus \mathcal{F}$ is a Jordan algebra.
2. (Chapter 7, Exercise 2 page 67)

In a Jordan algebra \mathcal{F}, the mappings $[L(x), L(y)], x, y \in \mathcal{F}$ are derivations of \mathcal{F}.
3. (Chapter 7, Exercise 3 page 69)

In a Jordan algebra, $y\{u v w\}=\{(y u) v w\}-\{u(y v) w\}+\{u v(y w)\}$.
4. (Chapter 7, Exercise 4 page 69)

In a Jordan algebra, if D is a derivation, then $D\{u v w\}=\{(D u) v w\}+\{u(D(v)) w\}+\{u v(D(w))\}$.
5. (Chapter 7, Exercise 5 page 70)

Fill in the details of the proof of (7.14): $P(P(u) v)=P(u) P(v) P(u)$.

Part 2 Chapter 8 \#1-3

6. (Chapter 8 , Exercise 1 page 73)

If V is a vector space over $F(=\mathbf{R}$ or $\mathbf{C})$, and $q: V \rightarrow F$ is a quadratic form, then $D=F \oplus V$ is a Jordan algebra if we define

$$
(\alpha, x)(\beta, y)=(\alpha \beta+q(x, y), \alpha y+\beta x)
$$

7. (Chapter 8, Exercise 2 page 73)

The space D in the previous problem is a quadratic extension of F, or if the dimension of V is 1 and q is non degenerate, then D is isomorphic to $F \oplus F$.
8. (Chapter 8 , Exercise 3 page 73)

Is the space D in the previous two problems a field?
(See the webpage: Fifth meeting, February 10, 2017. Simple Jordan algebras (informal notes: Meyberg pages 73-74, Exercise 3 added) -see page 7)

Part 3 Chapter 5 \#1-2

9. (Chapter 5, Exercise 1 page 41)

In a Lie algebra \mathcal{L}, \quad (a) $\left[\mathcal{L}^{m}, \mathcal{L}^{n}\right] \subset \mathcal{L}^{m+n}$ and \quad (b) $\mathcal{L}^{(n)} \subset \mathcal{L}^{2^{n}}$.
10. (Chapter 5 , Exercise 2 page 41)

In a Lie algebra, the nil radical is contained in the radical.

Part 4 Chapter 6 \#1-6

11. (Chapter 6 , Exercise 1 page 43)

If $(\mathcal{F},<x y z>)$ is an associative triple system, then $(\mathcal{F},[x y z])$ is a Lie triple system, where

$$
[x y z]:=<x y z>-<y x z>-<z x y>+<z y x>
$$

12. (Chapter 6 , Exercise 2 page 43)

Let A be a commutative algebra over our field $\Phi(=\mathbf{R}$ or $\mathbf{C})$ with multiplication $x y=L(x) y$. Set $D(x, y)=[L(x), L(y)]$ and assume for all $x, y, u, v \in A$ that

$$
[D(x, y), D(u, v)]=D(D(x, y) u, v)+D(u, D(x, y) v)
$$

(For example, A could be a Jordan algebra.)
Define $[x y z]:=D(x, y) z$ and suppose \mathcal{F} is a subspace of A closed under $[x y z]$. Then $(\mathcal{F},[x y z])$ is a Lie triple system.
13. (Chapter 6 , Exercise 3 page 46)

Let F be a field, and $\mathcal{F}=F^{n}$ the Lie triple system of column vectors over F under the triple product $[x y z]:=y x^{t} z-x y^{t} z$. The mapping $\mathcal{H} \oplus \mathcal{F} \ni(A, x) \mapsto\left[\begin{array}{cc}A & x \\ -x^{t} & 0\end{array}\right] \in A_{n+1}(F)(=$ the Lie algebra of all $n+1$ by $n+1$ skew symmetric matrices over F) is a Lie algebra isomorphism.
14. (Chapter 6 , Exercise 4 page 47)

Let $\mathcal{F}_{i}(i=1,2)$ be Lie triple systems with standard imbeddings $\mathcal{L}_{i}=\mathcal{H}_{i} \oplus \mathcal{F}_{i}$. If $\phi: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is a Lie algebra homomorphism and $\eta: \mathcal{F}_{1} \rightarrow \mathcal{F}_{2}$ is a linear map such that
(i) $\phi L_{1}(x, y)=L_{2}(\eta x, \eta y)$ and
(ii) $\eta H=\phi(H) \eta$, then
$\lambda: \mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ defined by $\lambda(H, x)=(\phi(x), \eta(x))$ is a Lie algebra homomorphism.
(L_{i} is the left multiplication of \mathcal{F}_{i}.)
15. (Chapter 6 , Exercise 5 page 47)
(i) Let $\eta: \mathcal{F}_{1} \rightarrow \mathcal{F}_{2}$ be a Lie triple isomorphism and define $\Lambda(H, x)=\left(\eta H \eta^{-1}, \eta x\right)$. Then Λ is an isomorphism of \mathcal{L}_{1} onto \mathcal{L}_{2} which commutes with the main involutions, that is, $\Lambda \theta_{1}=\theta_{2} \Lambda$.
(ii) Conversely, if $\Lambda: \mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ is an isomorphism such that $\Lambda \theta_{1}=\theta_{2} \Lambda$, then the restriction of Λ to \mathcal{F}_{1} maps onto \mathcal{F}_{2} and is a Lie triple isomorphism.
16. (Chapter 6 , Exercise 6 page 57)

If \mathcal{F} is a Lie triple system with standard imbedding $\mathcal{L}=\mathcal{H} \oplus \mathcal{F}$, and D is a derivation of \mathcal{F}, then $\delta: \mathcal{L} \rightarrow \mathcal{L}$, defined by $\delta(H, a)=([D, H], D a)$ is a derivation of the Lie algebra \mathcal{L}.
(See the webpage: Ninth meeting, March 10, 2017. Derivations on finite dimensional semisimple Lie Triple Systems are Inner (Theorem 10, page 57, informal notes and review of radicals, Exercise 6 added)—see page 3)

