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ON SOME CLASSES OF NILPOTENT LEIBNIZ ALGEBRAS
Sh. A. Ayupov and B. A. Omirov UDC 512.554.38

This article is devoted to studying Leibniz algebras that were introduced in Loday’s articles [1, 2] as
a “noncommutative” analog of Lie algebras.

We define null-filiform algebras and study their properties. For Lie algebras, the notion of p-
filiform algebra makes sense for p ≥ 1 [3] and looses sense for p = 0, since a Lie algebra has at least
two generators. In the case of Leibniz algebras, this notion is meaningful for p = 0; so the introduction
of null-filiform algebra is quite justified.

We study complex non-Lie filiform Leibniz algebras. In particular, we give some equivalent con-
ditions for a Leibniz algebra to be filiform and describe naturally graded complex Leibniz algebras.

§ 1. Description for the Irreducible Component of the Set of Nilpotent
Leibniz Algebras Containing an Algebra of Maximal Nilindex

Definition 1. An algebra L over a field F is a Leibniz algebra if the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y]

holds for all x, y, z ∈ L. Here [ , ] is the multiplication in L.
Observe that if the identity [x, x] = 0 holds in L then the Leibniz identity coincides with the Jacobi

identity. Thus, a Leibniz algebra is a “noncommutative” analog of a Lie algebra.
Given an arbitrary algebra L, define its lower central series

L〈1〉 = L, L〈n+1〉 = [L〈n〉, L].

Definition 2. An algebra L is nilpotent if L〈n〉 = 0 for some n ∈ N .
It is easy to see that the nilpotency class of an arbitrary n-dimensional nilpotent algebra is at

most n + 1.

Definition 3. A Leibniz algebra L of dimension n is a null-filiform algebra if dim Li = (n+1)−i,
1 ≤ i ≤ n + 1.

Clearly, the definition of a null-filiform algebra L amounts to requiring that L has a maximal
nilpotency class.

Lemma 1. In every null-filiform Leibniz algebra of dimension n, there is a basis with the following
multiplications:

[xi, x1] = xi+1 for 1 ≤ i ≤ n− 1, [xi, xj ] = 0 for j ≥ 2. (1)

Proof. Let L be a null-filiform Leibniz algebra of dimension n and let {e1, e2, . . . , en} be a basis
for L such that e1 ∈ L1 \ L2, e2 ∈ L2 \ L3, . . . , en ∈ Ln (such a basis can be chosen always). Since
e2 ∈ L2, for some elements a2p, b2p of L we have

e2 =
∑

[a2p, b2p] =
∑

α2
ij [ei, ej ] = α2

11[e1, e1] + (∗),

where (∗) ∈ L3; i.e., e2 = α2
11[e1, e1] + (∗). Notice that α2

11[e1, e1] 6= 0 (otherwise e2 ∈ L3). Similarly,
obtain

e3 =
∑

[[a3p, b3p], c3s] =
∑

α3
ijk[[ei, ej ], ek] = α3

111[[e1, e1], e1] + (∗∗),
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where (∗∗) ∈ L4; i.e., e3 = α3
111[[e1, e1], e1]+(∗∗). Notice that α3

111[[e1, e1], e1] 6= 0 (otherwise e3 ∈ L4).
Continuing likewise, we conclude that the elements

x1 := e1, x2 := [e1, e1], x3 := [[e1, e1], e1], . . . , xn := [[[e1, e1], e1], . . . , e1]

differ from zero. It is easy to check that these elements are linearly independent. Hence, they constitute
a basis for L. Thus, [xi, x1] = xi+1 for 1 ≤ i ≤ n− 1; moreover, [xi, xj ] = 0 for j ≥ 2. Indeed, if j = 2
then

[xi, x2] = [xi, [x1, x1]] = [[xi, x1], x1]− [[xi, x1], x1] = 0.

Assume this proven for j > 2. Validity for j + 1 follows then from the inductive hypothesis and
the equality

[xi, xj+1] = [xi, [xj , x1]] = [[xi, xj ], x1]− [[xi, x1], xj ] = 0.

The proof of the lemma is over.
Henceforth we denote the algebra with multiplication (1) by L0.
Take x ∈ L \ [L, L]. For the nilpotent operator Rx of right multiplication, define the decreasing

sequence C(x) = (n1, n2, . . . , nk) that consists of the dimensions of the Jordan blocks of Rx. Endow
the set of these sequences with the lexicographic order; i.e. C(x) = (n1, n2, . . . , nk) ≤ C(y) =
(m1, m2, . . . ,ms) means that there is an i ∈ N such that nj = mj for all j < i and ni < mi.

Definition 4. The sequence C(L) = maxx∈L\[L,L] C(x) is defined to be the characteristic se-
quence of the algebra L.

Definition 5. The set Z(L) = {x ∈ L : [y, x] = 0 ∀y ∈ L} is the right annihilator of L.

Example 1. Let L be an arbitrary algebra and C(L) = (1, 1, . . . , 1). Then L is abelian.

Example 2. Let L be an n-dimensional Leibniz algebra. By Lemma 1, L is a null-filiform algebra
if and only if C(L) = (n, 0).

Consider an arbitrary algebra L in the set of n-dimensional Leibniz algebras over a field F .
Let {e1, e2, . . . , en} be a basis for L. Then L is determined, up to isomorphism, by the multiplication
rule for the basis elements; namely,

[ei, ej ] =
n∑

k=1

γk
ijek,

where γk
ij are the structure constants. Therefore, fixing a basis, we can regard each algebra of dimension

n over a field F as a point in the n3-dimensional space of structure constants endowed with the Zariski
topology. A change of the basis corresponds to a natural action of the group GLn(F ) over F ; the orbit
of a point under this action is the set of all isomorphic algebras.

Let In(F ) be the set of structure constants of all n-dimensional Leibniz algebras over a field F
and let Nn be the subset of In(F ) consisting of the structure constants of all nilpotent n-dimensional
Leibniz algebras over F .

The Leibniz identity implies the polynomial identities

n∑
l=1

(
γl

jkγ
m
il − γl

ijγ
m
lk + γl

ikγ
m
lj

)
= 0

for structure constants. Hence, the set In(F ) in Fn3
is an affine variety.

Definition 6. Define the action of the group GLn(F ) on the set In(F ) as follows: [x, y]g :=
g[g−1x, g−1y], where g ∈ GLn(F ) and x, y ∈ L. Denote by Orbn(L) the orbit GL∗

nL of an algebra L.
Clearly, Orbn(L) consists of all algebras isomorphic to L (the stabilizer of L is the group Aut(L) ⇒

Orbn(L) = GLn(F )/ Aut(L)). In the case of an arbitrary field F the closure Orbn(L) of the orbit
Orbn(L) is understood to be taken with respect to the Zariski topology; for F = C it coincides with
closure with respect to the Euclidean topology.
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It is easy to see that the scalar matrices of GLn(F ) act on In(F ) scalarly; therefore, the orbits
Orbn(L) are cones with the deleted vertex {0} that corresponds to the abelian algebra an. Thus, an

belongs to Orbn(L) for all L ∈ In(F ). In particular, among the orbits Orbn(L) only one is closed,
the orbit of an (an is abelian).

By [4] the set {L ∈ In(F ) : dim Z(L) ≥ n− 1} is closed in the Zariski topology. Therefore,

Orbn(L0) ⊆ Nn ∩ {L ∈ In(F ) : dim Z(L) ≥ n− 1}.

For convenience, we introduce the notation

NnZ := Nn ∩ {L ∈ In(F ) : dim Z(L) = n− 1}.

The case in which dim Z(L) = n is not interesting, since L is in this case abelian.

Lemma 2. Let L be an algebra in NnZ with a characteristic sequence C(L) = (m, n−m). Then
for m = n/2 L is isomorphic to the algebra

[e1, en] = 0, [e2, en] = e1, . . . , [em, en] = em−1, [em+1, en] = 0, [em+2, en] = em+1,

[em+3, en] = em+2, . . . , [en, en] = en−1,

and for m > n
2 it is isomorphic to one of the two nonisomorphic algebras:

[e1, em] = 0, [e2, em] = e1, . . . , [em, em] = em−1,

[em+1, em] = 0, [em+2, em] = em+1, [em+3, em] = em+2, . . . , [en, em] = en−1,

[e1, en] = 0, [e2, en] = e1, . . . , [em, en] = em−1, [em+1, en] = 0,

[em+2, en] = em+1, [em+3, en] = em+2, . . . , [en, en] = en−1.

Proof. Let {e1, . . . , en} be a basis for L, L ∈ NnZ, and C(L) = (m,n − m). Then there is
x ∈ L \ [L, L] such that

Rx =
(

Jm 0
0 Jn−m

)
;

i.e.,

[e1, x] = 0, [e2, x] = e1, . . . , [em, x] = em−1, [em+1, x] = 0,

[em+2, x] = em+1, [em+3, x] = em+2, . . . , [en, x] = en−1.

For convenience, assume x to be a basis element (which is possible due to dim Z(L) = n − 1).
Since dim Z(L) = n− 1, it follows that [L, L] ⊆ Z(L) and so x does not belong to the linear span of
the vectors {e1, . . . , em−1, em+1, . . . , en−1} ⊆ Z(L). Hence, x = em or x = en. For m = n/2, changing
the basis to

ē1 = em+1, ē2 = em+2, . . . , ēm = en, ēm+1 = e1, ēm+2 = e2, . . . , ēn = em,

we may assume that the algebras

[e1, em] = 0, [e2, em] = e1, . . . , [em, em] = em−1, [em+1, em] = 0,

[em+2, em] = em+1, [em+3, em] = em+2, . . . , [en, em] = en−1,

[e1, en] = 0, [e2, en] = e1, . . . , [em, en] = em−1, [em+1, en] = 0,

[em+2, en] = em+1, [em+3, en] = em+2, . . . , [en, en] = en−1

17



are isomorphic.
For m > n/2, suppose that these algebras are isomorphic; i.e., there is an isomorphism ϕ from

the first algebra onto the second. Then ϕ(em) = α1e1 + α2e2 + · · · + αnen, where αn 6= 0. It is well
known that every isomorphism takes generators into generators. Therefore,

[ϕ(en), ϕ(em)] = ϕ(em−1), . . . , [ϕ(e2), ϕ(em)] = 0

(in view of m > n−m); a contradiction. This completes the proof of the lemma.
For convenience, in the case of dim Z(L) = n− 1 we henceforth specify an algebra L by defining

the operator of right multiplication by an element x, where x ∈ Z(L).

Corollary 1. Assume that L ∈ NnZ and C(L) = (n1, . . . , ns). Then L is isomorphic to one of
the algebras

Ren1
=


Jn1 0 · · · 0 0
0 Jn2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 Jns

 , . . . , Ren1+···+ns
=


Jn1 0 · · · 0 0
0 Jn2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 Jns

 ,

where Jn1 , . . . , Jns are Jordan blocks of respective dimensions n1, . . . , ns. In particular, Ren1+···+ni−1
∼=

Ren1+···+ni−1+ni
if and only if ni−1 = ni.

Proof. Suppose that L satisfies the conditions of the lemma. Then the arguments similar to
those in Lemma 2 show that L may be one of the algebras in the statement of the corollary. Assume
that ni−1 = ni, where 2 ≤ i ≤ s. Changing the basis as follows

ēn1+···+ni−2+1 := en1+···+ni−2+ni−1+1,

ēn1+···+ni−2+2 := en1+···+ni−2+ni−1+2, . . . , ēn1+···+ni−1 := en1+···+ni ,

ēn1+···+ni−2+ni−1+1 := en1+···+ni−2+1,

ēn1+···+ni−2+ni−1+2 := en1+···+ni−2+2, . . . , ēn1+···+ni := en1+···+ni−1 ,

ēi = ei for the other indices,

we obtain an isomorphism between the algebras Ren1+···+ni−1
and Ren1+···+ni

. By analogy to Lemma 2,

we can demonstrate that the algebra Ren1+···+ni−1
is not isomorphic to Ren1+···+ni

if ni−1 6= ni for

some i. This completes the proof of the corollary.
Under the assumptions of Corollary 1, we also have

Corollary 2. The number of nonisomorphic algebras in NnZ equals the cardinality of the set
{n1, . . . , ns}.

Lemma 3. Let L be an algebra in NnZ with a basis {e1, . . . , en}. Then L ∈ Orbn(L0) if and
only if C(L) = C(en).

Proof. Putting ēi := en+1−i for 1 ≤ i ≤ n, we obtain C(L0) = C(en); i.e., L0
∼= Rēn = Jn.

Suppose that L satisfies the conditions of the lemma; i.e.,

L ∼= Ren =


Jn1 0 · · · 0 0
0 Jn2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 Jns

 .

Consider the family of the matrices (gλ1
)λ1∈R\{0} defined as follows:

gλ1
(ei) = λ−1

1 ei for 1 ≤ i ≤ n1, gλ1
(ei) = ei for n1 + 1 ≤ i ≤ n.
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Passing to the limit of this family as λ1 → 0, i.e., limλ1→0 g−1
λ1

[gλ1
(ei), gλ1

(ej)], we obtain

L0 −→
λ1→0

Ren =
(

Jn1 0
0 Jn−n1

)
.

Now, take the family of the matrices (gλ2
)λ2∈R\{0} defined by

gλ2
(ei) = λ−1

2 ei for n1 + 1 ≤ i ≤ n1 + n2,

gλ2
(ei) = ei for 1 ≤ i ≤ n1 and n1 + n2 + 1 ≤ i ≤ n.

Taking the limit of this family as λ2 → 0, i.e., limλ2→0 g−1
λ2

[gλ2
(ei), gλ2

(ej)], we obtain

L0 −→
λ2→0

Ren =

(
Jn1 0 0
0 Jn2 0
0 0 Jn−n1−n2

)
.

Continuing the procedure s times, we conclude that the algebra defined by the operator

Ren =


Jn1 0 · · · 0 0
0 Jn2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 Jns


belongs to Orbn(L0). Assume that L ∈ Orbn(L0). The multiplication in L is determined by that in
L0 as follows: [ei, ej ] = limλ→0 g−1

λ [gλei, gλej ]. For every λ 6= 0 we have

gλ(lin(e1, . . . , en−1)) ⊆ lin(e1, . . . , en−1).

Therefore, [ei, ej ] = 0 for 1 ≤ j ≤ n−1. Thus, L is determined by the operator Ren . Let Q−1RenQ = J
(J is the Jordan form of the operator Ren). Taking the family (gλQ)λ∈R\{0}, we may assume that
the operator Ren is in Jordan form; i.e., C(L) = C(en), which completes the proof of the lemma.

Since the orbit of a null-filiform algebra is an open set in the affine variety Nn, from [5] we conclude
that its closure is an irreducible component of Nn and the following theorem holds.

Theorem 1. An irreducible component of the variety Nn, containing a null-filiform algebra, up
to isomorphism consists of the following algebras:

Ren =


Jn1 0 · · · 0 0
0 Jn2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 Jns

 ,

where n1 + · · ·+ ns = n.

Proof ensues from Lemma 3 and Corollary 1.

Remark 1. Theorem 1 implies that the number of nonisomorphic algebras in the irreducible
component of Nn containing the algebra L0 equals p(n), where p(n) is the number of integer solutions
of the equation x1 + x2 + · · ·+ xn = n, x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. The asymptotic value of p(n), given

in [6] by the expression p(n) ≈ 1
4n
√

3
eA

√
n with A = π

√
2
3 (p(n) ≈ g(n) means that limn→∞

p(n)
g(n) = 1),

shows how small is the set of nonisomorphic Leibniz algebras in the irreducible component of Nn

containing the algebra L0; i.e., the number of orbits in this component is finite for every value of n.
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§ 2. Classification of Naturally Graded Complex Filiform Leibniz Algebras

Definition 6. A Leibniz algebra is a filiform algebra if dim Li = n− i, where 2 ≤ i ≤ n.

Lemma 4. Let L be an n-dimensional Leibniz algebra. Then the following are equivalent:
(a) C(L) = (n− 1, 1);
(b) L is a filiform Leibniz algebra;
(c) Ln−1 6= 0 and Ln = 0.

Proof. The implications (a) ⇒ (b) ⇒ (c) are obvious.
(b) ⇒ (a): Let {e1, . . . , en} be a basis for a filiform algebra L such that {e3, . . . , en} ⊆ L2,

{e4, . . . , en} ⊆ L3, . . . , {en} ⊆ Ln−1.
Consider the products

[x, e1 + αe2] = γ1e3 + αβ1e3, [e3, e1 + αe2] = γ2e4 + αβ2e4,

[e4, e1 + αe2] = γ3e5 + αβ3e5, . . . , [en, e1 + αe2] = 0,

where x is an arbitrary element of L and |γi| + |βi| 6= 0 for any i. Choose α so that γi + αβi 6= 0 for
any i. Then z = e1 + αe2 ∈ L \ [L, L] and C(z) = (n− 1, 1).

(c) ⇒ (b): Assume that Ln = 0. Then we obtain a decreasing chain of subalgebras L ⊃ L2 ⊃
L3 ⊃ · · · ⊃ Ln−1 ⊃ Ln = 0 of length n. Obviously, dim L2 = n − 1 or dim L2 = n − 2 (otherwise
Ln−1 = 0). Suppose that dim L2 = n − 1. Choose a basis {e1, . . . , en} for L that corresponds
to the filtration L ⊃ L2 ⊃ L3 ⊃ · · · ⊃ Ln−1 ⊃ Ln = 0. Suppose that dim Ls/Ls+1 = 2 (s 6=
1), i.e., {es, es+1} ∈ Ls \ Ls+1. Arguing as in the proof of Lemma 1 and appropriately changing
variables, we may assume that es = [[[e1, e1], e1], . . . , e1] + (∗) (the product is taken s times and
(∗) ∈ Ls+1) and es+1 = [[[e1, e1], e1], . . . , e1] + (∗∗) (the product is taken s times and (∗∗) ∈ Ls+1).
Then es − es+1 ∈ Ls+1. We arrive at a contradiction with the assumption that dim Ls/Ls+1 = 2.
Therefore, dim Li/Li+1 = 1 (1 ≤ i ≤ n − 1). Then the basis of the n-dimensional algebra L consists
of n − 1 elements; a contradiction to the assumption dim L2 = n − 1. Thus, dim Li = n − i, where
n = dim L and 2 ≤ i ≤ n; i.e., L is a filiform algebra. The proof of the lemma is over.

Henceforth we represent an algebra L as a pair (V, µ), with V a vector space and µ the multipli-
cation on V defining L.

Let (V, µ) be an (n + 1)-dimensional complex filiform Leibniz algebra. Define a natural grading
of (V, µ) by putting V1(µ) = V , Vi+1(µ) := µ(Vi(µ), V ), and Wi := Vi(µ)/Vi+1(µ). Then V =
W1 + W2 + · · · + Wn, where dim W1 = 2, dim Wi = 1, 2 ≤ i ≤ n. By [7, Lemma 1] we have
the embedding µ(Wi, Wj) ⊆ Wi+j . We thus obtain a grading which is said to be natural.

By arguments similar to those in [8], over a field with infinitely many elements we can find
a basis e0, e1 ∈ W1, ei ∈ Wi (i ≥ 2) for V and a bilinear mapping µ such that µ(ei, e0) = ei+1 and
µ(en, e0) = 0, 1 ≤ i ≤ n.

For convenience, we henceforth denote µ(x, y) by [x, y].
Case 1. Assume that [e0, e0] = αe2 (α 6= 0). Then e2 ∈ Z(µ) (where Z(µ) is the right annihilator

of L). Hence, e3, . . . , en ∈ Z(µ). Changing the basis to

ē1 = αe1, ē2 = αe2, ē3 = αe3, . . . , ēn = αen,

we may assume that α equals to one. Thus, [e0, e0] = e2, [ei, e0] = ei+1, and [en, e0] = 0. Suppose
that [e0, e1] = βe2 and [e1, e1] = γe2. Then

[e0, [e1, e0]] = [[e0, e1], e0]− [[e0, e0], e1] ⇒ βe3 = [e2, e1]

and
[e1, [e0, e1]] = [[e1, e0], e1]− [[e1, e1], e0] ⇒ γe3 = [e2, e1].

It follows that β = γ. Inducting on the number of basis elements and using the equality [ei, [e0, e1]] =
[[ei, e0], e1]− [[ei, e1], e0], we can easily prove that [ei, e1] = βei+1; i.e., in Case 1 we obtain the algebra

[e0, e0] = e2, [ei, e0] = ei+1, [e1, e1] = βe2, [ei, e1] = βei+1, [e0, e1] = βe2.
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Case 2. [e0, e0] = 0 & [e1, e1] = αe2 (α 6= 0). In this case e2 ∈ Z(µ). Hence, e3, . . . , en ∈ Z(µ).
Putting

ē0 = αe0, ē2 = αe2, ē3 = α2e3, . . . , ēn = αn−1en,

we may assume that α = 1; i.e., [e1, e1] = e2, [ei, e0] = ei+1. Put [e0, e1] = βe2. Then

[e0, [e1, e0]] = [[e0, e1], e0]− [[e0, e0], e1] ⇒ [[e0, e1], e0] = 0;

i.e., β[e2, e0] = βe3 = 0 ⇒ β = 0. Inducting on the number of basis elements and using the equality
[ei, [e0, e1]] = [[ei+1, e0], e1] − [[ei, e1], e0], we can easily show that [ei, e1] = ei+1; i.e., in Case 2 we
obtain the algebra [ei, e0] = ei+1, [ei, e1] = ei+1 (i ≥ 1). Changing the variables by ē0 := e0 − e1,
ē1 := e1, we obtain the algebra [ēi, ē1] = ēi+1. It is easy to see that this algebra is isomorphic to
the algebra of Case 1 for β = 1 (e′0 := e0 − e1, e′1 := e1).

Case 3. [e0, e0] = 0 & [e1, e1] = 0. Put [e0, e1] = αe2.
Subcase 1. Assume that [e0, e1] = αe2 (α 6= −1). Then e2 ∈ Z(µ). Hence, e3, . . . , en ∈ Z(µ).

Since α 6= −1, on putting ē1 = e1 + e0 we obtain ē2
1 = (α + 1)e2 and [ē1, e0] = e2; i.e., we arrive at

Case 2.
Subcase 2. [e0, e1] = −e2. Before settling this subcase, we prove the following

Lemma 5. Let (V, µ) be an (n + 1)-dimensional naturally graded filiform Leibniz algebra with
a basis {e0, e1, . . . , en} satisfying the following equalities: [e1, e1] = [e0, e0] = 0, [e0, e1] = −e2, and
[ei, e0] = ei+1. Then (V, µ) is a Lie algebra.

Proof. Inducting on the number of basis elements and using the equality [e0, [ei, e0]] = [[e0, ei], e0]
− [[e0, e0], ei], we can easily show that [e0, ei] = −[ei, e0] (1 ≤ i ≤ n). From the equality [e1, [e1, e0]] =
[[e1, e1], e0]− [[e1, e0], e1] we have [e1, e2] = −[e2, e1]. From the chain of the equalities

[e1, ei+1] = [e1, [ei, e0]] = [[e1, ei], e0]− [[e1, e0], ei] = −[[ei, e1], e0]− [e2, ei]

= [e0, [ei, e1]]− [e2, ei] = [[e0, ei], e1]− [[e0, e1], ei]− [e2, ei]

= [[e0, ei], e1] + [e2, ei]− [e2, ei] = −[[ei, e0], e1] = −[ei+1, e1]

and the induction base we obtain [e1, ei] = −[ei, e1] (1 ≤ i ≤ n). Thus, [e1, ei] = −[ei, e1] and
[e0, ei] = −[ei, e0] (0 ≤ i ≤ n). Let us prove the equality [ei, ej ] = −[ej , ei] for all i, j. We proceed by
induction on i for a fixed j. Observe that j may be assumed to be greater than 1. Using the chain of
the equalities

[ei+1, ej ] = [[ei, e0], [ej−1, e0]] = [[[ei, e0], ej−1], e0]− [[[ei, e0], e0], ej−1]

= −[e0, [[ei, e0], ej−1]] + [[e0, [ei, e0]], ej−1] = [e0, [[e0, ei], ej−1]− [[e0, [e0, ei]], ej−1]

= [[e0, [e0, ei]], ej−1]− [[e0, ej−1, [e0, ei]]− [[[e0, e0], ei], ej−1] + [[e0, ei], e0], ej−1]

= [[[e0, e0], ei], ej−1]− [[[e0, ei], e0], ej−1]− [[[e0, e0], ei], ej−1]− [[ej−1, e0], [ei, e0]]

+[[[e0, ei], e0], ej−1] = −[ej , ei+1],

we obtain anticommutativity of the basis elements of the algebra (V, µ). The proof of the lemma is
over.

Thus, the naturally graded filiform Leibniz algebras that are not Lie algebras are as follows:

[e0, e0] = e2, [ei, e0] = ei+1, [ei, e1] = βei+1, [e0, e1] = βe2.

Assume that β 6= 1. Performing the change

ē0 = (1− β)e0, ē1 = −βe0 + e1, ē2 = (1− β)2e2, . . . , ēn = (1− β)nen,

we may assume that β = 0.
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Now, consider the case in which β = 1, i.e., [e0, e0] = e2, [ei, e1] = ei+1, [e0, e1] = e2 (1 ≤ i ≤ n).
Making the change ē1 = e1 − e0, we have [e0, e0] = e2, [ei, e0] = ei+1 (1 ≤ i ≤ n).

We demonstrate that the algebras [e0, e0] = e2, [ei, e0] = ei+1 (1 ≤ i ≤ n − 1), and [e0, e0] = e2,
[ei, e0] = ei+1 (2 ≤ i ≤ n− 1) are nonisomorphic to one another.

Assume the contrary and let ϕ be an isomorphism from the first algebra into the second, i.e.,
ϕ : L1 → L2 and ϕ(ei) =

∑n
j=0 αijej .

We have

[ϕ(e0), ϕ(e0)] =

[
n∑

j=0

α0jej , α00e0

]
= α00(α00e2 + α02e3 + · · ·+ α0,n−1en).

On the other hand,

ϕ([e0, e0]) = ϕ(e2) =
n∑

j=0

α2jej .

Comparing the two equalities, we conclude that

α20 = α21 = 0, α22 = α2
00, α2,k = α00α0,k−1 for 3 ≤ k ≤ n. (2)

Consider the product

[ϕ(ei), ϕ(e0)] =

[
n∑

j=0

αijej , α00e0

]
= α00

n∑
j=0

αij [ej , e0]

= α00(αi,0e2 + αi,2e3 + · · ·+ αi,n−1en).

Also,

ϕ([ei, e0]) = ϕ(ei+1) =
n∑

j=0

αi+1,jxj

for 1 ≤ i ≤ n− 1. Comparing the two equalities, we deduce that

αi+1,0 = αi+1,1 = 0, αi+1,2 = α00αi,0,

αi+1,k = α00αi,k−1 for 3 ≤ k ≤ n, 1 ≤ i ≤ n− 1.
(3)

It follows from (3) that α22 = α00α10. Since α00 6= 0 (otherwise ϕ is degenerate), (2) implies that
α00 = α10.

We have ϕ([e0, e1]) = ϕ(0) = 0. On the other hand,

[ϕ(e0), ϕ(e1)] =

[
n∑

j=0

α0jej , α10e0

]
= α10

n∑
j=0

α0j [ej , e0]

= α10(α00e0 + α02e3 + · · ·+ α0,n−1en) = 0.

Hence, α10α00 = 0 and so α10 = 0; i.e., the first column of the matrix of the isomorphism [ϕ] is zero.
Therefore, ϕ is degenerate.

We have thus proved the following

Theorem 2. There are exactly two nonisomorhic naturally graded complex non-Lie filiform Leib-
niz algebras µn

0 and µn
1 of dimension n + 1, where

µn
0 : µn

0 (e0, e0) = e2, µn
0 (ei, e0) = ei+1 for 1 ≤ i ≤ n− 1,

µn
1 : µn

1 (e0, e0) = e2, µn
1 (ei, e0) = ei+1 for 2 ≤ i ≤ n− 1,

the other products vanish.

Remark 1. The naturally graded complex filiform Lie algebras were described in [8]. Thus, there
is a classification for naturally graded complex Leibniz algebras.
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Corollary 3. Every (n + 1)-dimensional complex non-Lie filiform Leibniz algebra is isomorphic
to one of the algebras

µ(e0, e0) = e2, µ(ei, e0) = ei+1, µ(e0, e1) = α3e3 + α4e4 + · · ·+ αn−1en−1 + θnen,

µ(ei, e1) = α3ei+2 + α4ei+3 + · · ·+ αn+1−ien for 1 ≤ i ≤ n,

µ(ei, e1) = β3ei+2 + β4ei+3 + · · ·+ βn+1−ien for 2 ≤ i ≤ n− 1.

µ(e0, e0) = e2, µ(ei, e0) = ei+1, µ(e0, e1) = β3e3 + β4e4 + · · ·+ βnen, µ(e1, e1) = γen,

the other products vanish.

Proof. By immediate verification we can convince ourselves that the above-written algebras
are Leibniz algebras. By Theorem 2, every (n + 1)-dimensional complex non-Lie filiform Leibniz
algebra µ is isomorphic to the algebra µn

0 + β, where β(e0, e0) = 0, β(ei, e0) = 0 for 1 ≤ i ≤ n − 1,
β(ei, ej) ∈ lin(ei+j+1, . . . , en) for i 6= 0, and β(e0, ej) ∈ lin(ej+2, . . . , en) for 1 ≤ j ≤ n − 2, or to
the algebra µn

1 + β, where β(e0, e0) = 0, β(ei, e0) = 0 for 2 ≤ i ≤ n− 1, β(ei, ej) ∈ lin(ei+j+1, . . . , en)
for i, j 6= 0, and β(e0, ej) ∈ lin(ej+2, . . . , en) for 1 ≤ j ≤ n− 2.

Case 1. Assume that µ ∼= µn
0 + β. Then µ(e0, e0) = µn

0 (e0, e0) = e2 and µ(ei, e0) = µn
0 (ei, e0) =

ei+1 for 1 ≤ i ≤ n− 1; whence e2, e3, . . . , en ∈ Z(µ), so that µ(ei, ej) = 0 for 2 ≤ j ≤ n, 0 ≤ i ≤ n.
Put µ(e1, e1) = α3e3 + α4e4 + · · ·+ αnen. Consider

µ(ei, µ(e0, e1)) = µ(µ(ei, e0), e1)− µ(µ(ei, e1), e0).

Since µ(e0, e1) ∈ Z(µ), we have µ(ei, µ(e0, e1)) = 0 and so µ(µ(ei, e0), e1) = µ(µ(ei, e1), e0) for all
i ≥ 1. Thus, µ(ei, e1) = α3ei+2 + α4ei+3 + · · ·+ αn+1−ien for 1 ≤ i ≤ n.

Let µ(e0, e1) = θ3e3 + θ4e4 + · · ·+ θnen. Consider

µ(e0, µ(e1, e0)) = µ(µ(e0, e1), e0)− µ(µ(e0, e0), e1).

We have
µ(µ(e0, e1), e0) = µ(µ(e0, e0), e1).

However, µ(e0, e0) = e2 and µ(ei, e0) = ei+1. Therefore,

θ3e4 + θ4e5 + · · ·+ θn−1en = α3e4 + α4e5 + · · ·+ αn−1en;

whence
µ(e0, e1) = α3e3 + α4e4 + · · ·+ αn−1en−1 + θnen.

Thus, in Case 1 we obtain the following class:

µ(e0, e0) = e2, µ(ei, e0) = ei+1, µ(e0, e1) = α3e3 + α4e4 + · · ·+ αn−1en−1 + θnen,

µ(ei, e1) = α3ei+2 + α4ei+3 + · · ·+ αn+1−ien for 1 ≤ i ≤ n.

Case 2. µ ∼= µn
1 + β. In this case µ(e0, e0) = µn

1 (e0, e0) = e2 and µ(ei, e0) = µn
1 (ei, e0) = ei+1 for

2 ≤ i ≤ n− 1; whence e2, e3, . . . , en ∈ Z(µ) and so µ(ei, ej) = 0 for 2 ≤ j ≤ n, 0 ≤ i ≤ n.
Let β(e1, e0) = α3e3 +α4e4 + · · ·+αnen. Making the change ē1 := e1−α3e2−α4e3−· · ·−αnen−1,

we obtain

µ(ē1, e0) = µn
1 (ē1, e0) + β(ē1, e0) = µn

1 (−α3e2 − α4e3 − · · · − αnen−1, e0) + β(e1, e0) = 0.

We may thus assume that µ(e1, e0) = 0.
Let µ(e0, e1) = β3e3 + β4e4 + · · ·+ βnen. Consider the product

µ(e0, µ(e1, e0)) = µ(µ(e0, e1), e0)− µ(µ(e0, e0), e1).
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Since µ(e1, e0) ∈ Z(µ), we have µ(µ(e0, e1), e0) = µ(µ(e0, e0), e1). Therefore, µ(µ(e0, e1), e0) =
µ(e2, e1); i.e., µ(e2, e1) = β3e4 + β4e5 + · · ·+ βn−1en.

Consider the product

µ(e1, µ(e0, e1)) = µ(µ(e1, e0), e1)− µ(µ(e1, e1), e0).

In view of µ(e0, e1) ∈ Z(µ) and µ(e1, e0) = 0, we have µ(µ(e1, e1), e0) = 0. However, e0 left annihilates
only en. Therefore, µ(e1, e1) = γen.

Look at the product

µ(ei, µ(e0, e1)) = µ(µ(ei, e0), e1)− µ(µ(ei, e1), e0)

for 2 ≤ i ≤ n − 1. Since µ(e0, e1) ∈ Z(µ), we have µ(µ(ei, e0), e1 = µ(µ(ei, e1), e0). Thereby
µ(ei+1, e1) = µ(µ(ei, e1), e0); i.e., µ(ei, e1) = β3ei+2 + β4ei+3 + · · ·+ βn+1−ien for 2 ≤ i ≤ n− 1.

Thus, in Case 2 we obtain the following class:

µ(e0, e0) = e2, µ(ei, e0) = ei+1, µ(e0, e1) = β3e3 + β4e4 + · · ·+ βnen = γen.

µ(ei, e1) = β3ei+2 + β4ei+3 + · · ·+ βn+1−ien for 2 ≤ i ≤ n.

This completes the proof of the corollary.

Remark 2. The classes of algebras in Corollary 3 are disjoint, but the question of isomorphisms
between these classes is open.
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