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LEIBNIZ ALGEBRAS WITH ASSOCIATED LIE ALGEBRA sl2+̇R

(dimR = 2).

L.M. CAMACHO, S. GÓMEZ-VIDAL, B.A. OMIROV

Abstract. From the theory of Lie algebras it is known that every finite di-

mensional Lie algebra is decomposed into a semidirect sum of a semisimple
subalgebra and solvable radical. Moreover, according to Mal’cev, the study of

solvable Lie algebras is reduced to the study of nilpotent algebras.

For the finite dimensional Leibniz algebras the analogues of the mentioned
results are not proved yet. In order to get some idea how to establish such

results, we examine Leibniz algebras whose associated Lie algebra is a semidi-

rect sum of a semisimple Lie algebra and the maximal solvable ideal. In this
paper the class of complex Leibniz algebras for which the quotient algebra

by the ideal I is isomorphic to the semidirect sum of the algebra sl2 and a

two-dimensional solvable ideal R is described.

Mathematics Subject Classification 2010: 17A32, 17B30.
Key Words and Phrases: Lie algebra, Leibniz algebra, semisimple algebra,

solvability.

1. Introduction

The notion of Leibniz algebra was introduced in 1993 by J.-L. Loday [7] as a
generalization of Lie algebras. In the last 20 years the theory of Leibniz algebras
has been actively studied and many results of the theory of Lie algebras have been
extended to Leibniz algebras.

According to Mal’cev’s work [8] the study of finite dimensional Lie algebras is
reduced to nilpotent ones. For later works on the description of finite-dimensional
nilpotent Lie algebras see [5], [6], [11].

The nilpotency of a finite-dimensional Lie algebra is characterized by Engel’s
Theorem. In [6] the local nilpotency of a Lie algebra over a field of zero characteristic
is proved satisfying the Engel’s n-condition. Further, E.I. Zelmanov [11] generalized
this result to global nilpotency of a Lie algebra with Engel’s n-condition. In [9] the
global nilpotency for the case of a Leibniz algebra with Engel’s n-condition was
extended.

An algebra L over a field F is called Leibniz algebra if for any elements x, y, z ∈ L
the Leibniz identity holds:

[x, [y, z]] = [[x, y], z]− [[x, z], y]

where [−,−] is multiplication of L.
Let L be a Leibniz algebra and I = ideal < [x, x] | x ∈ L > be the ideal of L

generated by all squares. Then I is the minimal ideal with respect to the property

Partially supported by the PAICYT, FQM143 of the Junta de Andalućıa (Spain). The last
named author was partially supported by IMU/CDC-program.
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2 L.M. CAMACHO, S. GÓMEZ-VIDAL, B.A. OMIROV

that L/I is a Lie algebra. The natural epimorphism ϕ : L → L/I determines the
corresponding Lie algebra L/I of the Leibniz algebra L.

According to [5], a 3-dimensional simple Lie algebra L is said to be split if L
contains an element h such that ad(h) has a non-zero characteristic root ρ belonging
to the base field. Such algebra has a basis {e, f, h} with the multiplication table

[e, h] = 2e, [f, h] = −2f, [e, f ] = h,
[h, e] = −2e, [h, f ] = 2f, [f, e] = −h.

This simple 3-dimensional Lie algebra is denoted by sl2 and the basis {e, f, h} is
called canonical basis. Note that any 3-dimensional simple Lie algebra is isomorphic
to sl2.

The analogue of Levi-Mal’cev’s Theorem for Leibniz algebras is not proved yet.
We only know the result of [10], where the Leibniz algebras whose quotient algebra
by an ideal I are isomorphic to the simple Lie algebra sl2 are classified.

In fact, Dzhumadil’daev proposed the following construction of Leibniz algebras:
Let G be a simple Lie algebra and M be an irreducible skew-symmetric G-module

(i.e. [x,m] = 0 for all x ∈ G,m ∈M). Then the vector space Q = G+M equipped
with the multiplication

[x+m, y + n] = [x, y] + [m, y],

where m,n ∈ M,x, y ∈ G is a Leibniz algebra. Moreover, the corresponding Lie
algebra for this Leibniz algebra is a simple algebra.

The notion of simple Leibniz algebras was introduced in [1], [2].
A Leibniz algebra L is said to be simple if the only ideals of L are {0}, I, L and

[L,L] 6= I. Obviously, when a Leibniz algebra is Lie, the ideal I is equal to zero.
Therefore, this definition agrees with the definition of a simple Lie algebra.

Note that the above mentioned Leibniz algebra is a simple algebra. It is also easy
to see that the corresponding Lie algebra is simple for the simple Leibniz algebra.

In this paper, we study the class of complex Leibniz algebras, for which its Lie
algebra is isomorphic to the semidirect sum of the algebra sl2 and a two-dimensional
solvable ideal R.

The representation of sl2 is determined by the images E,F,H of the base ele-
ments e, f, h and we have

[E,H] = 2E, [F,H] = −2F, [E,F ] = H,

[H,E] = −2E, [H,F ] = 2F, [F,E] = −H.
Conversely, any three linear transformations E,F,H satisfying these relations

determine a representation of sl2 and hence a sl2-module.
We suppose that a base field is the field of the complex numbers. Then one has

the following

Theorem 1.1. [5] For each integer m = 0, 1, 2, . . . there exists one and, in the
sense of isomorphism, only one irreducible sl2-module M of dimension m+ 1. The
module M has a basis {x0, x1, ..., xm} such that the representing transformations
E,F and H corresponding to the canonical basis {e, f, h} are given by:

H(xk) = (m− 2k)xk, 0 ≤ k ≤ m,
F (xm) = 0, F (xk) = xk+1, 0 ≤ k ≤ m− 1,
E(x0) = 0, E(xk) = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m.
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In [10], the authors described the complex finite dimensional Leibniz algebras
whose L/I is isomorphic to sl2 using Theorem 1.1.

In this work, we consider the Leibniz algebra L for which its corresponding
Lie algebra is a semidirect sum of sl2 and a two-dimensional solvable ideal R. In
addition, we assume that I is a right irreducible module over sl2.

By verifying antisymmetric and Jacobi identities, we derive that a semidirect
sum of sl2 and a two-dimensional solvable Lie algebra is the direct sum of the
algebras.

Let {x0, x1, . . . , xm} be a basis of I and {e, f, h} a basis of sl2. Thus, if I is
a right irreducible module over sl2, then according to Theorem 1.1, the products
[I, sl2] are defined as follows:

[xk, h] = (m− 2k)xk 0 ≤ k ≤ m,
[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,
[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

where the omitted products are equal to zero.

2. On complex Leibniz algebras whose quotient Lie algebras are
isomorphic to sl2+̇R.

Let L be a Leibniz algebra such that L/I ' sl2 ⊕ R, where R is a solvable Lie
algebra and {e, h, f}, {x0, x1, . . . , xm}, {y1, y2, . . . , yn} are the bases of sl2, I, R
respectively.

Let {e, h, f, x0, x1, . . . , xm, y1, y2, . . . , yn} be a basis of the algebra L such that

ϕ(e) = e, ϕ(h) = h, ϕ(f) = f, ϕ(yi) = yi, 1 ≤ i ≤ n.
Then we have:

[e, h] = 2e+
m∑
j=0

ajehxj , [h, f ] = 2f +
m∑
j=0

ajhfxj , [e, f ] = h+
m∑
j=0

ajefxj ,

[h, e] = −2e+
m∑
j=0

ajhexj [f, h] = −2f +
m∑
j=0

ajfhxj , [f, e] = −h+
m∑
j=0

ajfexj ,

[e, yi] =
m∑
j=0

αijxj [f, yi] =
m∑
j=0

βijxj , [h, yi] =
m∑
j=0

γijxj ,

[xk, h] = (m− 2k)xk, 0 ≤ k ≤ m,
[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,
[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m.

where 1 ≤ i ≤ n.
It is easy to check that similarly as in paper [10] one can get

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e [f, h] = −2f, [f, e] = −h,
[e, e] = 0 [f, f ] = 0, [h, h] = 0.

Let us denote the following vector spaces:

sl−1
2 =< e, h, f >, R−1 =< y1, y2, . . . yn > .

The following result holds.

Lemma 2.1. Let L be a Leibniz algebra whose quotient L/I ∼= sl2⊕R, where R is
a solvable ideal and I is a right irreducible module over sl2 with dim(R) 6= 3. Then
[sl−1

2 , R−1] = 0.
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Proof. It is known that it is sufficient to prove the equality for the basic elements
of sl−1

2 and R−1. Consider the Leibniz identity:

[e, [e, yi]] = [[e, e], yi]− [[e, yi], e] = −[[e, yi], e] =

= −
m∑
j=0

αij [xj , e] =
m∑
j=1

(−mj + j(j − 1))αijxj−1, 1 ≤ i ≤ n.

On the other hand, we have that [e, [e, yi]] = [e,
m∑
j=0

αijxj ] = 0 for 1 ≤ i ≤ n.

Comparing the coefficients at the basic elements we obtain αij = 0 for 1 ≤ j ≤ m,
thus [e, yi] = αi,0x0 with 1 ≤ i ≤ n.

Consider the chain of equalities

0 = [e,
m∑
j=0

βijxj ] = [e, [f, yi]] = [[e, f ], yi]− [[e, yi], f ] =

= [h, yi]− αi,0[x0, f ] = [h, yi]− αi,0x1.

Then we have that [h, yi] = αi,0x1 with 1 ≤ i ≤ n.
From the equalities

0 = [e, [h, yi]] = [[e, h], yi]− [[e, yi], h] = 2[e, yi]− αi,0[x0, h] =

= 2αi,0x0 −mαi,0x0 = αi,0(2−m)x0,

it follows that αi,0 = 0 for 1 ≤ i ≤ n. Taking into account that m 6= 2 we get
[e, yi] = [h, yi] = 0 with 1 ≤ i ≤ n.

From the equalities

0 = [f, [e, yi]] = [[f, e], yi]− [[f, yi], e] = [h, yi]− [[f, yi], e] = −[[f, yi], e] =

= −
m∑
j=0

βij [xj , e] = −
m∑
j=0

(−mj + j(j − 1))βijxj−1,

we derive βi,j = 0 for 1 ≤ j ≤ m. Consequence, [f, yi] = βi,0x0, for all 1 ≤ i ≤ n.
Similarly, from

0 = [f, [f, yi]] = [[f, f ], yi]− [[f, yi], f ] = [[f, yi], f ] =

= βi,0[x0, f ] = βi,0x1,

we obtain [f, yi] = 0 for all 1 ≤ i ≤ n.
Thus, we obtain [e, yi] = [f, yi] = [h, yi] = 0 with 1 ≤ i ≤ n, i.e [sl−1

2 , R−1] =
0. �

3. On complex Leibniz algebras whose quotient Lie algebra is
isomorphic to sl2+̇R, dimR = 2.

Let R be a two-dimensional solvable Lie algebra, then from the classification
of two-dimensional Lie algebras (see [5]) we know that in R there exists a basis
{y1, y2} with the following table of multiplication

[y1, y2] = y1, [y2, y1] = −y1.
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In the case when dimR 6= 3 and I a right irreducible module over sl2, summa-
rizing the results of Lemma 2.1 we get the following table of multiplication:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e [f, h] = −2f, [f, e] = −h,
[xk, h] = (m− 2k)xk 0 ≤ k ≤ m,
[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,
[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[yi, e] =
m∑
j=0

ajiexj , 1 ≤ i ≤ 2,

[yi, f ] =
m∑
j=0

ajifxj , 1 ≤ i ≤ 2,

[yi, h] =
m∑
j=0

ajihxj , 1 ≤ i ≤ 2,

[xk, yi] =
m∑
j=0

akijxj , 0 ≤ k ≤ m, 1 ≤ i ≤ 2,

[y1, y2] = y1 +
m∑
j=0

aj12xj , [y2, y1] = −y1,

[y1, y1] =
m∑
j=0

aj1xj , [y2, y2] =
m∑
j=0

aj2xj ,

(1)

where {e, h, f, x0, x1, . . . , xm, y1, y2} is a basis of L.
Let us present the following theorem which describes the Leibniz algebras with

condition L/I ∼= sl2 ⊕R, where dimR 6= 3, n = 2 and I a right irreducible module
over sl2.

Theorem 3.1. Let L be a Leibniz algebra whose quotient L/I ∼= sl2⊕R, where R is
a two-dimensional solvable ideal and I a right irreducible module over sl2 (dimR 6=
3). Then there exists a basis {e, h, f, x0, x1, . . . , xm, y1, y2} of the algebra L such
that the table of multiplication in L has the following form:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e [f, h] = −2f, [f, e] = −h,
[xk, h] = (m− 2k)xk 0 ≤ k ≤ m,
[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,
[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,
[y1, y2] = y1 [y2, y1] = −y1,
[xk, y2] = axk, 0 ≤ k ≤ m, a ∈ F

where the omitted products are equal to zero.

Proof. Let L be an algebra satisfying the conditions of the theorem, then we get
the table of multiplication (1). Further we shall study the product [I,R−1].

We consider the chain of equalities

0 = [xi, [h, y1]] = [[xi, h], y1]− [[xi, y1], h] = (m− 2i)[xi, y1]−
m∑
k=0

ai1k[xk, h] =

= (m− 2i)
m∑
k=0

ai1kxk −
m∑
k=0

ai1k(m− 2k)xk =
m∑
k=0

ai1k(m− 2i− (m− 2k))xk =

=
m∑
k=0

2ai1k(k − i)xk,

from which we have ai1k = 0, with 0 ≤ i ≤ m and i 6= k. Thus, [xi, y1] = ai1ixi =
a1ixi with 0 ≤ i ≤ m.
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Similarly,

0 = [xi, [h, y2]] = [[xi, h], y2]− [[xi, y2], h] = (m− 2i)[xi, y2]−
m∑
k=0

ai2k[xi, h] =

= (m− 2i)
m∑
k=0

ai2kxi −
m∑
k=0

ai2k(m− 2k)xk =
m∑
k=0

ai2k(m− 2i− (m− 2k))xk =

=
m∑
k=0

2ai2k(k − i)xk,

we get [xi, y2] = ai2ixi = a2ixi with 0 ≤ i ≤ m.
From the identity [xi, [y1, y2]] = [[xi, y1], y2]− [[xi, y2], y1], we deduce

[xi, y1 +
m∑
k=0

ak12xk] = a1i[xi, y2]− a2i[xi, y1] ⇒

⇒ [xi, y1] = a1ia2ixi − a2ia1ixi = 0,

from which we have [xi, y1] = 0 with 0 ≤ i ≤ m, i.e. [I, y1] = 0.
We consider the identity [xi, [y2, e]] = [[xi, y2], e]− [[xi, e], y2] for 0 ≤ i ≤ m.
Then

0 = a2i[xi, e]− (−mi+ i(i− 1))[xi−1, y2] =

= a2i(−mi+ i(i− 1))xi−1 − a2,i−1(−mi+ i(i− 1))xi−1 =

= −(−mi+ i(i− 1))(a2i − a2,i−1)xi−1 = 0,

which leads to a2i = a2,i−1 = a, i.e. [xi, y2] = axi with 0 ≤ i ≤ m.

Now we shall study the products [R−1, R−1] and [R−1, sl−1
2 ].

Verifying the following

0 = [y1,
m∑
j=0

aj1fxj ] = [y1, [y1, f ]] = [[y1, y1], f ]− [[y1, f ], y1] = [[y1, y1], f ] =

=
m∑
j=0

aj1[xj , f ] =
m−1∑
j=0

aj1xj+1,

we obtain aj1 = 0 for 0 ≤ j ≤ m− 1, i.e. [y1, y1] = a1
mxm.

Consider the equalities

0 = [y1, [y1, h]] = [[y1, y1], h]− [[y1, h], y1] = [[y1, y1], h] = am1 [xm, h] = −mam1 xm,
which deduce am1 = 0, hence [y1, y1] = 0.

From the following identities

0 = [y2, [y1, h]] = [[y2, y1], h]− [[y2, h], y1] = −[y1, h],

0 = [y2, [y1, f ]] = [[y2, y1], f ]− [[y2, f ], y1] = −[y1, f ],

0 = [y2, [y1, e]] = [[y2, y1], e]− [[y2, e], y1] = −[y1, e],

we obtain [y1, h] = [y1, f ] = [y1, e] = 0.
Using the above obtained equalities and the following

0 = [y1, [y2, f ]] = [[y1, y2], f ]− [[y1, f ], y2] = [[y1, y2], f ] =

= [y1 +
m∑
k=0

ak12xk, f ] =
m∑
k=0

ak12[xk, f ] =
m−1∑
k=0

ak12xk+1,

we get ai12 = 0 with 0 ≤ i ≤ m− 1.
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Now from

0 = [y1, [y2, h]] = [[y1, y2], h]− [[y1, h], y2] = [[y1, y2], h] =

= [y1 + am12xm, h] = −mam12xm,

we get am12 = 0, consequently am12 = 0 for all 0 ≤ i ≤ m, i.e. [y1, y2] = y1.
Thus, we obtain the following table of multiplication:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,
[h, e] = −2e [f, h] = −2f, [f, e] = −h,
[xk, h] = (m− 2k)xk 0 ≤ k ≤ m,
[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,
[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[y2, e] =
m∑
j=0

aj2exj , [y2, f ] =
m∑
j=0

aj2fxj , [y2, h] =
m∑
j=0

aj2hxj ,

[y1, y2] = y1, [y2, y1] = −y1, [y2, y2] =
m∑
j=0

aj2xj ,

[xk, y2] = axk, 0 ≤ k ≤ m.
In order to complete the proof of the theorem we need to prove that [y2, y2] = 0,

and [R−1, sl−1
2 ] = 0.

Consider two cases:

Case 1.
Let a 6= 0, then taking the change of the basic element as follows

y2
′ = y2 −

m∑
j=0

aj2
a
xj ,

we get

[y2
′, y2

′] =

[
y2 −

m∑
j=0

aj2
a xj , y2 −

m∑
j=0

aj2
a xj

]
=

= [y2, y2]−

[
m∑
j=0

aj2
a xj , y2

]
=

m∑
j=0

aj2xj −
m∑
j=0

aj2xj = 0,

which leads to [y2, y2] = 0.
Consider

0 = [y2, [y2, h]] = [[y2, y2], h]− [[y2, h], y2] = −[[y2, h], y2] =

= −
m∑
j=0

aj2h[xj , y2] = −
m∑
j=0

aj2haxj ,

which gives aj2h = 0 for 0 ≤ j ≤ m.
Similarly from the equalities

0 = [y2, [y2, f ]] = [[y2, y2], f ]− [[y2, f ], y2] = −
m∑
j=0

aj2f [xj , y2] = −
m∑
j=0

aj2faxj ,

0 = [y2, [y2, e]] = [[y2, y2], e]− [[y2, e], y2] = −
m∑
j=0

aj2e[xj , y2] = −
m∑
j=0

aj2eaxj ,

we get aj2f = aj2e = 0 for 0 ≤ j ≤ m. Hence, [R−1, sl−1
2 ] = 0.

Thus, we proved the theorem for a 6= 0.
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Case 2.
Let a = 0, then we consider the identity

[y2, [y2, f ]] = [[y2, y2], f ]− [[y2, f ], y2]

and we derive

0 =
m∑
j=0

ai2[xi, f ] =
m−1∑
j=0

ai2xi+1 ⇒ ai2 = 0, 0 ≤ i ≤ m− 1, i.e. [y2, y2] = am2 xm.

From the chain of the equalities

0 = [y2, [y2, h]] = [[y2, y2], h]− [[y2, h], y2] = am2 [xm, h] = −mam2 xm,
we obtain am2 = 0, that is [y2, y2] = 0.

Let us take the change of the basic element in the form:

y2
′ = y2 −

m∑
j=1

aj−1
2e

−mj + j(j − 1)
xj

Then

[y2
′, e] = [y2, e]−

m∑
j=1

aj−1
2e

−mj+j(j−1) [xj , e] =

= [y2, e]−
m∑
j=1

aj−1
2e

−mj+j(j−1) (−mj + j(j − 1))xj−1 =

=
m∑
j=0

aj2exj −
m∑
j=1

aj−1
2e xj−1 =

=
m∑
j=0

aj2exj −
m−1∑
j=0

aj2exj = am2exm.

Thus, we can assume that

[y2, e] = am2exm, [y2, h] =

m∑
j=0

aj2hxj , [y2, f ] =

m∑
j=0

aj2fxj .

We have

[y2, [e, h]] = [[y2, e], h]− [[y2, h], e] = am2e[xm, h]−
m∑
j=0

aj2h[xj , e] =

= −mam2exm −
m∑
j=0

aj2h(−mj + j(j − 1))xj−1.

On the other hand [y2, [e, h]] = 2[y2, e] = 2am2exm.

Comparing the coefficients at the basic elements, we get am2e = 0 and aj2h = 0

where 1 ≤ j ≤ m. Hence, [y2, e] = 0, [y2, f ] =
m∑
j=0

aj2fxj , [y2, h] = a0
2hx0.

Consider

[y2, [e, f ]] = [[y2, e], f ]− [[y2, f ], e] = −
m∑
j=0

aj2f [xj , e] =

= −
m∑
j=0

aj2f (mj + j(j − 1))xj−1 =

= ma1
2fx0 −

m∑
j=2

aj2f (mj + j(j − 1))xj−1.

On the other hand
[y2, [e, f ]] = [y2, h] = a0

2hx0.
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Comparing the coefficients, we obtain a0
2h = ma1

2f and aj2f = 0 for 2 ≤ j ≤ m.

Then we have the product [y2, f ] = a0
2fx0 + a1

2fx1.
Now we consider the equalities

−2[y2, f ] = [y2, [f, h]] = [[y2, f ], h]− [[y2, h], f ] = [a0
2fx0 + a1

2fx1, h]−ma1
2f [x0, f ],

and we have

−2a0
2fx0 − 2a1

2fx1 = ma0
2fx0 + a1

2f (m− 2)x1 −ma1
2fx1 ⇒ a0

2f = 0.

Therefore, [y2, f ] = a1
2fx1 and [y2, h] = ma1

2fx0.

Taking the change y2
′ = y2 − a1

2fx0, we obtain

[y2
′, f ] = [y2, f ]− a1

2f [x0, f ] = a1
2fx1 − a1

2fx1 = 0,

[y2
′, h] = [y2, h]− a1

2f [x0, h] = ma1
2fx0 −ma1

2fx0 = 0.

Thus, we have [R−1, sl−1
2 ] = 0 which completes the proof of the theorem. �

In the case when the dimension of the ideal I is equal to three, we have the
family of Leibniz algebras with the following table of multiplication:

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,

[h, e] = −2e [f, h] = −2f, [f, e] = −h,
[x1, e] = −2x0 [x2, e] = −2x1, [x0, f ] = x1,

[x1, f ] = x2 [x0, h] = 2x0, [x2, h] = −2x2,

[e, y1] = λx0 [f, y1] = 1
2λx2, [h, y1] = λx1,

[e, y2] = µx0 [f, y2] = 1
2µx2, [h, y2] = µx1,

[y1, y2] = y1 [y2, y1] = −y1, [y2, y2] = −ab2 x2,

[x0, y2] = ax0 [x1, y2] = ax1, [x2, y2] = ax2,

[y2, e] = bx1 [y2, h] = bx2,

Verifying the Leibniz identity of the above family of algebras, using the software
Mathematica [3], we get the condition λ(1− a) = 0.

Taking the change in the form y2
′ = y2 + b

2x2 we obtain

[y2
′, e] = [y2 + b

2x2, e] = [y2, e] + b
2 [x2, e] = bx1 − bx1 = 0,

[y2
′, h] = [y2 + b

2x2, h] = [y2, h] + b
2 [x2, h] = bx2 − bx2 = 0,

[y2
′, y2

′] = [y2 + b
2x2, y2 + b

2x2] = [y2, y2] + b
2 [x2, y2] = −ab2 bx2 + ab

2 bx2 = 0.

Thus, we can assume that [y2
′e] = [y2

′, h] = [y2
′, y2

′] = 0 and we have the family
of algebras L(λ, µ, a).

[e, h] = 2e, [h, f ] = 2f, [e, f ] = h,

[h, e] = −2e [f, h] = −2f, [f, e] = −h,
[x1, e] = −2x0 [x2, e] = −2x1, [x0, f ] = x1,

[x1, f ] = x2 [x0, h] = 2x0, [x2, h] = −2x2,

[e, y1] = λx0 [f, y1] = 1
2λx2, [h, y1] = λx1,

[e, y2] = µx0 [f, y2] = 1
2µx2, [h, y2] = µx1,

[x0, y2] = ax0 [x1, y2] = ax1, [x2, y2] = ax2,

[y1, y2] = y1 [y2, y1] = −y1,
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with the condition λ(1− a) = 0.

Theorem 3.2. Let L be a Leibniz algebra such that L/I ∼= sl2 ⊕ R, where R is a
two-dimensional solvable ideal and I is a three-dimensional right irreducible module
over sl2. Then L is isomorphic to one of the following pairwise non isomorphic
algebras :

L(1, 0, 1); L(0, 1, a); L(0, 0, a), with a ∈ F.

Proof. Similarly we derive λ(1− a) = 0.
Let λ 6= 0, then a = 1. By change y1

′ = 1
λy1, y2

′ = −µλy1 + y2 we deduce

[e, y1
′] = [e, 1

λy1] = 1
λλx0 = x0,

[f, y1
′] = [e, 1

λy1] = 1
2λλx2 = 1

2x2,

[h, y1
′] = [h, 1

λy1] = 1
λλx1 = x1,

[e, y2
′] = [e,−µλy1 + y2] = −µλ [e, y1] + [e, y2] = −µλλx0 + µx0 = 0,

[f, y2
′] = [f,−µλy1 + y2] = −µλ [f, y1] + [f, y2] = − µ

2λλx2 + 1
2µx2 = 0,

[h, y2
′] = [h,−µλy1 + y2] = −µλ [h, y1] + [h, y2] = −µλλx1 + µx1 = 0.

Thus, we can assume that λ = 1 and µ = 0. Hence, we get the algebra

L(1, 0, 1)

If λ = 0, then when µ 6= 0 by scale of basis of I, we can suppose that µ = 1, i.e.
we obtain the algebra L(0, 1, a).

If λ = 0, then when µ = 0, we get the algebra L(0, 0, a).
By using the software Mathematica [4], we obtain that these algebras are non

isomorphic. The theorem is proved. �

Analyzing the above obtained results we can formulate
Conjecture: Any Leibniz algebra is decomposed into a semidirect sum of its

corresponding Lie algebra and the ideal I.
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