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SOME REMARKS ON LEIBNIZ ALGEBRAS WHOSE SEMISIMPLE PART

RELATED WITH sl2.

L.M. CAMACHO, S. GÓMEZ-VIDAL, B.A. OMIROV AND I.A. KARIMJANOV

Abstract. In this paper we identify the structure of complex finite-dimensional Leibniz algebras
with associated Lie algebras sl1

2
⊕sl2

2
⊕· · ·⊕sls

2
⊕R, where R is a solvable radical. The classifications

of such Leibniz algebras in the cases dimR = 2, 3 and dimI 6= 3 are obtained. Moreover, we classify
Leibniz algebras with L/I ∼= sl1

2
⊕ sl2

2
and some conditions on ideal I.

Mathematics Subject Classification 2010: 17A32, 17A60, 17B10, 17B20.
Key Words and Phrases: Leibniz algebra, simple algebra sl2, direct sum of algebras, right

module, irreducible module.

1. Introduction.

The notion of Leibniz algebras has been first introduced by Loday in [8], [9] as a non-antisymmetric
generalization of Lie algebras. During the last 20 years the theory of Leibniz algebras has been actively
studied and many results of the theory of Lie algebras have been extended to Leibniz algebras. A lot
of works have so far been devoted to the description of finite-dimensional nilpotent Leibniz algebras
[2], [3]. However, just a few works are related to the semisimple part of Leibniz algebras [6], [5], [11].

We know from the classical theory of finite-dimensional Lie algebras, that an arbitrary Lie algebra
is decomposed into a semidirect sum of the solvable radical and its semisimple subalgebra (Levi’s
Theorem [7]). According to the Cartan-Killing theory, a semisimple Lie algebra can be represented as
a direct sum of simple ideals, which are completely classified [7].

Recently, Barnes has proved an analogue of Levi’s Theorem for the case of Leibniz algebras [5].
Namely, a Leibniz algebra is decomposed into a semidirect sum of its solvable radical and a semisimple
Lie algebra.

The inherent properties of non-Lie Leibniz algebras imply that the subspace spanned by squares of
elements of the algebra is a non-trivial ideal (further denoted by I). Moreover, the ideal I is abelian
and hence, it belongs to the solvable radical. Although Barnes’s result reduces the semisimple part of
a Leibniz algebra to the Lie algebras case, we still need to study the relationship between the products
of a semisimple Lie algebra and the ideal I (see [10] and [11]). In order to analyze the general case, we
study the case when semisimple Leibniz part is a direct sum of sl2 algebras since the exact description
of the irreducible modules is established only for the algebra sl2.

The present work aims at describing the structure of Leibniz algebras with the associated Lie
algebras sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕ R and with I a right irreducible slk2 -module for some k in order to
classify the Leibniz algebras with semisimple part sl12 ⊕ sl22 and some conditions on the ideal I.

Content is organized into different sections as follows. In Section 2, we give some necessary notions
and preliminary results about Leibniz algebras with associated Lie algebra sl2+̇R. Section 3, is devoted
to the study of the structure of the Leibniz algebras whose semisimple part is a direct sum of sl2
algebras and it is under some conditions to the ideal I. In Section 4, we classify Leibniz algebras whose
semisimple part is a direct sum of sl12, sl

2
2 and I is decomposed into a direct sum of two irreducible

modules I1,1, I1,2 over sl12 such that dimI1,1 = dimI1,2.
Throughout the work, the vector spaces and the algebras are finite-dimensional over the field of

complex numbers. Moreover, in the table of multiplication of an algebra the omitted products are
assumed to be zero. We shall use the following symbols: +, ⊕ and +̇ for notations of the direct sum
of the vector spaces, the direct and semidirect sums of algebras, respectively.

2. Preliminaries

In this section we give some necessary definitions and preliminary results.

This work has been funded by Mathematics Institute, Research Plan of Sevilla University and Grants (RGA) No:11-
018 RG/Math/AS

−
I–UNESCO FR: 3240262715 and IMU/CDC-program.
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2 L.M. CAMACHO, S. GÓMEZ-VIDAL, B.A. OMIROV AND I.A. KARIMJANOV

Definition 2.1. [8] An algebra (L, [·, ·]) over a field F is called a Leibniz algebra if for any x, y, z ∈ L
the so-called Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y]

holds true.

Let L be a Leibniz algebra and let I = ideal < [x, x] | x ∈ L > be the ideal of L generated by
all squares. The natural epimorphism ϕ : L → L/I determines the associated Lie algebra L/I of the
Leibniz algebra L. It is clear that ideal I is the minimal ideal with respect to the property that the
quotient algebra by this ideal is a Lie algebra.

In [5] we note that the ideal I coincides with the space spanned by squares of elements of an algebra.
According to [7] there exists a unique (up to isomorphism) simple 3-dimensional Lie algebra with

the following table of multiplication:

sl2 : [e, h] = −[h, e] = 2e, [h, f ] = −[f, h] = 2f, [e, f ] = −[f, e] = h,

The basis {e, f, h} is called the canonical basis.
[10] describes the Leibniz algebras for which the quotient Lie algebras are isomorphic to sl2. Let us

present a Leibniz algebra L with the table of multiplication in a basis {e, f, h, xj
0, . . . , x

j
tj
, 1 ≤ j ≤ p}

and the quotient algebra L/I is sl2:

[e, h] = −[h, e] = 2e, [h, f ] = −[f, h] = 2f, [e, f ] = −[f, e] = h,

[xj
k, h] = (tj − 2k)xj

k, 0 ≤ k ≤ tj ,

[xj
k, f ] = xj

k+1, 0 ≤ k ≤ tj − 1,

[xj
k, e] = −k(tj + 1− k)xj

k−1, 1 ≤ k ≤ tj .

where L = sl2 + I1 + I2 + · · ·+ Ip and Ij = 〈xj
1, . . . , x

j
tj
〉, 1 ≤ j ≤ p.

The last three types of products of the above table of multiplication are characterized asan irreducible
sl2-module with the canonical basis of sl2 [7].

Now we introduce the notion of semisimplicity for Leibniz algebras.

Definition 2.2. A Leibniz algebra L is called semisimple if its maximal solvable ideal is equal to I.

Since in the Lie algebras case the ideal I is equal to zero, this definition also agrees with the definition
of semisimple Lie algebra.

Although Levi’s Theorem is proved for the left Leibniz algebras [5], it is also true for right Leibniz
algebras (here we consider the right Leibniz algebras).

Theorem 2.3. [5] (Levi’s Theorem). Let L be a finite dimensional Leibniz algebra over a field of
characteristic zero and R be its solvable radical. Then there exists a semisimple subalgebra S of L,
such that L = S+̇R.

An algebra L is called simple if it only has only ideals {0}, {I}, {L} and L2 6= I, see [1]. From the
proof of Theorem 2.3, it is not difficult to see that S is a semisimple Lie algebra. Therefore, we have
that a simple Leibniz algebra is a semidirect sum of simple Lie algebra S and the irreducible right
module I, i.e. L = S+̇I. Hence, we get the description of the simple Leibniz algebras in terms of
simple Lie algebras and ideals I.

Definition 2.4. [7] A non-zero module M over a Lie algebra whose only submodules are the module
itself and zero module is called irreducible module. A non-zero module M which admits decomposition
into a direct sum of irreducible modules is said to be completely reducible.

Further, we shall use the following result of the classical theory of Lie algebras.

Theorem 2.5. [7] Let G be a semisimple Lie algebra over a field of characteristic zero. Then every
finite dimensional module over G is completely reducible.

Now we present the results of the classification of Leibniz algebras with the conditions L/I ∼=
sl2 ⊕R, dimR = 2, 3 and I a right irreducible module over sl2 (dimI 6= 3).

Theorem 2.6. [4] Let L be a Leibniz algebra whose quotient L/I ∼= sl2 ⊕ R, where R is a two-
dimensional solvable ideal and I is a right irreducible module over sl2 (dimI 6= 3). Then there exists a
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basis {e, h, f, x0, x1, . . . , xm, y1, y2} of the algebra L such that the table of multiplication in L has the
following form:































[e, h] = −[h, e] = 2e, [h, f ] = −[f, h] = 2f, [e, f ] = −[f, e] = h,

[y1, y2] = −[y2, y1] = y1, [xk, y2] = axk, 0 ≤ k ≤ m, a ∈ C,

[xk, h] = (m− 2k)xk 0 ≤ k ≤ m,

[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,

[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m.

The following theorem extends Theorem 2.6 for the case dimR = 3.

Theorem 2.7. [11] Let L be a Leibniz algebra whose quotient L/I ∼= sl2 ⊕ R, where R is a three-
dimensional solvable ideal and I is a right irreducible module over sl2 (dimI 6= 3). Then there exists
a basis {e, h, f, x0, x1, . . . , xm, y1, y2, y3} of the algebra L such that the table of multiplication in L has
one of the following two forms:

L1(α, a) :











































[e, h] = −[h, e] = 2e, [h, f ] = −[f, h] = 2f, [e, f ] = −[f, e] = h,

[y1, y2] = −[y2, y1] = y1, [y3, y2] = −[y2, y3] = αy3,

[xk, h] = (m− 2k)xk, 0 ≤ k ≤ m,

[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,

[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[xi, y2] = axi, 0 ≤ i ≤ m.

L2(a) :







































[e, h] = −[h, e] = 2e, [h, f ] = −[f, h] = 2f, [e, f ] = −[f, e] = h,

[y1, y2] = −[y2, y1] = y1 + y3, [y3, y2] = −[y2, y3] = y3,

[xk, h] = (m− 2k)xk, 0 ≤ k ≤ m,

[xk, f ] = xk+1, 0 ≤ k ≤ m− 1,

[xk, e] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[xi, y2] = axi, 0 ≤ i ≤ m.

For a semisimple Lie algebra S we consider a semisimple Leibniz algebra L such that L = (sl2 ⊕
S)+̇I.. We put I1 = [I, sl2].

Let I1 is a reducible over sl2. Then by Theorem 2.5 we have the decomposition:

I1 = I1,1 ⊕ I1,2 ⊕ · · · ⊕ I1,p,

where I1,j are the irreducible modules over sl2 for every j, 1 ≤ j ≤ p.

Theorem 2.8. [6] Let dimI1,j1 = dimI1,j2 = · · · = dimI1,js = t + 1 be with 1 ≤ s ≤ p. Then there
exist (t+ 1)-pieces of s-dimensional submodules I2,1, I2,2, . . . I2,t+1 of the module I2 = [I, S] such that

I2,1 + I2,2 + · · ·+ I2,t+1 = I1 ∩ I2.

3. The structure of Leibniz algebras with associated Lie algebras
sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕R and I is a right irreducible slk2 -module for some k.

In this section, we will consider a Leibniz algebra satisfying the following conditions:

(i) the quotient algebra L/I is isomorphic to the direct sum sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕R, where R is
n-dimensional solvable Lie algebra;

(ii) the ideal I is a right irreducible slk2 -module for some k ∈ {1, . . . , s}.
We put dimI = m+ 1.
Let us introduce the following notations:

sli2 =< ei, fi, hi >, 1 ≤ i ≤ s, I =< x0, . . . , xm >, R =< y1, . . . , yn > .

Without loss of generality one can assume that k = 1. Then due to [7] we have

[e1, h1] = −[h1, e1] = 2e1, [h1, f1] = −[f1, h1] = 2f1, [e1, f1] = −[f1, e1] = h1,
[xk, h1] = (m− 2k)xk, 0 ≤ k ≤ m,
[xk, f1] = xk+1, 0 ≤ k ≤ m− 1,
[xk, e1] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m.
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Lemma 3.1. Let L be a Leibniz algebra satisfying the conditions (i)-(ii). Then [I, slj2] = 0 for any
j ∈ {2, . . . , s}.
Proof. For a fixed j (2 ≤ j ≤ s) we put

[x0, ej ] =

m
∑

i=0

αj,ixi, [x0, fj] =

m
∑

i=0

βj,ixi, [x0, hj ] =

m
∑

i=0

γj,ixi.

Applying the Leibniz identity we have

[[x0, ej], f1] = [x0, [ej , f1]] + [[x0, f1], ej ] = [[x0, f1], ej ] = [x1, ej ].

On the other hand,

[[x0, ej], f1] =
m
∑

i=0

αj,i[xi, f1] =
m−1
∑

i=0

αj,ixi+1.

Consequently, we obtain [x1, ej] =
m−1
∑

i=0

αj,ixi+1.

Using the equality

[[xiej ], f1] = [xi, [ej , f1]] + [[xi, f1], ej ]

and the mathematical induction, we prove the following expression

[xi, ej ] =

m−i
∑

k=0

αj,kxk+i, 2 ≤ i ≤ m.

From the chain of the equalities

−
m
∑

i=1

i(m− i+ 1)αj,iei−1 =

m
∑

i=0

αj,i[xi, e1] = [[x0, ej ], e1] = [x0, [ej , e1]] + [[x0, e1], ej] = 0

we conclude that αj,i = 0 with 1 ≤ i ≤ m, that is, [xk, ej] = αj,0xk, 0 ≤ k ≤ m.
Similarly, we obtain

[xk, fj] = βj,0xk, [xk, hj ] = γj,0xk, 0 ≤ k ≤ m.

The equalities

2[xi, ej ] = [xi, [ej, hj ]] = [[xi, ej ], hj ]−[[xi, hj ], ej] = αj,0[xi, hj]−γj,0[xi, ej] = αj,0γj,0xi−γj,0αj,0xi = 0

imply that [xi, ej] = 0 with 0 ≤ i ≤ m.
Similarly, from

[xi, [fj , hj ]] = [[xi, fj], hj ]− [[xi, hj ], fj],

[xi, [ej , fj ]] = [[xi, ej], fj ]− [[xi, fj ], ej ],

we derive [xi, fj] = 0, [xi, hj] = 0, 0 ≤ i ≤ m. Thus, [I, slj2] = 0 with 2 ≤ j ≤ s. �

We need the following lemma.

Lemma 3.2. Let L be a Leibniz algebra satisfying the conditions (i)-(ii). Then [slj2, sl
j
2] = slj2 with

2 ≤ j ≤ s.

Proof. We set

[ej , hj ] = 2ej +

m
∑

k=0

aj,kxk, [fj, hj ] = −2fj +

m
∑

k=0

bj,kxk, [ej , fj] = hj +

m
∑

k=0

cj,kxk.

Take the basis transformation in the following form:

e′j = ej +
1

2

m
∑

k=0

aj,kxk, f ′

j = fj −
1

2

m
∑

k=0

bj,kxk, h′

j = hj +

m
∑

k=0

cj,kxk.

Then, thanks to Lemma 3.1, we can conclude

(3.1) [ej , hj ] = 2ej , [fj, hj ] = −2fj, [ej , fj ] = hj .

Taking into account that [I, slj2] = 0 we have

2[hj, ej ] = [hj , [ej, hj ]] = [[hj , ej], hj ]− [[hj, hj ], ej ] = −2[ej, hj ] ⇒ [ej , hj ] = −[hj , ej].
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Analogously, we obtain

[fj , hj ] = [fj, [ej , fj]] = [[fj , ej ], fj]− [[fj, fj ], ej ] = −[hj , fj] ⇒ [fj, hj ] = −[hj, fj ].

Now, we denote

[ej, ej ] =
m
∑

i=0

λj,ixi, [fj , fj ] =
m
∑

i=0

µj,ixi,

[hj, hj ] =
m
∑

i=0

τj,ixi, [fj , ej ] = −hj +
m
∑

i=0

ηj,ixi.

From the chain of the equalities

m
∑

i=0

λj,i(m− 2i)xi =

m
∑

i=0

λj,i[xi, h1] = [[ej , ej], h1] = [[ej , h1], ej] + [ej , [ej, h1]] = 0

we derive
m
∑

i=0

λj,i(m− 2i)xi = 0.

• If m is odd, then λj,i = 0 with 0 ≤ i ≤ m, that is, we have [ej , ej] = 0 for 2 ≤ j ≤ s.

• If m is even, then [ej , ej] = λj,m
2
xm

2
.

The equalities

0 = [ej, [f1, ej ]] = [[ej, f1], ej ]− [[ej , ej ], f1] = −[[ej , ej], f1] =

= −λj,m
2
[xm

2
, f1] = −λj,m

2
xm

2
+1

imply that [ej, ej ] = 0 for an even value of m and 2 ≤ j ≤ s, as well.

Consider
m
∑

i=0

µj,i(m− 2i)xi =
m
∑

i=0

µj,i[xi, h1] =

= [[fj , fj], h1] = [[fj , h1], fj ] + [fj , [fj, h1]] = 0.

Then,
m
∑

i=0

µj,i(m− 2i)xi = 0.

Evidently, for an odd value of m the products [fj , fj] are equal to zero and for an even value of m
we have [fj, fj ] = µj,m

2
xm

2
.

The equalities

0 = [fj , [f1, fj ]] = [[fj, f1], fj ]− [[fj , fj ], f1] = −[[fj , fj], f1] =

= −µj,m
2
[xm

2
, f1] = −µj,m

2
xm

2
+1

imply that [fj , fj] = 0 for any value of m and 2 ≤ j ≤ s.
In a similar way from the equations

−
m
∑

i=1

i(m+ 1− i)τj,ixi−1 =
m
∑

i=0

τj,i[xi, e1] =
m
∑

i=0

τj,i[xi, e1] =

= [[hj , hj ], e1] = [[hj , e1], hj] + [hj , [hj, e1]] =

= [[hj , hj ], f1] = [[hj , f1], hj ] + [hj , [hj, f1]] = 0,

we derive [hj , hj ] = 0 for 2 ≤ j ≤ s.
Finally, from

0 = [hj, hj ] = [hj , [ej, fj ]] = [[hj , ej], fj ]− [[hj , fj ], ej] = −2[ej, fj ]− 2[fj, ej ]

we deduce [ej , fj] = −[fj, ej ] for 2 ≤ j ≤ s.
Taking into account the obtained equalities:

[ej , hj ] = −[hj , ej], [ej , fj ] = −[fj , ej], [fj , hj ] = −[hj , fj], [ej , ej] = [fj , fj] = [hj , hj ] = 0

and (3.1) complete the proof of lemma. �

The following result establishes the multiplication of sli2 and slj2 with i 6= j.

Lemma 3.3. Let L be Leibniz algebra satisfying the conditions (i)-(ii). Then

[sli2, sl
j
2] = 0, 1 ≤ i, j ≤ s, i 6= j.
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Proof. Firstly we shall prove that [sl12, sl
j
2] = 0 for some j ∈ {2, . . . s}.

For a fixed element b of slj2, we put

[e1, b] =

m
∑

k=0

θkxk, [f1, b] =

m
∑

k=0

ρkxk.

Consider

0 = [e1, [h1, b]] = [[e1, h1], b]− [[e1, b], h1] = 2[e1, b]−
m
∑

k=0

θk[xk, h1] =

= 2
m
∑

k=0

θkxk −
m
∑

k=0

θk(m− 2k)xk =
m
∑

k=0

θk(−m+ 2k + 2)xk.

Consequently,

[e1, b] =

{

0, m odd,

θm
2
−1xm

2
−1, m even.

If m is even, m 6= 2, the equalities

0 = [e1, [e1, b]] = [[e1, e1], b]− [[e1, b], e1] = −[[e1, b], e1] =

= −θm
2
−1[xm

2
−1, e1] = −θm

2
−1(

m
2
− 1)(m

2
+ 2)xm

2
−2

imply [e1, b] = 0.
Similarly as above, from

0 = [f1, [h1, b]] = [[f1, h1], b]− [[f1, b], h1] = −2[f1, b]− [[f1, b], h1] =

= −2
m
∑

k=0

ρkxk −
m
∑

k=0

ρk[xk, h1] = −2
m
∑

k=0

ρkxk −
m
∑

k=0

ρk(m− 2k)xk =

=
m
∑

k=0

ρk(−m+ 2k − 2)xk,

0 = [f1, [f1, b]] = [[f1, f1], b]− [[f1, b], f1] = −[[f1, b], f1],

we get [f1, b] = 0.
The equality [h1, b] = 0 follows from

0 = [e1, [f1, b]] = [[e1, f1], b]− [[e1, b], f1] = [[e1, f1], b] = [h1, b].

Thus, we have proved that [sl12, sl
j
2] = 0 with j ∈ {2, . . . , s} and m 6= 2.

If m = 2, we have

[e1, ej ] = ajx0, [e1, fj ] = bjx0, [e1, hj ] = cjx0,

[f1, ej ] = 0, [f1, fj ] = 0, [f1, hj ] = 0,

[h1, ej ] = ajx1, [h1, fj ] = bjx1, [h1, hj ] = cjx1.

Considering the Leibniz identity for the following triples of elements:

{e1, ej, hj}, {e1, hj, fj}, {e1, ej , fj}

we lead to aj = bj = cj = 0, 2 ≤ j ≤ s. Hence, [sl12, sl
j
2] = 0 with 2 ≤ j ≤ s and m = 2.

For an arbitrary element c of sl12, we apply the Leibniz identity for the following triples of elements:

{ej, hj , c}, {hj, fj , c}, {ej, fj, c}.

Then we deduce [ej, c] = [fj, c] = [hj , c], that is, [sl
j
2, sl

1
2] = 0.

Let a ∈ sli2 with 2 ≤ i ≤ s, i 6= j. From the equalities

0 = [a, [b, e1]] = [[a, b], e1]− [[a, e1], b] = [[a, b], e1]

0 = [a, [b, f1]] = [[a, b], f1]− [[a, f1], b] = [[a, b], f1],

we conclude that [a, b] = 0 �

Below we show that the solvable ideal R annihilate to both sides of each sli2, 2 ≤ i ≤ s.

Lemma 3.4. Let L be a Leibniz algebra satisfying the conditions (i)-(ii). Then

[R, sli2] = [sli2, R] = 0, 2 ≤ i ≤ s.
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Proof. Applying the Leibniz identity for the following triples

{ys, e1, a}, {ys, f1, a}, {a, ys, e1}, {a, ys, f1}
we lead to

[ys, a] = 0, [a, ys] = 0, 1 ≤ s ≤ n

for an arbitrary element a ∈ sli2, 2 ≤ i ≤ s. �

Summarizing the results of Lemmas 3.1-3.4, we obtain the following theorem.

Theorem 3.5. Let L be a finite-dimensional Lebniz algebra satisfying the conditions:

(i) L/I ∼= sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕R, where R is an n-dimensional solvable Lie algebra;

(ii) the ideal I is a right irreducible slk2 -module for some k ∈ {1, . . . , s}.
Then, L = ((sl12 ⊕R)∔ I)⊕ sl22 ⊕ · · · ⊕ sls2.

As a result of the Theorems 2.6–2.7 and 3.5, we have the following corollaries.

Corollary 3.6. Let L/I ∼= sl12⊕sl22⊕· · ·⊕sls2⊕R with dimR = 2 and dimI 6= 3. Then L is isomorphic
to the following algebra:



















































[ej, hj ] = −[hj, ej ] = 2ej, [hj , fj ] = −[fj , hj] = 2fj,

[ej, fj ] = −[fj, ej ] = hj , 1 ≤ j ≤ s,

[y1, y2] = −[y2, y1] = y1,

[xk, h1] = (m− 2k)xk, 0 ≤ k ≤ m,

[xk, f1] = xk+1, 0 ≤ k ≤ m− 1,

[xk, e1] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[xk, y2] = axk, 0 ≤ k ≤ m, a ∈ C.

Corollary 3.7. Let L/I ∼= sl12⊕sl22⊕· · ·⊕sls2⊕R, with dimR = 3 and dimI 6= 3. Then L is isomorphic
to the following non-isomorphic algebras:

L1(α, a) :



















































[ej , hj] = −[hj , ej] = 2ej, [hj , fj ] = −[fj, hj ] = 2fj ,

[ej , fj] = −[fj, ej ] = hj, 1 ≤ j ≤ s,

[y1, y2] = −[y2, y1] = y1, [y3, y2] = −[y2, y3] = αy3,

[xk, h1] = (m− 2k)xk, 0 ≤ k ≤ m,

[xk, f1] = xk+1, 0 ≤ k ≤ m− 1,

[xk, e1] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[xi, y2] = axi, 0 ≤ i ≤ m,

L2(a) :



















































[ej , hj] = −[hj , ej] = 2ej, [hj , fj ] = −[fj, hj ] = 2fj ,

[ej , fj] = −[fj, ej ] = hj, 1 ≤ j ≤ s,

[y1, y2] = −[y2, y1] = y1 + y3, [y3, y2] = −[y2, y3] = y3,

[xk, h1] = (m− 2k)xk, 0 ≤ k ≤ m,

[xk, f1] = xk+1, 0 ≤ k ≤ m− 1,

[xk, e1] = −k(m+ 1− k)xk−1, 1 ≤ k ≤ m,

[xi, y2] = axi, 0 ≤ i ≤ m.

4. The description of Leibniz algebras with semisimple part
sl12 ⊕ sl22 and some conditions on ideal I.

Let L be a Leibniz algebra and the quotient Lie algebra L/I isomorphic to a direct sum of two
copies of the sl2 ideals. In this section, we shall investigate the case when the ideal I is reducible over
only one copy of sl2. Thus, we have L/I ∼= sl12 ⊕ sl22. One can assume that I is reducible over sl12. Due
to Theorem 2.5 we have the following decomposition:

I = I1,1 ⊕ I1,2 ⊕ ...⊕ I1,s+1,
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where I1,j , 1 ≤ j ≤ s+ 1 are the irreducible sl12-modules.
We shall focus our study on the case when dimI1,1 = dimI1,2 = · · · = dimI1,s+1 = m+ 1.
Let us introduce the notations as follows:

I1,j =< xj
0, x

j
1, . . . , x

j
m >, 1 ≤ j ≤ s+ 1

and

[xj
i , e2] =

s+1
∑

k=1

m
∑

p=0

aki,j,px
k
p , [xj

i , f2] =
s+1
∑

k=1

m
∑

p=0

bki,j,px
k
p , [xj

i , h2] =
s+1
∑

k=1

m
∑

p=0

cki,j,px
k
p,

where 0 ≤ i ≤ m, 1 ≤ j ≤ s+ 1.
Without loss of generality, one can assume that the products [I1,j , sl

1
2], 1 ≤ j ≤ s+1 are expressed

as follows:
[xj

i , e1] = −i(m+ 1− i)xj
i−1, 1 ≤ i ≤ m,

[xj
i , f1] = xj

i+1, 0 ≤ i ≤ m− 1,

[xj
i , h1] = (m− 2i)xj

i , 0 ≤ i ≤ m.

Proposition 4.1. Let L/I ∼= sl12 ⊕ sl22 and I = I1,1 ⊕ I1,2 ⊕ ...⊕ I1,s+1, with dimI1,j = m+1 and I1,j
are the irreducible sl12-modules for 1 ≤ j ≤ s+ 1. Then,

[xj
i , e2] =

s+1
∑

k=1

akjx
k
i , [xj

i , f2] =
s+1
∑

k=1

bkjx
k
i , [xj

i , h2] =
s+1
∑

k=1

ckjx
k
i ,

where 0 ≤ i ≤ m, 1 ≤ j ≤ s+ 1.

Proof. Applying the Leibniz identity for the following triples of elements:

{xj
0, e1, e2}, {xj

1, e1, e2}, {xj
1, h1, e2}, 1 ≤ j ≤ s+ 1

we derive the restrictions:

ak0,j,p = 0, 1 ≤ p ≤ m, ak1,j,1 = ak0,j,0, ak1,j,p = 0, 2 ≤ p ≤ m, ak1,j,0 = 0, 1 ≤ k ≤ s+ 1.

Consequently, we obtain

[xj
0, e2] =

s+1
∑

k=1

ak0,j,0x
k
0 , [xj

1, e2] =

s+1
∑

k=1

ak0,j,0x
k
1 , 1 ≤ j ≤ s+ 1.

By induction, we shall prove the equality

(4.1) [xj
i , e2] =

s+1
∑

k=1

ak0,j,0x
k
i , 0 ≤ i ≤ m.

Using this assumption in the following chain of the equalities:

0 = [xj
i+1, [e1, e2]] = [[xj

i+1, e1], e2]− [[xj
i+1, e2], e1] = −[(i+ 1)(m− i)xj

i , e2]−

−
s+1
∑

k=1

m
∑

p=0

aki+1,j,p[x
k
p, e1] == −(i+ 1)(m− i)

s+1
∑

k=1

ak0,j,0x
k
i +

s+1
∑

k=1

m
∑

p=1

aki+1,j,pp(m+ 1− p)xk
p−1,

we conclude that

aki+1,j,i+1 = ak0,j,0, aki+1,j,p = 0, p 6= i+ 1, 1 ≤ p ≤ m, 1 ≤ k ≤ s+ 1.

Hence,

[xj
i+1, e2] =

s+1
∑

k=1

aki+1,j,0x
k
0 +

s+1
∑

k=1

ak0,j,0x
k
i+1.

The following equalities

0 = [xj
i+1, [h1, e2]] = [[xj

i+1, h1], e2]− [[xj
i+1, e2], h1] = (m− 2i− 2)[xj

i+1, e2]−

−[
s+1
∑

k=1

aki+1,j,0x
k
0 +

s+1
∑

k=1

ak0,j,0x
k
i+1, h1] = (m− 2i− 2)(

s+1
∑

k=1

aki+1,j,0x
k
0 +

s+1
∑

k=1

ak0,j,0x
k
i+1)−

−m
s+1
∑

k=1

aki+1,j,0x
k
0 − (m− 2i− 2)

s+1
∑

k=1

ak0,j,0x
k
i+1 = −2(i+ 1)

s+1
∑

k=1

aki+1,j,0x
k
0 ,

complete the proof of Equality 4.1.

Putting akj = ak0,j,0, we have [xj
i , e2] =

s+1
∑

k=1

akjx
k
i , 1 ≤ j ≤ s+ 1, 0 ≤ i ≤ m.
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Applying the Leibniz identity for the triples of elements:

{xj
0, e1, f2}, {xj

1, e1, f2}, {xj
1, h1, f2} 1 ≤ j ≤ s+ 1

we get

bk0,j,p = 0, 1 ≤ p ≤ m, bk1,j,1 = bk0,j,0, bk1,j,p = 0, 2 ≤ p ≤ m, bk1,j,0 = 0, 1 ≤ k ≤ s+ 1.

Therefore, we obtain

[xj
0, f2] =

s+1
∑

k=1

bk0,j,0x
k
0 , [xj

1, f2] =

s+1
∑

k=1

bk0,j,0x
k
1 , 1 ≤ j ≤ s+ 1.

Applying the induction and the following chain of equalities

0 = [xj
i+1, [e1, f2]] = [[xj

i+1, e1], f2]− [[xj
i+1, f2], e1] = −[(i+ 1)(m− i)xj

i , f2]−

−
s+1
∑

k=1

m
∑

p=0

bki+1,j,p[x
k
p, e1] = −(i+ 1)(m− i)

s+1
∑

k=1

bk0,j,0x
k
i +

s+1
∑

k=1

m
∑

p=1

bki+1,j,pp(m+ 1− p)xk
p−1,

0 = [xj
i+1, [h1, f2]] = [[xj

i+1, h1], f2]− [[xj
i+1, f2], h1] = (m− 2i− 2)[xj

i+1, f2]−

−[
s+1
∑

k=1

bki+1,j,0x
k
0 +

s+1
∑

k=1

bk0,j,0x
k
i+1, h1] = (m− 2i− 2)(

s+1
∑

k=1

bki+1,j,0x
k
0 +

s+1
∑

k=1

bk0,j,0x
k
i+1)−

−m
s+1
∑

k=1

bki+1,j,0x
k
0 − (m− 2i− 2)

s+1
∑

k=1

bk0,j,0x
k
i+1 = −2(i+ 1)

s+1
∑

k=1

bki+1,j,0x
k
0 .

we derive the equality

[xj
i , f2] =

s+1
∑

k=1

bk0,j,0x
k
i , 0 ≤ i ≤ m, 1 ≤ j ≤ s+ 1.

Setting bkj = bk0,j,0, we obtain [xj
i , f2] =

s+1
∑

k=1

bkjx
k
i , 0 ≤ i ≤ m, 1 ≤ j ≤ s+ 1.

Analogously, one can prove the equality [xj
i , h2] =

s+1
∑

k=1

ckjx
k
i with 1 ≤ j ≤ s+ 1. �

Now we shall describe the Leibniz algebras such that L/I ∼= sl12 ⊕ sl22 and I = I1,1 ⊕ I1,2, where
I1,1, I1,1 are the irreducible sl12-modules. Without loss of generality we can suppose

[xj
k, h1] = (m− 2k)xj

k, 0 ≤ k ≤ m,

[xj
k, f1] = xj

k+1, 0 ≤ k ≤ m− 1,

[xj
k, e1] = −k(m+ 1− k)xj

k−1, 1 ≤ k ≤ m.

for j = 1, 2.
Thanks to the Proposition 4.1, one can assume

[x1
i , e2] = a1x

1
i + a2x

2
i , [x2

i , e2] = a3x
1
i + a4x

2
i ,

[x1
i , f2] = b1x

1
i + b2x

2
i , [x2

i , f2] = b3x
1
i + b4x

2
i ,

[x1
i , h2] = c1x

1
i + c2x

2
i , [x2

i , h2] = c3x
1
i + c4x

2
i ,

where 0 ≤ i ≤ m.
From the following chains of the equalities obtained applying the Leibniz identity

2(a1x
1
0 + a2x

2
0) = 2[x1

0, e2] = [x1
0, [e2, h2]] = (a2c3 − c2a3)x

1
0 + (a1c2 + a2c4 − c1a2 − c2a4)x

2
0,

2(a3x
1
0 + a4x

2
0) = 2[x2

0, e2] = [x2
0, [e2, h2]] = (a3c1 + a4c3 − c3a1 − c4a3)x

1
0 + (a3c2 − a2c3)x

2
0,

−2(b1x
1
0 + b2x

2
0) = −2[x1

0, f2] = [x1
0, [f2, h2]] = (b2c3 − c2b3)x

1
0 + (b1c2 + b2c4 − c1b2 − c2b4)x

2
0,

−2(b3x
1
0 + b4x

2
0) = 2[x2

0, e2] = [x2
0, [f2, h2]] = (b3c1 + b4c3 − c3b1 − c4b3)x

1
0 + (b3c2 − b2c3)x

2
0,

−c1x
1
1 − c2x

2
1 = −[x1

1, h2] = [x1
1, [f2, e2]] = (a3b2 − a2b3)x

1
1 + 2(a2b1 − a1b2)x

2
1,

−c3x
1
1 − c4x

2
1 = −[x2

1, h2] = [x2
1, [f2, e2]] = 2(a1b3 − a3b1)x

1
1 + (a2b3 − a3b2)x

2
1.
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we derive:

(4.2)



































































































2a1 = a2c3 − a3c2,

2a2 = a1c2 + a2c4 − c1a2 − c2a4,

2a3 = a3c1 + a4c3 − c3a1 − c4a3,

2a4 = a3c2 − a2c3,

−2b1 = b2c3 − c2b3,

−2b2 = b1c2 + b2c4 − c1b2 − c2b4,

−2b3 = b3c1 + b4c3 − c3b1 − c4b3,

−2b4 = b3c2 − b2c3,

c1 = a2b3 − a3b2,

c2 = 2(a1b2 − a2b1),

c3 = 2(a3b1 − a1b3),

c4 = a3b2 − a2b3.

It is easy to see that a4 = −a1, b4 = −b1 and c4 = −c1. By substituting the above relations in the
restrictions (4.2), we will have:

(4.3)







































a1 = 2a2a3b1 − a1a2b3 − a1a3b2,

a2 = 2a21b2 − 2a1a2b1 − a22b3 + a2a3b2,

a3 = a2a3b3 − a23b2 − 2a1a3b1 + 2a21b3,

b1 = 2a1b2b3 − a2b1b3 − a3b1b2,

b2 = 2a2b
2
1 − 2a1b1b2 + a2b2b3 − a3b

2
2,

b3 = a3b2b3 − a2b
2
3 + 2b21a3 − 2a1b1b3.

Thus, we obtain the following products:

(4.4)

[x1
i , e2] = a1x

1
i + a2x

2
i , [x1

i , f2] = b1x
1
i + b2x

2
i ,

[x2
i , e2] = a3x

1
i − a1x

2
i , [x2

i , f2] = b3x
1
i − b1x

2
i ,

[x1
i , h2] = (a2b3 − a3b2)x

1
i + 2(a1b2 − a2b1)x

2
i ,

[x2
i , h2] = 2(a3b1 − a1b3)x

1
i − (a2b3 − a3b2)x

2
i ,

where the structure constants a1, a2, a3 and b1, b2, b3 satisfy the relations (4.3).
We present the classification of Leibniz algebras satisfying the following conditions below:

(i) L/I ∼= sl12 ⊕ sl22;
(ii) I = I1,1 ⊕ I1,2 such that I1,1, I1,2 are the irreducible sl12-modules and dimI1,1 = dimI1,2;
(iii) I = I2,1 ⊕ I2,2⊕ ...⊕ I2,m+1 such that I2,k are the irreducible sl22-modules with 1 ≤ k ≤ m+1.

Theorem 4.2. An arbitrary Leibniz algebra satisfying the conditions (i)-(iii) is isomorphic to the
following algebra:















































[ei, hi] = −[hi, ei] = 2ei,
[ei, fi] = −[fi, ei] = hi,
[hi, fi] = −[fi, hi] = 2fi,
[xi

k, h1] = (m− 2k)xi
k, 0 ≤ k ≤ m,

[xi
k, f1] = xi

k+1, 0 ≤ k ≤ m− 1,
[xi

k, e1] = −k(m+ 1− k)xi
k−1, 1 ≤ k ≤ m,

[x1
j , e2] = [x2

j , h2] = x2
j ,

[x1
j , h2] = [x2

j , f2] = −x1
j ,

with 1 ≤ i ≤ 2 and 0 ≤ j ≤ m.

Proof. We set dimI1,1 = dimI1,2 = m+1. Then, according to Theorem 2.8, we obtain dimI2,k = 2 for
1 ≤ k ≤ m+ 1.

Let {x1
0, x

1
1, ..., x

1
m}, {x2

0, x
2
1, ..., x

2
m} and {yk0 , yk1} be the bases of I11, I12 and I2,k, 1 ≤ k ≤ m+ 1,

respectively. We set

yi0 =

2
∑

k=1

m
∑

s=0

αk
isx

k
s , yi1 =

2
∑

k=1

m
∑

s=0

βk
isx

k
s ,
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with 1 ≤ i ≤ m+ 1.
Taking into account the products (4.4) for 1 ≤ i ≤ m+ 1 we consider the equalities

0 = [yi1, f2] = [
m
∑

s=0

β1
i,sx

1
s +

m
∑

s=0

β2
i,sx

2
s, f2] =

m
∑

s=0

β1
i,s(b1x

1
s + b2x

2
s)+

+
m
∑

s=0

β2
i,s(b3x

1
s − b1x

2
s) =

m
∑

s=0

(β1
i,sb1 + β2

i,sb3)x
1
s +

m
∑

s=0

(β1
i,sb2 − β2

i,sb1)x
2
s.

Therefore,

(4.5)

{

β1
i,sb1 + β2

i,sb3 = 0,

β1
i,sb2 − β2

i,sb1 = 0,

with 1 ≤ i ≤ m+ 1 and 0 ≤ s ≤ m.
If b21 + b2b3 6= 0, then the system of equations (4.5) has only the trivial solution, which is a contra-

diction. Hence, b21 + b2b3 = 0.
Similarly, from

0 = [yi0, e2] =

m
∑

s=0

(α1
i,sa1 + α2

i,sa3)x
1
s +

m
∑

s=0

(α1
i,sa2 − α2

i,sa1)x
2
s

we derive a21 + a2a3 = 0.
Thus, we have a1 = i

√
a2a3 and b1 = i

√
b2b3.

Substituting the relations a1 = i
√
a2a3, b1 = i

√
b2b3 by the restrictions (4.3) we get







































√
a2a3(1 + a3b2 + a2b3 − 2

√
a2a3b2b3) = 0,

a2(1 + a3b2 + a2b3 − 2
√
a2a3b2b3) = 0,

a3(1 + a3b2 + a2b3 − 2
√
a2a3b2b3) = 0,√

b2b3(1 + a3b2 + a2b3 − 2
√
a2a3b2b3) = 0,

b2(1 + a3b2 + a2b3 − 2
√
a2a3b2b3) = 0,

b3(1 + a3b2 + a2b3 − 2
√
a2a3b2b3) = 0.

Consequently, 1 + a3b2 + a2b3 − 2
√
a2a3b2b3 = 0 (otherwise [I1,1, sl

2
2] = [I1,2, sl

2
2] = 0 which is a

contradiction with the assumption of the theorem).
Let us summarize the obtained products:

(4.6)

[x1
i , e2] = a1x

1
i + a2x

2
i , [x1

i , f2] = b1x
1
i + b2x

2
i ,

[x2
i , e2] = a3x

1
i − a1x

2
i , [x2

i , f2] = b3x
1
i − b1x

2
i ,

[x1
i , h2] = (a2b3 − a3b2)x

1
i + 2(a1b2 − a2b1)x

2
i ,

[x2
i , h2] = 2(a3b1 − a1b3)x

1
i − (a2b3 − a3b2)x

2
i ,

with 0 ≤ i ≤ m and the relations a21 + a2a3 = b21 + b2b3 = 1 + a3b2 + a2b3 − 2
√
a2a3b2b3 = 0.

Taking the following basis transformation:

x1′

i = Ax1
i +Bx2

i , x2′

i = (Aa1 +Ba3)x
1
i + (Aa2 −Ba1)x

2
i , 0 ≤ i ≤ m

we can assume that the products (4.6) have the following form:

[x1
i , e2] = x2

i , [x2
i , e2] = 0,

[x1
i , f2] = b1x

1
i + b21x

2
i , [x2

i , f2] = −x1
i − b1x

2
i ,

[x1
i , h2] = −x1

i − 2b1x
2
i , [x2

i , h2] = x2
i .

Applying the change of basis as follows

x1′

i = x1
i + b1x

2
i , x2′

i = x2
i , 0 ≤ i ≤ m,

we complete the proof of theorem. �

The following theorem establishes that condition (iii) can be omitted because of if conditions (i)-(ii)
are true, then condition (iii) is always executable.

Theorem 4.3. There is no Leibniz algebra satisfying the conditions (i)-(ii), which does not satisfy
condition (iii).
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Proof. Let a Leibniz algebra satisfying conditions (i)− (ii)− (iii). There exists r with 1 ≤ r ≤ m+ 1
such that I2,i for 1 ≤ i ≤ r are the reducible sl22-modules. Then from Theorem 2.5, we conclude that
I2,i are the fully reducible modules over sl22 with 1 ≤ i ≤ r. Therefore, I2,i =< yi0 > ⊕ < yi1 > where
< yi0 >, < yi1 > are the one-dimensional trivial sl22-modules, that is,

[yj0, e2] = [yj1, e2] = [yj0, f2] = [yj1, f2] = [yj0, h2] = [yj1, h2] = 0.

Similar to the proof of Theorem 4.2 we obtain

(4.7) a1 = i
√
a2a3, b1 = i

√

b2b3, 1 + a3b2 + a2b3 − 2
√

a2a3b2b3 = 0.

Consider the chain of the equalities

0 = [y11 , h2] =
m
∑

s=0

β1
i,s[x

1
s, h2] +

m
∑

s=0

β2
i,s[x

2
s, h2] =

m
∑

s=0

((a2b3 − a3b2)β
1
i,s+

+2(a3b1 − a1b3)β
2
i,s)x

1
s +

m
∑

s=0

(2(a1b2 − a2b1)β
1
i,s + (a3b2 − a2b3)β

2
i,s)x

2
s.

Then we have
{

(a2b3 − a3b2)β
1
i,s + 2(a3b1 − a1b3)β

2
i,s = 0,

2(a1b2 − a2b1)β
1
i,s + (a3b2 − a2b3)β

2
i,s = 0,

with 1 ≤ i ≤ r and 0 ≤ s ≤ m.
Taking into account the relations (4.7), we conclude that the determinant of the above system of

the equations is equal to 1. Indeed,

(a2b3 − a3b2)(a3b2 − a2b3)− 4(a3b1 − a1b3)(a1b2 − a2b1) =
= (a2b3 − a3b2)(a3b2 − a2b3)− 4(ia3

√
b2b3 − ib3

√
a2a3)(ib2

√
a2a3 − ia2

√
b2b3) =

= (a2b3 − a3b2)(a3b2 − a2b3) + 4(a3
√
b2b3 − b3

√
a2a3)(b2

√
a2a3 − a2

√
b2b3) =

= a2a3b2b3 − a22b
2
3 − a23b

2
2 + a2a3b2b3 + 4a3b2

√
a2a3b2b3 − 4a2a3b2b3 − 4a2a3b2b3 + 4a2b3

√
a2a3b2b3 =

= −(a22b
2
3 + a23b

2
2 + 6a2a3b2b3 − 4a3b2

√
a2a3b2b3 − 4a2b3

√
a2a3b2b3) =

= −(a3b2 + a2b3 − 2
√
a2a3b2b3)

2 = −1.

Consequently, β1
i,s = β2

i,s = 0 for 1 ≤ i ≤ r and 0 ≤ s ≤ m and we obtain yi1 = 0. Thus, we get a
contradiction. We complete the proof of the theorem. �
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