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1. Introduction

A classical problem in Lie algebras theory is to know how many different (up to isomorphisms)

finite-dimensional Lie algebras exist for each dimension [12,13].

The classical methods to obtain the classifications essentially solve the system of equations given

by the bracket laws, that is, for a Lie algebra g over a field K with basis {a1, . . . , an}, the bracket is

completely determined by the scalars ckij ∈ K such that

[ai, aj] =
n∑

k=1

ckijak. (1.1)
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Therefore, the Lie algebra structure is determined by means of the computation of the structure con-

stants ckij , which satisfy the following equations:

ckii = 0 = ckij + ckji (1.2)

n∑
l=1

(
cmil c

l
jk + cmjl c

l
ki + cmkl c

l
ij

)
= 0 (1.3)

for all 1 � i, j, k,m � n. The solutions of the system derived from (1.2) and (1.3) can be computed by

different methods, including Gröbner bases techniques [9–11], nevertheless the classificationmust be

presented by means of isomorphism classes.

Leibniz algebras, introduced by Loday [14] when he studied periodicity phenomenons in algebraic

K-theory, are K-vector spaces gendowed with a bilinear operation [−, −]: g× g → g satisfying the

Leibniz identity

[
x, [y, z]] = [[x, y], z] − [[x, z], y], for all x, y, z ∈ g.

They are a non-skew-symmetric version of Lie algebras. The relationship between Lie algebras and

associative algebras can be translated into an analogous relationship between Leibniz algebras and

associative dialgebras (see [15]), which are a generalization of associative algebras with two bilinear

operations and provide a natural setting for Leibniz algebras. The main motivation to study Leibniz

algebras is the existence of a (co)homology theory for Leibniz algebras which restricted to Lie algebras

provides new invariants.

The classification of Leibniz algebras in low dimensions is obtained for specific classes of Leibniz

algebras (solvable, nilpotent, filiform, etc.) [1–5,8]. The classification problem is very difficult to handle

because the space of solutions of the system of equations given by the structure constants (1.1) and

the equations provided by the relations

n∑
l=1

(
cljkc

r
il − clijc

r
lk + clikc

r
ij

)
= 0, 1 � i, j, k, r � n, (1.4)

becomes very hard to compute, especially for dimensions n � 3 since it is necessary to solve a system

of n4 equations in n3 unknowns, causing frequent errors in the literature.

In [6] we have developed an algorithm for testing the Leibniz algebra structure using techniques of

Gröbnerbases.Wehaveapplied this test to theclassificationof3-dimensional complexLeibniz algebras

showed in [4] and we have detected that the isomorphism class whose representative element is the

algebra with basis {x, y, z} and bracket given by [x, y] = αx; [x, z] = αx, [z, y] = x and 0 otherwise,

does not correspond with a Leibniz algebra structure.

Our goal in the present paper is to obtain a complete classification of the 3-dimensional Leibniz

algebras over the field C. To do this, first of all we compute all the solutions of the system of equations

obtained from (1.4) considering the decomposition g = gann ⊕ gLie (see Definition 2.2 below), the

dimension of gann, the Leibniz identity and Gröbner bases computations.

To reach our goal, in Section 2 we present an algorithm using Gröbner bases that compares two

solutions and decides whether there exists an isomorphism between them or not in terms of the exis-

tence of a non-singular matrix P, that is, given two different structures (g, [−, −]1) and (g, [−, −]2)
which are solutions of the system (1.4), we must verify if they are isomorphic. For that, it is necessary

to check the existence of a non-singular matrix P satisfying the equation

P · [ai, aj]2 = [P · ai, P · aj]1 (1.5)

for all i, j ∈ {1, 2, 3}. In this step we use computational methods based on Gröbner bases techniques

to check the existence (and also to perform the construction) of a matrix P. With the computations

carried out with this algorithm, we present in Section 3 a reviewed classification of 3-dimensional
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Leibniz algebras given in [4], obtaining the following conclusions: the class AO5 does not correspond

to a Leibniz algebra, the classes AO9 and AO10 of Table 2 are isomorphic and the existence of a new

isomorphism class 2(f) that is not contained in that table. In Section 4 we show some examples of

these computations using a Mathematica notebook in which is implemented the algorithm.

This technique can be extended to large enough dimensions.

2. On Leibniz algebras

Definition2.1. ALeibniz algebragis aK-vector spaceequippedwithabilinearmap [−, −]: g×g → g

satisfying the Leibniz identity
[
x, [y, z]] = [[x, y], z] − [[x, z], y], for all x, y, z ∈ g. (2.1)

When the bracket satisfies [x, x] = 0 for all x ∈ g, then the Leibniz identity (2.1) becomes the

Jacobi identity, so a Leibniz algebra is a Lie algebra. Hence, there is a canonical inclusion functor from

the category Lie of Lie algebras to the category Leib of Leibniz algebras.

Definition 2.2. The inclusion functor inc : Lie → Leib has a left adjoint, the Liezation functor

( )Lie : Leib → Lie which assigns to a Leibniz algebra g the Lie algebra gLie = g/gann, where

gann = ideal〈{[x, x], x ∈ g}〉.
Example 2.3.

1. Lie algebras.

2. Let A be a K-associative algebra equipped with a K-linear map D : A → A satisfying

D(a(Db)) = DaDb = D((Da)b), for all a, b ∈ A. (2.2)

Then A with the bracket [a, b] = a(Db) − (Db)a is a Leibniz algebra.

If D = Id, we obtain the Lie algebra structure associated to an associative algebra. If D is an

idempotent algebra endomorphism (D2 = D) or D is a derivation of square zero (D2 = 0), then

D satisfies equation (2.2) and the bracket gives rise to a structure of non-Lie Leibniz algebra.

3. Let gbe a differential Lie algebra, then (g, [−, −]d)with [x, y]d : = [x, dy] is a non-Lie Leibniz

algebra.

A homomorphism of Leibniz algebras is a K-linear map � : g → h such that �([x, y]g) =
[�(x), �(y)]h , for all x, y ∈ g. In case of finite dimensional Leibniz algebras g and h, the homo-

morphism � can be represented by means of a matrix P.

Proposition 2.4. Consider two Leibniz algebras (g, [−, −]1) and (g, [−, −]2)with the same underlying

K-vector space, the same basis {a1, . . . , an} and different structures given by the brackets [−, −]1 and

[−, −]2. There exists a non-singular matrix P such that the change of variables given by P provides the

following commutative diagram:

g × g
[−,−]1 �� g

P−1

��
g × g

P×P

��

[−,−]2 �� g ;
that is, the following identity holds

P · [ai, aj]2 = [P · ai, P · aj]1,
if and only if the Leibniz algebras are isomorphic.
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Proposition 2.5 (Consistency algorithm [7]). If we have polynomials f1, . . . , fs ∈ C[x1, . . . , xn] then
f1, . . . , fs have no common zero in C

n if and only if the Gröbner basis of the ideal generated by f1, . . . , fs
is {1}.
So, if we put together this two facts we have the following algorithm:

Algorithm 2.6 (Leibniz algebra isomorphism test).

Input: Two Leibniz algebras (g, [−, −]1) and (g, [−, −]2) with dimC(g) = n and basis {a1,
. . . , an}.
Output: True if (g, [−, −]1) is isomorphic to (g, [−, −]2) and False in other case.

1. Compute the following system of equations

P · [ai, aj]2 − [P · ai, P · aj]1 = 0; i, j ∈ {1, . . . , n}.
2. To ensure that P is going to be non-singular, add the following relation with a new variable Y:

det[P] · Y − 1 = 0.

3. Compute a Gröbner basisG of the ideal 〈{P ·[ai, aj]2−[P ·ai, P ·aj]1}i,j∈{1,...,n}∪{det[P]·Y−1}〉
in the polynomial ring C[pij, Y], where P = (pij).

4. G = {1}?
4.1. Yes.

Return False.

4.2. No.

Output: True; Return G.

Remark 2.7. If the output of the algorithm is True, then it provides the equations of an algebraic

variety whose points are all the possible values for P; hence we can obtain a matrix P satisfying (1.5).

3. Application

We devote the present section, where we apply our technique together with the test developed in

[6], to obtaining the classification of the 3-dimensional complex Leibniz algebras and to compare it

with the classification given in [4].

Lemma 3.1. If g is a non-trivial Leibniz algebra then g �= gann.

Proof. Suppose that g = gann. If y, z ∈ g = gann = ideal〈{[x, x], x ∈ g}〉, then [y, z] = 0 for all

y, z ∈ g . Since any element of gann is a linear combination of elements of the form [x, x], we have

g = 0, which contradicts the hypothesis. �

We will use gann as an invariant of classification and taking into account that

0 −→ g
ann −→ g −→ gLie −→ 0 (3.1)

is a split (asK-vector spaces) short exact sequence, we obtain that g = gann ⊕gLie asK-vector spaces.

In the sequel, let g be a non-trivial 3-dimensional Leibniz algebra over C, therefore dim gann < 3

by Lemma 3.1, and {a1, a2, a3} a C-basis of g such that ai ∈ gann or ai ∈ gLie, i ∈ {1, 2, 3}.
gLie is a Lie algebra, so we can suppose that we have chosen a C-basis of g, which verifies that the

restriction of the bracket to gLie is in a canonical form.
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So, if gann = 〈{a1}〉 the bracket will be of the form

⎛
⎜⎜⎜⎜⎝

θ α1 · a1 α2 · a1
θ α3 · a1 α4 · a1 + x · a2
θ α5 · a1 − x · a2 α6 · a1

⎞
⎟⎟⎟⎟⎠

, x ∈ {0, 1}, (3.2)

where θ = (0, 0, 0), a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1) and [ai, aj] is the entry of the

matrix (3.2) placed at row i column j.

If gann = 〈{a1, a2}〉 we will have

⎛
⎜⎜⎜⎜⎝

θ θ α1 · a1 + α2 · a2
θ θ α3 · a1 + α4 · a2
θ θ α5 · a1 + α6 · a2

⎞
⎟⎟⎟⎟⎠

. (3.3)

The casedim gann = 0 is not consideredbecause it implies thatgis a Lie algebra and its classification

is well known [13].

The following step is to apply Leibniz identity to each case, and thus we will obtain a system of

equations.

If gann = 〈{a1}〉 and x = 0 the system is:

α2 · (α3 · α6 − α4 · α5) = 0

−α2 · α5 + α1 · α6 = 0

−α2 · α3 + α1 · α4 = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

If gann = 〈{a1}〉 and x = 1 the system is:

α1 = 0

α3 · (α4 − α5) = 0

−α4 − α5 + α2 · α5 = 0

α3 · (2 − α2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

And finally, if gann = 〈{a1, a2}〉 then Leibniz identity does not generate any equation except the

trivial equation 0 = 0.

From the discussion of each system of equations we will obtain many Leibniz algebras but these

algebras are sometimes isomorphic, then we will apply Algorithm 2.6 to obtain a classification of

Leibniz algebras in isomorphism classes. If we work in this way we reach the following classification

of 3-dimensional Leibniz algebras. All the non-written brackets are equal to zero.

1. Case 1: dimC(gann) = 0 (Lie algebras case).

(a) g abelian (C3).

(b) [a2, a3] = a1; [a3, a2] = −a1 (Heisenberg algebra H).

(c) [a1, a2] = a1; [a2, a1] = −a1 (l2(C) ⊕ C, where l2(C) is the unique two-dimensional

non-abelian Lie algebra over C).

(d) [a1, a3] = a1; [a2, a3] = α · a2; [a3, a1] = −a1; [a3, a2] = −α · a2, α ∈ C − {0}.
(e) [a1, a3] = a1 + a2; [a2, a3] = a2; [a3, a1] = −a1 − a2; [a3, a2] = −a2.

(f) [a1, a2] = a3; [a1, a3] = −a2; [a2, a1] = −a3;[a2, a3] = a1; [a3, a1] = a2; [a3, a2] = −a1.
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This algebra is sl(2, C), all 2×2matrices of trace 0 overC, where� : sl(2, C) → g is given

by �(e) = a1 + ia2, �(f ) = −a1 + ia2, �(h) = 2ia3 and e =
⎛
⎝ 0 1

0 0

⎞
⎠, f =

⎛
⎝ 0 0

1 0

⎞
⎠,

h =
⎛
⎝ 1 0

0 −1

⎞
⎠ is a basis of sl(2, C).

2. Case 2: dimC(gann) = 1 (non-Lie Leibniz algebras).

(a) [a2, a2] = γ · a1, γ ∈ C; [a3, a2] = a1, [a3, a3] = a1.

(b) [a3, a3] = a1.

(c) [a2, a2] = a1; [a3, a3] = a1.

(d) [a1, a3] = a1.

(e) [a1, a3] = α · a1, α ∈ C − {0}; [a2, a3] = a2; [a3, a2] = −a2.

(f) [a2, a3] = a2; [a3, a2] = −a2; [a3, a3] = a1.

(g) [a1, a3] = 2 · a1; [a2, a2] = a1; [a2, a3] = a2; [a3, a2] = −a2; [a3, a3] = a1.

3. Case 3: dimC(gann) = 2 (non-Lie Leibniz algebras).

(a) [a1, a3] = β · a1, β ∈ C − {0}; [a2, a3] = a2.

(b) [a1, a3] = a1 + a2; [a2, a3] = a2.

(c) [a1, a3] = a2; [a3, a3] = a1.

(d) [a1, a3] = a2; [a2, a3] = a2; [a3, a3] = a1.

Remark 3.2.

1. If α1, α2 ∈ C − {0} such that α1 �= α2, then the corresponding two Lie algebras of the family

1(d) are isomorphic if and only if α1 = 1
α2

.

2. If γ1, γ2 ∈ C such that γ1 �= γ2, then the corresponding two Leibniz algebras of the family 2(a)

are not isomorphic.

3. If α1, α2 ∈ C − {0} such that α1 �= α2, then the corresponding two Leibniz algebras of the

family 2(e) are not isomorphic.

4. If β1, β2 ∈ C − {0} such that β1 �= β2, then the corresponding two Leibniz algebras of the

family 3(a) are isomorphic if and only if β1 = 1
β2

.

5. If we choose two Leibniz algebras in different families, these algebras are not isomorphic.

We will recall some algebraic invariants of Leibniz algebras in order to check the obtained isomor-

phic classes.

Definition 3.3. Let gbe a Leibniz algebra. We call left and right center of g to the respective K-vector

subspaces

Zl(g) = {x ∈ g | [g, x] = 0, ∀g ∈ g},
Zr(g) = {x ∈ g | [x, g] = 0, ∀g ∈ g}.

We call center of g to the K-vector subspace

Z(g) = {x ∈ g | [x, g] = [g, x] = 0, ∀g ∈ g}.
Definition 3.4. Let gbe a Leibniz algebra. We call the lower central series to the following sequence

g
〈1〉 = g, g

〈n+1〉 = [g〈n〉, g].
The algebra g is said right nilpotent if g〈n〉 = 0 for some n ∈ N.
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Table 1

Algebraic invariants.

dim gann dim Z(g) dim Zr(g) dim Zl(g) Nilpotent I2
2(a) 1 1 1 1 Yes 1

2(b) 1 2 2 2 Yes

2(c) 1 1 1 1 Yes 2

2(d) 1 1 2 2 Non

2(e) 1 0 0 1 Non 1

2(f) 1 1 1 1 Non

2(g) 1 0 0 1 Non 0

dim gann dim Z(g) dim Zr(g) dim Zl(g) Nilpotent I3

3(a) 2 0 1 2 Non 3

3(b) 2 0 1 2 Non 2

3(c) 2 1 1 2 Yes

3(d) 2 1 1 2 Non

Table 2

Ayupov–Omirov’s classification.

dim Z(g) Bracket

AO1 2 [y, z] = α1x; [x, z] = α2x; [z, z] = x

AO2 2 [z, z] = x; [x, z] = y; [y, z] = α1x + α2y

AO3 2 [y, z] = α2x + y; [z, z] = x; [x, z] = α1x

AO4 1 [y, y] = x; [z, z] = βx; [x, y] = αx;
[x, z] = αx; [z, y] = βx; [y, z] = x, α �= 0

AO5 1 [x, y] = αx; [x, z] = αx; [z, y] = x

AO6 1 [x, z] = αx; [z, y] = βx + y; [y, z] = −β(1 + α)x − y

AO7 1 [y, y] = x; [z, z] = αx; [x, z] = −2x;
[z, y] = βx + y; [y, z] = βx − y

AO8 1 [y, y] = x; [z, z] = αx; [z, y] = βx; [y, z] = x

AO9 1 [y, y] = x; [z, z] = x; [z, y] = βx

AO10 1 [z, z] = x; [z, y] = x; [y, z] = αx, α �= 0

Remark 3.5. It is proved in [4] that the concepts of right nilpotent and nilpotent are equivalent. It is

also introduced in [4] the concept of solvable Leibniz algebra.

Definition 3.6. Let h and kbe K-vector subspaces of a Leibniz algebra g. We call centralizer of h and k

over g to the K-vector subspace

Cg(h, k) = {x ∈ g | [h, x] ∈ k, [x, h] ∈ k, ∀h ∈ h}.
Remark 3.7. In the case that h = g and k = 0, we obtain the previous notion of center of g.

In Table 1we show some invariants to distinguish isomorphism classes of non-Lie Leibniz algebras.

All these algebras are solvable. We denote by I2 and I3 the following invariants:

I2 = dim Cg (〈a3〉, 0) ,

I3 = dim Cg (〈a1〉, 〈a1〉) .

We reproduce in Table 2 the classification of 3-dimensional complex Leibniz algebras given by Ayupov

and Omirov in [4] (here x, y, z are the basic elements), and in Table 3 we compare the isomorphism

classes with our classification, establishing the correspondence between them.

All the computations are donewith a computer program,whose source code is publicly available as

detailed in Section 4, where some application examples are also shown. Themain conclusions are that

there are 11 isomorphism classes of non-Lie Leibniz algebras. The class AO5 does not correspond with

a Leibniz algebra because the identity
[
z, [y, z]] = [[z, y], z]− [[z, z], y] does not hold. Moreover, the

classes AO9 and AO10 are isomorphic (this will be checked in Example 4.2).
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Table 3

Comparison between classifications.

AO’s class Parameters

AO1 α1 �= 0, α2 = 0 2(a) with γ = 0

AO1 α1 = α2 = 0 2(b)

AO1 α2 �= 0 2(d)

AO2 α1 �= 0, α2 = 0 3(a)

AO2 α1 �= 0, α2 �= 0, α1 �= − α2
2

4
3(a)

AO2 α1 �= 0, α2 �= 0, α1 = − α2
2

4
3(b)

AO2 α1 = 0, α2 = 0 3(c)

AO2 α1 = 0, α2 �= 0 3(d)

AO3 α1 = 1, α2 = 0 3(a)

AO3 α1 = 1, α2 �= 0 3(b)

AO3 α1 �= 0, α1 �= 1 3(a) with β = α1 or β = 1
α1

AO3 α1 = 0 3(d)

AO4 α = 0, β �= 1 2(a) with γ = 0

AO4 α = 0, β = 1 2(b)

AO4 α �= 0 2(d)

AO5 It is not Leibniz algebra

AO6 2(e)

AO7 2(g)

AO8 α �= β, β �= 1 2(a) with γ = α−β

(β−1)2

AO8 α = β, α �= 0, α �= 1 2(a) with γ = 0

AO8 α = β = 0 2(a) with γ = 0

AO8 α = β = 1 2(b)

AO8 α �= 1, β = 1 2(c)

AO9 β �= 0 2(a) with γ = 1

β2

AO9 β = 0 2(c)

AO10 α �= 0, α �= 1 2(a) with γ = − α
(α−1)2

AO10 α = 1 2(c)

2(f)

4. Some computations

This section is devoted to showing some examples of computations with a Mathematica program

that implements Algorithm2.6 discussed in Section 2. This program establishes the existence of a non-

singularmatrix P satisfying the equation (1.5). TheMathematica notebook Iso_Leibniz.nb together

with some examples are available at http://www.usc.es/regaca/mladra/Iso_Leibniz.nb.

The following example shows the application of Algorithm 2.6 on two Leibniz algebras structures

corresponding to the family 3(a). The example checks the case 4 of Remark 3.2.

Example 4.1. Let (g = 〈{a1, a2, a3}〉, [−, −]1) and (g = 〈{a1, a2, a3}〉, [−, −]2) be two Leibniz alge-

bras such that [a1, a3]1 = β ·a1, [a2, a3]1 = a2 (0 otherwise) and [a1, a3]2 = 1
β
·a1, [a2, a3]2 = a2

(0 otherwise).

We check if the two Leibniz algebras are isomorphic as follows:

BracketEqZero[3]

BracketOne[1, 3] := {β, 0, 0}
BracketOne[2, 3] := {0, 1, 0}

BracketTwo[1, 3] := {1/β, 0, 0}
BracketTwo[2, 3] := {0, 1, 0}

IsoLeibnizQ[3]

http://www.usc.es/regaca/mladra/Iso_Leibniz.nb
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Algebras are isomorphic
To obtain the change of basis
matrix P you only need to get a point of the variety generated by
(take into account that Y=1/Det[P]):

{-1 - 1/β + p[3, 3] + β p[3, 3],
-1/β2 - 1/β + p[3, 3] + p[3, 3]/β, -1/β2 + p[3, 3]2,
p[3, 2], p[3, 1], p[2, 3], -p[2, 2] + β2 p[2, 2],
p[2, 2]/β - β p[2, 2], -p[2, 2] + p[2, 2] p[3, 3],
-p[2, 1]/β + p[2, 1] p[3, 3],
-p[2, 1] p[2, 2] + β p[2, 1] p[2, 2],
p[1, 3], -p[1, 2]/β + p[1, 2] p[3, 3],
-p[1, 2] p[2, 2] + β p[1, 2] p[2, 2],
-p[1, 1] + β2 p[1, 1], p[1, 1]/β - β p[1, 1],
-p[1, 1] + p[1, 1] p[3, 3], -p[1, 1] p[2, 1] + β p[1, 1] p[2, 1],
-p[1, 1] p[1, 2] + β p[1, 1] p[1, 2],
1/β - β + β2 - Y p[1, 2] p[2, 1] + Y β p[1, 2] p[2, 1] - p[3, 3],
1 + 1/β - β - Y p[1, 2] p[2, 1] + Y p[1, 2] p[2, 1]/β - p[3, 3],
1/β - β - Y p[1, 2] p[2, 1] + Y p[1, 1] p[2, 2] - p[3, 3]}

The output provides the equations of the algebraic variety that satisfies the matrix P.

For example, a point of this variety is P =

⎛
⎜⎜⎜⎝

0 1 0

1 0 0

0 0 1
β

⎞
⎟⎟⎟⎠ .

The following example checks that the cases AO9 and AO10 are isomorphic.

Example 4.2. Let (g =< {a1, a2, a3} >, [−, −]1) and (g =< {a1, a2, a3} >, [−, −]2) be two

Leibniz algebras such that [a2, a2]1 = a1, [a3, a2]1 = β · a1, β �= 0, [a3, a3]1 = a1 (0 otherwise)

and [a2, a3]2 = α · a1, 0 �= α �= 1, [a3, a3]2 = a1, [a3, a2]2 = a1 (0 otherwise).

BracketEqZero[3]

BracketOne[2,2] := {1, 0, 0}
BracketOne[3,2] := {β, 0, 0}
BracketOne[3,3] := {1, 0, 0}

BracketTwo[2,3] := {α, 0, 0}
BracketTwo[3,2] := {1, 0, 0}
BracketTwo[3,3] := {1, 0, 0}

IsoLeibnizQ[3]

Algebras are isomorphic
The first term of the output of the polynomials that generate the variety whose points are all the

possible values of P is 1−2α+α2 +αβ2 = 0, which is equivalent to 1

β2 = − α
(α−1)2

, and corresponds

to the case 2(a) or AO9 and AO10 (see Table 3). Taking, for example, α = −1 and β = 2, a matrix P

satisfying (1.5) is P =

⎛
⎜⎜⎜⎝

1 p12 p13

0 1 0

0 −1 1

⎞
⎟⎟⎟⎠ .
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