Classification of solvable Leibniz algebras with naturally graded filiform nilradical

J.M. Casas ${ }^{\text {a,* }}$, M. Ladra $^{\text {b }}$, B.A. Omirov ${ }^{\text {c }}$, I.A. Karimjanov ${ }^{\text {c }}$
${ }^{a}$ Dpto. de Matemática Aplicada I, Universidad de Vigo, 36005 Pontevedra, Spain
b Departamento de Álgebra, Universidad de Santiago, 15782 Santiago, Spain
${ }^{\text {c }}$ Institute of Mathematics, National University of Uzbekistan, 29, Do'rmon yo'li Street, 100125 Tashkent, Uzbekistan

ARTICLEINFO

Article history:

Received 9 April 2012
Accepted 22 November 2012
Available online 4 January 2013
Submitted by H. Schneider
Dedicated to the memory of J.-L. Loday.

AMS classification:

17A32
17A36
17A65
17B30

Keywords:
Lie algebra
Leibniz algebra
Natural graduation
Filiform algebra
Solvability
Nilpotency
Nilradical
Derivation
Nil-independence

Abstract

In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classification of solvable Lie algebras with naturally graded filiform Lie algebra to the case of Leibniz algebras. Namely, the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra is obtained.

© 2012 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Solvable Lie algebras have played a significant role in recent decades, where they have been applied systematically to integrable systems, in the formulation of non-abelian gauge theories, in quantum gravity and string theories in the low-energy supergravity limit (see, e.g. [1,2]). The need for a classification of solvable Lie algebras of higher dimensions in physics arises in particular in the classification of higher dimensional Einstein spaces, or other pseudo-Riemannian spaces that can occur in string theories, brane cosmology and other elementary particle theories.

Leibniz algebras were introduced at the beginning of the 90 s of the past century by J.-L. Loday in [3]. They are a "non-commutative" generalization of Lie algebras. Leibniz algebras inherit an important property of Lie algebras which is that the right multiplication operator on an element of a Leibniz algebra is a derivation. Active investigations on Leibniz algebra theory show that many results of the theory of Lie algebras can be extended to Leibniz algebras. Of course, distinctive properties of non-Lie Leibniz algebras have also been studied [4,5].

In fact, for a Leibniz algebra we have the corresponding Lie algebra, which is the quotient algebra by the two-sided ideal I generated by the square elements of a Leibniz algebra. Notice that this ideal is the minimal one such that the quotient algebra is a Lie algebra and in the case of non-Lie Leibniz algebras it is always non trivial (moreover, it is abelian).

From the theory of Lie algebras it is well known that the study of finite dimensional Lie algebras was reduced to the nilpotent ones [6,7]. In the Leibniz algebra case we have an analogue of Levi's theorem [5]. Namely, the decomposition of a Leibniz algebra into a semidirect sum of its solvable radical and a semisimple Lie algebra is obtained. The semisimple part can be described from simple Lie ideals and therefore, the main problem is to study the solvable radical, i.e. in a similar way as in the case of Lie algebras, the description of Leibniz algebras is reduced to the description of the solvable ones. The analysis of works devoted to the study of solvable Lie algebras (for example [8-12], where solvable Lie algebras with various types of nilradical were studied, such as naturally graded filiform and quasi-filiform algebras, abelian, triangular, etc.) shows that we can also apply similar methods to solvable Leibniz algebras with a given nilradical. Some results of Lie algebra theory generalized to Leibniz algebras [13] allow us to apply the technique of description of solvable extensions of nilpotent Lie algebras to the case of Leibniz algebras.

The aim of the present paper is to classify solvable Leibniz algebras with naturally graded filiform nilradical. Thanks to the works [4,14], we already have the classification of naturally graded filiform Leibniz algebras.

In order to achieve our goal we organize the paper as follows. In Section 2 we give some necessary notions and preliminary results about Leibniz algebras and solvable Lie algebras with naturally graded filiform radical. Section 3 is devoted to the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Lie algebra and in Section 4 we describe, up to isomorphisms, solvable Leibniz algebras whose nilradical is a naturally graded filiform non-Lie Leibniz algebra.

Throughout the paper vector spaces and algebras are finite-dimensional over the field of the complex numbers. Moreover, in the table of multiplication of an algebra the omitted products are assumed to be zero and, if it is not noted, we shall consider non-nilpotent solvable algebras.

2. Preliminaries

In this section we give necessary definitions and preliminary results.
Definition 2.1. A vector space with bilinear bracket ($L,[-,-]$) over a field F is called a Leibniz algebra if for any $x, y, z \in L$ the so-called Leibniz identity

$$
[x,[y, z]]=[[x, y], z]-[[x, z], y]
$$

holds, or equivalently, $[[x, y], z]=[[x, z], y]+[x,[y, z]]$.

Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, there exists the version corresponding to the left Leibniz identity,

$$
[[x, y], z]=[x,[y, z]]-[y,[x, z]] .
$$

From the Leibniz identity we conclude that the elements $[x, x],[x, y]+[y, x]$, for any $x, y \in L$, lie in $\operatorname{Ann}_{r}(L)=\{x \in L \mid[y, x]=0$, for all $y \in L\}$, the right annihilator of the Leibniz algebra L. Moreover, we also get that $\mathrm{Ann}_{r}(L)$ is a two-sided ideal of L.

The two-sided ideal $\operatorname{Center}(L)=\{x \in L \mid[x, y]=0=[y, x]$, for all $y \in L\}$ is said to be the center of L.

Definition 2.2. A linear map $d: L \rightarrow L$ of a Leibniz algebra $(L,[-,-])$ is said to be a derivation if for all $x, y \in L$, the following condition holds:

$$
d([x, y])=[d(x), y]+[x, d(y)] .
$$

For a given element x of a Leibniz algebra L, the right multiplication operators $\mathcal{R}_{x}: L \rightarrow L, \mathcal{R}_{x}(y)=$ $[y, x], y \in L$, are derivations (for a left Leibniz algebra L, the left multiplication operators $\mathcal{L}_{\chi}: L \rightarrow$ $L, \mathcal{L}_{x}(y)=[x, y], y \in L$, are derivations). This kind of derivations are said to be inner derivations. Any Leibniz algebra L has associated the algebra of right multiplications $\mathcal{R}(L)=\left\{\mathcal{R}_{x} \mid x \in L\right\} . \mathcal{R}(L)$ is endowed with a structure of Lie algebra by means of the bracket $\left[\mathcal{R}_{x}, \mathcal{R}_{y}\right]=\mathcal{R}_{x} \mathcal{R}_{y}-\mathcal{R}_{y} \mathcal{R}_{x}=\mathcal{R}_{[y, x]}$. Moreover, there is an antisymmetric isomorphism between $\mathcal{R}(L)$ and the quotient algebra $L / \operatorname{Ann}_{r}(L)$.

Definition 2.3. For a given Leibniz algebra ($L,[-,-]$) the sequences of two-sided ideals defined recursively as follows:

$$
L^{1}=L, L^{k+1}=\left[L^{k}, L\right], \quad k \geqslant 1, \quad L^{[1]}=L, L^{[s+1]}=\left[L^{[s]}, L^{[s]}\right], \quad s \geqslant 1,
$$

are said to be the lower central and the derived series of L, respectively.
Definition 2.4. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there exists $n \in \mathbb{N}$ $(m \in \mathbb{N})$ such that $L^{n}=0$ (respectively, $L^{[m]}=0$). The minimal number n (respectively, m) with such property is said to be the index of nilpotency (respectively, of solvability) of the algebra L.

Evidently, the index of nilpotency of an n-dimensional nilpotent algebra is not greater than $n+1$.
Definition 2.5. An n-dimensional Leibniz algebra L is said to be null-filiform if $\operatorname{dim} L^{i}=n+1-i, 1 \leqslant$ $i \leqslant n+1$.

Evidently, null-filiform Leibniz algebras have maximal index of nilpotency.
Theorem 2.6 [4]. An arbitrary n-dimensional null-filiform Leibniz algebra is isomorphic to the algebra

$$
N F_{n}: \quad\left[e_{i}, e_{1}\right]=e_{i+1}, \quad 1 \leqslant i \leqslant n-1,
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis of the algebra $N F_{n}$.
Actually, a nilpotent Leibniz algebra is null-filiform if and only if it is one-generated algebra. Notice that this notion has no sense in Lie algebras case, because they are at least two-generated.

Definition 2.7. An n-dimensional Leibniz algebra L is said to be filiform if $\operatorname{dim} L^{i}=n-i$, for $2 \leqslant i \leqslant n$.
Now let us define a natural graduation for a filiform Leibniz algebra.

Definition 2.8. Given a filiform Leibniz algebra L, put $L_{i}=L^{i} / L^{i+1}, 1 \leqslant i \leqslant n-1$, and $\operatorname{gr}(L)=$ $L_{1} \oplus L_{2} \oplus \cdots \oplus L_{n-1}$. Then $\left[L_{i}, L_{j}\right] \subseteq L_{i+j}$ and we obtain the graded algebra $\operatorname{gr}(L)$. If $\operatorname{gr}(L)$ and L are isomorphic, then we say that an algebra L is naturally graded.

Thanks to [14] it is well known that there are two types of naturally graded filiform Lie algebras. In fact, the second type will appear only in the case when the dimension of the algebra is even.

Theorem 2.9 [14]. Any complex naturally graded filiform Lie algebra is isomorphic to one of the following non isomorphic algebras:

$$
\begin{aligned}
& n_{n, 1}:\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1}, \quad 2 \leqslant i \leqslant n-1 . \\
& Q_{2 n}: \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant 2 n-2, \\
{\left[e_{i}, e_{2 n+1-i}\right]=-\left[e_{2 n+1-i}, e_{i}\right]=(-1)^{i} e_{2 n},} & 2 \leqslant i \leqslant n .\end{cases}
\end{aligned}
$$

In the following theorem we recall the classification of the naturally graded filiform non-Lie Leibniz algebras given in [4].

Theorem 2.10 [4]. Any complex n-dimensional naturally graded filiform non-Lie Leibniz algebra is isomorphic to one of the following non isomorphic algebras:

$$
\begin{aligned}
& F_{n}^{1}=\left\{\begin{array}{l}
{\left[e_{1}, e_{1}\right]=e_{3},} \\
{\left[e_{i}, e_{1}\right]=e_{i+1}, 2 \leqslant i \leqslant n-1,}
\end{array}\right. \\
& F_{n}^{2}=\left\{\begin{array}{l}
{\left[e_{1}, e_{1}\right]=e_{3},} \\
{\left[e_{i}, e_{1}\right]=e_{i+1}, 3 \leqslant i \leqslant n-1 .}
\end{array}\right.
\end{aligned}
$$

Definition 2.11. The maximal nilpotent ideal of a Leibniz algebra is said to be the nilradical of the algebra.

Notice that the nilradical is not the radical in the sense of Kurosh, because the quotient Leibniz algebra by its nilradical may contain a nilpotent ideal (see [6]).

All solvable Lie algebras whose nilradical is the naturally graded filiform Lie algebra $n_{n, 1}$ are classified in [15]. Further solvable Lie algebras whose nilradical is the naturally graded filiform Lie algebra $Q_{2 n}$ are classified in [16].

Using the above classifications, we shall give the classification of solvable non-Lie Leibniz algebras whose nilradical is a naturally graded filiform Lie algebra.

It is proved that the dimension of a solvable Lie algebra whose nilradical is isomorphic to an n dimensional naturally graded filiform Lie algebra is not greater than $n+2$. Below, we present their classification.

In order to agree with the tables of multiplications of algebras in Theorems 2.9 and 2.10, we make the following change of basis in the classification of [15]:

$$
e_{i}^{\prime}=e_{n+1-i}, \quad 1 \leqslant i \leqslant n, \quad x=-f .
$$

We also use different notation to denote the algebras that appear in [15]. That way the results would be:

Theorem 2.12 [15]. There are three types of solvable Lie algebras of dimension $n+1$ with nilradical isomorphic to $n_{n, 1}$, for any $n \geqslant 4$. The isomorphism classes in the basis $\left\{e_{1}, \ldots, e_{n}, x\right\}$ are represented by the following algebras:

$$
S_{n+1}(\alpha, \beta):\left\{\begin{aligned}
{\left[e_{i}, e_{1}\right] } & =-\left[e_{1}, e_{i}\right]=e_{i+1}, & & 2 \leqslant i \leqslant n-1, \\
{\left[e_{i}, x\right] } & =-\left[x, e_{i}\right]=((i-2) \alpha+\beta) e_{i}, & & 2 \leqslant i \leqslant n, \\
{\left[e_{1}, x\right] } & =-\left[x, e_{1}\right]=\alpha e_{1} . & &
\end{aligned}\right.
$$

The mutually non-isomorphic algebras of this type are $S_{n+1,1}(\beta)=S_{n+1}(1, \beta)$ (depending on the value of β, in this case there are three different classes, $\beta=0, \beta=n-2$ and $\beta \notin\{0, n-2\})$ and $S_{n+1,2}=$ $S_{n+1}(0,1)$.

$$
\begin{aligned}
& S_{n+1,3}: \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-1, \\
{\left[e_{i}, x\right]=-\left[x, e_{i}\right]=(i-1) e_{i},} & 2 \leqslant i \leqslant n, \\
{\left[e_{1}, x\right]=-\left[x, e_{1}\right]=e_{1}+e_{2} .}\end{cases} \\
& S_{n+1,4}\left(\alpha_{3}, \alpha_{4}, \ldots, \alpha_{n-1}\right):\left\{\begin{array}{l}
{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1}, \quad 2 \leqslant i \leqslant n-1,} \\
{\left[e_{i}, x\right]=-\left[x, e_{i}\right]=e_{i}+\sum_{l=i+2}^{n} \alpha_{l+1-i} e_{l}, 2 \leqslant i \leqslant n,}
\end{array}\right.
\end{aligned}
$$

where at least one α_{i} satisfies $\alpha_{i} \neq 0$ and the first non-vanishing parameter $\left\{\alpha_{3}, \ldots, \alpha_{n-1}\right\}$ can be assumed to be equal to 1 .

Theorem 2.13 [15]. There exists only one class of solvable Lie algebras of dimension $n+2$ with nilradical $n_{n, 1}$. It is represented by a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, x, y\right\}$ and the Lie brackets are

$$
S_{n+2}:\left\{\begin{aligned}
{\left[e_{i}, e_{1}\right] } & =-\left[e_{1}, e_{i}\right]=e_{i+1}, & & 2 \leqslant i \leqslant n-1, \\
{\left[e_{i}, x\right] } & =-\left[x, e_{i}\right]=(i-2) e_{i}, & & 2 \leqslant i \leqslant n, \\
{\left[e_{1}, x\right] } & =-\left[x, e_{1}\right]=e_{1}, & & \\
{\left[e_{i}, y\right] } & =-\left[y, e_{i}\right]=e_{i}, & & 2 \leqslant i \leqslant n .
\end{aligned}\right.
$$

Now we recall the classification given in [16] after the following change of basis:

$$
e_{1}^{\prime}=-e_{1}, \quad x^{\prime}=-Y_{1}, \quad y^{\prime}=-Y_{2}
$$

Proposition 2.14 [16]. Any solvable Lie algebra of dimension $2 n+1$ with nilradical isomorphic to $Q_{2 n}$ is isomorphic to one of the following algebras:

$$
\begin{aligned}
& Q_{2 n+1,1}(\alpha): \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant 2 n-2, \\
{\left[e_{i}, e_{2 n+1-i}\right]=-\left[e_{2 n+1-i}, e_{i}\right]=(-1)^{i} e_{2 n},} & 2 \leqslant i \leqslant n, \\
{\left[e_{1}, x\right]=-\left[x, e_{1}\right]=e_{1},} \\
{\left[e_{i}, x\right]=-\left[x, e_{i}\right]=(i-2+\alpha) e_{i},} & 2 \leqslant i \leqslant 2 n-1, \\
{\left[e_{2 n}, x\right]=-\left[x, e_{2 n}\right]=(2 n-3-2 \alpha) e_{2 n} .}\end{cases} \\
& Q_{2 n+1,2}: \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant 2 n-2, \\
{\left[e_{i}, e_{2 n+1-i}\right]=-\left[e_{2 n+1-i}, e_{i}\right]=(-1)^{i} e_{2 n},} & 2 \leqslant i \leqslant n, \\
{\left[e_{1}, x\right]=-\left[x, e_{1}\right]=e_{1}+\varepsilon e_{2 n},} & \varepsilon=0,1, \\
{\left[e_{i}, x\right]=-\left[x, e_{i}\right]=(i-n) e_{i},} & 2 \leqslant i \leqslant 2 n-1, \\
{\left[e_{2 n}, x\right]=-\left[x, e_{2 n}\right]=e_{2 n} .} & \end{cases}
\end{aligned}
$$

$$
Q_{2 n+1,3}(\alpha): \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant 2 n-2, \\ {\left[e_{i}, e_{2 n+1-i}\right]=-\left[e_{2 n+1-i}, e_{i}\right]=(-1)^{i} e_{2 n},} & 2 \leqslant i \leqslant n, \\ {\left[e_{2+i}, x\right]=-\left[x, e_{2+i}\right]=e_{2+i}+\sum_{k=2}^{\left.\frac{2 n-3-i}{2}\right\rfloor} \alpha^{2 k+1} e_{2 k+1+i},} & \\ & 0 \leqslant i \leqslant 2 n-6, \\ {\left[e_{2 n-i}, x\right]=-\left[x, e_{2 n-i}\right]=e_{2 n-i},} & i=1,2,3, \\ {\left[e_{2 n}, x\right]=-\left[x, e_{2 n}\right]=2 e_{2 n} .} & \end{cases}
$$

Proposition 2.15 [16]. For any $n \geqslant 3$ there is only one $(2 n+2)$-dimensional solvable Lie algebra having a nilradical isomorphic to $Q_{2 n}$:

$$
\begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant 2 n-2, \\ {\left[e_{i}, e_{2 n+1-i}\right]=-\left[e_{2 n+1-i}, e_{i}\right]=(-1)^{i} e_{2 n},} & 2 \leqslant i \leqslant n, \\ {\left[e_{i}, x\right]=-\left[x, e_{i}\right]=i e_{i},} & 1 \leqslant i \leqslant 2 n-1, \\ {\left[e_{2 n}, x\right]=-\left[x, e_{2 n}\right]=(2 n+1) e_{2 n},} & \\ {\left[e_{i}, y\right]=-\left[y, e_{i}\right]=e_{i},} & 1 \leqslant i \leqslant 2 n-1, \\ {\left[e_{2 n}, y\right]=-\left[y, e_{2 n}\right]=2 e_{2 n} .} & \end{cases}
$$

Let R be a solvable Leibniz algebra with nilradical N. We denote by Q the complementary vector space of the nilradical N to the algebra R. Let us consider the restrictions to N of the right multiplication operator on an element $x \in Q$ (denoted by $\mathcal{R}_{\left.x\right|_{N}}$). If the operator $\mathcal{R}_{\left.x\right|_{N}}$ is nilpotent, then we assert that the subspace $\langle x+N\rangle$ is a nilpotent ideal of the algebra R. Indeed, since for a solvable Leibniz algebra R we get the inclusion $R^{2} \subseteq N$ [13], and hence the subspace $\langle x+N\rangle$ is an ideal. The nilpotency of this ideal follows from the Engel's theorem for Leibniz algebras [13]. Therefore, we have a nilpotent ideal which strictly contains the nilradical, which is in contradiction with the maximality of N. Thus, we obtain that for any $x \in Q$, the operator $\mathcal{R}_{\left.x\right|_{N}}$ is a non-nilpotent derivation of N.

Let $\left\{x_{1}, \ldots, x_{m}\right\}$ be a basis of Q, then for any scalars $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \in \mathbb{C} \backslash\{0\}$, the matrix $\alpha_{1} \mathcal{R}_{\left.x_{1}\right|_{N}}+$ $\cdots+\alpha_{m} \mathcal{R}_{\left.x_{m}\right|_{N}}$ is not nilpotent, which means that the elements $\left\{x_{1}, \ldots, x_{m}\right\}$ are nil-independent [17]. Therefore, we have that the dimension of Q is bounded by the maximal number of nil-independent derivations of the nilradical N. Moreover, similar to the case of Lie algebras, for a solvable Leibniz algebra R the inequality $\operatorname{dim} N \geqslant \frac{\operatorname{dim} R}{2}$ holds.

3. Solvable Leibniz algebras whose nilradical is a Lie algebra

It is not difficult to see that if R is a solvable non-Lie Leibniz algebra with nilradical isomorphic to the algebras $n_{n, 1}$ or $Q_{2 n}$, then the dimension of R is also not greater than $n+2$ and $2 n+2$, respectively.

Let $n_{n, 1}$ or $Q_{2 n}$ be the nilradical of a solvable Leibniz algebra R. Since the ideal $I=\langle\{[x, x] \mid x \in R\}\rangle$ is contained in $\operatorname{Ann}_{r}(R)$, then I is abelian, hence it is contained in the nilradical. Taking into account the multiplication in $n_{n, 1}$ (respectively $Q_{2 n}$) we conclude that $I=\left\langle\left\{e_{n}\right\}\right\rangle$.

Having in mind that an $(n+1)$-dimensional algebra R is solvable, then the quotient algebra R / I is also a solvable Lie algebra with nilradical $n_{n, 1}$ (whose lists of tables of multiplication are given in Theorems 2.12 and 2.13).
Case $n_{n, 1}$. Let us assume that R has dimension $n+1$, then the table of multiplication in R will be equal to the table of multiplication of $S_{n+1, i},(i=1,2,3,4)$, except the following products:

$$
\begin{array}{lll}
{\left[e_{1}, x\right]=\alpha_{1} e_{1}+\gamma_{4} e_{n},} & & {\left[e_{2}, x\right]=\beta_{1} e_{2}+\gamma_{5} e_{n},} \\
{\left[x, e_{1}\right]=-\alpha_{1} e_{1}+\gamma_{1} e_{n},} & {\left[x, e_{2}\right]=-\beta_{1} e_{2}+\gamma_{2} e_{n},} & {[x, x]=\gamma_{3} e_{n},}
\end{array}
$$

where $\left(\gamma_{1}+\gamma_{4}, \gamma_{2}+\gamma_{5}, \gamma_{3}\right) \neq(0,0,0)$.

Note that taking the change of basis

$$
e_{1}^{\prime}=\alpha_{1} e_{1}+\gamma_{4} e_{n}, \quad e_{2}^{\prime}=\beta_{1} e_{2}+\gamma_{5} e_{n}
$$

we can assume that $\gamma_{4}=\gamma_{5}=0$, i.e., $\left[e_{1}, x\right]=\alpha e_{1}$ and $\left[e_{2}, x\right]=\beta e_{2}$.
It is not difficult to see that, for the omitted products, the antisymmetric identity holds, i.e.

$$
\left\{\begin{aligned}
{\left[e_{i}, e_{1}\right] } & =-\left[e_{1}, e_{i}\right]=e_{i+1}, & & 2 \leqslant i \leqslant n-1, \\
{\left[e_{i}, x\right] } & =-\left[x, e_{i}\right], & & 3 \leqslant i \leqslant n .
\end{aligned}\right.
$$

We have $\left[e_{n}, x\right]=0$ because $0=\left[x, e_{n}\right]=-\left[e_{n}, x\right]$.
Consider

$$
0=\left[x, e_{n}\right]=\left[x,\left[e_{n-1}, e_{1}\right]\right]=\left[\left[x, e_{n-1}\right], e_{1}\right]-\left[\left[x, e_{1}\right], e_{n-1}\right]=-(n-2+\beta) e_{n} .
$$

In the list of Theorem 2.12 only the algebra $S_{n+1,1}(\beta)$ is representative of the class for which the equality $\left[e_{n}, x\right]=0$ holds. This class is defined by $\beta=2-n$.

Therefore, in the case of $\operatorname{dim} R=n+1$ whose nilradical is $n_{n, 1}$, we have the following family:

$$
R_{n+1,1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right):\left\{\begin{array}{l}
{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1}, \quad 2 \leqslant i \leqslant n-1,} \\
{\left[e_{1}, x\right]=e_{1},} \\
{\left[x, e_{1}\right]=-e_{1}+\gamma_{1} e_{n},} \\
{\left[e_{2}, x\right]=(2-n) e_{2},} \\
{\left[x, e_{2}\right]=(n-2) e_{2}+\gamma_{2} e_{n},} \\
{\left[e_{i}, x\right]=-\left[x, e_{i}\right]=(i-n) e_{i}, \quad 3 \leqslant i \leqslant n-1,} \\
{[x, x]=\gamma_{3} e_{n},}
\end{array}\right.
$$

where $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \neq(0,0,0)$.
Applying a similar argument and the table of multiplication of the algebra in Theorem 2.13, we conclude that solvable non-Lie Leibniz algebras of dimension $n+2$ with nilradical $n_{n, 1}$ do not exist.

Theorem 3.1. Any $(n+1)$-dimensional solvable Leibniz algebra with nilradical $n_{n, 1}$ is isomorphic to one of the following pairwise non isomorphic algebras:

$$
R_{n+1,1}(0,0,1), \quad R_{n+1,1}(0,1,0), \quad R_{n+1,1}(1,1,0), \quad R_{n+1,1}(1,0,0) .
$$

Proof. We consider the general change of basis in the family $R_{n+1,1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$:

$$
e_{1}^{\prime}=\sum_{i=1}^{n} A_{i} e_{i}, \quad e_{2}^{\prime}=\sum_{i=1}^{n} B_{i} e_{i}, \quad x^{\prime}=D x+\sum_{i=1}^{n} c_{i} e_{i},
$$

where $\left(A_{1} B_{2}-B_{1} A_{2}\right) D \neq 0$.
Using $\left[e_{i}^{\prime}, e_{1}^{\prime}\right]=e_{i+1}^{\prime}, 2 \leqslant i \leqslant n-1$, the table of multiplication of $R_{n+1,1}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ and an induction, we obtain

$$
e_{i}^{\prime}=A_{1}^{i-3} \sum_{j=i}^{n}\left(A_{1} B_{j+2-i}-B_{1} A_{j+2-i}\right) e_{j}, \quad 3 \leqslant i \leqslant n .
$$

From the equalities

$$
0=\left[e_{3}^{\prime}, e_{2}^{\prime}\right]=B_{1} \sum_{j=4}^{n}\left(A_{1} B_{j-2}-B_{1} A_{j-2}\right) e_{j},
$$

we have $B_{1}=0$.

Consider the multiplications

$$
\begin{aligned}
{\left[e_{1}^{\prime}, x^{\prime}\right]=} & A_{1} D e_{1}-D \sum_{i=2}^{n-1} A_{i}(n-i) e_{i}+\sum_{i=3}^{n}\left(A_{i-1} C_{1}-A_{1} C_{i-1}\right) e_{i} \\
= & A_{1} D e_{1}-A_{2} D(n-2) e_{2}+\sum_{i=3}^{n-1}\left(A_{i-1} C_{1}-A_{1} C_{i-1}-(n-i) A_{i} D\right) e_{i} \\
& +\left(A_{n-1} C_{1}-A_{1} C_{n-1}\right) e_{n} .
\end{aligned}
$$

On the other hand, we have

$$
\left[e_{1}^{\prime}, x^{\prime}\right]=e_{1}^{\prime}=\sum_{i=1}^{n} A_{i} e_{i} .
$$

Comparing the coefficients of the basis elements we derive:

$$
\begin{aligned}
D & =1, \quad A_{2}=0, \quad A_{i+1}=\frac{A_{1} C_{i}-A_{i} C_{1}}{i-n-1}, \quad 2 \leqslant i \leqslant n-2, \\
A_{n} & =A_{1} C_{n-1}-A_{n-1} C_{n} .
\end{aligned}
$$

From the equalities

$$
\begin{aligned}
-(n-2) \sum_{i=2}^{n} B_{i} e_{i} & =-(n-2) e_{2}^{\prime}=\left[e_{2}^{\prime}, x^{\prime}\right]=\left[\sum_{i=2}^{n} B_{i} e_{i}, x+\sum_{i=1}^{n} c_{i} e_{i}\right] \\
& =-\sum_{i=2}^{n-1} B_{i}(n-i) e_{i}+C_{1} \sum_{i=3}^{n} B_{i-1} e_{i} \\
& =-B_{2}(n-2) e_{2}+\sum_{i=3}^{n-1}\left(B_{i-1} C_{1}-B_{i}(n-i)\right) e_{i}+B_{n-1} C_{1} e_{n}
\end{aligned}
$$

we deduce the following restrictions:

$$
B_{i}=(-1)^{i} \frac{B_{2} C_{1}^{i-2}}{(i-2)!}, \quad 3 \leqslant i \leqslant n .
$$

In an analogous way, comparing coefficients at the basis element e_{n} in the equalities, we obtain:

$$
\gamma_{3}^{\prime} A_{1}^{n-2} B_{2} e_{n}=\gamma_{3}^{\prime} e_{n}^{\prime}=\left[x^{\prime}, x^{\prime}\right]=\left(\gamma_{3}+C_{1} \gamma_{1}+C_{2} \gamma_{2}\right) e_{n}
$$

and thus

$$
\gamma_{3}^{\prime}=\frac{\gamma_{3}+C_{1} \gamma_{1}+C_{2} \gamma_{2}}{A_{1}^{n-2} B_{2}}
$$

With a similar argument, we obtain

$$
-e_{1}^{\prime}+A_{1}^{n-2} B_{2} \gamma_{1}^{\prime} e_{n}=-e_{1}^{\prime}+\gamma_{1}^{\prime} e_{n}^{\prime}=\left[x^{\prime}, e_{1}^{\prime}\right]=-e_{1}^{\prime}+A_{1} \gamma_{1} e_{n},
$$

and

$$
-(n-2) e_{2}^{\prime}+A_{1}^{n-2} B_{2} \gamma_{2}^{\prime} e_{n}=(n-2) e_{2}^{\prime}+\gamma_{2}^{\prime} e_{n}^{\prime}=\left[x^{\prime}, e_{2}^{\prime}\right]=(n-2) e_{2}^{\prime}+B_{2} \gamma_{2} e_{n},
$$

and hence

$$
\gamma_{1}^{\prime}=\frac{\gamma_{1}}{A_{1}^{n-3} B_{2}} \quad \text { and } \quad \gamma_{2}^{\prime}=\frac{\gamma_{2}}{A_{1}^{n-2}}
$$

Now we shall consider the possible cases of the parameters $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$.
Case 1. Let $\gamma_{1}=0$. Then $\gamma_{1}^{\prime}=0$.
If $\gamma_{2}=0$, then $\gamma_{2}^{\prime}=0$ and $\gamma_{3}^{\prime}=\frac{\gamma_{3}}{A_{1}^{n-2} B_{2}} \neq 0$. Putting $B_{2}=\frac{\gamma_{3}}{A_{1}^{n-2}}$, then we have that $\gamma_{3}^{\prime}=1$, and thus the algebra is $R_{n+1,1}(0,0,1)$.

If $\gamma_{2} \neq 0$, then putting $A_{1}=\sqrt[n-2]{\gamma_{2}}$ and $C_{2}=-\frac{\gamma_{3}}{\gamma_{2}}$, we get $\gamma_{2}^{\prime}=1$ and $\gamma_{3}^{\prime}=0$, i.e. we obtain the algebra $R_{n+1,1}(0,1,0)$.
Case 2. Let $\gamma_{1} \neq 0$. Then putting $B_{2}=\frac{\gamma_{1}}{A_{1}^{n-3}}$ and $C_{1}=-\frac{\gamma_{3}+C_{2} \gamma_{2}}{\gamma_{1}}$, we have:

$$
\gamma_{1}^{\prime}=1, \quad \gamma_{2}^{\prime}=\frac{\gamma_{2}}{A_{1}^{n-2}}, \quad \gamma_{3}^{\prime}=0
$$

If $\gamma_{2} \neq 0$, then putting $A_{1}=\sqrt[n-2]{\gamma_{2}}$ we have that $\gamma_{2}^{\prime}=1$, and thus we obtain the algebra $R_{n+1,1}(1,1,0)$.

If $\gamma_{2}=0$, then we get the algebra $R_{n+1,1}(1,0,0)$.
Case $Q_{2 n}$. Similarly as above, from Propositions 2.14 and 2.15, we conclude that solvable non-Lie Leibniz algebras with nilradical $Q_{2 n}$ exist only in the case of $\operatorname{dim} R=2 n+1$ and they are isomorphic to $Q_{2 n+1,1}(\alpha)$ for $\alpha=\frac{2 n-3}{2}$. Thus, we have

$$
R_{2 n+1,1}: \begin{cases}{\left[e_{i}, e_{1}\right]=-\left[e_{1}, e_{i}\right]=e_{i+1},} & 2 \leqslant i \leqslant 2 n-2, \\ {\left[e_{i}, e_{2 n+1-i}\right]=-\left[e_{2 n+1-i}, e_{i}\right]=(-1)^{i} e_{2 n},} & 2 \leqslant i \leqslant n, \\ {\left[e_{1}, x\right]=e_{1},} & \\ {\left[x, e_{1}\right]=-e_{1}+\gamma_{1} e_{n},} & \\ {\left[e_{2}, x\right]=\frac{2 n-3}{2} e_{2},} & \\ {\left[x, e_{2}\right]=-\frac{2 n-3}{2} e_{2}+\gamma_{2} e_{n},} & \\ {\left[e_{i}, x\right]=-\left[x, e_{i}\right]=\frac{2 n+2 i-7}{2} e_{i},} & 3 \leqslant i \leqslant 2 n-1, \\ {[x, x]=\gamma_{3} e_{n},} & \end{cases}
$$

where $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \neq(0,0,0)$.
Theorem 3.2. Any $(2 n+1)$-dimensional solvable Leibniz algebra with nilradical $Q_{2 n}$ is isomorphic to one of the following pairwise non isomorphic algebras:

$$
R_{2 n+1,1}(0,0,1), \quad R_{2 n+1,1}(0,1,0), \quad R_{2 n+1,1}(1,1,0), \quad R_{2 n+1,1}(1,0,0)
$$

Proof. The proof is carried out by applying similar arguments as in the proof of Theorem 3.1

4. Solvable Leibniz algebras whose nilradical is a non-Lie Leibniz algebra

In the following proposition we describe the derivations of the algebra F_{n}^{1}.
Proposition 4.1. Any derivation of the algebra F_{n}^{1} has the following matrix form:

$$
\left(\begin{array}{ccccccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \ldots & \alpha_{n-1} & \alpha_{n} \\
0 & \alpha_{1}+\alpha_{2} & \alpha_{3} & \alpha_{4} & \ldots & \alpha_{n-1} & \beta \\
0 & 0 & 2 \alpha_{1}+\alpha_{2} & \alpha_{3} & \ldots & \alpha_{n-2} & \alpha_{n-1} \\
0 & 0 & 0 & 3 \alpha_{1}+\alpha_{2} & \ldots & \alpha_{n-3} & \alpha_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & (n-1) \alpha_{1}+\alpha_{2}
\end{array}\right)
$$

Proof. Let d be a derivation of the algebra. We set

$$
d\left(e_{1}\right)=\sum_{i=1}^{n} \alpha_{i} e_{i}, \quad d\left(e_{2}\right)=\sum_{i=1}^{n} \beta_{i} e_{i} .
$$

From the equality

$$
0=d\left(\left[e_{1}, e_{2}\right]\right)=\left[d\left(e_{1}\right), e_{2}\right]+\left[e_{1}, d\left(e_{2}\right)\right]=\beta_{1} e_{3},
$$

we get $\beta_{1}=0$.
Further, we have

$$
d\left(e_{3}\right)=d\left(\left[e_{1}, e_{1}\right]\right)=\left[d\left(e_{1}\right), e_{1}\right]+\left[e_{1}, d\left(e_{1}\right)\right]=\left(2 \alpha_{1}+\alpha_{2}\right) e_{3}+\sum_{i=3}^{n-1} \alpha_{i} e_{i+1} .
$$

On the other hand,

$$
d\left(e_{3}\right)=d\left(\left[e_{2}, e_{1}\right]\right)=\left[d\left(e_{2}\right), e_{1}\right]+\left[e_{2}, d\left(e_{1}\right)\right]=\left(\alpha_{1}+\beta_{2}\right) e_{3}+\sum_{i=3}^{n-1} \beta_{i} e_{i+1} .
$$

Therefore, $\beta_{2}=\alpha_{1}+\alpha_{2}, \beta_{i}=\alpha_{i}, \quad 3 \leqslant i \leqslant n-1$.
With similar arguments applied on the products $\left[e_{i}, e_{1}\right]=e_{i+1}$ and with an induction on i, it is easy to check that the following identities hold for $3 \leqslant i \leqslant n$:

$$
d\left(e_{i}\right)=\left((i-1) \alpha_{1}+\alpha_{2}\right) e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n .
$$

From Proposition 4.1 we conclude that the number of nil-independent outer derivations of the algebra F_{n}^{1} is equal to two. Therefore, by arguments after Proposition 2.15, we have that any solvable Leibniz algebra whose nilradical is F_{n}^{1} has dimension either $n+1$ or $n+2$.

4.1. Solvable Leibniz algebras with nilradical F_{n}^{1}

Below we present the description of such Leibniz algebras when dimension is equal to $n+1$.
Theorem 4.2. An arbitrary $(n+1)$-dimensional solvable Leibniz algebra with nilradical F_{n}^{1} is isomorphic to one of the following pairwise non-isomorphic algebras:

$$
\begin{aligned}
& R_{1}:\left\{\begin{array}{l}
{\left[e_{i}, e_{1}\right]=e_{i+1},} \\
{\left[x, e_{1}\right]=-e_{1}-e_{2},} \\
{\left[e_{1}, x\right]=e_{1},} \\
{\left[e_{i}, x\right]=(i-1) e_{i}, \quad 2 \leqslant i \leqslant n .}
\end{array}\right. \\
& R_{2}(\alpha):\left\{\begin{array}{l}
{\left[e_{i}, e_{1}\right]=e_{i+1},} \\
{\left[x, e_{1}\right]=-e_{1},} \\
{\left[e_{1}, x\right]=e_{1},} \\
{\left[e_{i}, x\right]=(i-1+\alpha) e_{i}, \quad 2 \leqslant i \leqslant n,}
\end{array}\right. \\
& R_{3}:\left\{\begin{array}{l}
{\left[e_{i}, e_{1}\right]=e_{i+1},} \\
{\left[x, e_{1}\right]=-e_{1},} \\
{\left[e_{1}, x\right]=e_{1},} \\
{\left[e_{i}, x\right]=(i-n) e_{i}, \quad 2 \leqslant i \leqslant n-1,} \\
{[x, x]=e_{n} .}
\end{array}\right.
\end{aligned}
$$

$$
R_{4}:\left\{\begin{aligned}
{\left[e_{i}, e_{1}\right]=e_{i+1}, } & 2 \leqslant i \leqslant n-1 \\
{\left[x, e_{1}\right] } & =-e_{1}, \\
{\left[e_{1}, x\right] } & =e_{1}+e_{n}, \\
{\left[e_{i}, x\right] } & =(i+1-n) e_{i}, \\
{[x, x] } & =-e_{n-1}
\end{aligned}\right.
$$

$$
R_{5}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right): \begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} & 2 \leqslant i \leqslant n-1, \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & \\ {\left[e_{1}, x\right]=e_{2}+\sum_{i=4}^{n-1} \alpha_{i} e_{i}} \\ {\left[e_{2}, x\right]=e_{2}+\sum_{i=4}^{n-1} \alpha_{i} e_{i}} \\ {\left[e_{i}, x\right]=e_{i}+\sum_{j=i+2}^{n} \alpha_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n\end{cases}
$$

$$
R_{6}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right): \begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} & 2 \leqslant i \leqslant n-1, \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & \\ {\left[e_{1}, x\right]=e_{2}+\sum_{i=4}^{n-1} \alpha_{i} e_{i}+e_{n}} \\ {\left[e_{2}, x\right]=e_{2}+\sum_{i=4}^{n-1} \alpha_{i} e_{i}} \\ {\left[e_{i}, x\right]=e_{i}+\sum_{j=i+2}^{n} \alpha_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n\end{cases}
$$

$$
R_{7}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right): \begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} & 2 \leqslant i \leqslant n- \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & \\ {\left[e_{1}, x\right]=e_{2}+\sum_{i=4}^{n-1} \alpha_{i} e_{i},} \\ {\left[e_{2}, x\right]=e_{2}+\sum_{i=4}^{n-1} \alpha_{i} e_{i}+e_{n},} & \\ {\left[e_{i}, x\right]=e_{i}+\sum_{j=i+2}^{n} \alpha_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n .\end{cases}
$$

Moreover, the first non-vanishing parameter $\left\{\alpha_{4}, \ldots, \alpha_{n-1}\right\}$ in the algebras $R_{5}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right)$, $R_{6}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right)$ and $R_{7}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right)$ can be scaled to 1 .

Proof. From Theorem 2.10 and arguments after Proposition 2.15 we know that there exists a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, x\right\}$ such that the multiplication table of the algebra F_{n}^{1} is completed with the products coming from $\mathcal{R}_{\left.x\right|_{F_{n}^{1}}}\left(e_{i}\right), 1 \leqslant i \leqslant n$, i.e.

$$
\begin{aligned}
& {\left[e_{1}, x\right]=\sum_{i=1}^{n} \alpha_{i} e_{i}, \quad\left[e_{2}, x\right]=\left(\alpha_{1}+\alpha_{2}\right) e_{2}+\sum_{i=3}^{n-1} \alpha_{i} e_{i}+\beta e_{n},} \\
& {\left[e_{i}, x\right]=\left((i-1) \alpha_{1}+\alpha_{2}\right) e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n .}
\end{aligned}
$$

Finally, we consider the remaining products as follows:

$$
\left[x, e_{1}\right]=\sum_{i=1}^{n} \beta_{i} e_{i}, \quad\left[x, e_{2}\right]=\sum_{i=1}^{n} \gamma_{i} e_{i}, \quad[x, x]=\sum_{i=1}^{n} \delta_{i} e_{i} .
$$

From the chain of equalities

$$
\begin{aligned}
0 & =\left[x, e_{3}\right]=\left[x,\left[e_{2}, e_{1}\right]\right]=\left[\left[x, e_{2}\right], e_{1}\right]-\left[\left[x, e_{1}\right], e_{2}\right]=\left[\left[x, e_{2}\right], e_{1}\right] \\
& =\left(\gamma_{1}+\gamma_{2}\right) e_{3}+\sum_{i=4}^{n} \gamma_{i-1} e_{i}
\end{aligned}
$$

we conclude that $\gamma_{2}=-\gamma_{1}, \gamma_{i}=0,3 \leqslant i \leqslant n-1$.
Since $\gamma_{1} e_{3}=\left[e_{1},\left[x, e_{2}\right]\right]=\left[\left[e_{1}, x\right], e_{2}\right]-\left[\left[e_{1}, e_{2}\right], x\right]=0$, then $\gamma_{1}=0$.
The identity

$$
\left[e_{1},\left[x, e_{1}\right]\right]=\left[\left[e_{1}, x\right], e_{1}\right]-\left[\left[e_{1}, e_{1}\right], x\right]
$$

implies $\beta_{1}=-\alpha_{1}$.
Applying the Leibniz identity to the elements of the form $\left\{x, x, e_{2}\right\}$ and $\left\{x, e_{2}, x\right\}$, we conclude that:

$$
\left\{\begin{array}{l}
\left((n-1) \alpha_{1}+\alpha_{2}\right) \gamma_{n}=0, \\
(n-2) \alpha_{1} \gamma_{n}=0
\end{array}\right.
$$

Note that $\gamma_{n}=0$ (otherwise $\alpha_{1}=\alpha_{2}=0$ and then we get a contradiction with the non-nilpotency of the derivation $\mathcal{R}_{\left.\right|_{E_{n}^{1}}}$ (see Proposition 4.1)).

Now we are going to discuss the possible cases of the parameters α_{1} and α_{2}.
Case 1. $\alpha_{1} \neq 0$.
Case 1.1. Let $\alpha_{1} \neq \beta_{2}$. Then taking the following change of basis:

$$
\begin{aligned}
x^{\prime} & =-\frac{1}{\alpha_{1}} x, \quad e_{1}^{\prime}=e_{1}-\frac{1}{\alpha_{1}} \sum_{i=2}^{n} \beta_{i} e_{i}, \\
e_{i}^{\prime} & =-\frac{1}{\alpha_{1}}\left(\left(-\alpha_{1}+\beta_{2}\right) e_{i}+\sum_{j=i+1}^{n} \beta_{j-i+2} e_{j}\right), \quad 2 \leqslant i \leqslant n,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& {\left[e_{1}, e_{1}\right]=e_{3}, \quad\left[e_{1}, x\right]=\sum_{i=1}^{n} \mu_{i} e_{i}, \quad\left[e_{i}, e_{1}\right]=e_{i+1}, \quad 2 \leqslant i \leqslant n-1,} \\
& {\left[x, e_{1}\right]=e_{1}, \quad\left[e_{2}, x\right]=\sum_{i=1}^{n} \eta_{i} e_{i}, \quad\left[x, e_{2}\right]=0, \quad[x, x]=\sum_{i=1}^{n} \theta_{i} e_{i} .}
\end{aligned}
$$

From the equalities

$$
0=\left[\left[e_{1}, e_{2}\right], x\right]=\left[e_{1},\left[e_{2}, x\right]\right]+\left[\left[e_{1}, x\right], e_{2}\right]=\left[e_{1}, \sum_{i=1}^{n} \eta_{i} e_{i}\right]=\eta_{1} e_{3},
$$

we get $\eta_{1}=0$.

Consider

$$
\begin{aligned}
{\left[e_{3}, x\right] } & =\left[\left[e_{1}, e_{1}\right], x\right]=\left[e_{1},\left[e_{1}, x\right]\right]+\left[\left[e_{1}, x\right], e_{1}\right] \\
& =\mu_{1} e_{3}+\left(\mu_{1}+\mu_{2}\right) e_{3}+\sum_{i=3}^{n-1} \mu_{i} e_{i+1}=\left(2 \mu_{1}+\mu_{2}\right) e_{3}+\sum_{i=3}^{n-1} \mu_{i} e_{i+1}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
{\left[e_{3}, x\right] } & =\left[\left[e_{2}, e_{1}\right], x\right]=\left[e_{2},\left[e_{1}, x\right]\right]+\left[\left[e_{2}, x\right], e_{1}\right]=\mu_{1} e_{3}+\eta_{2} e_{3}+\sum_{i=3}^{n-1} \eta_{i} e_{i+1} \\
& =\left(\mu_{1}+\eta_{2}\right) e_{3}+\sum_{i=3}^{n-1} \eta_{i} e_{i+1}
\end{aligned}
$$

The comparison of both linear combinations implies that:

$$
\eta_{2}=\mu_{1}+\mu_{2}, \quad \eta_{i}=\mu_{i}, \quad 3 \leqslant i \leqslant n-1
$$

that it is to say:

$$
\left[e_{2}, x\right]=\left(\mu_{1}+\mu_{2}\right) e_{2}+\sum_{i=3}^{n-1} \mu_{i} e_{i}+\eta_{n} e_{n} \text { and }\left[e_{3}, x\right]=\left(2 \mu_{1}+\mu_{2}\right) e_{3}+\sum_{i=3}^{n-1} \mu_{i} e_{i+1} .
$$

Now we shall prove the following equalities by an induction on i :

$$
\begin{equation*}
\left[e_{i}, x\right]=\left((i-1) \mu_{1}+\mu_{2}\right) e_{i}+\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n . \tag{1}
\end{equation*}
$$

Obviously, the equality holds for $i=3$. Let us assume that the equality holds for $3<i<n$, and we shall prove it for $i+1$:

$$
\begin{aligned}
{\left[e_{i+1}, x\right] } & =\left[\left[e_{i}, e_{1}\right], x\right]=\left[e_{i},\left[e_{1}, x\right]\right]+\left[\left[e_{i}, x\right], e_{1}\right] \\
& =\mu_{1} e_{i+1}+\left((i-1) \mu_{1}+\mu_{2}\right) e_{i+1}+\sum_{j=i+2}^{n} \mu_{j-i+1} e_{j} \\
& =\left(i \mu_{1}+\mu_{2}\right) e_{i+1}+\sum_{j=i+2}^{n} \mu_{j-i+1} e_{j}
\end{aligned}
$$

so the induction proves the equalities (1) for any $i, 3 \leqslant i \leqslant n$.
Applying the Leibniz identity to the elements $\left\{e_{1}, x, e_{1}\right\},\left\{e_{1}, x, x\right\},\left\{x, e_{1}, x\right\}$, we deduce that:

$$
\mu_{1}=-1, \quad \mu_{2}=\theta_{1}=0, \quad \theta_{i}=\mu_{i+1}, \quad 2 \leqslant i \leqslant n-1 .
$$

Below, we summarize the table of multiplication of the algebra

$$
\begin{cases}{\left[e_{1}, e_{1}\right]=e_{3}} & 2 \leqslant i \leqslant n-1, \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & \\ {\left[e_{1}, x\right]=-e_{1}+\sum_{i=3}^{n} \mu_{i} e_{i},} & \\ {\left[e_{2}, x\right]=-e_{2}+\sum_{i=3}^{n-1} \mu_{i} e_{i}+\eta_{n} e_{n},} & \\ {\left[e_{i}, x\right]=-(i-1) e_{i}+\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n, \\ {\left[x, e_{1}\right]=e_{1},} & {[x, x]=\sum_{i=2}^{n-1} \mu_{i+1} e_{i}+\theta_{n} e_{n} .}\end{cases}
$$

Let us take the change of basis in the following form:

$$
\begin{aligned}
e_{1}^{\prime} & =e_{1}+\sum_{i=3}^{n} A_{i} e_{i}, \quad e_{2}^{\prime}=e_{2}+\sum_{i=3}^{n} A_{i} e_{i}, \quad e_{i}^{\prime}=e_{i}+\sum_{j=i+1}^{n} A_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n, \\
x^{\prime} & =\sum_{i=2}^{n-1} A_{i+1} e_{i}+B e_{n}+x,
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{3}=\mu_{3}, \quad A_{i}=\frac{1}{(i-2)}\left(\mu_{i}+\sum_{j=3}^{i-1} A_{j} \mu_{i-j+2}\right), \quad 4 \leqslant i \leqslant n, \quad \text { and } \\
& B=\frac{1}{n-1}\left(\theta_{n}+\sum_{j=3}^{n} A_{j} \mu_{n-j+3}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[x^{\prime}, e_{1}^{\prime}\right]=} & {\left[\sum_{i=2}^{n-1} A_{i+1} e_{i}+B e_{n}+x, e_{1}\right]=e_{1}+\sum_{i=3}^{n} A_{i} e_{i}=e_{1}^{\prime}, } \\
{\left[e_{1}^{\prime}, x^{\prime}\right]=} & {\left[e_{1}, x\right]+\sum_{i=3}^{n} A_{i}\left[e_{i}, x\right] } \\
= & -e_{1}+\sum_{i=3}^{n} \mu_{i} e_{i}+\sum_{i=3}^{n} A_{i}\left(-(i-1) e_{i}+\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}\right) \\
= & -e_{1}-\sum_{i=3}^{n} A_{i} e_{i}+\sum_{i=3}^{n} \mu_{i} e_{i}-\sum_{i=3}^{n} A_{i}(i-2) e_{i}+\sum_{i=3}^{n} A_{i}\left(\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}\right) \\
= & -e_{1}-\sum_{i=3}^{n} A_{i} e_{i}+\sum_{i=3}^{n} \mu_{i} e_{i}-\sum_{i=3}^{n} A_{i}(i-2) e_{i}+\sum_{i=4}^{n}\left(\sum_{j=3}^{i-1} A_{j} \mu_{i-j+2}\right) e_{i} \\
= & -e_{1}-\sum_{i=3}^{n} A_{i} e_{i}+\left(\mu_{3}-A_{3}\right) e_{3} \\
& +\sum_{i=4}^{n}\left(-A_{i}(i-2)+\mu_{i}+\sum_{j=3}^{i-1} A_{j} \mu_{i-j+2}\right) e_{i} \\
= & -e_{1}-\sum_{i=3}^{n} A_{i} e_{i}=-e_{1}^{\prime}, \\
{\left[e_{2}^{\prime}, x^{\prime}\right]=} & {\left[e_{2}, x\right]+\sum_{i=3}^{n} A_{i}\left[e_{i}, x\right] } \\
= & -e_{2}+\sum_{i=3}^{n-1} \mu_{i} e_{i}+\eta_{n} e_{n}+\sum_{i=3}^{n} A_{i}\left(-(i-1) e_{i}+\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}\right) \\
= & -e_{2}-\sum_{i=3}^{n} A_{i} e_{i}+\sum_{i=3}^{n-1} \mu_{i} e_{i}+\eta_{n} e_{n}-\sum_{i=3}^{n} A_{i}(i-2) e_{i}+\sum_{i=3}^{n} A_{i}\left(\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -e_{2}-\sum_{i=3}^{n} A_{i} e_{i}+\sum_{i=3}^{n-1} \mu_{i} e_{i}+\eta_{n} e_{n}-\sum_{i=3}^{n} A_{i}(i-2) e_{i}+\sum_{i=4}^{n}\left(\sum_{j=3}^{i-1} A_{j} \mu_{i-j+2}\right) e_{i} \\
= & -e_{2}-\sum_{i=3}^{n} A_{i} e_{i}+\left(\mu_{3}-A_{3}\right) e_{3}+\sum_{i=4}^{n-1}\left(-A_{i}(i-2)+\mu_{i}+\sum_{j=3}^{i-1} A_{j} \mu_{i-j+2}\right) e_{i} \\
& +\left(\eta_{n}-(n-2) A_{n}+\sum_{i=3}^{n-1} A_{i} \mu_{n-i+2}\right) e_{n}=-e_{2}^{\prime}+\eta^{\prime} e_{n}^{\prime} \\
{\left[x^{\prime}, x^{\prime}\right]=} & \sum_{i=2}^{n-1} A_{i+1}\left[e_{i}, x\right]+B\left[e_{n}, x\right]+[x, x] \\
= & \sum_{i=2}^{n-1} A_{i+1}\left(-(i-1) e_{i}+\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}\right)-B(n-1) e_{n}+\sum_{i=2}^{n-1} \mu_{i+1} e_{i}+\theta_{n} e_{n} \\
= & -\sum_{i=2}^{n-1} A_{i+1}(i-1) e_{i}+\sum_{i=2}^{n-1} \mu_{i+1} e_{i}-B(n-1) e_{n}+\theta_{n} e_{n} \\
& +\sum_{i=2}^{n-1} A_{i+1}\left(\sum_{j=i+1}^{n} \mu_{j-i+2} e_{j}\right) \\
= & -\sum_{i=2}^{n-1} A_{i+1}(i-1) e_{i}+\sum_{i=2}^{n-1} \mu_{i+1} e_{i}-B(n-1) e_{n}+\theta_{n} e_{n} \\
& +\sum_{i=3}^{n}\left(\sum_{j=3}^{i} A_{j} \mu_{i-j+3}\right) e_{i} \\
= & \left(\mu_{3}-A_{3}\right) e_{2}+\sum_{i=3}^{n-1}\left(-A_{i+1}(i-1)+\mu_{i+1}+\sum_{j=3}^{i} A_{j} \mu_{i-j+3}\right) e_{i} \\
& +\left(-B(n-1)+\theta_{n}+\sum_{j=3}^{n} A_{j} \mu_{n-j+3}\right) e_{n}=0 .
\end{aligned}
$$

With a similar induction as the given for Eq. (1), it is easy to check that the following equalities hold:

$$
\left[e_{i}, x\right]=-(i-1) e_{i}, \quad 3 \leqslant i \leqslant n .
$$

Thus, we obtain the following table of multiplication:

$$
\left\{\begin{array}{rlrl}
{\left[e_{1}, e_{1}\right]} & =e_{3}, & {\left[e_{i}, e_{1}\right]} & =e_{i+1}, \\
& {\left[x, e_{1}\right]} & =e_{1}, & \\
{\left[e_{1}, x\right]} & =-e_{1}, & & \\
{\left[e_{2}, x\right]} & =-e_{2}+\eta e_{n}, & {\left[e_{i}, x\right]} & =-(i-1) e_{i}, \\
& 3 \leqslant i \leqslant n .
\end{array}\right.
$$

If $\eta \neq 0$ then by taking the change of basis

$$
e_{2}^{\prime}=e_{2}+\frac{\eta}{n-2} e_{n}
$$

we get $\eta^{\prime}=0$.
Finally, by applying the change of basis $x^{\prime}=-x$ and $e_{1}^{\prime}=e_{1}-e_{2}$, we get the algebra R_{1}.
Case 1.2. Let $\alpha_{1}=\beta_{2}$. Then by taking the following change of basis:

$$
e_{1}^{\prime}=e_{1}-e_{2}, \quad e_{i}^{\prime}=e_{i}, \quad 2 \leqslant i \leqslant n,
$$

we can assume that the table of multiplication is the following

$$
\left\{\begin{array}{lr}
{\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-1, \\
{\left[x, e_{1}\right]=-\alpha_{1} e_{1}+\sum_{i=3}^{n} \beta_{i} e_{i}, \quad\left[e_{1}, x\right]=\alpha_{1} e_{1}+\left(\alpha_{n}-\beta\right) e_{n},} & \\
{\left[e_{2}, x\right]=\left(\alpha_{1}+\alpha_{2}\right) e_{2}+\sum_{i=3}^{n-1} \alpha_{i} e_{i}+\beta e_{n},} & 3 \leqslant i \leqslant n, \\
{\left[e_{i}, x\right]=\left((i-1) \alpha_{1}+\alpha_{2}\right) e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j},} & \\
{[x, x]=\sum_{i=1}^{n} \delta_{i} e_{i} .} &
\end{array}\right.
$$

Now, by taking

$$
x^{\prime}=\frac{1}{\alpha_{1}} x-\frac{1}{\alpha_{1}} \sum_{i=2}^{n-1} \beta_{i+1} e_{i}
$$

and renaming the parameters, we get

$$
\mathcal{F}: \begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-1, \\ {\left[x, e_{1}\right]=-e_{1}, \quad\left[e_{1}, x\right]=e_{1}+\beta e_{n},} & \\ {\left[e_{2}, x\right]=\left(1+\alpha_{2}\right) e_{2}+\sum_{i=3}^{n-1} \alpha_{i} e_{i}+\lambda e_{n},} & \\ {\left[e_{i}, x\right]=\left(i-1+\alpha_{2}\right) e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n, \\ {[x, x]=\sum_{i=1}^{n} \delta_{i} e_{i} .} & \end{cases}
$$

Making the change of basis

$$
x^{\prime}=x, \quad e_{1}^{\prime}=e_{1}, \quad e_{i}^{\prime}=e_{i}+\sum_{j=i+1}^{n} A_{j-i+2} e_{j}, \quad 2 \leqslant i \leqslant n,
$$

where

$$
\begin{aligned}
& A_{3}=-\alpha_{3}, \quad A_{i}=-\frac{1}{i-1}\left(\alpha_{i}+\sum_{j=3}^{i-1} A_{j} \alpha_{i-j+2}\right), \quad 4 \leqslant i \leqslant n-1, \\
& A_{n}=-\frac{1}{n-2}\left(\lambda+\sum_{j=3}^{n-1} A_{j} \alpha_{n-j+2}\right)
\end{aligned}
$$

and applying the Leibniz identity, we obtain of \mathcal{F} the family of algebras

$$
F(\alpha, \beta, \gamma): \begin{cases}{\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-1, \\ {\left[x, e_{1}\right]=-e_{1},} & \\ {\left[e_{1}, x\right]=e_{1}+\beta e_{n},} & \\ {\left[e_{i}, x\right]=(i-1+\alpha) e_{i},} & 2 \leqslant i \leqslant n, \\ {[x, x]=-\beta e_{n-1}+\gamma e_{n} .} & \end{cases}
$$

Let us take the general change of basis elements in the family $F(\alpha, \beta, \gamma)$,

$$
e_{1}^{\prime}=\sum_{i=1}^{n} A_{i} e_{i}, \quad e_{2}^{\prime}=\sum_{i=1}^{n} B_{i} e_{i}, \quad x^{\prime}=C x+\sum_{i=1}^{n} P_{i} e_{i},
$$

we obtain in the new basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}, x^{\prime}\right\}$ the behavior of the parameters with the following expressions:

$$
\alpha^{\prime}=\alpha, \quad \beta^{\prime}=\frac{A_{1} \beta+(n-2+\alpha) A_{n}}{A_{1}^{n-2} B_{2}}, \quad \gamma^{\prime}=\frac{\gamma A_{1}+(n-1+\alpha)\left(P_{n} A_{1}-P_{1} A_{n}\right)}{A_{1}^{n-3} B_{2}} .
$$

Case 1.2.1. $\alpha \neq 2-n$. Taking

$$
A_{n}=-\frac{A_{1} \beta}{n-2+\alpha},
$$

we get $\beta^{\prime}=0$.
Case 1.2.1.1. $\alpha \neq 1-n$. Taking

$$
P_{n}=\frac{-\gamma A_{1}+(n-1+\alpha) P_{1} A_{n}}{(n-1+\alpha) A_{1}},
$$

we have $\gamma^{\prime}=0$ and hence the family $R_{2}(\alpha)$ with $\alpha \in \mathbb{C} \backslash\{2-n, 1-n\}$.
Case 1.2.1.2. $\alpha=1-n$. Then

$$
\gamma^{\prime}=\frac{\gamma}{A_{1}^{n-4} B_{2}} .
$$

If $\gamma \neq 0$, then taking $B_{2}=\frac{\gamma}{A_{1}^{n-4}}$, we get $\gamma^{\prime}=1$ and thus we obtain the algebra R_{3}.
If $\gamma=0$, then we have the algebra $R_{2}(\alpha)$ with $\alpha=1-n$.
Case 1.2.2. $\alpha=2-n$. Then we have

$$
\beta^{\prime}=\frac{\beta}{A_{1}^{n-3} B_{2}}, \quad \gamma^{\prime}=\frac{\gamma A_{1}+P_{n} A_{1}-P_{1} A_{n}}{A_{1}^{n-3} B_{2}} .
$$

Set $P_{n}=\frac{-\gamma A_{1}+P_{1} A_{n}}{A_{1}}$, we get $\gamma^{\prime}=0$.
If $\beta \neq 0$, then taking $B_{2}=\frac{\beta}{A_{1}^{n-3}}$, we get $\beta^{\prime}=1$ and hence we obtain the algebra R_{4}.
If $\beta=0$, then we have the algebra $R_{2}(\alpha)$ with $\alpha=2-n$.
It is easy to check that any algebra of the family $F(\alpha, \beta, \gamma)$ is not isomorphic to the algebra R_{1} applying a general change of basis.
Case 2. Let $\alpha_{1}=0, \alpha_{2} \neq 0$. Then making the following change of basis

$$
x^{\prime}=x-\sum_{i=2}^{n-1} \beta_{i+1} e_{i},
$$

we can assume that $\left[x, e_{1}\right]=\beta_{2} e_{2}$.

From the identity

$$
\left[x,\left[x, e_{1}\right]\right]=\left[[x, x], e_{1}\right]-\left[\left[x, e_{1}\right], x\right],
$$

we derive

$$
0=\sum_{i=3}^{n} \delta_{i-1} e_{i}-\beta_{2}\left[e_{2}, x\right]=\sum_{i=3}^{n} \delta_{i-1} e_{i}-\beta_{2}\left(\sum_{i=2}^{n-1} \alpha_{i} e_{i}+\beta e_{n}\right),
$$

consequently, $\beta_{2}=0, \delta_{i}=0,2 \leqslant i \leqslant n-1$.
Making the change of basis

$$
x^{\prime}=x-\frac{\delta_{n}}{\alpha_{2}} e_{n}
$$

we can assume that $[x, x]=0$.
Summarizing, we obtain the following table of multiplication of the algebra in this case

$$
\begin{cases}{\left[e_{1}, e_{1}\right]=e_{3}, \quad\left[e_{i}, e_{1}\right]=e_{i+1},} & 2 \leqslant i \leqslant n-1, \\ {\left[e_{1}, x\right]=\sum_{i=2}^{n} \alpha_{i} e_{i}, \quad\left[e_{2}, x\right]=\sum_{i=2}^{n-1} \alpha_{i} e_{i}+\beta e_{n},} & \\ {\left[e_{i}, x\right]=\sum_{j=i}^{n} \alpha_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n .\end{cases}
$$

Now we shall study the behavior of the parameters in this family of algebras under the general change of basis of the form

$$
\begin{cases}e_{1}^{\prime}=\sum_{i=1}^{n} A_{i} e_{i}, & \\ e_{i}^{\prime}=A_{1}^{i-2}\left(\left(A_{1}+A_{2}\right) e_{i}+\sum_{j=i+1}^{n} A_{j-i+2} e_{j}\right), & 2 \leqslant i \leqslant n, \\ x^{\prime}=\sum_{i=1}^{n} B_{i} e_{i}+B_{n+1} x, & \text { where } A_{1}\left(A_{1}+A_{2}\right) B_{n+1} \neq 0 .\end{cases}
$$

Then the equalities

$$
0=\left[x^{\prime}, e_{1}^{\prime}\right]=\left[\sum_{i=1}^{n} B_{i} e_{i}+B_{n+1} x, A_{1} e_{1}\right]=A_{1}\left(\left(B_{1}+B_{2}\right) e_{3}+\sum_{i=4}^{n} B_{i-1} e_{i}\right)
$$

imply $B_{1}=-B_{2}, B_{i}=0,3 \leqslant i \leqslant n-1$.
Now we shall express the product $\left[e_{1}^{\prime}, x^{\prime}\right]$ as a linear combination of the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, x\right\}$, namely:

$$
\begin{aligned}
{\left[e_{1}^{\prime}, x^{\prime}\right]=} & {\left[\sum_{i=1}^{n} A_{i} e_{i}, B_{1} e_{1}+B_{n+1} x\right] } \\
= & B_{1}\left(\left(A_{1}+A_{2}\right) e_{3}+\sum_{i=4}^{n} A_{i-1} e_{i}\right) \\
& +B_{n+1}\left(A_{1} \sum_{i=2}^{n} \alpha_{i} e_{i}+A_{2}\left(\sum_{i=2}^{n-1} \alpha_{i} e_{i}+\beta e_{n}\right)+\sum_{i=3}^{n} A_{i} \sum_{j=i}^{n} \alpha_{j-i+2} e_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & B_{1}\left(A_{1}+A_{2}\right) e_{3}+\sum_{i=4}^{n} B_{1} A_{i-1} e_{i}+B_{n+1} A_{1} \sum_{i=2}^{n} \alpha_{i} e_{i} \\
& +B_{n+1} A_{2} \sum_{i=2}^{n-1} \alpha_{i} e_{i}+B_{n+1} A_{2} \beta e_{n}+B_{n+1} \sum_{i=3}^{n} \sum_{j=3}^{i} A_{j} \alpha_{i-j+2} e_{i} \\
= & B_{n+1}\left(A_{1}+A_{2}\right) \alpha_{2} e_{2}+\left(\left(A_{1}+A_{2}\right)\left(B_{1}+B_{n+1} \alpha_{3}\right)+B_{n+1} A_{3} \alpha_{2}\right) e_{3} \\
& +\sum_{i=4}^{n-1}\left(B_{1} A_{i-1}+B_{n+1}\left(A_{1}+A_{2}\right) \alpha_{i}+\sum_{j=3}^{i} B_{n+1} A_{j} \alpha_{i-j+2}\right) e_{i} \\
& +\left(B_{1} A_{n-1}+B_{n+1}\left(A_{1} \alpha_{n}+A_{2} \beta+\sum_{i=3}^{n} A_{i} \alpha_{n-i+2}\right)\right) e_{n} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
{\left[e_{1}^{\prime}, x^{\prime}\right]=} & \sum_{i=2}^{n} \alpha_{i}^{\prime} e_{i}^{\prime}=\sum_{i=2}^{n} \alpha_{i}^{\prime} A_{1}^{i-2}\left(\left(A_{1}+A_{2}\right) e_{i}+\sum_{j=i+1}^{n} A_{j-i+2} e_{j}\right) \\
= & \sum_{i=2}^{n} \alpha_{i}^{\prime} A_{1}^{i-2}\left(A_{1}+A_{2}\right) e_{i}+\sum_{i=3}^{n} \sum_{j=3}^{i} A_{1}^{i-j} A_{j} \alpha_{i-j+2}^{\prime} e_{i} \\
= & \alpha_{2}^{\prime}\left(A_{1}+A_{2}\right) e_{2}+\left(A_{1}\left(A_{1}+A_{2}\right) \alpha_{3}^{\prime}+A_{3} \alpha_{2}^{\prime}\right) e_{3} \\
& +\sum_{i=4}^{n}\left(\alpha_{i}^{\prime} A_{1}^{i-2}\left(A_{1}+A_{2}\right)+\sum_{j=3}^{i} A_{1}^{i-j} A_{j} \alpha_{i-j+2}^{\prime}\right) e_{i} .
\end{aligned}
$$

Comparing coefficients at the basis elements in both combinations, we obtain the following relations:

$$
\begin{aligned}
& \alpha_{2}^{\prime}\left(A_{1}+A_{2}\right)=B_{n+1}\left(A_{1}+A_{2}\right) \alpha_{2}, \\
& A_{1}\left(A_{1}+A_{2}\right) \alpha_{3}^{\prime}+A_{3} \alpha_{2}^{\prime}=\left(A_{1}+A_{2}\right)\left(B_{1}+B_{n+1} \alpha_{3}\right)+B_{n+1} A_{3} \alpha_{2} \text {, } \\
& \alpha_{i}^{\prime} A_{1}^{i-2}\left(A_{1}+A_{2}\right)+\sum_{j=3}^{i} A_{1}^{i-j} A_{j} \alpha_{i-j+2}^{\prime}=B_{1} A_{i-1}+B_{n+1}\left(A_{1}+A_{2}\right) \alpha_{i} \\
& +\sum_{j=3}^{i} B_{n+1} A_{j} \alpha_{i-j+2}, \quad 4 \leqslant i \leqslant n-1, \\
& A_{1}^{n-2} \alpha_{n}^{\prime}\left(A_{1}+A_{2}\right)+\sum_{j=3}^{n} A_{1}^{n-j} A_{j} \alpha_{n-j+2}^{\prime}=B_{1} A_{n-1}+B_{n+1}\left(A_{1} \alpha_{n}+A_{2} \beta+\sum_{i=3}^{n} A_{i} \alpha_{n-i+2}\right) .
\end{aligned}
$$

The simplification of these relations implies the following identities:

$$
\begin{aligned}
& \alpha_{2}^{\prime}=B_{n+1} \alpha_{2}, \quad \alpha_{3}^{\prime}=\frac{B_{1}+\alpha_{3} B_{n+1}}{A_{1}}, \quad \alpha_{i}^{\prime}=\frac{B_{n+1} \alpha_{i}}{A_{1}^{i-2}}, \quad 4 \leqslant i \leqslant n-1, \\
& \alpha_{n}^{\prime}=\frac{\left(\alpha_{n} A_{1}+\beta A_{2}\right) B_{n+1}}{A_{1}^{n-2}\left(A_{1}+A_{2}\right)} .
\end{aligned}
$$

Analogously, considering the product $\left[e_{2}^{\prime}, x^{\prime}\right]$, we get the relation:

$$
\beta^{\prime}=\frac{\beta B_{n+1}}{A_{1}^{n-2}},
$$

and

$$
\left[x^{\prime}, x^{\prime}\right]=-\frac{\left(\beta B_{1}-\alpha_{n} B_{1}-\alpha_{2} B_{n}\right) B_{n+1}}{A_{1}^{n-2}\left(A_{1}+A_{2}\right)} e_{n} .
$$

Since $\left[x^{\prime}, x^{\prime}\right]=0$, then $B_{n}=\frac{\beta B_{1}-\alpha_{n} B_{1}}{\alpha_{2}}$.
Setting $B_{n+1}=1 / \alpha_{2}$ and $B_{1}=-\alpha_{3} / \alpha_{2}$, then we derive that $\alpha_{2}^{\prime}=1, \alpha_{3}^{\prime}=0$.
If $\beta=0$ and $\alpha_{n}=0$, then $\beta^{\prime}=0$ and thus we obtain the algebra $R_{5}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right)$.
If $\beta=0$ and $\alpha_{n} \neq 0$, then putting $A_{2}=\frac{\alpha_{n}-\alpha_{2} A_{1}^{n-2}}{\alpha_{2} A_{1}^{n-3}}$, we have $\alpha_{n}^{\prime}=1$ and hence we obtain the algebra $R_{6}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right)$.

If $\beta \neq 0$, then choosing

$$
A_{1}=\sqrt[n-2]{\frac{\beta}{\alpha_{2}}}, \quad A_{2}=-\frac{A_{1} \alpha_{n}}{\beta}
$$

we obtain $\beta^{\prime}=1, \alpha_{n}^{\prime}=0$ and the algebra $R_{7}\left(\alpha_{4}, \ldots, \alpha_{n-1}\right)$.

Now we shall consider the case when the dimension of a solvable Leibniz algebra with nilradical F_{n}^{1} is equal to $n+2$.

Theorem 4.3. There does not exist any $(n+2)$-dimensional solvable Leibniz algebra with nilradical F_{n}^{1}.
Proof. From the conditions of the theorem, we have the existence of a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, x, y\right\}$ such that the table of multiplication of F_{n}^{1} remains the same. The outer non-nilpotent derivations of F_{n}^{1}, denoted by $\mathcal{R}_{x_{\mid F_{n}^{1}}}$ and $\mathcal{R}_{y_{\mid F_{n}^{1}}}$, are of the form given in Proposition 4.1, with the set of entries $\left\{\alpha_{i}, \gamma\right\}$ and $\left\{\beta_{i}, \delta\right\}$, respectively, where $\left[e_{i}, x\right]=\mathcal{R}_{\chi_{\mid F_{n}^{1}}}\left(e_{i}\right)$ and $\left[e_{i}, y\right]=\mathcal{R}_{y_{\mid F_{n}^{1}}}\left(e_{i}\right)$.

Taking the following change of basis:

$$
\begin{equation*}
x^{\prime}=\frac{\beta_{2}}{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}} x-\frac{\alpha_{2}}{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}} y, \quad y^{\prime}=-\frac{\beta_{1}}{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}} x+\frac{\alpha_{1}}{\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}} y, \tag{2}
\end{equation*}
$$

we may assume that $\alpha_{1}=\beta_{2}=1$ and $\alpha_{2}=\beta_{1}=0$.
Therefore we have the products

$$
\begin{aligned}
& {\left[e_{1}, x\right]=e_{1}+\sum_{i=3}^{n} \alpha_{i} e_{i}, \quad\left[e_{2}, x\right]=e_{2}+\sum_{i=3}^{n-1} \alpha_{i} e_{i}+\gamma e_{n},} \\
& {\left[e_{i}, x\right]=(i-1) e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j},} \\
& {\left[e_{1}, y\right]=e_{2}+\sum_{i=3}^{n} \beta_{i} e_{i},} \\
& {\left[e_{i}, y\right]=e_{i}+\sum_{j=i+1}^{n} \beta_{j-i+2} e_{j},} \\
& 3 \leqslant i \leqslant n,
\end{aligned}
$$

Applying similar arguments as in Case 1 of Theorem 4.2 and taking into account that the products $\left[e_{1}, y\right],\left[e_{2}, y\right],\left[e_{i}, y\right]$ will not be changed under the transformations of bases which were used there, we obtain the products:

$$
\left[e_{1}, x\right]=e_{1}, \quad\left[e_{2}, x\right]=e_{2}+\gamma e_{n}, \quad\left[e_{i}, x\right]=(i-1) e_{i}, 3 \leqslant i \leqslant n, \quad\left[x, e_{1}\right]=-e_{1} .
$$

Let us introduce the notations:

$$
\left[y, e_{1}\right]=\sum_{i=1}^{n} \eta_{i} e_{i}, \quad\left[y, e_{2}\right]=\sum_{i=1}^{n} \theta_{i} e_{i}, \quad[y, x]=\sum_{i=1}^{n} \rho_{i} e_{i}, \quad[y, y]=\sum_{i=1}^{n} \tau_{i} e_{i}, \quad[x, y]=\sum_{i=1}^{n} \sigma_{i} e_{i} .
$$

From the Leibniz identity

$$
\left[e_{1},\left[y, e_{1}\right]\right]=\left[\left[e_{1}, y\right], e_{1}\right]-\left[\left[e_{1}, e_{1}\right], y\right],
$$

we get $\eta_{1}=0$.
Note that we can assume $\left[y, e_{1}\right]=\eta_{2} e_{2}$ (by changing $y^{\prime}=y-\sum_{i=2}^{n-1} \eta_{i+1} e_{i}$).
Due to

$$
\left[y,\left[e_{1}, e_{2}\right]\right]=\left[\left[y, e_{1}\right], e_{2}\right]-\left[\left[y, e_{2}\right], e_{1}\right],
$$

we obtain $\theta_{2}=-\theta_{1}, \theta_{i}=0,3 \leqslant i \leqslant n-1$.
Since $\left[e_{1},\left[y, e_{2}\right]\right]=\left[\left[e_{1}, y\right], e_{2}\right]-\left[\left[e_{1}, e_{2}\right], y\right]$, then we have $\theta_{1}=\theta_{2}=0$. Moreover, the Leibniz identity $\left[y,\left[y, e_{2}\right]\right]=\left[[y, y], e_{2}\right]-\left[\left[y, e_{2}\right], y\right]$ implies that $\theta_{n}=0$, i.e., $\left[y, e_{2}\right]=0$.

From the following chain of equalities

$$
\begin{aligned}
0 & =\eta_{2}\left[y, e_{2}\right]=\left[y, \eta_{2} e_{2}\right]=\left[y,\left[y, e_{1}\right]\right]=\left[[y, y], e_{1}\right]-\left[\left[y, e_{1}\right], y\right] \\
& =\left(\tau_{1}+\tau_{2}\right) e_{3}+\sum_{i=4}^{n} \tau_{i-1} e_{i}-\eta_{2}\left[e_{2}, y\right] \\
& =\left(\tau_{1}+\tau_{2}\right) e_{3}+\sum_{i=4}^{n} \tau_{i-1} e_{i}-\eta_{2}\left(e_{2}+\sum_{i=3}^{n-1} \beta_{i} e_{i}+\delta e_{n}\right)
\end{aligned}
$$

we derive that

$$
\eta_{2}=0, \quad \tau_{2}=-\tau_{1}, \quad \tau_{i}=0, \quad 3 \leqslant i \leqslant n-1 .
$$

Therefore, we have $\left[y, e_{1}\right]=0$ and $[y, y]=\tau_{1} e_{1}-\tau_{1} e_{2}+\tau_{n} e_{n}$.
Considering the Leibniz identity

$$
\left[x,\left[y, e_{1}\right]\right]=\left[[x, y], e_{1}\right]-\left[\left[x, e_{1}\right], y\right],
$$

then we get

$$
-e_{2}-\sum_{i=3}^{n} \beta_{i} e_{i}=\left(\sigma_{1}+\sigma_{2}\right) e_{3}+\sum_{i=3}^{n-1} \sigma_{i} e_{i+1}
$$

Thus, we have a contradiction with the assumption of the existence of an algebra under the conditions of the theorem.

4.2. Solvable Leibniz algebras with nilradical F_{n}^{2}

In this section we describe solvable Leibniz algebras with nilradical F_{n}^{2}, i.e. solvable Leibniz algebras R which decompose in the form $R=F_{n}^{2} \oplus Q$.

Proposition 4.4. An arbitrary derivation of the algebra F_{n}^{2} has the following matrix form:

$$
D=\left(\begin{array}{ccccccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \ldots & \alpha_{n-1} & \alpha_{n} \\
0 & \beta & 0 & 0 & \ldots & 0 & \gamma \\
0 & 0 & 2 \alpha_{1} & \alpha_{3} & \ldots & \alpha_{n-2} & \alpha_{n-1} \\
0 & 0 & 0 & 3 \alpha_{1} & \ldots & \alpha_{n-3} & \alpha_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & (n-1) \alpha_{1}
\end{array}\right) .
$$

Proof. The proof follows by straightforward calculations in a similar way as the proof of Proposition 4.1.

Remark 4.5. It is an easy task to check that the number of nil-independent derivations of the algebra F_{n}^{2} is equal to 2.

Corollary 4.6. The dimension of a solvable Leibniz algebra with nilradical F_{n}^{2} is either $n+1$ or $n+2$.
Theorem 4.7. An $(n+1)$-dimensional solvable Leibniz algebra with nilradical F_{n}^{2} is isomorphic to one of the following pairwise non-isomorphic algebras:

$$
\begin{aligned}
& R_{1}(\alpha):\left\{\begin{array}{rlrl}
{\left[e_{1}, e_{1}\right]} & =e_{3}, & {\left[e_{i}, e_{1}\right]} & =e_{i+1}, \\
& & 3 \leqslant i \leqslant n-1, \\
{\left[e_{1}, x\right]} & =-e_{1}, & {\left[e_{i}, x\right]} & =-(i-1) e_{i}, \\
& & 3 \leqslant i \leqslant n, \\
{\left[x, e_{1}\right]} & =e_{1}, & {[x, x]} & =\alpha e_{2},
\end{array} r l \in\{0,1\} .\right. \\
& R_{2}(\alpha):\left\{\begin{array}{rlrl}
{\left[e_{1}, e_{1}\right]} & =e_{3}, & {\left[e_{i}, e_{1}\right]} & =e_{i+1}, \\
& & 3 \leqslant i \leqslant n-1, \\
{\left[e_{1}, x\right]} & =-e_{1}, & {\left[e_{i}, x\right]} & =-(i-1) e_{i}, \\
& & 3 \leqslant i \leqslant n, \\
{\left[x, e_{1}\right]} & =e_{1}, & {\left[e_{2}, x\right]} & =\alpha e_{2},
\end{array} r l l l .\right. \\
& R_{3}:\left\{\begin{array}{rlrl}
{\left[e_{1}, e_{1}\right]} & =e_{3}, & {\left[e_{i}, e_{1}\right]} & =e_{i+1}, \\
& & 3 \leqslant i \leqslant n-1, \\
{\left[e_{1}, x\right]} & =-e_{1}, & {\left[e_{i}, x\right]} & =-(i-1) e_{i}, \\
& & 3 \leqslant i \leqslant n, \\
{\left[x, e_{1}\right]} & =e_{1}, & {\left[e_{2}, x\right]} & =(1-n) e_{2}+e_{n} .
\end{array}\right. \\
& R_{4}(\alpha):\left\{\begin{array}{lll}
{\left[e_{1}, e_{1}\right]=e_{3},} & {\left[e_{i}, e_{1}\right]=e_{i+1},} & 3 \leqslant i \leqslant n-1, \\
{\left[e_{1}, x\right]=-e_{1},} & {\left[e_{i}, x\right]=-(i-1) e_{i},} & 3 \leqslant i \leqslant n, \\
{\left[x, e_{1}\right]=e_{1},} & {\left[e_{2}, x\right]=-\alpha e_{2},} & \alpha \neq 1, \\
{\left[x, e_{2}\right]=\alpha e_{2} .} & &
\end{array}\right.
\end{aligned}
$$

$$
R_{6}\left(\alpha_{3}, \alpha_{4}, \ldots, \alpha_{n}, \lambda, \delta\right): \begin{cases}{\left[e_{1}, e_{1}\right]=e_{3},} & \\ {\left[e_{1}, x\right]=\sum_{i=3}^{n} \alpha_{i} e_{i},} & {\left[e_{2}, x\right]=e_{2},} \\ {\left[e_{i}, e_{1}\right]=e_{i+1},} & 3 \leqslant i \leqslant n-1, \\ {\left[e_{i}, x\right]=\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j},} & 3 \leqslant i \leqslant n-1, \\ {[x, x]=\lambda e_{n},} & {\left[x, e_{2}\right]=\delta e_{2}, \quad \delta \in\{0,-1\} .}\end{cases}
$$

In the algebra $R_{6}\left(\alpha_{3}, \alpha_{4}, \ldots, \alpha_{n}, \lambda, \delta\right)$ the first non vanishing parameter $\left\{\alpha_{3}, \alpha_{4}, \ldots, \alpha_{n}, \lambda\right\}$ can be scaled to 1 .

Proof. Let R be a solvable Leibniz algebra satisfying the conditions of the theorem, then there exists a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}, x\right\}$, such that $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is the standard basis of F_{n}^{2}, and for non nilpotent outer derivations of the algebra F_{n}^{2}, we have that $\left[e_{i}, x\right]=\mathcal{R}_{X_{\mid F_{n}^{2}}}\left(e_{i}\right), 1 \leqslant i \leqslant n$,

Due to Proposition 4.4 we can assume that

$$
\begin{aligned}
& {\left[e_{1}, x\right]=\sum_{i=1}^{n} \alpha_{i} e_{i}, \quad\left[e_{2}, x\right]=\beta_{2} e_{2}+\beta_{n} e_{n}} \\
& {\left[e_{i}, x\right]=(i-1) \alpha_{1} e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n}
\end{aligned}
$$

Let us introduce the following notations:

$$
\left[x, e_{1}\right]=\sum_{i=1}^{n} \gamma_{i} e_{i}, \quad\left[x, e_{2}\right]=\sum_{i=1}^{n} \delta_{i} e_{i}, \quad[x, x]=\sum_{i=1}^{n} \lambda_{i} e_{i} .
$$

Considering the Leibniz identity for the elements $\left\{e_{1}, x, x\right\}, \quad\left\{e_{1}, x, e_{1}\right\}, \quad\left\{x, e_{2}, e_{1}\right\}$, we obtain $\lambda_{1}=0, \gamma_{1}=-\alpha_{1}$ and $\left[x, e_{2}\right]=\delta_{2} e_{2}+\delta_{n} e_{n}$. By setting $e_{2}^{\prime}=\delta_{2} e_{2}+\delta_{n} e_{n}$, we can assume that $\left[x, e_{2}\right]=\delta e_{2}$.

Now we distinguish the following possible cases:
Case 1. Let $\alpha_{1} \neq 0$. Then the following change of basis

$$
\begin{aligned}
e_{1}^{\prime} & =e_{1}+\frac{1}{\gamma_{1}} \sum_{j=3}^{n} \gamma_{j} e_{j}, \quad e_{2}^{\prime}=e_{2}, \quad e_{i}^{\prime}=e_{i}+\frac{1}{\gamma_{1}} \sum_{j=i+1}^{n} \gamma_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n, \\
x^{\prime} & =\frac{1}{\gamma_{1}} x,
\end{aligned}
$$

implies that $\left[x^{\prime}, e_{1}^{\prime}\right]=e_{1}^{\prime}+\gamma e_{2}^{\prime}$ (where $\gamma=\frac{\gamma_{2}}{\gamma_{1}}$) and the rest of products remains unchanging. From the equalities:

$$
\begin{aligned}
e_{1}+\gamma(1+\delta) e_{2} & =\left[x,\left[x, e_{1}\right]\right]=\left[[x, x], e_{1}\right]-\left[\left[x, e_{1}\right], x\right] \\
& =\sum_{i=4}^{n} \lambda_{i-1} e_{i}-\sum_{i=1}^{n} \alpha_{i} e_{i}-\gamma \beta_{2} e_{2}-\gamma \beta_{n} e_{n},
\end{aligned}
$$

we deduce that

$$
\begin{aligned}
& \alpha_{1}=-1, \alpha_{3}=0, \alpha_{2}=-\gamma\left(1+\delta+\beta_{2}\right), \lambda_{i}=\alpha_{i+1}, \quad 3 \leqslant i \leqslant n-2, \quad \text { and } \\
& \lambda_{n-1}=\alpha_{n}+\gamma \beta_{n} .
\end{aligned}
$$

In addition, if we take the following change of basis:

$$
\begin{aligned}
e_{1}^{\prime} & =e_{1}+\sum_{i=4}^{n} A_{i} e_{i}, \quad e_{2}^{\prime}=e_{2}, \quad e_{i}^{\prime}=e_{i}+\sum_{j=i+2}^{n} A_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n, \\
x^{\prime} & =\sum_{i=3}^{n-1} A_{i+1} e_{i}+B e_{n}+x,
\end{aligned}
$$

where $A_{j}=\frac{1}{2} \alpha_{j}, j=4,5, \quad A_{i}=\frac{1}{i-2}\left(\alpha_{i}+\sum_{j=4}^{i-2} A_{j} \alpha_{i-j+2}\right), \quad 6 \leqslant i \leqslant n$ and $B=\frac{1}{n-1}\left(\lambda_{n}+\right.$ $\left.\sum_{j=4}^{n-1} A_{j} \alpha_{i-j+3}\right)$, then we have

$$
\begin{aligned}
{\left[e_{1}^{\prime}, x^{\prime}\right] } & =-e_{1}^{\prime}+\alpha_{2} e_{2}^{\prime}, & {\left[e_{2}^{\prime}, x^{\prime}\right] } & =\beta_{2} e_{2}^{\prime}+\beta_{n} e_{n}^{\prime}, \\
{\left[e_{i}^{\prime}, x^{\prime}\right] } & =-(i-1) e_{i}^{\prime}, \quad 3 \leqslant i \leqslant n, & {\left[x^{\prime}, x^{\prime}\right] } & =\lambda_{2} e_{2}^{\prime}+\gamma \beta_{n} e_{n-1}^{\prime}
\end{aligned}
$$

Finally, we obtain the following table of multiplication of the algebra R :

$$
\left\{\begin{array}{lrl}
{\left[e_{1}, x\right]} & =-e_{1}-\gamma\left(1+\delta+\beta_{2}\right) e_{2}, & {\left[e_{2}, x\right]}
\end{array}\right) \beta_{2} e_{2}+\beta_{n} e_{n}, \quad l l y . \quad 3 \leqslant i \leqslant n,
$$

Considering the Leibniz identity for the elements $\left\{x, x, e_{2}\right\},\{x, x, x\},\left\{x, e_{1}, x\right\}$, we obtain:

$$
\delta \beta_{n}=\delta\left(\delta+\beta_{2}\right)=\delta \lambda_{2}=\gamma \delta\left(\delta+\beta_{2}\right)=0 .
$$

Notice that if $e_{2} \in \operatorname{Ann}_{r}(R)$, then $\operatorname{dim} \operatorname{Ann}_{r}(R)=n-1$ and if $e_{2} \notin \operatorname{Ann}_{r}(R)$, then $\operatorname{dim} \operatorname{Ann}_{r}(R)=n-2$.
Now we analyze the following possible subcases:
Case 1.1. Let $e_{2} \in \operatorname{Ann}_{r}(R)$. Then $\delta=0$ and making the change $e_{1}^{\prime}=e_{1}+\gamma e_{2}$ we can assume that $\left[x, e_{1}\right]=e_{1}$.

In this case, we must consider two new subcases:
Case 1.1.1. Let $e_{2} \in \operatorname{Center}(R)$. Then dim Center $(R)=1$ and $\beta_{2}=\beta_{n}=0$. Then we have two options: if $\lambda_{2}=0$, then we get the split algebra $R_{1}(0)$; if $\lambda_{2} \neq 0$, then we obtain the algebra $R_{1}(1)$ by scaling the basis.
Case 1.1.2. Let $e_{2} \notin \operatorname{Center}(R)$. Then $\operatorname{dim} \operatorname{Center}(R)=0$ and $\left(\beta_{2}, \beta_{n}\right) \neq(0,0)$.
Let us take the following general change of basis:

$$
\begin{aligned}
e_{1}^{\prime} & =\sum_{i=1}^{n} A_{i} e_{i}, e_{2}^{\prime}=\sum_{i=1}^{n} B_{i} e_{i}, e_{i}^{\prime}=A_{1}^{i-2}\left(A_{1} e_{i}+\sum_{j=i+1}^{n} A_{j-i+2} e_{i}\right), 3 \leqslant i \leqslant n, \\
x^{\prime} & =\sum_{i=1}^{n} c_{i} e_{i}+C_{n+1} x,
\end{aligned}
$$

where $\left(A_{1} B_{2}-A_{2} B_{1}\right) C_{n+1} \neq 0$.
From $0=\left[e_{2}^{\prime}, e_{1}^{\prime}\right]=\left[e_{2}^{\prime}, e_{2}^{\prime}\right]$, we obtain that $B_{1}=0, B_{i}=0,3 \leqslant i \leqslant n-1$, i.e. $e_{2}^{\prime}=B_{2} e_{2}+B_{n} e_{n}$ and $A_{1} B_{2} \neq 0$.

The equalities

$$
e_{1}^{\prime}=\left[x^{\prime}, e_{1}^{\prime}\right]=A_{1} C_{1} e_{3}+\sum_{i=4}^{n} A_{1} C_{i-1} e_{i}+A_{1} C_{n+1} e_{1},
$$

imply that

$$
C_{n+1}=1, \quad A_{2}=0, \quad A_{3}=A_{1} C_{1}, \quad A_{i}=A_{1} C_{i-1}, \quad 4 \leqslant i \leqslant n .
$$

Similarly, from

$$
\begin{aligned}
B_{2} \beta_{2}^{\prime} e_{2}+\left(B_{n} \beta_{2}^{\prime}+\beta_{n}^{\prime} A_{1}^{n-1}\right) e_{n} & =\beta_{2}^{\prime} e_{2}^{\prime}+\beta_{n}^{\prime} e_{n}^{\prime}=\left[e_{2}^{\prime}, x^{\prime}\right] \\
& =B_{2} \beta_{2} e_{2}+\left(B_{2} \beta_{n}-(n-1) B_{n}\right) e_{n},
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda_{2}^{\prime} B_{2} e_{2}+\lambda_{2}^{\prime} B_{n} e_{n}=\lambda_{2}^{\prime} e_{2}^{\prime}=\left[x^{\prime}, x^{\prime}\right]=\left(\lambda_{2}+C_{2} \beta_{2}\right) e_{2}+\left(C_{1}^{2}-2 C_{3}\right) e_{3} \\
& +\sum_{i=4}^{n-1}\left(C_{1} C_{i-1}-(i-1) C_{i}\right) e_{i}+\left(C_{1} C_{n-1}-(n-1) C_{n}+C_{2} \beta_{n}\right) e_{n},
\end{aligned}
$$

we obtain $C_{i}=\frac{1}{(i-1)!} C_{1}^{i-1}, 3 \leqslant i \leqslant n-1$ and

$$
\begin{aligned}
& \beta_{2}^{\prime}=\beta_{2}, \quad \beta_{n}^{\prime}=\frac{B_{2} \beta_{n}-B_{n}\left(\beta_{2}+n-1\right)}{A_{1}^{n-1}}, \quad \lambda_{2}^{\prime}=\frac{\lambda_{2}+\beta_{2} C_{2}}{B_{2}}, \\
& \lambda_{2}^{\prime} B_{n}=C_{1} C_{n-1}-(n-1) C_{n}+C_{2} \beta_{n} .
\end{aligned}
$$

Now we must distinguish two subcases:
Case 1.1.2.1. Let $\beta_{2}=1-n$. Putting $C_{2}=-\frac{\lambda_{2}}{1-n}, C_{n}=\frac{C_{1} C_{n-1}+C_{2} \beta_{n}}{n-1}$, then we get $\lambda_{2}^{\prime}=0$ and $\beta_{n}^{\prime}=\frac{B_{2} \beta_{n}}{A_{1}^{n-1}}$.

If $\beta_{n}=0$, then we get the algebra $R_{2}(\alpha)$ for $\alpha=1-n$.
If $\beta_{n} \neq 0$, then making $A_{1}=\sqrt[n-1]{\beta_{n} B_{2}}$, we obtain $\beta_{n}^{\prime}=1$ and the algebra R_{3}.
Case 1.1.2.2. Let $\beta_{2} \neq 1-n$. Taking the change $B_{n}=\frac{B_{2} \beta_{n}}{\beta_{2}+n-1}$, we obtain $\beta_{n}=0$. Since $\beta_{2} \neq 0$, we set $C_{2}=-\frac{\lambda_{2}}{\beta_{2}}, C_{n}=\frac{C_{1} C_{n-1}+C_{2} \beta_{n}}{n-1}$ and we get $\lambda_{2}=0$, i.e., the algebra $R_{2}(\alpha)$ is obtained, for $\alpha \notin\{1-n, 0\}$.
Case 1.2. Let $e_{2} \notin \operatorname{Ann}_{r}(R)$. Then $\delta \neq 0$ and $\beta_{2}=-\delta, \beta_{n}=\lambda_{2}=0$.
Let us consider the general change of basis in the following form:

$$
\begin{aligned}
& e_{1}^{\prime}=\sum_{i=1}^{n} A_{i} e_{i}, \quad e_{2}^{\prime}=\sum_{i=1}^{n} B_{i} e_{i}, \\
& e_{i}^{\prime}=A_{1}^{i-2}\left(A_{1} e_{i}+\sum_{j=i+1}^{n} A_{j-i+2} e_{j}\right), 3 \leqslant i \leqslant n, \quad x^{\prime}=\sum_{i=1}^{n} C_{i} e_{i}+C_{n+1} x,
\end{aligned}
$$

where $\left(A_{1} B_{2}-A_{2} B_{1}\right) C_{n+1} \neq 0$.
Then from $0=\left[e_{2}^{\prime}, e_{1}^{\prime}\right]=\left[e_{2}^{\prime}, e_{2}^{\prime}\right]$, we derive that $B_{1}=0, B_{i}=0,3 \leqslant i \leqslant n-1$, i.e. $e_{2}^{\prime}=B_{2} e_{2}+B_{n} e_{n}$ and $A_{1} B_{2} \neq 0$.

Similarly, from the equations:

$$
e_{1}^{\prime}+\gamma^{\prime} e_{2}^{\prime}=\left[x^{\prime}, e_{1}^{\prime}\right]=A_{1} C_{n+1} e_{1}+C_{n+1}\left(A_{1} \gamma+A_{2} \delta\right) e_{2}+A_{1} C_{1} e_{3}+\sum_{i=4}^{n} A_{1} C_{i-1} e_{i},
$$

and

$$
\delta^{\prime}\left(B_{2} e_{2}+B_{n} e_{n}\right)=\delta^{\prime} e_{2}^{\prime}=\left[x^{\prime}, e_{2}^{\prime}\right]=B_{2} \delta e_{2},
$$

we obtain

$$
\begin{aligned}
& C_{n+1}=1, \quad A_{3}=A_{1} C_{1}, \quad A_{i}=A_{1} C_{i-1}, \quad 4 \leqslant i \leqslant n-1, \\
& \gamma^{\prime}=\frac{A_{1} \gamma+A_{2}(\delta-1)}{B_{2}}, \quad A_{1} C_{n-1}=A_{n}+\gamma^{\prime} B_{n}, \quad \delta^{\prime}=\delta, \quad \delta^{\prime} B_{n}=0 .
\end{aligned}
$$

Now we distinguish the following two subcases:
Case 1.2.1. Let $\delta \neq 1$. Then by the substitution $A_{2}=-\frac{A_{1} \gamma}{\delta-1}, A_{n}=A_{1} C_{n-1}$ into the above conditions, we get $\gamma^{\prime}=0$ and the algebra $R_{4}(\alpha)$.
Case 1.2.2. Let $\delta=1$. Then $B_{n}=0$. In the case $\gamma=0$, we get $\gamma^{\prime}=0$. In the case $\gamma \neq 0$, by putting $B_{2}=A_{1} \gamma$ and $A_{n}=A_{1} C_{n-1}-B_{n}$, we get $\gamma^{\prime}=1$. Thus, the algebras $R_{5}(\alpha), \alpha \in\{0,1\}$, are obtained. Case 2. Let $\alpha_{1}=0$. Then $\beta_{2} \neq 0$ and by replacing x by $x^{\prime}=\frac{1}{\beta_{2}} x$, we can assume $\left[e_{2}, x^{\prime}\right]=e_{2}+\beta_{n} e_{n}$.

Under these conditions, the table of multiplication of the solvable algebra R has the form:

$$
\begin{cases}{\left[e_{1}, x\right]=\sum_{i=2}^{n} \alpha_{i} e_{i},} & {\left[e_{2}, x\right]=e_{2}+\beta_{n} e_{n},} \\ {\left[x, e_{1}\right]=\sum_{i=2}^{n} \gamma_{i} e_{i},} & {\left[e_{i}, x\right]=\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n-1,} \\ {\left[x, e_{2}\right]=\delta e_{2},} & {[x, x]=\sum_{i=2}^{n} \lambda_{i} e_{i} .}\end{cases}
$$

Making the transformation $x^{\prime}=x-\gamma_{3} e_{1}-\sum_{i=3}^{n-1} \gamma_{i+1} e_{i}$, we can assume that $\left[x, e_{1}\right]=\gamma e_{2}$.
Similarly as above, we obtain the conditions:

$$
\gamma(\delta+1)=\alpha_{2} \delta-\gamma=\beta_{n} \delta=\delta(\delta+1)=\lambda_{2} \delta=0 .
$$

Now we distinguish the following subcases depending on the possible values of the parameter δ :
Case 2.1. Let $\delta \neq 0$. Then $\operatorname{dim} \operatorname{Ann}_{r}(R)=n-2$ and $\beta_{n}=\lambda_{2}=0, \delta=-1, \alpha_{2}=-\gamma$. By means of the change of the basis element $e_{1}^{\prime}=e_{1}+\gamma e_{2}$, we can suppose that $\left[x^{\prime}, e_{1}\right]=0$.

Taking the general change of basis as in the above considered cases, we derive the following conditions for the parameters

$$
\alpha_{i}^{\prime}=\frac{\alpha_{i}}{A_{1}^{i-2}}, \quad 3 \leqslant i \leqslant n, \quad \lambda_{n}^{\prime}=\frac{\lambda_{n}}{A_{1}^{n-1}} .
$$

Consequently, we deduce the algebra $R_{6}\left(\alpha_{3}, \alpha_{4}, \ldots, \alpha_{n}, \lambda,-1\right)$.
Case 2.2. Let $\delta=0$. Then $\operatorname{dim} \operatorname{Ann}_{r}(R)=n-1$ and $\gamma=0$. Taking the change of basis $e_{2}^{\prime}=e_{2}+\beta_{n} e_{n}$, we can assume that $\left[e_{2}, x\right]=e_{2}$ and by the change $x^{\prime}=x-\lambda_{2} e_{2}$, we can also suppose that $[x, x]=$ $\lambda_{n} e_{n}$. Therefore, we have the products

$$
\begin{aligned}
{\left[e_{1}, x\right] } & =\sum_{i=2}^{n} \alpha_{i} e_{i}, \quad\left[e_{2}, x\right]=e_{2}, \quad\left[e_{i}, x\right]=\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j}, \quad 3 \leqslant i \leqslant n-1, \\
{[x, x] } & =\lambda_{n} e_{n} .
\end{aligned}
$$

Applying similar arguments to general transformation of bases, we have

$$
\alpha_{2}^{\prime}=0, \quad \alpha_{i}^{\prime}=\frac{\alpha_{i}}{A_{1}^{i-2}}, \quad 3 \leqslant i \leqslant n, \quad \lambda_{n}^{\prime}=\frac{\lambda_{n}}{A_{1}^{n-1}} .
$$

Thus, we obtain the algebra $R_{6}\left(\alpha_{3}, \alpha_{4}, \ldots, \alpha_{n}, \lambda, 0\right)$.
Theorem 4.8. An arbitrary $(n+2)$-dimensional solvable Leibniz algebra with nilradical F_{n}^{2} is isomorphic to one of the following non isomorphic algebras:

$$
\begin{aligned}
& L_{1}:\left\{\begin{array}{lll}
{\left[e_{1}, e_{1}\right]=e_{3},} & {\left[e_{i}, e_{1}\right]=e_{i+1},} & 3 \leqslant i \leqslant n-1, \\
{\left[e_{1}, x\right]=e_{1},} & {\left[x, e_{1}\right]=-e_{1},} \\
{\left[e_{2}, y\right]=-\left[y, e_{2}\right]=e_{2},} & {\left[e_{i}, x\right]=(i-1) e_{i}, \quad 3 \leqslant i \leqslant n,}
\end{array}\right. \\
& L_{2}:\left\{\begin{aligned}
& {\left[e_{1}, e_{1}\right]=e_{3}, } {\left[e_{i}, e_{1}\right]=e_{i+1}, } \\
& {\left[e_{1}, x\right]=e_{1}, } {\left[x, e_{1}\right]=-e_{1}, } \\
& {\left[e_{2}, y\right]=e_{2}, } {\left[e_{i}, x\right]=(i-1) e_{i}, } \\
& \hline
\end{aligned}\right\} \leqslant i \leqslant n-1,
\end{aligned}
$$

Proof. Let

$$
\mathcal{R}_{X_{\mid F_{n}^{2}}}=\left(\begin{array}{ccccccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \ldots & \alpha_{n-1} & \alpha_{n} \\
0 & \beta & 0 & 0 & \ldots & 0 & \gamma \\
0 & 0 & 2 \alpha_{1} & \alpha_{3} & \ldots & \alpha_{n-2} & \alpha_{n-1} \\
0 & 0 & 0 & 3 \alpha_{1} & \ldots & \alpha_{n-3} & \alpha_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & (n-1) \alpha_{1}
\end{array}\right)
$$

and

$$
\mathcal{R}_{y_{\mid F_{n}^{2}}}=\left(\begin{array}{ccccccc}
\lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} & \ldots & \lambda_{n-1} & \lambda_{n} \\
0 & \mu & 0 & 0 & \ldots & 0 & v \\
0 & 0 & 2 \lambda_{1} & \lambda_{3} & \ldots & \lambda_{n-2} & \lambda_{n-1} \\
0 & 0 & 0 & 3 \lambda_{1} & \ldots & \lambda_{n-3} & \lambda_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & (n-1) \lambda_{1}
\end{array}\right)
$$

be two nil independent outer derivations of the algebra F_{n}^{2}.
Taking the change of the basis elements x, y similar to (2), we can assume that $\alpha_{1}=\mu=1, \lambda_{1}=$ $\beta=0$.

Thus, we have the products:

$$
\begin{array}{lll}
{\left[e_{1}, x\right]=e_{1}+\sum_{i=2}^{n} \alpha_{i} e_{i},} & {\left[e_{2}, x\right]=\gamma e_{n},} & \\
{\left[e_{i}, x\right]=(i-1) e_{i}+\sum_{j=i+1}^{n} \alpha_{j-i+2} e_{j},} & & 3 \leqslant i \leqslant n, \\
{\left[e_{1}, y\right]=\sum_{i=2}^{n} \lambda_{i} e_{i},} & {\left[e_{2}, y\right]=e_{2}+v e_{n},} & \\
{\left[e_{i}, y\right]=\sum_{j=i+1}^{n} \lambda_{j-i+2} e_{j},} & & 3 \leqslant i \leqslant n .
\end{array}
$$

Applying similar reasonings and changes of bases which we have used in Theorem 4.7, we obtain isomorphism classes of algebras whose representative elements are L_{1} and L_{2}.

Remark 4.9. In fact, the algebra $L_{1}=I_{1} \oplus J_{1}$, where $I_{1}=N F_{n-1}+\langle\chi\rangle$ and $J_{1}=\left\langle e_{2}, y\right\rangle$, verifies that I_{1} is a solvable Leibniz algebra with nilradical $N F_{n-1}$ and J_{1} is a two-dimensional solvable Lie algebra. The algebra $L_{2}=I_{2} \oplus J_{2}$, where $I_{2}=N F_{n-1}+\langle x\rangle$ and $J_{2}=\left\langle e_{2}, y\right\rangle$, verifies that J_{2} is a two-dimensional solvable non-Lie Leibniz algebra. Thus, from Theorem 4.8, we conclude that any $(n+2)$-dimensional solvable Leibniz algebra with nilradical F_{n}^{2} is split.

Acknowledgements

The two first authors were supported by MICINN, grant MTM 2009-14464-C02 (Spain) (European FEDER support included), and by Xunta de Galicia grant Incite09 207 215PR.

References

[1] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fré, M. Trigiante, R-R scalars, U-duality and solvable Lie algebras, Nuclear Phys. B 496 (1997) 617-629.
[2] S. Okubo, Gauge theory based upon solvable Lie algebras, J. Phys. A 31 (1998) 7603-7609.
[3] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. 39 (2) (1993) $269-293$.
[4] S.A. Ayupov, B.A. Omirov, On some classes of nilpotent Leibniz algebras, Siberian Math. J. 42 (2001) 15-24.
[5] D.W. Barnes, On Levi's theorem for Leibniz algebras, Bull. Austral. Math. Soc. 86 (2012) 184-185.
[6] N. Jacobson, Lie algebras, in: Interscience Tracts in Pure and Applied Mathematics, vol. 10, Interscience Publishers (a division of John Wiley \& Sons), New York, London, 1962.
[7] A.I. Malcev, Solvable Lie algebras, Amer. Math. Soc. Transl. 1950 (1950) 36
[8] J.M. Ancochea Bermúdez, R. Campoamor-Stursberg, L. García Vergnolle, Indecomposable Lie algebras with nontrivial Levi decomposition cannot have filiform radical, Int. Math. Forum 1 (2006) 309-316.
[9] J.M. Ancochea Bermúdez, R. Campoamor-Stursberg, L. García Vergnolle, Classification of Lie algebras with naturally graded quasi-filiform nilradicals, J. Geom. Phys. 61 (2011) 2168-2186.
[10] J.C. Ndogmo, P. Winternitz, Solvable Lie algebras with abelian nilradicals, J. Phys. A 27 (1994) 405-423.
[11] S. Tremblay, P. Winternitz, Solvable Lie algebras with triangular nilradicals, J. Phys. A 31 (1998) 789-806.
[12] Y. Wang, J. Lin, S. Deng, Solvable Lie algebras with quasifiliform nilradicals, Comm. Algebra 36 (2008) 4052-4067.
[13] S.A. Ayupov, B.A. Omirov, On Leibniz algebras, in: Algebra and Operator Theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, 1998, pp. 1-12.
[14] M. Vergne, Cohomologie des algébres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970) 81-116.
[15] L. Šnobl, P. Winternitz, A class of solvable Lie algebras and their Casimir invariants, J. Phys. A 38 (2005) 2687-2700.
[16] J.M. Ancochea Bermúdez, R. Campoamor-Stursberg, L. García Vergnolle, Solvable Lie algebras with naturally graded nilradicals and their invariants, J. Phys. A 39 (2006) 1339-1355.
[17] G.M. Mubarakzjanov, On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat. 1963 (1963) 114-123. (in Russian).

[^0]: * Corresponding author. Tel.: +34 986801930; fax: +34 986801907.

 E-mail addresses: jmcasas@uvigo.es (J.M. Casas), manuel.ladra@usc.es (M. Ladra), omirovb@mail.ru (B.A. Omirov), iqboli@gmail.com (I.A. Karimjanov).

