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1. Introduction

Solvable Lie algebras have played a significant role in recent decades, where they have been applied

systematically to integrable systems, in the formulation of non-abelian gauge theories, in quantum

gravity and string theories in the low-energy supergravity limit (see, e.g. [1,2]). The need for a classifi-

cation of solvable Lie algebras of higher dimensions in physics arises in particular in the classification

of higher dimensional Einstein spaces, or other pseudo-Riemannian spaces that can occur in string

theories, brane cosmology and other elementary particle theories.

Leibniz algebras were introduced at the beginning of the 90s of the past century by J.-L. Loday in

[3]. They are a “non-commutative” generalization of Lie algebras. Leibniz algebras inherit an important

property of Lie algebras which is that the right multiplication operator on an element of a Leibniz

algebra is a derivation. Active investigations on Leibniz algebra theory show that many results of the

theory of Lie algebras can be extended to Leibniz algebras. Of course, distinctive properties of non-Lie

Leibniz algebras have also been studied [4,5].

In fact, for a Leibniz algebra we have the corresponding Lie algebra, which is the quotient algebra

by the two-sided ideal I generated by the square elements of a Leibniz algebra. Notice that this ideal

is the minimal one such that the quotient algebra is a Lie algebra and in the case of non-Lie Leibniz

algebras it is always non trivial (moreover, it is abelian).

From the theory of Lie algebras it is well known that the study of finite dimensional Lie algebras

was reduced to the nilpotent ones [6,7]. In the Leibniz algebra case we have an analogue of Levi’s

theorem [5]. Namely, the decomposition of a Leibniz algebra into a semidirect sum of its solvable

radical and a semisimple Lie algebra is obtained. The semisimple part can be described from simple

Lie ideals and therefore, themain problem is to study the solvable radical, i.e. in a similar way as in the

case of Lie algebras, the description of Leibniz algebras is reduced to the description of the solvable

ones. The analysis of works devoted to the study of solvable Lie algebras (for example [8–12], where

solvable Lie algebras with various types of nilradical were studied, such as naturally graded filiform

and quasi-filiform algebras, abelian, triangular, etc.) shows that we can also apply similar methods

to solvable Leibniz algebras with a given nilradical. Some results of Lie algebra theory generalized to

Leibniz algebras [13] allow us to apply the technique of description of solvable extensions of nilpotent

Lie algebras to the case of Leibniz algebras.

The aim of the present paper is to classify solvable Leibniz algebras with naturally graded filiform

nilradical. Thanks to the works [4,14], we already have the classification of naturally graded filiform

Leibniz algebras.

In order to achieve our goal we organize the paper as follows. In Section 2 we give some nec-

essary notions and preliminary results about Leibniz algebras and solvable Lie algebras with nat-

urally graded filiform radical. Section 3 is devoted to the classification of solvable Leibniz algebras

whose nilradical is a naturally graded filiform Lie algebra and in Section 4 we describe, up to iso-

morphisms, solvable Leibniz algebras whose nilradical is a naturally graded filiform non-Lie Leibniz

algebra.

Throughout the paper vector spaces and algebras are finite-dimensional over the field of the com-

plex numbers. Moreover, in the table ofmultiplication of an algebra the omitted products are assumed

to be zero and, if it is not noted, we shall consider non-nilpotent solvable algebras.

2. Preliminaries

In this section we give necessary definitions and preliminary results.

Definition 2.1. A vector spacewith bilinear bracket (L, [−, −]) over a field F is called a Leibniz algebra

if for any x, y, z ∈ L the so-called Leibniz identity

[
x, [y, z]] = [[x, y], z] − [[x, z], y]

holds, or equivalently,
[[x, y], z] = [[x, z], y] + [

x, [y, z]].
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Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, there exists the

version corresponding to the left Leibniz identity,

[[x, y], z] = [
x, [y, z]] − [

y, [x, z]].
From the Leibniz identitywe conclude that the elements [x, x], [x, y]+[y, x], for any x, y ∈ L, lie in

Annr(L) = {x ∈ L | [y, x] = 0, for all y ∈ L}, the right annihilator of the Leibniz algebra L. Moreover,

we also get that Annr(L) is a two-sided ideal of L.

The two-sided ideal Center(L) = {x ∈ L | [x, y] = 0 = [y, x], for all y ∈ L} is said to be the center

of L.

Definition 2.2. A linear map d : L → L of a Leibniz algebra (L, [−, −]) is said to be a derivation if for

all x, y ∈ L, the following condition holds:

d([x, y]) = [d(x), y] + [x, d(y)].
For a given element x of a Leibniz algebra L, the rightmultiplication operatorsRx : L → L,Rx(y) =

[y, x], y ∈ L, are derivations (for a left Leibniz algebra L, the left multiplication operators Lx : L →
L,Lx(y) = [x, y], y ∈ L, are derivations). This kind of derivations are said to be inner derivations. Any

Leibniz algebra L has associated the algebra of right multiplications R(L) = {Rx | x ∈ L}. R(L) is

endowed with a structure of Lie algebra by means of the bracket [Rx,Ry] = RxRy − RyRx = R[y,x].
Moreover, there is an antisymmetric isomorphism betweenR(L) and the quotient algebra L/ Annr(L).

Definition 2.3. For a given Leibniz algebra (L, [−, −]) the sequences of two-sided ideals defined

recursively as follows:

L1 = L, Lk+1 = [Lk, L], k � 1, L[1] = L, L[s+1] = [L[s], L[s]], s � 1,

are said to be the lower central and the derived series of L, respectively.

Definition 2.4. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there exists n ∈ N

(m ∈ N) such that Ln = 0 (respectively, L[m] = 0). The minimal number n (respectively,m) with such

property is said to be the index of nilpotency (respectively, of solvability) of the algebra L.

Evidently, the index of nilpotency of an n-dimensional nilpotent algebra is not greater than n + 1.

Definition 2.5. An n-dimensional Leibniz algebra L is said to be null-filiform if dim Li = n+1− i, 1 �
i � n + 1.

Evidently, null-filiform Leibniz algebras have maximal index of nilpotency.

Theorem 2.6 [4]. An arbitrary n-dimensional null-filiform Leibniz algebra is isomorphic to the algebra

NFn : [ei, e1] = ei+1, 1 � i � n − 1,

where {e1, e2, . . . , en} is a basis of the algebra NFn.

Actually, a nilpotent Leibniz algebra is null-filiform if and only if it is one-generated algebra. Notice

that this notion has no sense in Lie algebras case, because they are at least two-generated.

Definition 2.7. Ann-dimensional Leibniz algebra L is said to befiliform if dim Li = n−i, for 2 � i � n.

Now let us define a natural graduation for a filiform Leibniz algebra.
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Definition 2.8. Given a filiform Leibniz algebra L, put Li = Li/Li+1, 1 � i � n − 1, and gr(L) =
L1 ⊕ L2 ⊕ · · · ⊕ Ln−1. Then [Li, Lj] ⊆ Li+j and we obtain the graded algebra gr(L). If gr(L) and L are

isomorphic, then we say that an algebra L is naturally graded.

Thanks to [14] it is well known that there are two types of naturally graded filiform Lie algebras. In

fact, the second type will appear only in the case when the dimension of the algebra is even.

Theorem 2.9 [14]. Any complex naturally graded filiform Lie algebra is isomorphic to one of the following

non isomorphic algebras:

nn,1 : [ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1.

Q2n :
⎧⎨
⎩ [ei, e1] = −[e1, ei] = ei+1, 2 � i � 2n − 2,

[ei, e2n+1−i] = −[e2n+1−i, ei] = (−1)i e2n, 2 � i � n.

In the following theoremwe recall the classification of the naturally graded filiformnon-Lie Leibniz

algebras given in [4].

Theorem 2.10 [4]. Any complex n-dimensional naturally graded filiform non-Lie Leibniz algebra is iso-

morphic to one of the following non isomorphic algebras:

F1n =
⎧⎨
⎩ [e1, e1] = e3,

[ei, e1] = ei+1, 2 � i � n − 1,

F2n =
⎧⎨
⎩ [e1, e1] = e3,

[ei, e1] = ei+1, 3 � i � n − 1.

Definition 2.11. The maximal nilpotent ideal of a Leibniz algebra is said to be the nilradical of the

algebra.

Notice that the nilradical is not the radical in the sense of Kurosh, because the quotient Leibniz

algebra by its nilradical may contain a nilpotent ideal (see [6]).

All solvable Lie algebras whose nilradical is the naturally graded filiform Lie algebra nn,1 are classi-

fied in [15]. Further solvable Lie algebras whose nilradical is the naturally graded filiform Lie algebra

Q2n are classified in [16].

Using the above classifications, we shall give the classification of solvable non-Lie Leibniz algebras

whose nilradical is a naturally graded filiform Lie algebra.

It is proved that the dimension of a solvable Lie algebra whose nilradical is isomorphic to an n-

dimensional naturally graded filiform Lie algebra is not greater than n + 2. Below, we present their

classification.

In order to agree with the tables of multiplications of algebras in Theorems 2.9 and 2.10, we make

the following change of basis in the classification of [15]:

e′i = en+1−i, 1 � i � n, x = −f .

We also use different notation to denote the algebras that appear in [15]. That way the results would

be:

Theorem 2.12 [15]. There are three types of solvable Lie algebras of dimension n + 1 with nilradical

isomorphic to nn,1, for any n � 4. The isomorphism classes in the basis {e1, . . . , en, x} are represented by

the following algebras:
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Sn+1(α, β) :
⎧⎪⎪⎨
⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1,

[ei, x] = −[x, ei] = (
(i − 2)α + β

)
ei, 2 � i � n,

[e1, x] = −[x, e1] = αe1.

The mutually non-isomorphic algebras of this type are Sn+1,1(β) = Sn+1(1, β) (depending on the value

of β , in this case there are three different classes, β = 0, β = n − 2 and β /∈ {0, n − 2}) and Sn+1,2 =
Sn+1(0, 1).

Sn+1,3 :
⎧⎪⎪⎨
⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1,

[ei, x] = −[x, ei] = (i − 1) ei, 2 � i � n,

[e1, x] = −[x, e1] = e1 + e2.

Sn+1,4(α3, α4, . . . , αn−1) :
⎧⎪⎪⎨
⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1,

[ei, x] = −[x, ei] = ei +
n∑

l=i+2

αl+1−i el, 2 � i � n,

where at least one αi satisfies αi �= 0 and the first non-vanishing parameter {α3, . . . , αn−1} can be

assumed to be equal to 1.

Theorem 2.13 [15]. There exists only one class of solvable Lie algebras of dimension n + 2with nilradical

nn,1. It is represented by a basis {e1, e2, . . . , en, x, y} and the Lie brackets are

Sn+2 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1,

[ei, x] = −[x, ei] = (i − 2) ei, 2 � i � n,

[e1, x] = −[x, e1] = e1,

[ei, y] = −[y, ei] = ei, 2 � i � n.

Now we recall the classification given in [16] after the following change of basis:

e′1 = −e1, x′ = −Y1, y′ = −Y2.

Proposition 2.14 [16]. Any solvable Lie algebra of dimension 2n+1 with nilradical isomorphic to Q2n is

isomorphic to one of the following algebras:

Q2n+1,1(α) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � 2n − 2,

[ei, e2n+1−i] = −[e2n+1−i, ei] = (−1)i e2n, 2 � i � n,

[e1, x] = −[x, e1] = e1,

[ei, x] = −[x, ei] = (i − 2 + α) ei, 2 � i � 2n − 1,

[e2n, x] = −[x, e2n] = (2n − 3 − 2α) e2n.

Q2n+1,2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � 2n − 2,

[ei, e2n+1−i] = −[e2n+1−i, ei] = (−1)i e2n, 2 � i � n,

[e1, x] = −[x, e1] = e1 + ε e2n, ε = 0, 1,

[ei, x] = −[x, ei] = (i − n) ei, 2 � i � 2n − 1,

[e2n, x] = −[x, e2n] = e2n.
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Q2n+1,3(α) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � 2n − 2,

[ei, e2n+1−i] = −[e2n+1−i, ei] = (−1)i e2n, 2 � i � n,

[e2+i, x] = −[x, e2+i] = e2+i +
� 2n−3−i

2
	∑

k=2

α2k+1e2k+1+i,

0 � i � 2n − 6,

[e2n−i, x] = −[x, e2n−i] = e2n−i, i = 1, 2, 3,

[e2n, x] = −[x, e2n] = 2e2n.

Proposition 2.15 [16]. For any n � 3 there is only one (2n+ 2)-dimensional solvable Lie algebra having

a nilradical isomorphic to Q2n:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � 2n − 2,

[ei, e2n+1−i] = −[e2n+1−i, ei] = (−1)i e2n, 2 � i � n,

[ei, x] = −[x, ei] = i ei, 1 � i � 2n − 1,

[e2n, x] = −[x, e2n] = (2n + 1) e2n,

[ei, y] = −[y, ei] = ei, 1 � i � 2n − 1,

[e2n, y] = −[y, e2n] = 2 e2n.

Let R be a solvable Leibniz algebra with nilradical N. We denote by Q the complementary vector

space of the nilradicalN to the algebra R. Let us consider the restrictions toN of the rightmultiplication

operator on an element x ∈ Q (denoted byRx|N ). If the operatorRx|N is nilpotent, then we assert that

the subspace 〈x + N〉 is a nilpotent ideal of the algebra R. Indeed, since for a solvable Leibniz algebra

Rwe get the inclusion R2 ⊆ N [13], and hence the subspace 〈x + N〉 is an ideal. The nilpotency of this

ideal follows from the Engel’s theorem for Leibniz algebras [13]. Therefore, we have a nilpotent ideal

which strictly contains the nilradical, which is in contradiction with the maximality of N. Thus, we

obtain that for any x ∈ Q , the operator Rx|N is a non-nilpotent derivation of N.

Let {x1, . . . , xm} be a basis of Q , then for any scalars {α1, . . . , αm} ∈ C\ {0}, thematrix α1Rx1|N +
· · ·+αmRxm|N is not nilpotent, whichmeans that the elements {x1, . . . , xm} are nil-independent [17].
Therefore, we have that the dimension of Q is bounded by the maximal number of nil-independent

derivations of the nilradical N. Moreover, similar to the case of Lie algebras, for a solvable Leibniz

algebra R the inequality dimN � dim R
2

holds.

3. Solvable Leibniz algebras whose nilradical is a Lie algebra

It is not difficult to see that if R is a solvable non-Lie Leibniz algebra with nilradical isomorphic to

the algebras nn,1 orQ2n, then the dimension of R is also not greater than n+2 and 2n+2, respectively.

Let nn,1 or Q2n be the nilradical of a solvable Leibniz algebra R. Since the ideal I = 〈{[x, x] | x ∈ R}〉
is contained in Annr(R), then I is abelian, hence it is contained in the nilradical. Taking into account

the multiplication in nn,1 (respectively Q2n) we conclude that I = 〈{en}〉.
Having in mind that an (n + 1)-dimensional algebra R is solvable, then the quotient algebra R/I

is also a solvable Lie algebra with nilradical nn,1 (whose lists of tables of multiplication are given in

Theorems 2.12 and 2.13).

Case nn,1. Let us assume that R has dimension n+ 1, then the table of multiplication in Rwill be equal

to the table of multiplication of Sn+1,i, (i = 1, 2, 3, 4), except the following products:

[e1, x] = α1e1 + γ4en, [e2, x] = β1e2 + γ5en,

[x, e1] = −α1e1 + γ1en, [x, e2] = −β1e2 + γ2en, [x, x] = γ3en,

where (γ1 + γ4, γ2 + γ5, γ3) �= (0, 0, 0).
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Note that taking the change of basis

e′1 = α1 e1 + γ4 en, e′2 = β1 e2 + γ5 en

we can assume that γ4 = γ5 = 0, i.e., [e1, x] = α e1 and [e2, x] = β e2.

It is not difficult to see that, for the omitted products, the antisymmetric identity holds, i.e.{ [ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1,

[ei, x] = −[x, ei], 3 � i � n.

We have [en, x] = 0 because 0 = [x, en] = −[en, x].
Consider

0 = [x, en] = [
x, [en−1, e1]] = [[x, en−1], e1] − [[x, e1], en−1

] = −(n − 2 + β) en.

In the list of Theorem 2.12 only the algebra Sn+1,1(β) is representative of the class for which the

equality [en, x] = 0 holds. This class is defined by β = 2 − n.

Therefore, in the case of dim R = n + 1 whose nilradical is nn,1, we have the following family:

Rn+1,1(γ1, γ2, γ3) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � n − 1,

[e1, x] = e1,

[x, e1] = −e1 + γ1 en,

[e2, x] = (2 − n) e2,

[x, e2] = (n − 2) e2 + γ2 en,

[ei, x] = −[x, ei] = (i − n) ei, 3 � i � n − 1,

[x, x] = γ3 en,

where (γ1, γ2, γ3) �= (0, 0, 0).
Applying a similar argument and the table of multiplication of the algebra in Theorem 2.13, we

conclude that solvable non-Lie Leibniz algebras of dimension n + 2 with nilradical nn,1 do not exist.

Theorem 3.1. Any (n + 1)-dimensional solvable Leibniz algebra with nilradical nn,1 is isomorphic to one

of the following pairwise non isomorphic algebras:

Rn+1,1(0, 0, 1), Rn+1,1(0, 1, 0), Rn+1,1(1, 1, 0), Rn+1,1(1, 0, 0).

Proof. We consider the general change of basis in the family Rn+1,1(γ1, γ2, γ3):

e′1 =
n∑

i=1

Ai ei, e′2 =
n∑

i=1

Bi ei, x′ = D x +
n∑

i=1

Ci ei,

where (A1B2 − B1A2)D �= 0.

Using [e′i, e′1] = e′i+1, 2 � i � n − 1, the table of multiplication of Rn+1,1(γ1, γ2, γ3) and an

induction, we obtain

e′i = A
i−3
1

n∑
j=i

(A1Bj+2−i − B1Aj+2−i) ej, 3 � i � n.

From the equalities

0 = [e′3, e′2] = B1

n∑
j=4

(A1Bj−2 − B1Aj−2) ej,

we have B1 = 0.
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Consider the multiplications

[e′1, x′] = A1D e1 − D

n−1∑
i=2

Ai(n − i) ei +
n∑

i=3

(Ai−1C1 − A1Ci−1) ei

= A1De1 − A2D(n − 2) e2 +
n−1∑
i=3

(
Ai−1C1 − A1Ci−1 − (n − i)AiD

)
ei

+ (An−1C1 − A1Cn−1) en.

On the other hand, we have

[e′1, x′] = e′1 =
n∑

i=1

Ai ei.

Comparing the coefficients of the basis elements we derive:

D = 1, A2 = 0, Ai+1 = A1Ci − AiC1

i − n − 1
, 2 � i � n − 2,

An = A1Cn−1 − An−1Cn.

From the equalities

−(n − 2)
n∑

i=2

Biei = − (n − 2)e′2 = [e′2, x′] =
⎡
⎣ n∑
i=2

Biei, x +
n∑

i=1

Ciei

⎤
⎦

= −
n−1∑
i=2

Bi(n − i)ei + C1

n∑
i=3

Bi−1ei

= − B2(n − 2)e2 +
n−1∑
i=3

(
Bi−1C1 − Bi(n − i)

)
ei + Bn−1C1en,

we deduce the following restrictions:

Bi = (−1)i
B2C

i−2
1

(i − 2)! , 3 � i � n.

In an analogous way, comparing coefficients at the basis element en in the equalities, we obtain:

γ ′
3A

n−2
1 B2 en = γ ′

3 e
′
n = [x′, x′] = (γ3 + C1γ1 + C2γ2) en,

and thus

γ ′
3 = γ3 + C1γ1 + C2γ2

A
n−2
1 B2

.

With a similar argument, we obtain

−e′1 + A
n−2
1 B2γ

′
1 en = −e′1 + γ ′

1 e
′
n = [x′, e′1] = −e′1 + A1γ1 en,

and

−(n − 2) e′2 + A
n−2
1 B2γ

′
2 en = (n − 2) e′2 + γ ′

2 e
′
n = [x′, e′2] = (n − 2) e′2 + B2γ2 en,

and hence

γ ′
1 = γ1

A
n−3
1 B2

and γ ′
2 = γ2

A
n−2
1

.

Now we shall consider the possible cases of the parameters {γ1, γ2, γ3}.
Case 1. Let γ1 = 0. Then γ ′

1 = 0.

If γ2 = 0, then γ ′
2 = 0 and γ ′

3 = γ3

A
n−2
1 B2

�= 0. Putting B2 = γ3

A
n−2
1

, then we have that γ ′
3 = 1, and

thus the algebra is Rn+1,1(0, 0, 1).
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If γ2 �= 0, then putting A1 = n−2√γ2 and C2 = − γ3

γ2
, we get γ ′

2 = 1 and γ ′
3 = 0, i.e. we obtain the

algebra Rn+1,1(0, 1, 0).

Case 2. Let γ1 �= 0. Then putting B2 = γ1

A
n−3
1

and C1 = − γ3+C2γ2

γ1
, we have:

γ ′
1 = 1, γ ′

2 = γ2

A
n−2
1

, γ ′
3 = 0.

If γ2 �= 0, then putting A1 = n−2√γ2 we have that γ ′
2 = 1, and thus we obtain the algebra

Rn+1,1(1, 1, 0).
If γ2 = 0, then we get the algebra Rn+1,1(1, 0, 0). �

CaseQ2n. Similarly as above, fromPropositions 2.14 and2.15,we conclude that solvable non-Lie Leibniz

algebras with nilradical Q2n exist only in the case of dim R = 2n + 1 and they are isomorphic to

Q2n+1,1(α) for α = 2n−3
2

. Thus, we have

R2n+1,1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = −[e1, ei] = ei+1, 2 � i � 2n − 2,

[ei, e2n+1−i] = −[e2n+1−i, ei] = (−1)i e2n, 2 � i � n,

[e1, x] = e1,

[x, e1] = −e1 + γ1 en,

[e2, x] = 2n − 3

2
e2,

[x, e2] = −2n − 3

2
e2 + γ2 en,

[ei, x] = −[x, ei] = 2n + 2i − 7

2
ei, 3 � i � 2n − 1,

[x, x] = γ3 en,

where (γ1, γ2, γ3) �= (0, 0, 0).

Theorem 3.2. Any (2n+1)-dimensional solvable Leibniz algebra with nilradical Q2n is isomorphic to one

of the following pairwise non isomorphic algebras:

R2n+1,1(0, 0, 1), R2n+1,1(0, 1, 0), R2n+1,1(1, 1, 0), R2n+1,1(1, 0, 0).

Proof. The proof is carried out by applying similar arguments as in the proof of Theorem 3.1 �

4. Solvable Leibniz algebras whose nilradical is a non-Lie Leibniz algebra

In the following proposition we describe the derivations of the algebra F1n .

Proposition 4.1. Any derivation of the algebra F1n has the following matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 α2 α3 α4 . . . αn−1 αn

0 α1 + α2 α3 α4 . . . αn−1 β

0 0 2α1 + α2 α3 . . . αn−2 αn−1

0 0 0 3α1 + α2 . . . αn−3 αn−2

...
...

...
... . . .

...
...

0 0 0 0 . . . 0 (n − 1)α1 + α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Proof. Let d be a derivation of the algebra. We set

d(e1) =
n∑

i=1

αi ei, d(e2) =
n∑

i=1

βi ei.

From the equality

0 = d([e1, e2]) = [d(e1), e2] + [e1, d(e2)] = β1 e3,

we get β1 = 0.

Further, we have

d(e3) = d([e1, e1]) = [d(e1), e1] + [e1, d(e1)] = (2α1 + α2) e3 +
n−1∑
i=3

αi ei+1.

On the other hand,

d(e3) = d([e2, e1]) = [d(e2), e1] + [e2, d(e1)] = (α1 + β2) e3 +
n−1∑
i=3

βi ei+1.

Therefore, β2 = α1 + α2, βi = αi, 3 � i � n − 1.

With similar arguments applied on the products [ei, e1] = ei+1 and with an induction on i, it is

easy to check that the following identities hold for 3 � i � n:

d(ei) = (
(i − 1)α1 + α2

)
ei +

n∑
j=i+1

αj−i+2 ej, 3 � i � n. �

From Proposition 4.1 we conclude that the number of nil-independent outer derivations of the

algebra F1n is equal to two. Therefore, by arguments after Proposition 2.15, we have that any solvable

Leibniz algebra whose nilradical is F1n has dimension either n + 1 or n + 2.

4.1. Solvable Leibniz algebras with nilradical F1n

Below we present the description of such Leibniz algebras when dimension is equal to n + 1.

Theorem 4.2. An arbitrary (n+ 1)-dimensional solvable Leibniz algebra with nilradical F1n is isomorphic

to one of the following pairwise non-isomorphic algebras:

R1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −e1 − e2,

[e1, x] = e1,

[ei, x] = (i − 1)ei, 2 � i � n.

R2(α) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −e1,

[e1, x] = e1,

[ei, x] = (i − 1 + α) ei, 2 � i � n,

R3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −e1,

[e1, x] = e1,

[ei, x] = (i − n) ei, 2 � i � n,

[x, x] = en.
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R4 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −e1,

[e1, x] = e1 + en,

[ei, x] = (i + 1 − n) ei, 2 � i � n,

[x, x] = −en−1.

R5(α4, . . . , αn−1) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3,

[ei, e1] = ei+1, 2 � i � n − 1,

[e1, x] = e2 +
n−1∑
i=4

αi ei

[e2, x] = e2 +
n−1∑
i=4

αi ei,

[ei, x] = ei +
n∑

j=i+2

αj−i+2 ej, 3 � i � n.

R6(α4, . . . , αn−1) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3,

[ei, e1] = ei+1, 2 � i � n − 1,

[e1, x] = e2 +
n−1∑
i=4

αi ei + en

[e2, x] = e2 +
n−1∑
i=4

αi ei,

[ei, x] = ei +
n∑

j=i+2

αj−i+2 ej, 3 � i � n.

R7(α4, . . . , αn−1) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3,

[ei, e1] = ei+1, 2 � i � n − 1,

[e1, x] = e2 +
n−1∑
i=4

αi ei,

[e2, x] = e2 +
n−1∑
i=4

αi ei + en,

[ei, x] = ei +
n∑

j=i+2

αj−i+2 ej, 3 � i � n.

Moreover, the first non-vanishing parameter {α4, . . . , αn−1} in the algebras R5(α4, . . . , αn−1),
R6(α4, . . . , αn−1) and R7(α4, . . . , αn−1) can be scaled to 1.

Proof. From Theorem 2.10 and arguments after Proposition 2.15 we know that there exists a basis

{e1, e2, . . . , en, x} such that the multiplication table of the algebra F1n is completed with the products

coming fromRx|
F1n

(ei), 1 � i � n, i.e.
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[e1, x] =
n∑

i=1

αi ei, [e2, x] = (α1 + α2) e2 +
n−1∑
i=3

αi ei + β en,

[ei, x] = (
(i − 1)α1 + α2

)
ei +

n∑
j=i+1

αj−i+2 ej, 3 � i � n.

Finally, we consider the remaining products as follows:

[x, e1] =
n∑

i=1

βi ei, [x, e2] =
n∑

i=1

γi ei, [x, x] =
n∑

i=1

δi ei.

From the chain of equalities

0 = [x, e3] = [
x, [e2, e1]] = [[x, e2], e1] − [[x, e1], e2] = [[x, e2], e1]

= (γ1 + γ2) e3 +
n∑

i=4

γi−1 ei,

we conclude that γ2 = −γ1, γi = 0, 3 � i � n − 1.

Since γ1e3 = [
e1, [x, e2]] = [[e1, x], e2] − [[e1, e2], x] = 0, then γ1 = 0.

The identity

[
e1, [x, e1]] = [[e1, x], e1] − [[e1, e1], x]

implies β1 = −α1.

Applying the Leibniz identity to the elements of the form {x, x, e2} and {x, e2, x}, we conclude that:{ (
(n − 1)α1 + α2

)
γn = 0,

(n − 2)α1γn = 0.

Note thatγn = 0
(
otherwiseα1 = α2 = 0 and thenweget a contradictionwith the non-nilpotency

of the derivationRx|
F1n

(see Proposition 4.1)
)
.

Now we are going to discuss the possible cases of the parameters α1 and α2.

Case 1. α1 �= 0.

Case 1.1. Let α1 �= β2. Then taking the following change of basis:

x′ = − 1

α1

x, e′1 = e1 − 1

α1

n∑
i=2

βi ei,

e′i = − 1

α1

⎛
⎝(−α1 + β2) ei +

n∑
j=i+1

βj−i+2 ej

⎞
⎠ , 2 � i � n,

we obtain

[e1, e1] = e3, [e1, x] =
n∑

i=1

μi ei, [ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = e1, [e2, x] =
n∑

i=1

ηi ei, [x, e2] = 0, [x, x] =
n∑

i=1

θi ei.

From the equalities

0 = [[e1, e2], x] = [
e1, [e2, x]] + [[e1, x], e2] =

⎡
⎣e1,

n∑
i=1

ηi ei

⎤
⎦ = η1 e3,

we get η1 = 0.
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Consider

[e3, x] = [[e1, e1], x] = [
e1, [e1, x]] + [[e1, x], e1]

= μ1 e3 + (μ1 + μ2) e3 +
n−1∑
i=3

μi ei+1 = (2μ1 + μ2) e3 +
n−1∑
i=3

μi ei+1.

On the other hand,

[e3, x] = [[e2, e1], x] = [
e2, [e1, x]] + [[e2, x], e1] = μ1 e3 + η2 e3 +

n−1∑
i=3

ηi ei+1

= (μ1 + η2) e3 +
n−1∑
i=3

ηi ei+1.

The comparison of both linear combinations implies that:

η2 = μ1 + μ2, ηi = μi, 3 � i � n − 1,

that it is to say:

[e2, x] = (μ1 + μ2) e2 +
n−1∑
i=3

μi ei + ηn en and [e3, x] = (2μ1 + μ2) e3 +
n−1∑
i=3

μi ei+1.

Now we shall prove the following equalities by an induction on i:

[ei, x] = (
(i − 1)μ1 + μ2

)
ei +

n∑
j=i+1

μj−i+2 ej, 3 � i � n. (1)

Obviously, the equality holds for i = 3. Let us assume that the equality holds for 3 < i < n, and we

shall prove it for i + 1:

[ei+1, x] = [[ei, e1], x] = [
ei, [e1, x]] + [[ei, x], e1]

= μ1 ei+1 + (
(i − 1)μ1 + μ2

)
ei+1 +

n∑
j=i+2

μj−i+1 ej

= (iμ1 + μ2) ei+1 +
n∑

j=i+2

μj−i+1 ej ;

so the induction proves the equalities (1) for any i, 3 � i � n.

Applying the Leibniz identity to the elements {e1, x, e1}, {e1, x, x}, {x, e1, x}, we deduce that:

μ1 = −1, μ2 = θ1 = 0, θi = μi+1, 2 � i � n − 1.

Below, we summarize the table of multiplication of the algebra⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3

[ei, e1] = ei+1, 2 � i � n − 1,

[e1, x] = −e1 +
n∑

i=3

μi ei,

[e2, x] = −e2 +
n−1∑
i=3

μi ei + ηn en,

[ei, x] = −(i − 1) ei +
n∑

j=i+1

μj−i+2 ej, 3 � i � n,

[x, e1] = e1, [x, x] =
n−1∑
i=2

μi+1 ei + θn en.
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Let us take the change of basis in the following form:

e′1 = e1 +
n∑

i=3

Aiei, e′2 = e2 +
n∑

i=3

Aiei, e′i = ei +
n∑

j=i+1

Aj−i+2ej, 3 � i � n,

x′ =
n−1∑
i=2

Ai+1ei + Ben + x,

where

A3 = μ3, Ai = 1

(i − 2)

⎛
⎝μi +

i−1∑
j=3

Ajμi−j+2

⎞
⎠ , 4 � i � n, and

B = 1

n − 1

⎛
⎝θn +

n∑
j=3

Ajμn−j+3

⎞
⎠ .

Then

[x′, e′1] =
⎡
⎣n−1∑

i=2

Ai+1ei + Ben + x, e1

⎤
⎦ = e1 +

n∑
i=3

Aiei = e′1,

[e′1, x′] = [e1, x] +
n∑

i=3

Ai[ei, x]

= −e1 +
n∑

i=3

μiei +
n∑

i=3

Ai

⎛
⎝−(i − 1)ei +

n∑
j=i+1

μj−i+2ej

⎞
⎠

= −e1 −
n∑

i=3

Aiei +
n∑

i=3

μiei −
n∑

i=3

Ai(i − 2)ei +
n∑

i=3

Ai

⎛
⎝ n∑

j=i+1

μj−i+2ej

⎞
⎠

= −e1 −
n∑

i=3

Aiei +
n∑

i=3

μiei −
n∑

i=3

Ai(i − 2)ei +
n∑

i=4

⎛
⎝i−1∑

j=3

Ajμi−j+2

⎞
⎠ ei

= −e1 −
n∑

i=3

Aiei + (μ3 − A3)e3

+
n∑

i=4

⎛
⎝−Ai(i − 2) + μi +

i−1∑
j=3

Ajμi−j+2

⎞
⎠ ei

= −e1 −
n∑

i=3

Aiei = −e′1,

[e′2, x′] = [e2, x] +
n∑

i=3

Ai[ei, x]

= −e2 +
n−1∑
i=3

μiei + ηnen +
n∑

i=3

Ai

⎛
⎝−(i − 1)ei +

n∑
j=i+1

μj−i+2 ej

⎞
⎠

= −e2 −
n∑

i=3

Aiei +
n−1∑
i=3

μiei + ηnen −
n∑

i=3

Ai(i − 2)ei +
n∑

i=3

Ai

⎛
⎝ n∑

j=i+1

μj−i+2 ej

⎞
⎠
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= −e2 −
n∑

i=3

Aiei +
n−1∑
i=3

μiei + ηnen −
n∑

i=3

Ai(i − 2)ei +
n∑

i=4

⎛
⎝i−1∑

j=3

Ajμi−j+2

⎞
⎠ ei

= −e2 −
n∑

i=3

Aiei + (μ3 − A3)e3 +
n−1∑
i=4

⎛
⎝−Ai(i − 2) + μi +

i−1∑
j=3

Ajμi−j+2

⎞
⎠ ei

+
⎛
⎝ηn − (n − 2)An +

n−1∑
i=3

Aiμn−i+2

⎞
⎠ en = −e′2 + η′ e′n,

[x′, x′] =
n−1∑
i=2

Ai+1[ei, x] + B[en, x] + [x, x]

=
n−1∑
i=2

Ai+1

⎛
⎝−(i − 1)ei +

n∑
j=i+1

μj−i+2ej

⎞
⎠ − B(n − 1)en +

n−1∑
i=2

μi+1ei + θnen

= −
n−1∑
i=2

Ai+1(i − 1)ei +
n−1∑
i=2

μi+1ei − B(n − 1)en + θnen

+
n−1∑
i=2

Ai+1

⎛
⎝ n∑

j=i+1

μj−i+2ej

⎞
⎠

= −
n−1∑
i=2

Ai+1(i − 1)ei +
n−1∑
i=2

μi+1ei − B(n − 1)en + θnen

+
n∑

i=3

⎛
⎝ i∑

j=3

Ajμi−j+3

⎞
⎠ ei

= (μ3 − A3)e2 +
n−1∑
i=3

⎛
⎝−Ai+1(i − 1) + μi+1 +

i∑
j=3

Ajμi−j+3

⎞
⎠ ei

+
⎛
⎝−B(n − 1) + θn +

n∑
j=3

Ajμn−j+3

⎞
⎠ en = 0.

With a similar induction as the given for Eq. (1), it is easy to check that the following equalities

hold:

[ei, x] = −(i − 1) ei, 3 � i � n.

Thus, we obtain the following table of multiplication:⎧⎪⎪⎨
⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = e1, [e1, x] = −e1,

[e2, x] = −e2 + ηen, [ei, x] = −(i − 1)ei, 3 � i � n.

If η �= 0 then by taking the change of basis

e′2 = e2 + η

n − 2
en,

we get η′ = 0.

Finally, by applying the change of basis x′ = −x and e′1 = e1 − e2, we get the algebra R1.

Case 1.2. Let α1 = β2. Then by taking the following change of basis:
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e′1 = e1 − e2, e′i = ei, 2 � i � n,

we can assume that the table of multiplication is the following⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −α1e1 +
n∑

i=3

βiei, [e1, x] = α1e1 + (αn − β)en,

[e2, x] = (α1 + α2)e2 +
n−1∑
i=3

αiei + βen,

[ei, x] = (
(i − 1)α1 + α2

)
ei +

n∑
j=i+1

αj−i+2ej, 3 � i � n,

[x, x] =
n∑

i=1

δiei.

Now, by taking

x′ = 1

α1

x − 1

α1

n−1∑
i=2

βi+1ei,

and renaming the parameters, we get

F :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −e1, [e1, x] = e1 + βen,

[e2, x] = (1 + α2)e2 +
n−1∑
i=3

αiei + λen,

[ei, x] = (i − 1 + α2)ei +
n∑

j=i+1

αj−i+2ej, 3 � i � n,

[x, x] =
n∑

i=1

δiei.

Making the change of basis

x′ = x, e′1 = e1, e′i = ei +
n∑

j=i+1

Aj−i+2ej, 2 � i � n,

where

A3 = − α3, Ai = − 1

i − 1

(
αi +

i−1∑
j=3

Ajαi−j+2

)
, 4 � i � n − 1,

An = − 1

n − 2

⎛
⎝λ +

n−1∑
j=3

Ajαn−j+2

⎞
⎠ ,

and applying the Leibniz identity, we obtain of F the family of algebras



J.M. Casas et al. / Linear Algebra and its Applications 438 (2013) 2973–3000 2989

F(α, β, γ ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei, e1] = ei+1, 2 � i � n − 1,

[x, e1] = −e1,

[e1, x] = e1 + βen,

[ei, x] = (i − 1 + α)ei, 2 � i � n,

[x, x] = −βen−1 + γ en.

Let us take the general change of basis elements in the family F(α, β, γ ),

e′1 =
n∑

i=1

Aiei, e′2 =
n∑

i=1

Biei, x′ = Cx +
n∑

i=1

Piei,

we obtain in the new basis {e′1, e′2, . . . , e′n, x′} the behavior of the parameters with the following

expressions:

α′ = α, β ′ = A1β + (n − 2 + α)An

A
n−2
1 B2

, γ ′ = γ A1 + (n − 1 + α)(PnA1 − P1An)

A
n−3
1 B2

.

Case 1.2.1. α �= 2 − n. Taking

An = − A1β

n − 2 + α
,

we get β ′ = 0.

Case 1.2.1.1. α �= 1 − n. Taking

Pn = −γ A1 + (n − 1 + α)P1An

(n − 1 + α)A1

,

we have γ ′ = 0 and hence the family R2(α) with α ∈ C\{2 − n, 1 − n}.
Case 1.2.1.2. α = 1 − n. Then

γ ′ = γ

A
n−4
1 B2

.

If γ �= 0, then taking B2 = γ

A
n−4
1

, we get γ ′ = 1 and thus we obtain the algebra R3.

If γ = 0, then we have the algebra R2(α) with α = 1 − n.

Case 1.2.2. α = 2 − n. Then we have

β ′ = β

A
n−3
1 B2

, γ ′ = γ A1 + PnA1 − P1An

A
n−3
1 B2

.

Set Pn = −γ A1 + P1An

A1

, we get γ ′ = 0.

If β �= 0, then taking B2 = β

A
n−3
1

, we get β ′ = 1 and hence we obtain the algebra R4.

If β = 0, then we have the algebra R2(α) with α = 2 − n.

It is easy to check that any algebra of the family F(α, β, γ ) is not isomorphic to the algebra R1
applying a general change of basis.

Case 2. Let α1 = 0, α2 �= 0. Then making the following change of basis

x′ = x −
n−1∑
i=2

βi+1 ei,

we can assume that [x, e1] = β2 e2.
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From the identity[
x, [x, e1]] = [[x, x], e1] − [[x, e1], x],

we derive

0 =
n∑

i=3

δi−1 ei − β2[e2, x] =
n∑

i=3

δi−1 ei − β2

⎛
⎝n−1∑

i=2

αi ei + β en

⎞
⎠ ,

consequently, β2 = 0, δi = 0, 2 � i � n − 1.

Making the change of basis

x′ = x − δn

α2

en,

we can assume that [x, x] = 0.

Summarizing, we obtain the following table of multiplication of the algebra in this case⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 2 � i � n − 1,

[e1, x] =
n∑

i=2

αi ei, [e2, x] =
n−1∑
i=2

αi ei + β en,

[ei, x] =
n∑
j=i

αj−i+2 ej, 3 � i � n.

Now we shall study the behavior of the parameters in this family of algebras under the general

change of basis of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e′1 =
n∑

i=1

Aiei,

e′i = A
i−2
1

⎛
⎝(A1 + A2) ei +

n∑
j=i+1

Aj−i+2 ej

⎞
⎠ , 2 � i � n,

x′ =
n∑

i=1

Biei + Bn+1x, where A1(A1 + A2)Bn+1 �= 0.

Then the equalities

0 = [x′, e′1] =
⎡
⎣ n∑
i=1

Biei + Bn+1x, A1e1

⎤
⎦ = A1

⎛
⎝(B1 + B2)e3 +

n∑
i=4

Bi−1ei

⎞
⎠

imply B1 = −B2, Bi = 0, 3 � i � n − 1.

Now we shall express the product [e′1, x′] as a linear combination of the basis {e1, e2, . . . , en, x},
namely:

[e′1, x′] =
⎡
⎣ n∑
i=1

Aiei, B1e1 + Bn+1x

⎤
⎦

= B1

⎛
⎝(A1 + A2)e3 +

n∑
i=4

Ai−1ei

⎞
⎠

+ Bn+1

⎛
⎝A1

n∑
i=2

αiei + A2

⎛
⎝n−1∑

i=2

αiei + βen

⎞
⎠ +

n∑
i=3

Ai

n∑
j=i

αj−i+2ej

⎞
⎠
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= B1(A1 + A2)e3 +
n∑

i=4

B1Ai−1ei + Bn+1A1

n∑
i=2

αiei

+ Bn+1A2

n−1∑
i=2

αiei + Bn+1A2βen + Bn+1

n∑
i=3

i∑
j=3

Ajαi−j+2ei

= Bn+1(A1 + A2)α2 e2 +
(
(A1 + A2)(B1 + Bn+1α3) + Bn+1A3α2

)
e3

+
n−1∑
i=4

⎛
⎝B1Ai−1 + Bn+1(A1 + A2)αi +

i∑
j=3

Bn+1Ajαi−j+2

⎞
⎠ ei

+
⎛
⎝B1An−1 + Bn+1

⎛
⎝A1αn + A2β +

n∑
i=3

Aiαn−i+2

⎞
⎠

⎞
⎠ en.

On the other hand,

[e′1, x′] =
n∑

i=2

α′
i e

′
i =

n∑
i=2

α′
i A

i−2
1

⎛
⎝(A1 + A2)ei +

n∑
j=i+1

Aj−i+2ej

⎞
⎠

=
n∑

i=2

α′
i A

i−2
1 (A1 + A2)ei +

n∑
i=3

i∑
j=3

A
i−j
1 Ajα

′
i−j+2ei

= α′
2(A1 + A2)e2 +

(
A1(A1 + A2)α

′
3 + A3α

′
2

)
e3

+
n∑

i=4

⎛
⎝α′

i A
i−2
1 (A1 + A2) +

i∑
j=3

A
i−j
1 Ajα

′
i−j+2

⎞
⎠ ei.

Comparing coefficients at the basis elements in both combinations, we obtain the following rela-

tions:

α′
2(A1 + A2) = Bn+1(A1 + A2)α2,

A1(A1 + A2)α
′
3 + A3α

′
2 = (A1 + A2)(B1 + Bn+1α3) + Bn+1A3α2,

α′
i A

i−2
1 (A1 + A2) +

i∑
j=3

A
i−j
1 Ajα

′
i−j+2 = B1Ai−1 + Bn+1(A1 + A2)αi

+
i∑

j=3

Bn+1Ajαi−j+2, 4 � i � n − 1,

A
n−2
1 α′

n(A1 + A2) +
n∑

j=3

A
n−j
1 Ajα

′
n−j+2 = B1An−1 + Bn+1

⎛
⎝A1αn + A2β +

n∑
i=3

Aiαn−i+2

⎞
⎠ .

The simplification of these relations implies the following identities:

α′
2 = Bn+1α2, α′

3 = B1 + α3Bn+1

A1

, α′
i = Bn+1αi

A
i−2
1

, 4 � i � n − 1,

α′
n = (αnA1 + βA2)Bn+1

A
n−2
1 (A1 + A2)

.

Analogously, considering the product [e′2, x′], we get the relation:

β ′ = βBn+1

A
n−2
1

,
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and

[x′, x′] = − (βB1 − αnB1 − α2Bn)Bn+1

A
n−2
1 (A1 + A2)

en.

Since [x′, x′] = 0, then Bn = βB1 − αnB1

α2

.

Setting Bn+1 = 1/α2 and B1 = −α3/α2, then we derive that α′
2 = 1, α′

3 = 0.

If β = 0 and αn = 0, then β ′ = 0 and thus we obtain the algebra R5(α4, . . . , αn−1).

If β = 0 and αn �= 0, then putting A2 = αn − α2A
n−2
1

α2A
n−3
1

, we have α′
n = 1 and hence we obtain the

algebra R6(α4, . . . , αn−1).
If β �= 0, then choosing

A1 = n−2

√
β

α2

, A2 = −A1αn

β
,

we obtain β ′ = 1, α′
n = 0 and the algebra R7(α4, . . . , αn−1). �

Now we shall consider the case when the dimension of a solvable Leibniz algebra with nilradical

F1n is equal to n + 2.

Theorem 4.3. There does not exist any (n + 2)-dimensional solvable Leibniz algebra with nilradical F1n .

Proof. From the conditions of the theorem, we have the existence of a basis {e1, e2, . . . , en, x, y} such
that the table of multiplication of F1n remains the same. The outer non-nilpotent derivations of F1n ,

denoted byRx|F1n
andRy|F1n

, are of the form given in Proposition 4.1, with the set of entries {αi, γ } and
{βi, δ}, respectively, where [ei, x] = Rx|F1n

(ei) and [ei, y] = Ry|F1n
(ei).

Taking the following change of basis:

x′ = β2

α1β2 − α2β1

x − α2

α1β2 − α2β1

y, y′ = − β1

α1β2 − α2β1

x + α1

α1β2 − α2β1

y, (2)

we may assume that α1 = β2 = 1 and α2 = β1 = 0.

Therefore we have the products

[e1, x] = e1 +
n∑

i=3

αiei, [e2, x] = e2 +
n−1∑
i=3

αiei + γ en,

[ei, x] = (i − 1)ei +
n∑

j=i+1

αj−i+2ej, 3 � i � n,

[e1, y] = e2 +
n∑

i=3

βiei, [e2, y] = e2 +
n−1∑
i=3

βiei + δen,

[ei, y] = ei +
n∑

j=i+1

βj−i+2ej, 3 � i � n.

Applying similar arguments as in Case 1 of Theorem 4.2 and taking into account that the products

[e1, y], [e2, y], [ei, y]will not be changed under the transformations of bases which were used there,

we obtain the products:

[e1, x] = e1, [e2, x] = e2 + γ en, [ei, x] = (i − 1)ei, 3 � i � n, [x, e1] = −e1.
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Let us introduce the notations:

[y, e1] =
n∑

i=1

ηiei, [y, e2] =
n∑

i=1

θiei, [y, x] =
n∑

i=1

ρiei, [y, y] =
n∑

i=1

τiei, [x, y] =
n∑

i=1

σiei.

From the Leibniz identity

[
e1, [y, e1]] = [[e1, y], e1] − [[e1, e1], y],

we get η1 = 0.

Note that we can assume [y, e1] = η2e2 (by changing y′ = y − ∑n−1
i=2 ηi+1ei).

Due to

[
y, [e1, e2]] = [[y, e1], e2] − [[y, e2], e1],

we obtain θ2 = −θ1, θi = 0, 3 � i � n − 1.

Since
[
e1, [y, e2]] = [[e1, y], e2] − [[e1, e2], y], then we have θ1 = θ2 = 0. Moreover, the Leibniz

identity
[
y, [y, e2]] = [[y, y], e2] − [[y, e2], y] implies that θn = 0, i.e., [y, e2] = 0.

From the following chain of equalities

0 = η2[y, e2] = [y, η2e2] = [
y, [y, e1]] = [[y, y], e1] − [[y, e1], y]

= (τ1 + τ2)e3 +
n∑

i=4

τi−1ei − η2[e2, y]

= (τ1 + τ2)e3 +
n∑

i=4

τi−1ei − η2

⎛
⎝e2 +

n−1∑
i=3

βiei + δen

⎞
⎠ ,

we derive that

η2 = 0, τ2 = −τ1, τi = 0, 3 � i � n − 1.

Therefore, we have [y, e1] = 0 and [y, y] = τ1e1 − τ1e2 + τnen.
Considering the Leibniz identity

[
x, [y, e1]] = [[x, y], e1] − [[x, e1], y],

then we get

−e2 −
n∑

i=3

βiei = (σ1 + σ2)e3 +
n−1∑
i=3

σiei+1.

Thus, we have a contradiction with the assumption of the existence of an algebra under the condi-

tions of the theorem. �

4.2. Solvable Leibniz algebras with nilradical F2n

In this sectionwe describe solvable Leibniz algebraswith nilradical F2n , i.e. solvable Leibniz algebras

R which decompose in the form R = F2n ⊕ Q .
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Proposition 4.4. An arbitrary derivation of the algebra F2n has the following matrix form:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 α2 α3 α4 . . . αn−1 αn

0 β 0 0 . . . 0 γ

0 0 2α1 α3 . . . αn−2 αn−1

0 0 0 3α1 . . . αn−3 αn−2

...
...

...
... . . .

...
...

0 0 0 0 . . . 0 (n − 1)α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. The proof follows by straightforward calculations in a similar way as the proof of Proposition

4.1. �

Remark 4.5. It is an easy task to check that the number of nil-independent derivations of the algebra

F2n is equal to 2.

Corollary 4.6. The dimension of a solvable Leibniz algebra with nilradical F2n is either n + 1 or n + 2.

Theorem 4.7. An (n + 1)-dimensional solvable Leibniz algebra with nilradical F2n is isomorphic to one of

the following pairwise non-isomorphic algebras:

R1(α) :
⎧⎪⎪⎨
⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 3 � i � n − 1,

[e1, x] = −e1, [ei, x] = −(i − 1) ei, 3 � i � n,

[x, e1] = e1, [x, x] = α e2, α ∈ {0, 1}.

R2(α) :
⎧⎪⎪⎨
⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 3 � i � n − 1,

[e1, x] = −e1, [ei, x] = −(i − 1) ei, 3 � i � n,

[x, e1] = e1, [e2, x] = α e2, α �= 0.

R3 :
⎧⎪⎪⎨
⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 3 � i � n − 1,

[e1, x] = −e1, [ei, x] = −(i − 1) ei, 3 � i � n,

[x, e1] = e1, [e2, x] = (1 − n) e2 + en.

R4(α) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 3 � i � n − 1,

[e1, x] = −e1, [ei, x] = −(i − 1) ei, 3 � i � n,

[x, e1] = e1, [e2, x] = −α e2, α �= 1,

[x, e2] = α e2.

R5(α) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3,

[e1, x] = −e1 − α e2, α ∈ {0, 1}, [e2, x] = −e2,

[ei, e1] = ei+1, 3 � i � n − 1,

[ei, x] = −(i − 1) ei, 3 � i � n,

[x, e1] = e1 + α e2, [x, e2] = e2.
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R6(α3, α4, . . . , αn, λ, δ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3,

[e1, x] =
n∑

i=3

αi ei, [e2, x] = e2,

[ei, e1] = ei+1, 3 � i � n − 1,

[ei, x] =
n∑

j=i+1

αj−i+2 ej, 3 � i � n − 1,

[x, x] = λ en, [x, e2] = δ e2, δ ∈ {0, −1}.
In the algebra R6(α3, α4, . . . , αn, λ, δ) the first non vanishing parameter {α3, α4, . . . , αn, λ} can be

scaled to 1.

Proof. Let R be a solvable Leibniz algebra satisfying the conditions of the theorem, then there exists

a basis {e1, e2, . . . , en, x}, such that {e1, e2, . . . , en} is the standard basis of F2n , and for non nilpotent

outer derivations of the algebra F2n , we have that [ei, x] = Rx|F2n
(ei), 1 � i � n,

Due to Proposition 4.4 we can assume that

[e1, x] =
n∑

i=1

αi ei, [e2, x] = β2 e2 + βn en,

[ei, x] = (i − 1)α1 ei +
n∑

j=i+1

αj−i+2 ej, 3 � i � n.

Let us introduce the following notations:

[x, e1] =
n∑

i=1

γi ei, [x, e2] =
n∑

i=1

δi ei, [x, x] =
n∑

i=1

λi ei.

Considering the Leibniz identity for the elements {e1, x, x}, {e1, x, e1}, {x, e2, e1}, we obtain

λ1 = 0, γ1 = −α1 and [x, e2] = δ2e2 + δnen. By setting e′2 = δ2e2 + δnen, we can assume that

[x, e2] = δe2.
Now we distinguish the following possible cases:

Case 1. Let α1 �= 0. Then the following change of basis

e′1 = e1 + 1

γ1

n∑
j=3

γjej, e′2 = e2, e′i = ei + 1

γ1

n∑
j=i+1

γj−i+2 ej, 3 � i � n,

x′ = 1

γ1

x,

implies that [x′, e′1] = e′1 + γ e′2 (where γ = γ2

γ1
) and the rest of products remains unchanging.

From the equalities:

e1 + γ (1 + δ) e2 = [
x, [x, e1]] = [[x, x], e1] − [[x, e1], x]

=
n∑

i=4

λi−1 ei −
n∑

i=1

αi ei − γβ2 e2 − γβn en,

we deduce that

α1 = −1, α3 = 0, α2 = −γ (1 + δ + β2), λi = αi+1, 3 � i � n − 2, and

λn−1 = αn + γβn.
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In addition, if we take the following change of basis:

e′1 = e1 +
n∑

i=4

Ai ei, e′2 = e2, e′i = ei +
n∑

j=i+2

Aj−i+2 ej, 3 � i � n,

x′ =
n−1∑
i=3

Ai+1 ei + B en + x,

where Aj = 1

2
αj, j = 4, 5, Ai = 1

i − 2

(
αi + i−2∑

j=4

Ajαi−j+2

)
, 6 � i � n and B = 1

n − 1

(
λn +

n−1∑
j=4

Ajαi−j+3

)
, then we have

[e′1, x′] = −e′1 + α2 e
′
2, [e′2, x′] = β2 e

′
2 + βn e

′
n,

[e′i, x′] = −(i − 1) e′i, 3 � i � n, [x′, x′] = λ2 e
′
2 + γβn e

′
n−1.

Finally, we obtain the following table of multiplication of the algebra R:⎧⎪⎪⎨
⎪⎪⎩

[e1, x] = −e1 − γ (1 + δ + β2) e2, [e2, x] = β2 e2 + βn en,

[x, e1] = e1 + γ e2, [ei, x] = −(i − 1) ei, 3 � i � n,

[x, e2] = δ e2, [x, x] = λ2 e2 + γβn en−1.

Considering the Leibniz identity for the elements {x, x, e2}, {x, x, x}, {x, e1, x}, we obtain:

δβn = δ(δ + β2) = δλ2 = γ δ(δ + β2) = 0.

Notice that if e2 ∈ Annr(R), then dimAnnr(R) = n−1 and if e2 /∈ Annr(R), then dimAnnr(R) = n−2.

Now we analyze the following possible subcases:

Case 1.1. Let e2 ∈ Annr(R). Then δ = 0 and making the change e′1 = e1 + γ e2 we can assume that

[x, e1] = e1.

In this case, we must consider two new subcases:

Case 1.1.1. Let e2 ∈ Center(R). Then dim Center(R) = 1 and β2 = βn = 0. Then we have two options:

if λ2 = 0, then we get the split algebra R1(0); if λ2 �= 0, then we obtain the algebra R1(1) by scaling

the basis.

Case 1.1.2. Let e2 /∈ Center(R). Then dim Center(R) = 0 and (β2, βn) �= (0, 0).
Let us take the following general change of basis:

e′1 =
n∑

i=1

Ai ei, e′2 =
n∑

i=1

Bi ei, e′i = A
i−2
1

⎛
⎝A1ei +

n∑
j=i+1

Aj−i+2 ei

⎞
⎠ , 3 � i � n,

x′ =
n∑

i=1

Ci ei + Cn+1 x,

where (A1B2 − A2B1)Cn+1 �= 0.

From0 = [e′2, e′1] = [e′2, e′2], we obtain that B1 = 0, Bi = 0, 3 � i � n−1, i.e. e′2 = B2 e2+Bn en
and A1B2 �= 0.

The equalities

e′1 = [x′, e′1] = A1C1 e3 +
n∑

i=4

A1Ci−1 ei + A1Cn+1 e1,

imply that

Cn+1 = 1, A2 = 0, A3 = A1C1, Ai = A1Ci−1, 4 � i � n.
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Similarly, from

B2β
′
2 e2 + (Bnβ

′
2 + β ′

nA
n−1
1 ) en = β ′

2 e
′
2 + β ′

n e
′
n = [e′2, x′]

= B2β2 e2 + (
B2βn − (n − 1)Bn

)
en,

and

λ′
2B2 e2 + λ′

2Bn en = λ′
2 e

′
2 = [x′, x′] = (λ2 + C2β2) e2 + (C2

1 − 2C3) e3

+
n−1∑
i=4

(
C1Ci−1 − (i − 1)Ci

)
ei + (

C1Cn−1 − (n − 1)Cn + C2βn

)
en,

we obtain Ci = 1

(i − 1)!C
i−1
1 , 3 � i � n − 1 and

β ′
2 = β2, β ′

n = B2βn − Bn(β2 + n − 1)

A
n−1
1

, λ′
2 = λ2 + β2C2

B2
,

λ′
2Bn = C1Cn−1 − (n − 1)Cn + C2βn.

Now we must distinguish two subcases:

Case 1.1.2.1. Let β2 = 1 − n. Putting C2 = − λ2

1−n
, Cn = C1Cn−1+C2βn

n−1
, then we get λ′

2 = 0 and

β ′
n = B2βn

A
n−1
1

.

If βn = 0, then we get the algebra R2(α) for α = 1 − n.

If βn �= 0, then making A1 = n−1
√

βnB2, we obtain β ′
n = 1 and the algebra R3.

Case 1.1.2.2. Let β2 �= 1− n. Taking the change Bn = B2βn

β2+n−1
, we obtain βn = 0. Since β2 �= 0, we set

C2 = − λ2

β2
, Cn = C1Cn−1+C2βn

n−1
andwe getλ2 = 0, i.e., the algebra R2(α) is obtained, forα /∈ {1−n, 0}.

Case 1.2. Let e2 /∈ Annr(R). Then δ �= 0 and β2 = −δ, βn = λ2 = 0.

Let us consider the general change of basis in the following form:

e′1 =
n∑

i=1

Ai ei, e′2 =
n∑

i=1

Bi ei,

e′i = A
i−2
1

⎛
⎝A1 ei +

n∑
j=i+1

Aj−i+2 ej

⎞
⎠ , 3 � i � n, x′ =

n∑
i=1

Ci ei + Cn+1 x,

where (A1B2 − A2B1)Cn+1 �= 0.

Then from 0 = [e′2, e′1] = [e′2, e′2], we derive that B1 = 0, Bi = 0, 3 � i � n − 1, i.e.

e′2 = B2 e2 + Bn en and A1B2 �= 0.

Similarly, from the equations:

e′1 + γ ′ e′2 = [x′, e′1] = A1Cn+1 e1 + Cn+1(A1γ + A2δ) e2 + A1C1 e3 +
n∑

i=4

A1Ci−1 ei,

and

δ′(B2 e2 + Bn en) = δ′ e′2 = [x′, e′2] = B2δ e2,

we obtain

Cn+1 = 1, A3 = A1C1, Ai = A1Ci−1, 4 � i � n − 1,

γ ′ = A1γ + A2(δ − 1)

B2
, A1Cn−1 = An + γ ′Bn, δ′ = δ, δ′Bn = 0.
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Now we distinguish the following two subcases:

Case 1.2.1. Let δ �= 1. Then by the substitution A2 = − A1γ

δ − 1
, An = A1Cn−1 into the above conditions,

we get γ ′ = 0 and the algebra R4(α).
Case 1.2.2. Let δ = 1. Then Bn = 0. In the case γ = 0, we get γ ′ = 0. In the case γ �= 0, by putting

B2 = A1γ and An = A1Cn−1 − Bn, we get γ ′ = 1. Thus, the algebras R5(α), α ∈ {0, 1}, are obtained.

Case 2. Let α1 = 0. Then β2 �= 0 and by replacing x by x′ = 1

β2

x, we can assume [e2, x′] = e2 +βnen.

Under these conditions, the table of multiplication of the solvable algebra R has the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, x] =
n∑

i=2

αi ei, [e2, x] = e2 + βn en,

[x, e1] =
n∑

i=2

γi ei, [ei, x] =
n∑

j=i+1

αj−i+2 ej, 3 � i � n − 1,

[x, e2] = δ e2, [x, x] =
n∑

i=2

λi ei.

Making the transformation x′ = x − γ3 e1 − n−1∑
i=3

γi+1 ei, we can assume that [x, e1] = γ e2.

Similarly as above, we obtain the conditions:

γ (δ + 1) = α2δ − γ = βnδ = δ(δ + 1) = λ2δ = 0.

Now we distinguish the following subcases depending on the possible values of the parameter δ:
Case 2.1. Let δ �= 0. Then dimAnnr(R) = n − 2 and βn = λ2 = 0, δ = −1, α2 = −γ . By means of

the change of the basis element e′1 = e1 + γ e2, we can suppose that [x′, e1] = 0.

Taking the general change of basis as in the above considered cases, we derive the following con-

ditions for the parameters

α′
i = αi

A
i−2
1

, 3 � i � n, λ′
n = λn

A
n−1
1

.

Consequently, we deduce the algebra R6(α3, α4, . . . , αn, λ, −1).
Case 2.2. Let δ = 0. Then dimAnnr(R) = n−1 and γ = 0. Taking the change of basis e′2 = e2 +βn en,

we can assume that [e2, x] = e2 and by the change x′ = x − λ2 e2, we can also suppose that [x, x] =
λn en. Therefore, we have the products

[e1, x] =
n∑

i=2

αi ei, [e2, x] = e2, [ei, x] =
n∑

j=i+1

αj−i+2 ej, 3 � i � n − 1,

[x, x] = λn en.

Applying similar arguments to general transformation of bases, we have

α′
2 = 0, α′

i = αi

A
i−2
1

, 3 � i � n, λ′
n = λn

A
n−1
1

.

Thus, we obtain the algebra R6(α3, α4, . . . , αn, λ, 0). �

Theorem 4.8. An arbitrary (n+ 2)-dimensional solvable Leibniz algebra with nilradical F2n is isomorphic

to one of the following non isomorphic algebras:
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L1 :
⎧⎪⎪⎨
⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 3 � i � n − 1,

[e1, x] = e1, [x, e1] = −e1,

[e2, y] = −[y, e2] = e2, [ei, x] = (i − 1)ei, 3 � i � n,

L2 :
⎧⎪⎪⎨
⎪⎪⎩

[e1, e1] = e3, [ei, e1] = ei+1, 3 � i � n − 1,

[e1, x] = e1, [x, e1] = −e1,

[e2, y] = e2, [ei, x] = (i − 1)ei, 3 � i � n.

Proof. Let

Rx|F2n
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 α2 α3 α4 . . . αn−1 αn

0 β 0 0 . . . 0 γ

0 0 2α1 α3 . . . αn−2 αn−1

0 0 0 3α1 . . . αn−3 αn−2

...
...

...
... . . .

...
...

0 0 0 0 . . . 0 (n − 1)α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Ry|F2n
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 λ2 λ3 λ4 . . . λn−1 λn

0 μ 0 0 . . . 0 ν

0 0 2λ1 λ3 . . . λn−2 λn−1

0 0 0 3λ1 . . . λn−3 λn−2

...
...

...
... . . .

...
...

0 0 0 0 . . . 0 (n − 1)λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be two nil independent outer derivations of the algebra F2n .

Taking the change of the basis elements x, y similar to (2), we can assume that α1 = μ = 1, λ1 =
β = 0.

Thus, we have the products:

[e1, x] = e1 +
n∑

i=2

αi ei, [e2, x] = γ en,

[ei, x] = (i − 1) ei +
n∑

j=i+1

αj−i+2 ej, 3 � i � n,

[e1, y] =
n∑

i=2

λi ei, [e2, y] = e2 + ν en,

[ei, y] =
n∑

j=i+1

λj−i+2 ej, 3 � i � n.

Applying similar reasonings and changes of bases which we have used in Theorem 4.7, we obtain

isomorphism classes of algebras whose representative elements are L1 and L2. �
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Remark 4.9. In fact, the algebra L1 = I1 ⊕ J1, where I1 = NFn−1 +〈x〉 and J1 = 〈e2, y〉, verifies that I1
is a solvable Leibniz algebrawith nilradicalNFn−1 and J1 is a two-dimensional solvable Lie algebra. The

algebra L2 = I2 ⊕ J2, where I2 = NFn−1 + 〈x〉 and J2 = 〈e2, y〉, verifies that J2 is a two-dimensional

solvable non-Lie Leibniz algebra. Thus, from Theorem 4.8, we conclude that any (n + 2)-dimensional

solvable Leibniz algebra with nilradical F2n is split.
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