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In this article we classify solvable Leibniz algebras whose nilradical is a
null-filiform algebra. We extend the obtained classification to the case
when the solvable Leibniz algebra is decomposed as a direct sum of its
nilradical, which is a direct sum of null-filiform ideals and a one-
dimensional complementary subspace. Moreover, in this case we establish
that these ideals are ideals of the algebra as well.
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1. Introduction

The notion of Leibniz algebra was first introduced by Loday [10] as a non-
antisymmetric generalization of Lie algebras. During the last 20 years, the theory of
Leibniz algebras has been actively studied and many results of the theory of Lie
algebras have been extended to Leibniz algebras. For instance, the classical results on
Cartan subalgebras, regular elements and others from the theory of Lie algebras are
also true for Leibniz algebras [1,14].

From the classical theory of finite-dimensional Lie algebras it is known that an
arbitrary Lie algebra is a semidirect sum of the solvable radical and a semisimple
subalgebra (Levi’s theorem). In addition, the semisimple part is a direct sum of
simple ideals, which is completely classified [9]. Thanks to Malcev’s results [11], the
study of solvable Lie algebras is reduced to the study of nilpotent ones. Thus, the
description of finite-dimensional Lie algebras is reduced to the description of
nilpotent algebras.

In the case of Leibniz algebras, the analogue of Levi’s theorem was proved in [6].
Namely, a Leibniz algebra is a semidirect sum of the solvable radical and a
semisimple Lie algebra. As the semisimple part can be described by simple Lie ideals,
the main problem is to understand the solvable radical. Thus, it is important to study
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solvable Leibniz algebras. The inherent properties of non-Lie Leibniz algebras imply
that the subspace spanned by squares of elements of the algebra is a non-trivial
Abelian ideal. In fact, this ideal is the minimal one such that the quotient algebra is a
Lie algebra. Thus, we also restrict our study of Leibniz algebras to the solvable ones.

The investigation of solvable Lie algebras with some special types of nilradical
comes from different problems in Physics and was the subject of various papers
[2,3,7,8,13,15–17,19] and many other references given therein. Also, it is natural to
add restrictions to the index of nilpotency and graduation on the nilradical. For
example, the cases where the nilradical of a solvable Lie algebra is filiform, the quasi-
filiform and abelian were considered [3,8,13,19]. We recall that the maximal index of
nilpotency of an n-dimensional Lie algebra is n (such algebras were called filiform in
[18]). However, the maximal index of nilpotency of an n-dimensional Leibniz algebra
is equal to nþ 1 (such algebras were called null-filiform in [5]).

Our goal in this article is to classify solvable Leibniz algebras with null-filiform
nilradical. Moreover, this classification is extended to the case when the nilradical is
a direct sum of null-filiform ideals and the complementary vector space of the
nilradical is one-dimensional.

This article is organized as follows. In Section 2 we recall some needed notions
and properties of Leibniz algebras. We start Section 3 by establishing that the
dimension of a solvable Leibniz algebra whose nilradical is an n-dimensional null-
filiform Leibniz algebra is exactly nþ 1; after that, we present our main results: the
classification of solvable Leibniz algebras that can be decomposed as a direct sum of
their nilradical and a complementary vector space, where the nilradical is a direct
sum of null-filiform Leibniz algebras. First, we study the case when the solvable
Leibniz algebra is a direct sum of its nilradical and a one-dimensional complemen-
tary vector space, where the nilradical is null-filiform; after that we consider the case
where the nilradical decomposes in a direct sum of two null-filiform ideals. Finally,
we consider the general situation where the nilradical decomposes as a direct sum of
null-filiform ideals.

Throughout this article we consider finite-dimensional vector spaces and algebras
over the field of the complex numbers. Moreover, in the multiplication table of an
algebra the omitted products are assumed to be zero and if it is not noted we shall
consider non-nilpotent solvable algebras.

2. Preliminaries

In this section we give necessary definitions and preliminary results.

Definition 2.1 An algebra (L, [�, �]) over the field C is said to be a Leibniz algebra
if for any x, y, z 2 L the so-called Leibniz identity

x, ½ y, z�½ � ¼ ½x, y�, z½ � � ½x, z�, y½ �

holds.

A subalgebra H of a Leibniz algebra L is said to be a two-sided ideal if [L,H]�L
and [H,L]�L. Let H and K be two-sided ideals of a Leibniz algebra L. The
commutator ideal of H and K, denoted by [H,K], is the two-sided ideal of L spanned
by the brackets [h, k], [k, h], h 2 H,K 2 K. Obviously, [H,K]�H\K.

Linear and Multilinear Algebra 759
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From the Leibniz identity we conclude that the elements of the form [x, x] and

[x, y]þ [y, x], for any x, y, lie in the right annihilator Annr(L)¼ {x 2 L: [y, x]¼ 0 for

all y 2 L} of the Leibniz algebra. Moreover, we also get that Annr(L) is a two-sided

ideal of the Leibniz algebra.
For a given Leibniz algebra L, we define the lower central and derived series to the

sequences of two-sided ideals defined recursively as follows:

L1 ¼ L, Lkþ1 ¼ ½Lk,L�, k � 1; L½1� ¼ L, L½sþ1� ¼ ½L½s�,L½s��, s � 1:

Definition 2.2 A Leibniz algebra L is said to be nilpotent (respectively, solvable), if

there exists an n 2 N (m 2 N) such that Ln
¼ 0 (respectively, L[m]

¼ 0). The minimal

number n (respectively, m) with such property is said to be the index of nilpotency

(respectively, of solvability) of the algebra L.

Remark 1 Obviously, the index of nilpotency of an n-dimensional nilpotent Leibniz

algebra is not greater than nþ 1.

Definition 2.3 An n-dimensional Leibniz algebra is said to be null-filiform if

dimLi
¼ nþ 1� i, 1� i� nþ 1.

Remark 2 Obviously, a null-filiform Leibniz algebra has a maximal index of

nilpotency.

THEOREM 2.4 [5] An arbitrary n-dimensional null-filiform Leibniz algebra is

isomorphic to the algebra:

NFn : ½ei, e1� ¼ eiþ1, 1 � i � n� 1,

where {e1, e2, . . . , en} is a basis of the algebra NFn.

From this theorem it is easy to see that a nilpotent Leibniz algebra is null-filiform

if and only if it is a one-generated algebra, i.e. an algebra generated by a simple

element. Note that this notion has no sense in the Lie algebra case, because they are

at least two-generated.

Definition 2.5 The maximal nilpotent ideal of a Leibniz algebra is said to be

the nilradical of the algebra.

Definition 2.6 For a Leibniz algebra L, a linear map d: L!L is said to be a

derivation if

d ½x, y� ¼ ½d ðxÞ, y� þ ½x, d ð yÞ�

for all x, y 2 L.

For a fixed x 2 L, the map Rx: L!L, Rx(y)¼ [y, x] is a derivation. We call this

kind of derivations as inner derivations and we denote the set of all inner derivations

of L by Inn(L). Derivations that are not inner are said to be outer derivations.

Definition 2.7 [12] Let d1, d2, . . . , dn be derivations of a Leibniz algebra L.

The derivations d1, d2, . . . , dn are said to be nil-independent if

�1d1 þ �2d2 þ � � � þ �ndn

is not nilpotent for any scalars �1,�2, . . . ,�n 2 C, which are not all zero.
In other words, if for any �1, �2, . . . ,�n 2 C there exists a natural number k such

that (�1 d1þ �2 d2þ � � �þ �n d2)
k
¼ 0, then �1¼�2¼ � � � ¼�n¼ 0.

760 J.M. Casas et al.
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3. Main results

Let R be a solvable Leibniz algebra. Then it can be decomposed into the form R¼
N	Q, where N is the nilradical and Q is the complementary vector space. Since
the square of a solvable algebra is a nilpotent ideal and the finite sum of nilpotent
ideals is a nilpotent ideal too [4], then the ideal R2 is nilpotent, i.e. R2

�N and
consequently, Q2

�N.

LEMMA 3.1 Let x 2 Q be such that the operator RxjN is nilpotent. Then the subspace
V¼hxþNi is a nilpotent ideal of the algebra R.

Proof Since R2
�N, V is an ideal. We argue that it is nilpotent. If a 2 N, then RajN

is a nilpotent operator. Let us suppose that there exists a k 2 N such that RajN

� �k
¼ 0,

then RajV

� �kþ1
¼ 0. Hence RajV is nilpotent. If V is an ideal of the solvable Leibniz

algebra R, then Inn(V) is a solvable Lie algebra of End(V), and so by Lie’s theorem
[9] there exists a basis such thatRajV andRxjV are upper triangular; moreover,RajV is
nilpotent, which means that RajV has zero diagonal elements. On the other hand, by
assumption,RxjN is nilpotent, then with a similar argument as the previous one, there
exists an s 2 N such that RxjN

� �s
¼ 0, then RxjV

� �sþ1
¼ 0. Summarizing, RajV and RxjV

are nilpotent and upper triangular, hence RajV þRxjV is nilpotent. Thus, by Engel’s
theorem [4], V is a nilpotent ideal. g

THEOREM 3.2 Let R be a solvable Leibniz algebra and N its nilradical. Then the
dimension of the complementary vector space to N is not greater than the maximal
number of nil-independent derivations of N.

Proof We assert that every RxjN , x 2 Q, is a non-nilpotent outer derivation of N.
Indeed, if there exists some x 2 Q such that the operator RxjN is nilpotent, then the
subspace V¼hxþNi is a nilpotent ideal of the algebra R by Lemma 3.1,
contradicting the maximality condition of N.

Let {x1, . . . , xm} be a basis of Q. Then the operators Rx1jN , . . . ,RxmjN are nil-
independent, since if for some scalars {�1, . . . ,�m} 2 Cn{0} we have that
ð
Pm

i¼1 �iRxijNÞ
k
¼ 0, then Rk

yjN
, where y ¼

Pm
i¼1 �ixi. Hence y¼ 0, and so �i¼ 0 for

i¼ 1, . . . ,m.
Therefore, we see that the dimension of Q is bounded by the maximal number of

nil-independent derivations of the nilradical N. Moreover, similar to the case of
Lie algebras, for a solvable Leibniz algebra R we also have the inequality
dimN � dimR

2 . g

From Theorem 3.2 we conclude the following properties of derivations of
null-filiform Leibniz algebras.

PROPOSITION 3.3 Any derivation of the algebra NFn has the following matrix form:

a1 a2 a3 . . . an
0 2a1 a2 . . . an�1
0 0 3a1 . . . an�2
..
. ..

. ..
. ..

. ..
.

0 0 0 . . . na1

0
BBBBB@

1
CCCCCA:

Proof The proof is carried out by checking the derivation property on
algebra NFn. g
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COROLLARY 3.4 The maximal number of nil-independent derivations of the
n-dimensional null-filiform Leibniz algebra NFn is 1.

Proof Let

Di ¼

ai1 ai2 ai3 . . . ain
0 2ai1 ai2 . . . ain�1

0 0 3ai1 . . . ain�2

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . nai1

0
BBBBBBB@

1
CCCCCCCA
, i ¼ 1, 2, . . . , p,

be derivations of NFn. If p4 1, then ðDi �
ai
1

a1
1

D1Þ
n
¼ 0 with non-trivial scalars.

Hence {D1,D2, . . . ,Dp} is not nil-independent. g

COROLLARY 3.5 The dimension of a solvable Leibniz algebra with nilradical NFn is
equal to nþ 1.

Proof Let us assume that the solvable Leibniz algebra is decomposed as R¼NFn 	

Q. By Corollary 3.4 and Theorem 3.2 we have 1� dimQ� 1. g

THEOREM 3.6 Let R be a solvable Leibniz algebra whose nilradical is NFn. Then there
exists a basis {e1, e2, . . . , en, x} of the algebra R such that the multiplication table of
R with respect to this basis has the following form:

½ei, e1� ¼ eiþ1, 1 � i � n� 1,

½x, e1� ¼ e1,

½ei, x� ¼ �iei, 1 � i � n:

8><
>:

Proof According to Theorem 2.4 and Corollary 3.5 there exists a basis {e1,
e2, . . . , en, x} such that all products of elements of the basis, except for the products
[ei, x] which can be derived from the equalities ½eiþ1, x� ¼ ½ei, e1�, x½ � ¼ ei, ½e1,x�½ �þ

½ei, x�, e1½ �, 1� i� n� 1, have the following form:

½ei, e1� ¼ eiþ1, 1 � i � n� 1,

½x, e1� ¼
Pn
i¼1

�iei,

½e1, x� ¼
Pn
i¼1

�iei,

½x,x� ¼
Pn
i¼1

�iei,

8>>>>>>>>><
>>>>>>>>>:

where {e1, e2, . . . , en} is a basis of NFn and {x} is a basis of Q.
Now we consider the following two possible cases.

Case 1 Let �1 6¼ 0. Then taking the change of basis:

e0i ¼
1

�1

Xn
j¼i

�j�iþ1ej, 1 � i � n, x0 ¼
1

�1
x ,

we can assume that [x, e1]¼ e1 and other products can be assumed as not changed by
redesignation of parameters.

762 J.M. Casas et al.
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From the products

0 ¼ x, ½x, x�½ � ¼ x,
Xn
i¼1

�iei

" #
¼
Xn
i¼1

�i½x, ei� ¼ �1e1,

we can deduce that �1¼ 0.
On the other hand, from the Leibniz identity�

x, ½e1, x�� ¼ ½x, e1�, x½ � �
�
½x, x�, e1�

we get �1½x, e1� ¼ ½e1, x� �
Pn

i¼3 �i�1ei, i.e. �1e1 ¼
Pn

i¼1 �iei �
Pn

i¼3 �i�1ei.
Comparing the coefficients at the elements of the basis, we obtain �2¼ 0 and

� i¼�iþ1 for 2� i� n� 1. From the equality
�
e1, ½e1, x�� ¼ �

�
e1, ½x, e1��, we derive that

�1¼�1.
Thus, we have

½e1, x� ¼ �e1 þ
Xn
i¼3

�iei, ½x, x� ¼
Xn�1
i¼2

�iþ1ei þ �nen:

Now we are going to prove the following identity:

½ei, x� ¼ �iei þ
Xn
j¼iþ2

�j�iþ1ej, ð3:1Þ

for 1� i� n. We have seen that (3.1) is true for i¼ 1. Assume that (3.1) holds for each

i, 1� i5 k� n. Then

½ek,x� ¼
�
½ek�1, e1�, x� ¼ ek�1, ½e1, x�½ � þ

�
½ek�1, x�, e1�

¼ ½ek�1, �e1� þ �ðk� 1Þek�1 þ
Xn
j¼kþ1

�j�kþ2ej, e1

" #

¼ �ek � ðk� 1Þek þ
Xn
j¼kþ1

�j�kþ2½ej, e1� ¼ �kek þ
Xn
j¼kþ2

�j�kþ1ej:

By induction, we see that indeed (3.1) holds for all i, 1� i� n.
Thus, the multiplication table of the algebra R has the form:

½ei, e1� ¼ eiþ1, 1 � i � n� 1,

½x, e1� ¼ e1,

½ei,x� ¼ �iei þ
Xn
j¼iþ2

�j�iþ1ej, 1 � i � n,

½x,x� ¼
Xn�1
i¼2

�iþ1ei þ �nen:

8>>>>>>>>><
>>>>>>>>>:

ð3:2Þ

Let us take the change of basis:

e0i ¼ ei þ
Xn
j¼iþ2

Aj�iþ1ej, 1 � i � n, x0 ¼
Xn�1
i¼2

Aiþ1ei þ Bnen þ x,
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where parameters Ai, Bn are as follows

A3 ¼
1

2
�3, A4 ¼

1

3
�4, Ai ¼

1

i� 1

Xi�2
j¼3

Ai�jþ1�j þ �i

 !
, ð5 � i � nÞ,

Bn ¼
1

n

Xn�1
j¼3

An�jþ2�j þ �n

 !
:

Then taking into account the multiplication table (3.2), we compute the products in

the new basis

½e0i, e
0
1� ¼ ei þ

Xn
j¼iþ2

Aj�iþ1ej, e1

" #
¼ eiþ1 þ

Xn
j¼iþ3

Aj�iej ¼ e0iþ1, 1 � i � n� 1,

½x0, e01� ¼
Xn�1
i¼2

Aiþ1ei þ Bnen þ x, e1

" #
¼
Xn
i¼3

Aiei þ ½x, e1� ¼ e1 þ
Xn
i¼3

Aiei ¼ e01,

½x0,x0� ¼
Xn�1
i¼2

Aiþ1ei þ Bnen þ x, x

" #
¼
Xn�1
i¼2

Aiþ1½ei, x� þ Bn½en, x� þ ½x, x�

¼
Xn�1
i¼2

Aiþ1 �iei þ
Xn
j¼iþ2

�j�iþ1ej

 !
� nBnen þ

Xn�1
i¼2

�iþ1ei þ �nen

¼ �
Xn�1
i¼2

iAiþ1ei þ
Xn�3
i¼2

Aiþ1

Xn�1
j¼iþ2

�j�iþ1ej þ
Xn�1
i¼2

�iþ1ei

þ
Xn�2
i¼2

Aiþ1�n�iþ1en � Bnen þ �nen

¼
Xn�1
i¼2

ð�iAiþ1 þ �iþ1Þei þ
Xn�1
i¼4

Xi�1
j¼3

Ai�jþ2�jei

þ �nBn þ �n þ
Xn�1
i¼2

Aiþ1�n�iþ1

 !
en

¼ ð�2A3 þ �3Þe2 þ ð�3A4 þ �4Þe3

þ
Xn�1
i¼4

Xi�1
j¼3

ð�iAiþ1 þ �iþ1 þ Ai�jþ2�j Þei ¼ 0,

764 J.M. Casas et al.
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½e01, x
0� ¼ e1 þ

Xn
i¼3

Aiei, x

" #
¼ ½e1, x� þ

Xn
i¼3

Ai½ei, x�

¼ �e1 þ
Xn
i¼3

�iei þ
Xn
i¼3

Ai �iei þ
Xn
j¼iþ2

�j�iþ1ej

 !

¼ �e1 þ
Xn
i¼3

�iei �
Xn
i¼3

iAiei þ
Xn
i¼3

Ai

Xn
j¼iþ2

�j�iþ1ej

¼ �e1 �
Xn
i¼3

Aiei �
Xn
i¼3

ði� 1ÞAiei þ
Xn
i¼3

�iei þ
Xn
i¼3

Xi�2
j¼3

Ai�jþ1bj

 !
ei

¼ �e1 �
Xn
i¼3

Aiei þ
Xn
i¼3

�ði� 1ÞAi þ �ið Þei þ
Xn
i¼5

Xi�2
j¼3

Ai�jþ1�jei

¼ �e1 �
Xn
i¼3

Aiei þ ð�2A3 þ �3Þe3 þ ð�3A4 þ �4Þe4

þ
Xn
i¼5

Xi�2
j¼3

�ði� 1ÞAi þ �i þ Ai�jþ1�j
� �

ei ¼ �e1 �
Xn
i¼3

Aiei ¼ �e
0
1:

By means of similar computations as in Equation (3.1), we deduce that

½e0i, x
0� ¼ �ie0i, 1 � i � n.
Finally, we obtain the multiplication table of the algebra R given in the assertion

of the theorem.

Case 2 Let �1¼ 0. Then from the equalities e1, ½e1, x�½ � ¼ � e1, ½x, e1�½ � and

0 ¼ x, ½x, x�½ � we get �1¼ 0 and �1¼ 0, respectively.
Thus, we have the following products:

½ei, e1� ¼ eiþ1, 1 � i � n� 1,

½x, e1� ¼
Xn
i¼2

�iei,

½e1, x� ¼
Xn
i¼2

�iei,

½x, x� ¼
Xn
i¼2

�iei:

8>>>>>>>>>><
>>>>>>>>>>:

In a similar way as for Equation (3.1), we can prove the equality:

½ei, x� ¼
Pn

j¼iþ1 �j�iþ1ej. Consequently, we have [ei, x] 2 h{eiþ1, eiþ2, . . . , en}i,

i.e. Ri
�h{ei,eiþ1, . . . , en}i. Thus Rnþ1

¼ 0, which contradicts the assumption of

non-nilpotency of the algebra R. This implies that, in the case of �1¼ 0, there is

no non-nilpotent solvable Leibniz algebra with nilradical NFn. g

Now we are going to clarify the situation when the nilradical is a direct sum of

two null-filiform ideals of the nilradical.

THEOREM 3.7 Let R be a solvable Leibniz algebra such that R¼NFk	NFsþQ,

where NFk	NFs is the nilradical of R, NFk and NFs are ideals of the nilradical and

dim Q¼ 1. Then NFk and NFs are also ideals of the algebra R.
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Proof Let {e1, e2, . . . , ek} be a basis of NFk, {f1, f2, . . . , fs} a basis of NFs and {x} a

basis of Q. We can assume, without loss of generality, that k� s.
By Theorem 2.4 we have that {e2, e3, . . . , ek, f2, f3, . . . , fs}�Annr(R) and the

following products:

½ei, e1� ¼ eiþ1, 1 � i � k� 1, ½ fi, f1� ¼ fiþ1, 1 � i � s� 1:

Let us introduce the notations:

½x, e1� ¼
Xk
i¼1

�iei þ
Xs
i¼1

�ifi, ½x, f1� ¼
Xk
i¼1

�iei þ
Xs
i¼1

�ifi,

½e1, x� ¼
Xk
i¼1

�iei þ
Xs
i¼1

�ifi, ½ f1,x� ¼
Xk
i¼1

�iei þ
Xs
i¼1

	ifi,

½x,x� ¼
Xk
i¼1


iei þ
Xs
i¼1

�ifi:

8>>>>>>>>><
>>>>>>>>>:

From the products

0 ¼ x, ½e1, f1�½ � ¼ ½x, e1�, f1½ � � ½x, f1�, e1½ � ¼
Xs
i¼2

�i�1 fi �
Xk
i¼2

�i�1ei,

we obtain �i¼ 0, 1� i� s� 1 and �i¼ 0, 1� i� k� 1.
The equalities e1, ½e1, x�½ � ¼ � e1, ½x, e1�½ � and f1, ½ f1, x�½ � ¼ � f1, ½x, f1�½ � imply that

�1¼��1, 	1¼��1.
From the equalities 0 ¼ e1, ½x, x�½ � ¼ 
1e2 and 0 ¼ f1, ½x, x�½ � ¼ �1f2, we get


1¼ �1¼ 0.
In a similar way as in the proof of Theorem 3.6, the following equalities can be

proved:

½ei, x� ¼ �i�1ei þ
Xk
j¼iþ1

�j�iþ1ej, 2 � i � k,

½ fi, x� ¼ �i�1fi þ
Xs
j¼iþ1

	j�iþ1fj, 2 � i � s:

Summarizing, we have obtained the following multiplication table for the algebra R:

½ei, e1� ¼ eiþ1, 1 � i � k� 1, ½ fi, f1� ¼ fiþ1, 1 � i � s� 1,

½x, e1� ¼
Xk
i¼1

�iei þ �sfs, ½x, f1� ¼ �kek þ
Xs
i¼1

�ifi,

½e1, x� ¼ ��1e1 þ
Xk
i¼2

�iei þ
Xs
i¼1

�ifi, ½ f1, x� ¼
Xk
i¼1

�iei � �1f1 þ
Xs
i¼2

	ifi,

½ei, x� ¼ �i�1ei þ
Xk
j¼iþ1

�j�iþ1ej, 2 � i � k,

½ fi, x� ¼ �i�1ei þ
Xs
j¼iþ1

	j�iþ1 fj, 2 � i � s,

½x, x� ¼
Xk
i¼2


iei þ
Xs
i¼2

�ifi:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð3:3Þ

766 J.M. Casas et al.

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

2:
31

 2
8 

Se
pt

em
be

r 
20

17
 



Below, we analyse the different cases that can appear in terms of the possible values

of �1 and �1.

Case 1 Let �1¼ �1¼ 0. Then the multiplication table (3.3) implies [ei, x] 2 h{eiþ1,

eiþ2, . . . , ek}i, [fi, x] 2 h{fiþ1, fiþ2, . . . , fs}i, [e1, x] 2 h{e2, e3, . . . , ek, f1, f2, . . . , fs}i and

[f1, x] 2 h{e1, e2, . . . , ek, f2, f3, . . . , fs}i. The above facts mean that the algebra R is

nilpotent, so we get a contradiction with the assumption of non-nilpotency of R.

Therefore, this case is impossible.

Case 2 Let �1 6¼ 0 and �1¼ 0. Using the following change of basis:

e01 ¼
1

�1

Xk
i¼1

�iei þ �sfs

 !
, e0i ¼

1

�1

Xk
j¼i

�j�iþ1ej, 2 � i � k, x0 ¼
1

�1
x,

we assume that

½x, e1� ¼ e1:

From the identity

x, ½x, e1�½ � ¼ ½x, x�, e1½ � � ½x, e1�, x½ �

we have that

e1 ¼
Xk
i¼2


i½ei, e1� � ½e1, x� ¼
Xk
i¼3


i�1ei þ e1 �
Xk
i¼2

�iei �
Xs
i¼1

�ifi:

Consequently, �2¼ �i¼ 0 for 1� i� s and 
i¼ �iþ1 for 2� i� k� 1.
From the identity

f1, ½x, e1�½ � ¼ ½ f1, x�, e1½ � � ½ f1, e1�,x½ �

we conclude that 0 ¼ ½ f1, x�, e1½ � ¼
Pk
i¼2

�i�1ei ) �i ¼ 0, 1 � i � k� 1.
From the identity

x, ½x, f1�½ � ¼ ½x, x�, f1½ � � ½x, f1�, x½ �,

we obtain

0¼
Xs
i¼3

�i�1 fi�
Xs
i¼2

�i½ fi,x� þ �k½ek,x� ¼
Xs
i¼3

�i�1 fi�
Xs
i¼2

�i
Xs
j¼iþ1

	j�iþ1fj

 !
� k�kek

¼
Xs
i¼3

�i�1 fi�
Xs
i¼3

Xi
j¼3

�j�1	i�jþ2

 !
fi� k�kek ¼

Xs
i¼3

�i�1�
Xi
j¼3

�j�1	i�jþ2

 !
fi� k�kek:

By comparison of coefficients at the elements of the basis, we deduce that

�i ¼
Xiþ1
j¼3

�j�1	i�jþ3, 2 � i � s� 1 and �k ¼ 0:

Now we consider the following change of basis:

f 01 ¼ f1 þ
�k
k
ek, f 0i ¼ fi, 2 � i � s:
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Then we obtain

½ f 01, x� ¼ f1 þ
�k
k
ek,x

h i
¼
Xs
i¼2

	ifi þ �kek � �kek ¼
Xs
i¼2

	ifi ¼
Xs
i¼2

	if
0
i

and

½x, f 01� ¼ x, f1 þ
�k
k
ek

h i
¼ ½x, f1� ¼

Xs
i¼2

�ifi ¼
Xs
i¼2

�if
0
i :

Thus, we have the following multiplication table of the algebra R:

½ei, e1� ¼ eiþ1, 1 � i � k� 1, ½ fi, f1� ¼ fiþ1, 1 � i � s� 1,

½x, e1� ¼ e1, ½x, f1� ¼
Xs
i¼2

�ifi,

½e1, x� ¼ �e1 þ
Xk
i¼2

�iei, ½ f1, x� ¼
Xs
i¼2

	ifi,

½ei, x� ¼ �iei þ
Xk
j¼iþ2

�j�iþ1ej, 2 � i � k, ½ fi,x� ¼
Xs
j¼iþ1

	j�iþ1fj, 2 � i � s,

½x, x� ¼
Xk
i¼2


iei þ
Xs
i¼2

�ifi:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
From the above multiplication table the following inclusions can be immediately

derived:

½x,NFk� � NFk, ½NFk, x� � NFk, ½x,NFs� � NFs, ½NFs, x� � NFs:

This completes the proof of the assertion established in the theorem for this case.

Case 3 Let �1¼ 0 and �1 6¼ 0. Due to the symmetry of Cases 2 and 3, the proof of

the assertion of the theorem follows similar arguments as in Case 2.

Case 4 Let �1 6¼ 0 and �1 6¼ 0. Consider the following change of basis:

e 01 ¼
1
�1

Pk
i¼1

�iei þ �sfs

� �
, e 0i ¼

1

�1

Xk
j¼i

�j�iþ1ej, 2 � i � k,

f 01 ¼ 1
�1

Ps
i¼1

�ifi þ �kek

� �
, f 0i ¼

1

�1

Xk
j¼i

�j�iþ1fj, 2 � i � s, x 0 ¼
1

�1
x:

Then we derive

½x 0, e 01� ¼
1

�1
x,

1

�1

Xk
i¼1

�iei þ �sfs

 !" #
¼

1

�21
�1½x, e1� ¼

1

�1
½x, e1� ¼ e 01,

½x 0, f 01� ¼
1

�1
x,

1

�1

Xs
i¼1

�ifi þ �kek

 !" #
¼

1

�1�1
�1½x, f1� ¼

�1
�1

f 01:
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From the identity x, ½x, e1�½ � ¼ ½x, x�, e1½ � � ½x, e1�, x½ � we deduce

e1 ¼
Xk
i¼2


i½ei, e1� � ½e1,x� ¼
Xk
i¼3


i�1ei þ �1e1 �
Xk
i¼2

�iei �
Xs
i¼1

�ifi:

Therefore, �1¼ 1, �1¼�1, �2¼ �i¼ 0, 1� i� s and 
i¼ �iþ1, 2� i� k� 1.
Expanding the identity x, ½x, f1�½ � ¼ ½x, x�, f1½ � � ½x, f1�, x½ �, we derive the equalities

�1
�1

� �2

f1 ¼
Xs
i¼2

�i½ fi, f1� �
�1
�1
½ f1, x� ¼

Xs
i¼3

�i�1fi �
�1
�1

Xs
i¼1

	i fi �
�1
�1

Xk
i¼1

�iei

from which we have 	1 ¼ �
�1
�1
, 	2 ¼ �i ¼ 0, 1 � i � k and �i ¼

�1
�1
	iþ1,

2 � i � s� 1.
Finally, we obtain the following products of basis elements in the algebra R:

½ei, e1� ¼ eiþ1, 1 � i � k� 1, ½ fi, f1� ¼ fiþ1, 1 � i � s� 1,

½x, e1� ¼ e1, ½x, f1� ¼
�1
�1

f1,

½e1, x� ¼ �e1 þ
Xk
i¼3

�iei, ½ f1, x� ¼ �
�1
�1

f1 þ
Xs
i¼3

	ifi,

½x, x� ¼
Xk
i¼2


iei þ
Xs
i¼2

�ifi:

8>>>>>>>>>>><
>>>>>>>>>>>:

These products are sufficient in order to check the inclusions

½x,NFk� � NFk, ½NFk, x� � NFk, ½x,NFs� � NFs, ½NFs, x� � NFs:

Thus, the ideals NFk and NFs of the nilradical are also ideals of the algebra. g

Now we are going to study solvable Leibniz algebras with nilradical NFk	NFs

and with the one-dimensional complementary vector space. Due to Theorem 3.7,

we can assume that NFk and NFs are ideals of the algebra.

THEOREM 3.8 Let R be a solvable Leibniz algebra such that R¼NFk	NFsþQ,

where NFk	NFs is the nilradical of R and dimQ¼ 1. Let us assume that

{e1, e2, . . . , ek} is a basis of NFk, {f1, f2, . . . , fs} is a basis of NFs and {x} is a basis

of Q. Then the algebra R is isomorphic to one of the following pairwise non-isomorphic

algebras:

Rð�Þ :

½ei, e1� ¼ eiþ1, 1 � i � k� 1, ½ fi, f1� ¼ fiþ1, 1 � i � s� 1,

½x, e1� ¼ e1, ½x, f1� ¼ �f1, � 6¼ 0,

½ei, x� ¼ �iei, 1 � i � k, ½ fi, x� ¼ �i�fi, 1 � i � s,

8><
>:

Rð�2,�3, . . . ,�s,�Þ :

½ei, e1� ¼ eiþ1, 1� i � k� 1, ½ fi, f1� ¼ fiþ1, 1� i � s� 1,

½x, e1� ¼ e1, ½ fi,x� ¼
Ps

j¼iþ1

�j�iþ1fj, 1� i � s,

½ei,x� ¼ �iei, 1� i � k, ½x,x� ¼ �fs:

8>>><
>>>:
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In the second family of algebras the first non-zero element of the vector

(�2,�3, . . . ,�s, �) can be assumed to be equal to 1.

Proof First, we note that the algebras NFkþQ and NFsþQ are not simultaneously

nilpotent. Indeed, if they are both nilpotent, then we have

½ei, e1� 2 hfeiþ1, . . . , ekgi, 1 � i � k� 1, ½ fi, f1� 2 hffiþ1, . . . , fsgi, 1 � i � s� 1,

½x, e1� 2 hfe2, e3, . . . , ekgi, ½x, f1� 2 hff2, f3, . . . , fsgi,

½ei, x� 2 hfeiþ1, . . . , ekgi, 1 � i � k� 1, ½ fj, x� 2 hffjþ1, . . . , fsgi, 2 � i � s� 1:

From the equalities 0 ¼ e1, ½x, x�½ �, 0 ¼ f1, ½x, x�½ � we conclude that

½x, x� 2 hfe2, e3, . . . , ek, f2, f3, . . . , fsgi:

Therefore, R2
� {e2, e3, . . . , ek, f2, f3, . . . , fs}. Moreover, we have Ri

� {ei, eiþ1, . . . , ek,

fi, fiþ1, . . . , fs}, which implies that Rmaxk,sþ1
¼{0}. Thus, we have a contradiction to

the assumption that R is not nilpotent. Hence, the algebras NFkþQ and NFsþQ

cannot be both nilpotent.
Without loss of generality, we can assume that algebra NFkþQ is non-nilpotent.
We take the quotient algebra by an ideal NFs, then R=NFs ffi NFk þQ. Thanks to

Theorem 3.6, the structure of the algebra NFk þQ is known. Namely,

½ei, e1� ¼ eiþ1, 1 � i � k� 1,

½x, e1� ¼ e1,

½ei,x� ¼ �iei, 1 � i � k:

8>><
>>: ð3:4Þ

Using the fact that NFk and NFs are ideals of R and having in mind the

multiplication table (3.4), we have

½ei, e1� ¼ eiþ1, 1 � i � k� 1, ½ fi, f1� ¼ fiþ1, 1 � i � s� 1,

½x, e1� ¼ e1, ½x, f1� ¼
Xs
i¼1

�ifi,

½ei, x� ¼ �iei, 1 � i � k, ½ f1, x� ¼
Xs
i¼1

�ifi,

½x, x� ¼
Xs
i¼1

�ifi:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:5Þ

If �1 6¼ 0, then in a similar way as the Case 1 of Theorem 3.6 we obtain the family of

algebras R(�), where � 6¼ 0.
The fact that two algebras in the family R(�) with different values of parameter �

are not isomorphic can be easily determined by a general change of basis and

considering the expansion of the product ½x 0, f 01� in both bases.
Now consider �1¼ 0. Then by the change of basis

x 0 ¼ x� ð�2f1 þ �3f2 þ � � � þ �sfs�1Þ

we can suppose [x, f1]¼ 0.
From the identity f1, ½ f1, x�½ � ¼ ½ f1, f1�,x½ � � ½ f1, x�, f1½ � we get �1¼ 0.
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Similarly to the proof of Equation (3.1), we can prove that

½ fi, x� ¼
Ps

m¼iþ1 �m�iþ1fj, 1 � i � s.
The identity x, ½ f1, x�½ � ¼ ½x, f1�, x½ � � ½x, x�, f1½ � implies the following chain of

equalities:

0 ¼ � ½x, x�, f1½ � ¼ �
Xs
m¼3

�m�1 fm:

Consequently, � i¼ 0, 2� i� s� 1.
Thus, we obtain the products of the family R(�2,�3, . . . ,�s, �)

½ fi, f1� ¼ fiþ1, 1 � i � s� 1,

½ fi, x� ¼
Xs

m¼iþ1

�m�iþ1fm, 1 � i � s,

½x, x� ¼ �sfs:

8>>><
>>>:

Now we are going to study the isomorphism inside the family R(�2, �3, . . . ,�s, �).
Taking into account that, under general basis transformation, the products (3.5)

should not be changed, we conclude that it is sufficient to take the following change

of basis:

f 0i ¼ Ai�1
1

Xs
j¼i

Aj�iþ1fj, ðA1 6¼ 0Þ, 1 � i � s, x 0 ¼ x:

Then we have

½ f 01, x
0� ¼

Xs
i¼1

Ai½ fi, x� ¼
Xs�1
i¼1

Ai

Xs
j¼iþ1

�j�iþ1fj

 !
¼
Xs
i¼2

Xi�1
j¼1

AjBi�jþ1

 !
fi:

On the other hand,

½ f 01, x
0� ¼

Xs
i¼2

� 0i f
0
i ¼

Xs�1
i¼1

Ai
1�
0
iþ1

Xs�i
j¼1

Aj fiþj

 !
¼
Xs
i¼2

Xi�1
j¼1

Aj
1Ai�j�

0
jþ1

 !
fi:

Comparing coefficients at the elements of the basis, we deduce that

Xk�1
i¼1

Ai�k�iþ1 ¼
Xk�1
i¼1

Ai
1Ak�i�

0
iþ1, k ¼ 2, 3, . . . , s:

From these systems of equations it follows that

� 0i ¼
�i

Ai�1
1

, 2 � i � s:

If we consider

� 0sA
s
1fs ¼ �

0
s f
0
s ¼ ½x

0, x 0� ¼ ½x, x� ¼ �sfs,

then we obtain

� 0s ¼
�s
As

1

:

It is easy to see that by choosing an adequate value for the parameter A1, the first

non-zero element of the vector (�2,�3, . . . ,�s, �) can be assumed to be equal to 1.
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Therefore, two algebras R(�2, �3, . . . ,�s, �) and Rð� 02,�
0
3, . . . ,� 0s , �

0Þ with different
set of parameters are not isomorphic.

For given parameters � and �2,�3, . . . ,�s, �, the algebras R(�) and
R(�2,�3, . . . ,�s, �) are not isomorphic because

kþ s ¼ dimRð�Þ2 6¼ dimRð�2,�3, . . . ,�s, �Þ
2
¼ kþ s� 1: g

Remark 1 In the case when all coefficients (�2, �3, . . . ,�s, �) are equal to zero we
have the split algebra (NFkþQ) 	 NFs. Therefore, in the non-split case, we can
always assume that (�2, �3, . . . ,�s, �) 6¼ (0, 0, 0, . . . , 0).

Now, by an induction process, we are going to generalize Theorem 3.8 to the case
when the nilradical is a direct sum (greater than 2) of several copies of null-filiform ideals.

THEOREM 3.9 Let R be a solvable Leibniz algebra such that
R ¼ NFn1 	NFn2 	 � � � 	NFns þQ, where NFn1 	NFn2 	 � � � 	NFns is the nilradical
of R and dimQ¼ 1. There exist p, q 2 N with p 6¼ 0 and pþ q¼ s, a basis
fei1, e

i
2, . . . , einig of NFni , for 1� i� p, a basis ff k1 , f

k
2 , . . . , f knkg of NFnpþk , for 1� k� q,

and a basis {x} of Q such that the multiplication table of the algebra is given by

Rp,q :

½eji, e
j
1 � ¼ ejiþ1, 1 � i � nj � 1, ½ f ki , f

k
1 � ¼ f kiþ1, 1 � i � nk � 1,

½x, ej1 � ¼ �
jej1, �j 6¼ 0 ½ f ki , x� ¼

Xnk
m¼iþ1

�km�iþ1f
k
m, 1 � i � nk,

½eji, x� ¼ �i�
jeji, 1 � i � nj, ½x, x� ¼

Xk
m¼1

�mfnm ,

8>>>>>><
>>>>>>:

ð3:6Þ

where 1� j� p, 1� k� q and �1¼ 1. Moreover, the first non-zero component of the
vectors ð�k2,�

k
3, . . . ,�knk , �

kÞ can be assumed to be equal to 1. Moreover, the algebras are
pairwise non-isomorphic.

Proof By induction on s:
If s¼ 1, then p¼ 1, q¼ 0, so R1, 0 is the algebra given in Theorem 3.6.
If s¼ 2, then we have two cases: either p¼ 2, q¼ 0 or p¼ 1, q¼ 1, which were

considered in Theorem 3.7. Namely, we have two families of algebras: R(�), which
corresponds to R2, 0, and R(�2,�3, . . . ,�s, �), which corresponds to R1,1.

Let us assume that the theorem is true for s and we shall prove it for sþ 1.
Let R ¼ NFn1 	NFn2 	 � � � 	NFns 	NFnsþ1 þQ. We consider the quotient

algebra by NFnsþ1 , i.e. R=NFnsþ1 ffi NFn1 	NFn2 	 � � � 	NnFs
þQ. Then we get the

multiplication table given in (3.6).
Note that the multiplication table for the algebra R can be obtained from (3.6) by

adding the products

½esþ1i , esþ11 � ¼ esþ1iþ1 , 1 � i � nsþ1 � 1,

½x, esþ11 � ¼
Xnsþ1
m¼1

�sþ1m esþ1m ,

½esþ11 , x� ¼
Xnsþ1
m¼1

�sþ1m esþ1m ,

½x, x� ¼
Xnsþ1
m¼1

�sþ1m esþ1m :
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If �sþ11 6¼ 0, then in an analogous way as in the proof of Theorem 3.6, we deduce that

½esþ1i , esþ11 � ¼ esþ1iþ1 , 1 � i � nsþ1 � 1,

½x, esþ11 � ¼ �
sþ1
sþ1e

sþ1
1 ,

½esþ1i ,x� ¼ �i�sþ1esþ1i , 1 � i � nsþ1:

Therefore we get the algebra Rpþ1, q.
If �sþ11 ¼ 0, then by similar arguments as in Theorem 3.8, we obtain

½esþ1i , esþ11 � ¼ esþ1iþ1 , 1 � i � nsþ1 � 1,

½esþ1i , x� ¼
Xnsþ1

m¼iþ1

�sþ1m�iþ1 f
sþ1
m , 1 � i � nsþ1,

½x,x� ¼
Xk
m¼1

�mfnm þ �
sþ1f sþ1nsþ1

:

Setting f
qþ1
i�1 ¼ esþ1i�1 , we get the family of algebras Rp, qþ1.

The proof that two algebras of the family Rp,q with different values of parameters
are not isomorphic can be carried out in a similar way as in the proof of
Theorem 3.8. g

In fact, due to Theorem 3.2, the complementary vector space, in the case when
the nilradical of a solvable Leibniz algebra is a direct sum of s copies of null-filiform
ideals, has dimension not grater than s. By taking direct sum of ideals NFiþQi and
NFk	 � � �	NFs, where 1� i� k� 1, k� s, we can construct a solvable Leibniz
algebra whose nilradical is NF1	 � � � 	 NFs and whose complementary vector space is
k-dimensional for each k (k� s).
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Enseign. Math. 2 39 (1993), pp. 269–293 (Russian).

[11] A.I. Malcev, Solvable Lie Algebras, AMS Translation 1950, AMS, Providence, 1950.
[12] G.M. Mubarakzjanov, On solvable Lie algebras, Izv. Vysš. Učehn. Zaved. Mat. 1 (1963),
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