On classification of 5-dimensional solvable Leibniz algebras

A.Kh. Khudoyberdiyev ${ }^{\text {a }}$, I.S. Rakhimov ${ }^{\text {b,* }}$, Sh.K. Said Husain ${ }^{\text {b }}$
a Institute of Mathematics, Do'rmon yo'li str. 29, 100125, Tashkent, Uzbekistan
b Institute for Mathematical Research (INSPEM), Department of Mathematics, FS, Universiti Putra Malaysia, Malaysia

A R T I C L E I N F O

Article history:

Received 25 October 2013
Accepted 20 May 2014
Available online 21 June 2014
Submitted by P. Semrl

$M S C$:

17A32
17A36
17A60
17A65
17B30

Keywords:

Leibniz algebra
Solvability
Nilpotency
Nilradical
Derivation

Abstract

In the paper we describe 5-dimensional solvable Leibniz algebras with three-dimensional nilradical. Since those 5-dimensional solvable Leibniz algebras whose nilradical is threedimensional Heisenberg algebra have been classified before we focus on the rest cases. The result of the paper together with Heisenberg nilradical case gives complete classification of all 5-dimensional solvable Leibniz algebras with threedimensional nilradical.

© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

According to the structural theory of Lie algebras a finite-dimensional Lie algebra is written as a semidirect sum of its semisimple subalgebra and the solvable radical (Levi's theorem). The semisimple part is a direct sum of simple Lie algebras which were completely classified in the fifties of the last century. At the same period the essential progress has been made in the solvable part by Mal'cev reducing the problem of classification of solvable Lie algebras to that of nilpotent Lie algebras. Since then all the classification results have been related to the nilpotent part.

Leibniz algebras, a "noncommutative version" of Lie algebras, were first introduced in the mid-1960's by Blokh [4] under the name of D-algebras. They came in again in the 1990's after Loday's work [13], where he introduced calling them Leibniz algebras. During the last 20 years the theory of Leibniz algebras has been actively studied and many results on Lie algebras have been extended to Leibniz algebras (see, e.g. [10,16-18]). Particularly, in 2011 the analogue of Levi's theorem has been proven by D. Barnes [3]. He showed that any finite-dimensional complex Leibniz algebra is decomposed into a semidirect sum of the solvable radical and a semisimple Lie algebra. As above, the semisimple part can be composed by simple Lie algebras and the main issue in the classification problem of finite-dimensional complex Leibniz algebras is to study the solvable part. Therefore the classification of solvable Leibniz algebras is important to construct finite-dimensional Leibniz algebras.

Owing to a result of [14], a new approach for studying the solvable Lie algebras by using their nilradicals was developed [2,6,15,19,20], etc. The analogue of Mubarakzjanov's [14] results has been applied for Leibniz algebras case in [8] which shows the importance of the consideration of their nilradicals in Leibniz algebras case as well. The papers [5, $8,9,11]$ are also devoted to the study of solvable Leibniz algebras by considering their nilradicals.

The classification, up to isomorphism, of any class of algebras is a fundamental and a very difficult problem. It is one of the first problems that one encounters when trying to understand the structure of a member of this class of algebras. Due to results of $[5,7]$ there are complete lists of isomorphism classes of complex Leibniz algebras in dimensions less then five.

The focus of the present paper is on classification of Leibniz algebras in dimension five. Since the description of the whole of isomorphism classes in 5-dimensional Leibniz algebras seems to be hard we deal with the study of 5 -dimensional solvable Leibniz algebras with three-dimensional nilradical. It should be noted that the description of solvable Leibniz algebras with three-dimensional Heisenberg nilradical has been given in [12]. Moreover, it was shown that a 5-dimensional solvable Leibniz algebra with threedimensional Heisenberg nilradical is a Lie algebra. Therefore, in this paper we don't consider this case.

Throughout the paper all the algebras (vector spaces) considered are finite-dimensional and over the field of complex numbers. Also in tables of multiplications of algebras we give nontrivial products only.

2. Preliminaries

This section is devoted to recalling some basic notions and concepts used throughout the paper.

Definition 2.1. A vector space with bilinear bracket $(L,[\cdot, \cdot])$ is called a Leibniz algebra if for any $x, y, z \in L$ the so-called Leibniz identity

$$
[x,[y, z]]=[[x, y], z]-[[x, z], y]
$$

holds.
Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, there exists the version corresponding to the left Leibniz identity,

$$
[[x, y], z]=[x,[y, z]]-[y,[x, z]] .
$$

The sets $A n n_{r}(L)=\{x \in L:[y, x]=0, \forall y \in L\}$ and $A n n_{l}(L)=\{x \in L:[x, y]=$ $0, \forall y \in L\}$ are called the right and left annihilators of L, respectively. It is observed that for any $x, y \in L$ the elements $[x, x]$ and $[x, y]+[y, x]$ are always in $A n n_{r}(L)$, and that is $A n n_{r}(L)$ is a two-sided ideal of L.

The set $C(L)=\{z \in L:[x, z]=[z, x]=0, \forall x \in L\}$ is called the Center of L.
For a given Leibniz algebra $(L,[\cdot, \cdot])$ the sequences of two-sided ideals defined recursively as follows:

$$
L^{1}=L, \quad L^{k+1}=\left[L^{k}, L\right], \quad k \geq 1, \quad L^{[1]}=L, \quad L^{[s+1]}=\left[L^{[s]}, L^{[s]}\right], \quad s \geq 1
$$

are said to be the lower central and the derived series of L, respectively.
Definition 2.2. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there exists $n \in \mathbb{N}(m \in \mathbb{N})$ such that $L^{n}=0$ (respectively, $L^{[m]}=0$). The minimal number n (respectively, m) with such property is said to be the index of nilpotency (respectively, solvability) of the algebra L.

Evidently, the index of nilpotency of an n-dimensional Leibniz algebra is not greater than $n+1$.

Definition 2.3. An ideal of a Leibniz algebra is called nilpotent if it is nilpotent as subalgebra.

It is easy to see that the sum of any two nilpotent ideals is nilpotent. Therefore the maximal nilpotent ideal always exists.

Definition 2.4. The maximal nilpotent ideal of a Leibniz algebra is said to be a nilradical of the algebra.

Definition 2.5. A linear map $d: L \rightarrow L$ of a Leibniz algebra $(L,[\cdot, \cdot])$ is said to be a derivation if for all $x, y \in L$, the following condition holds:

$$
d([x, y])=[d(x), y]+[x, d(y)]
$$

The set of all derivations of L is denoted by $\operatorname{Der}(L)$. The $\operatorname{Der}(L)$ is a Lie algebra with respect to the commutator.

For a given element x of a Leibniz algebra L, the right multiplication operator $R_{x}: L \rightarrow L$, defined by $R_{x}(y)=[y, x], y \in L$ is a derivation. In fact, a Leibniz algebra is characterized by this property of the right multiplication operators (remind that the left Leibniz algebras are characterized the same property of the left multiplication operators). As in Lie case these kinds of derivations are said to be inner derivations. Let the set of all inner derivations of a Leibniz algebra L denote by $R(L)$, i.e. $R(L)=\left\{R_{x} \mid x \in L\right\}$. The set $R(L)$ inherits the Lie algebra structure from $\operatorname{Der}(L)$:

$$
\left[R_{x}, R_{y}\right]=R_{x} \circ R_{y}-R_{y} \circ R_{x}=R_{[y, x]}
$$

Here is the definition of nil-independency imitated from Lie case (see [14]).
Definition 2.6. Let $d_{1}, d_{2}, \ldots, d_{n}$ be derivations of a Leibniz algebra L. The derivations $d_{1}, d_{2}, \ldots, d_{n}$ are said to be a linearly nil-independent if for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}$ and a natural number k

$$
\left(\alpha_{1} d_{1}+\alpha_{2} d_{2}+\cdots+\alpha_{n} d_{n}\right)^{k}=0 \quad \text { implies } \quad \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0
$$

Note that in the definition above the power is understood with respect to the composition.

Let L be a solvable Leibniz algebra. Then it can be written in the form $L=N+Q$, where N is the nilradical and Q is the complementary subspace. The following is a result from [8] on the dimension of Q which we make use in the paper.

Theorem 2.7. Let L be a solvable Leibniz algebra and N be its nilradical. Then the dimension of Q is not greater than the maximal number of nil-independent derivations of N.

In this paper we classify the class of 5 -dimensional solvable Leibniz algebras with 3 -dimensional nilradical. To do this we need to know their nilradicals and the maximal
number of linearly nil-independent derivations of the nilradicals. Below we present the list of all the three dimensional nilpotent Leibniz algebras from [1].

Theorem 2.8. Let L be a 3-dimensional nilpotent Leibniz algebra. Then L is isomorphic to one of the following pairwise nonisomorphic algebras:

$$
\begin{aligned}
\lambda_{1}: & {\left[e_{1}, e_{1}\right]=e_{2},\left[e_{2}, e_{1}\right]=e_{3}, } \\
\lambda_{2}(\alpha): & {\left[e_{2}, e_{1}\right]=e_{3},\left[e_{1}, e_{2}\right]=\alpha e_{3}, \alpha \neq \alpha^{-1}, } \\
\lambda_{3}: & {\left[e_{1}, e_{1}\right]=e_{3},\left[e_{2}, e_{1}\right]=e_{3},\left[e_{1}, e_{2}\right]=-e_{3}, } \\
\lambda_{4}: & {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{2}, e_{1}\right]=-e_{3}, } \\
\lambda_{5}: & {\left[e_{1}, e_{1}\right]=e_{3}, } \\
\lambda_{6}: & \text { abelian. }
\end{aligned}
$$

Note that the list of isomorphism classes of all three-dimensional Leibniz algebras has been given in [7]. For some conveniences we change the bases of the algebras $\lambda_{2}(\alpha)$ and λ_{3}, therefore their tables of multiplications are a slightly different those are in [1] and [7].

We declare the following subsidiary result. The proof can be given by direct computations.

Proposition 2.9. The matrix forms of the derivations of $\lambda_{1}, \lambda_{2}(\alpha), \lambda_{3}, \lambda_{4}, \lambda_{5}$ and λ_{6} are represented as follows

$$
\begin{aligned}
\operatorname{Der}\left(\lambda_{1}\right) & =\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 2 a_{1} & a_{2} \\
0 & 0 & 3 a_{1}
\end{array}\right) \right\rvert\, a_{i} \in \mathbb{C}\right\}, \\
\operatorname{Der}\left(\lambda_{2}(\alpha)\right) & =\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & a_{3} \\
0 & b_{2} & b_{3} \\
0 & 0 & a_{1}+b_{2}
\end{array}\right) \right\rvert\, a_{i}, b_{j} \in \mathbb{C}\right\}, \\
\operatorname{Der}\left(\lambda_{3}\right) & =\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & 2 a_{1} & b_{3} \\
0 & 0 & 3 a_{1}
\end{array}\right) \right\rvert\, a_{i}, b_{j} \in \mathbb{C}\right\}, \\
\operatorname{Der}\left(\lambda_{4}\right) & =\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
0 & 0 & a_{1}+b_{2}
\end{array}\right) \right\rvert\, a_{i}, b_{j} \in \mathbb{C}\right\}, \\
\operatorname{Der}\left(\lambda_{5}\right) & =\left\{\left.\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
0 & b_{2} & b_{3} \\
0 & 0 & 2 a_{1}
\end{array}\right) \right\rvert\, a_{i}, b_{j} \in \mathbb{C}\right\},
\end{aligned}
$$

$$
\operatorname{Der}\left(\lambda_{6}\right)=\left\{\left.\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) \right\rvert\, a_{i}, b_{j}, c_{k} \in \mathbb{C}\right\}
$$

It is observed that due to Proposition 2.9 the number of maximal linearly nilindependent derivations of the algebras λ_{1} and λ_{3} equals one, the algebra λ_{4} is Heisenberg algebra and the number of maximal linearly nil-independent derivations of the algebras $\lambda_{2}(\alpha), \lambda_{5}, \lambda_{6}$ is two.

3. Main result

In this section we give the list of isomorphism classes of those five-dimensional solvable Leibniz algebras with three-dimensional nilradical which is not Heisenberg's algebra, the latter case, i.e., for five-dimensional solvable Leibniz algebras with three-dimensional Heisenberg's nilradical, the result is known from [12]. So we deal with the classification of 5 -dimensional solvable Leibniz algebras with the 3 -dimensional nilradical having at least two nil-independent derivations. These are the algebras $\lambda_{2}(\alpha), \lambda_{5}$ and λ_{6} from the list above. Therefore, it remains to describe 5 -dimensional solvable Leibniz algebras with these nilradicals cases one by one.

Note that in constructing the multiplication tables we simplify them applying base changes. To simplify notations after each of this kind changes we keep writing vectors in the tables without "prime" although the basis vectors should be written with "primes". To describe five-dimensional solvable Leibniz algebras with nilradical N which is one of $\lambda_{2}(\alpha), \lambda_{5}$ and λ_{6} first we extend the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of N to a basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ of five-dimensional space and keep track the products of basis vectors under the base changes.

Under this circumstances one has

Lemma 3.1. The restrictions of the right multiplication operators $R_{x_{1}}$ and $R_{x_{2}}$ to N are nil-independent derivations.

Proof. Let us assume that there exists k such that $\left(\alpha_{1} R_{x_{1}}+\alpha_{2} R_{x_{2}}\right)^{k}=R_{\alpha_{1} x_{1}+\alpha_{2} x_{2}}^{k}=0$. Consider $y=\alpha_{1} x_{1}+\alpha_{2} x_{2}$, and the subspace K spanned by $\left\{e_{1}, e_{2}, e_{3}, y\right\}$. Since L is solvable the derived subalgebra L^{2} is nilpotent, i.e., $L^{2} \subseteq N$. Therefore, K is an ideal of L. Moreover, the operators $R_{e_{1}}, R_{e_{2}}, R_{e_{3}}$ also are nilpotent on K. Hence, due to Engel's Theorem K is nilpotent. But K contains N which contradicts to the maximality of N. This means $\alpha_{1}=0, \alpha_{2}=0$ which shows that $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent.

3.1. Nonabelian nilradical case

We start with $N=\lambda_{2}(0)$.

Proposition 3.2. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is isomorphic to $\lambda_{2}(0)$. Then there exists a basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ such that the L on this basis is represented by the table of multiplication as follows:

$$
\begin{array}{lll}
{\left[e_{2}, e_{1}\right]=e_{3},} & {\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{2}, x_{2}\right]=e_{2}} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[e_{3}, x_{1}\right]=e_{3},} & {\left[e_{3}, x_{2}\right]=e_{3}}
\end{array}
$$

Proof. The required basis of L is constructed as follows. First we choose a basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ of L such that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a basis of $\lambda_{2}(0)$ chosen in Theorem 2.8. By using the fact that the nilradical of L is $\lambda_{2}(0)$ we define the products of the basis vectors. Since the nilradical of the algebra L is three-dimensional, the restriction of the right multiplication operators $R_{x_{1}}$ and $R_{x_{2}}$ to $\lambda_{2}(0)$ are nil-independent derivations of $\lambda_{2}(0)$ (see Lemma 3.1). Then owing to Proposition 2.9 we have a part of the table of multiplication of L on this basis as follows

$$
\begin{array}{llll}
{\left[e_{2}, e_{1}\right]=e_{3},} & & \\
{\left[e_{1}, x_{1}\right]=a_{1} e_{1}+a_{2} e_{3},} & {\left[e_{2}, x_{1}\right]=a_{3} e_{2}+a_{4} e_{3},} & {\left[e_{3}, x_{1}\right]=\left(a_{1}+a_{3}\right) e_{3},} \\
{\left[e_{1}, x_{2}\right]=b_{1} e_{1}+b_{2} e_{3},} & {\left[e_{2}, x_{2}\right]=b_{3} e_{2}+b_{4} e_{3},} & {\left[e_{3}, x_{2}\right]=\left(b_{1}+b_{3}\right) e_{3},}
\end{array}
$$

where $a_{1} b_{3}-a_{3} b_{1} \neq 0$, since $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent.
The base change

$$
x_{1}^{\prime}=\frac{b_{3}}{a_{1} b_{3}-a_{3} b_{1}} x_{1}-\frac{a_{3}}{a_{1} b_{3}-a_{3} b_{1}} x_{2}, \quad x_{2}^{\prime}=-\frac{b_{1}}{a_{1} b_{3}-a_{3} b_{1}} x_{1}+\frac{a_{1}}{a_{1} b_{3}-a_{3} b_{1}} x_{2},
$$

brings the table to

$$
\begin{array}{lll}
{\left[e_{2}, e_{1}\right]=e_{3},} & & \\
{\left[e_{1}, x_{1}\right]=e_{1}+a_{2} e_{3},} & {\left[e_{2}, x_{1}\right]=a_{4} e_{3},} & {\left[e_{3}, x_{1}\right]=e_{3}} \\
{\left[e_{1}, x_{2}\right]=b_{2} e_{3},} & {\left[e_{2}, x_{2}\right]=e_{2}+b_{4} e_{3},} & {\left[e_{3}, x_{2}\right]=e_{3}}
\end{array}
$$

Here we can suppose that $b_{2}=a_{4}=b_{4}=0$ since the base change

$$
e_{1}^{\prime}=e_{1}-b_{2} e_{3}, \quad e_{2}^{\prime}=e_{2}-a_{4} e_{3}, \quad x_{2}^{\prime}=x_{2}-b_{4} e_{1}
$$

yields the result.
Note that these changes don't effect the other products in the table.
Let us to form the other products. First of all taking into account the fact that $e_{1} \notin A n n_{r}(L)$ and applying the properties

$$
[x, x] \in A n n_{r}(L) \quad \text { and } \quad[x, y]+[y, x] \in A n n_{r}(L)
$$

of the right annihilator we can write:

$$
\begin{array}{lll}
{\left[x_{1}, e_{1}\right]=-e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3},} & {\left[x_{1}, e_{2}\right]=\alpha_{4} e_{2}+\alpha_{5} e_{3},} & {\left[x_{1}, e_{3}\right]=0,} \\
{\left[x_{2}, e_{1}\right]=\beta_{2} e_{2}+\beta_{3} e_{3},} & {\left[x_{2}, e_{2}\right]=\beta_{4} e_{2}+\beta_{5} e_{3},} & {\left[x_{2}, e_{3}\right]=0,} \\
{\left[x_{1}, x_{1}\right]=\gamma_{1} e_{2}+\gamma_{2} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{3} e_{2}+\gamma_{4} e_{3},} & \\
{\left[x_{2}, x_{1}\right]=\delta e_{1}+\gamma_{5} e_{2}+\gamma_{6} e_{3},} & {\left[x_{1}, x_{2}\right]=-\delta e_{1}+\gamma_{7} e_{2}+\gamma_{8} e_{3} .} &
\end{array}
$$

Indeed, the coefficient -1 of e_{1} in the expansion of $\left[x_{1}, e_{1}\right.$] is derived as follows: let $\left[x_{1}, e_{1}\right]=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}$ be the expansion of $\left[x_{1}, e_{1}\right]$. Then

$$
\begin{aligned}
& {\left[x_{1}, e_{1}\right]+\left[e_{1}, x_{1}\right]=\left(1+\alpha_{1}\right) e_{1}+\left(a_{2}+\alpha_{2}\right) e_{2}+\alpha_{3} e_{3} \in \operatorname{Ann}_{r}(L)} \\
& \quad \text { i.e., } \quad\left[L,\left(1+\alpha_{1}\right) e_{1}+\left(a_{2}+\alpha_{2}\right) e_{2}+\alpha_{3} e_{3}\right]=0 .
\end{aligned}
$$

Particularly, $\left[e_{2},\left(1+\alpha_{1}\right) e_{1}+\left(a_{2}+\alpha_{2}\right) e_{2}+\alpha_{3} e_{3}\right]=\left(1+\alpha_{1}\right) e_{3}=0$. This gives $\alpha_{1}=-1$.
The coefficient of e_{1} in the expansion of $\left[x_{2}, e_{1}\right],\left[x_{1}, e_{2}\right],\left[x_{2}, e_{2}\right],\left[x_{1}, x_{1}\right]$ and $\left[x_{2}, x_{2}\right]$ to be zero also can be easily derived by the same manner.

The products $\left[x_{1}, e_{3}\right]=0$ and $\left[x_{2}, e_{3}\right]=0$ are obtained from the fact that $\left[e_{1}, e_{2}\right]+$ $\left[e_{2}, e_{1}\right]=e_{3}$, i.e., $e_{3} \in A n n_{r}(L)$.

Now we simplify this table by using the Leibniz identity.
Applying the Leibniz identity to the triples e_{1}, x_{2}, x_{1} and e_{2}, x_{2}, x_{1} as follows

$$
\begin{gathered}
0=\left[e_{1},\left[x_{2}, x_{1}\right]\right]=\left[\left[e_{1}, x_{2}\right], x_{1}\right]-\left[\left[e_{1}, x_{1}\right], x_{2}\right]=-\left[e_{1}+a_{2} e_{3}, x_{2}\right]=-a_{2} e_{3}, \\
\delta e_{3}=\left[e_{2},\left[x_{2}, x_{1}\right]\right]=\left[\left[e_{2}, x_{2}\right], x_{1}\right]-\left[\left[e_{2}, x_{1}\right], x_{2}\right]=\left[e_{2}, x_{1}\right]=0,
\end{gathered}
$$

we get

$$
a_{2}=0, \quad \delta=0
$$

The identities

$$
\begin{aligned}
{\left[x_{1},\left[e_{1}, x_{1}\right]\right] } & =\left[\left[x_{1}, e_{1}\right], x_{1}\right]-\left[\left[x_{1}, x_{1}\right], e_{1}\right]=\left[-e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}, x_{1}\right]-\left[\gamma_{1} e_{2}+\gamma_{2} e_{3}, e_{1}\right] \\
& =-e_{1}+\left(\alpha_{3}-\gamma_{1}\right) e_{3} \\
{\left[x_{1},\left[e_{1}, x_{1}\right]\right] } & =\left[x_{1}, e_{1}\right]=-e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}
\end{aligned}
$$

give

$$
\alpha_{2}=\gamma_{1}=0
$$

Similarly applying the Leibniz identity to $\left[x_{1},\left[x_{1}, e_{2}\right]\right] ;\left[x_{2},\left[e_{1}, x_{1}\right]\right] ;\left[x_{2},\left[e_{1}, x_{1}\right]\right]$; $\left[x_{2},\left[e_{2}, x_{1}\right]\right] ;\left[x_{2},\left[e_{2}, e_{1}\right]\right] ;\left[x_{1},\left[e_{1}, x_{2}\right]\right] ;\left[x_{2},\left[e_{1}, x_{2}\right]\right] ;\left[x_{1},\left[x_{2}, x_{1}\right]\right]$ and $\left[x_{2},\left[x_{2}, x_{1}\right]\right]$ we get $\alpha_{4}=\alpha_{5}=0 ; \beta_{2}=\gamma_{5}=0 ; \beta_{4}=0 ; \beta_{5}=0 ; \alpha_{3}=\gamma_{7} ; \beta_{3}=\gamma_{3} ; \gamma_{8}=\gamma_{2}$ and $\gamma_{6}=\gamma_{4}$, respectively.

Finally we change the basis as follows

$$
x_{1}^{\prime}=x_{1}-\gamma_{7} e_{2}-\gamma_{2} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{3} e_{2}-\gamma_{4} e_{3}
$$

to obtain the required table of multiplication.
The 5 -dimensional solvable Leibniz algebra from Proposition 3.2 we denote by L_{1}. Next we prove the following

Proposition 3.3. There is no a five-dimensional solvable Leibniz algebra with threedimensional nilradical $\lambda_{2}(\alpha)$ with $\alpha \neq 0$.

Proof. Let us assume the contrary and L be a 5 -dimensional Leibniz algebra with nilradical $\lambda_{2}(\alpha), \alpha \neq 0$. We choose a basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ of L such a way that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a basis of $\lambda_{2}(\alpha)$ chosen in Theorem 2.8. According to Lemma 3.1 the restriction of the right multiplication operators $R_{x_{1}}$ and $R_{x_{2}}$ to $\lambda_{2}(\alpha)$ are linearly nil-independent derivations of $\lambda_{2}(\alpha)$. Then using Proposition 2.9 we get

$$
\begin{array}{lll}
{\left[e_{2}, e_{1}\right]=e_{3},} & {\left[e_{1}, e_{2}\right]=\alpha e_{3},} & \\
{\left[e_{1}, x_{1}\right]=a_{1} e_{1}+a_{2} e_{3},} & {\left[e_{2}, x_{1}\right]=a_{3} e_{2}+a_{4} e_{3},} & {\left[e_{3}, x_{1}\right]=\left(a_{1}+a_{3}\right) e_{3},} \\
{\left[e_{1}, x_{2}\right]=b_{1} e_{1}+b_{2} e_{3},} & {\left[e_{2}, x_{2}\right]=b_{3} e_{2}+b_{4} e_{3},} & {\left[e_{3}, x_{2}\right]=\left(b_{1}+b_{3}\right) e_{3},}
\end{array}
$$

where $a_{1} b_{3}-a_{3} b_{1} \neq 0$, since $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent.
Taking the change

$$
x_{1}^{\prime}=\frac{b_{3}}{a_{1} b_{3}-a_{3} b_{1}} x_{1}-\frac{a_{3}}{a_{1} b_{3}-a_{3} b_{1}} x_{2}, \quad x_{2}^{\prime}=-\frac{b_{1}}{a_{1} b_{3}-a_{3} b_{1}} x_{1}+\frac{a_{1}}{a_{1} b_{3}-a_{3} b_{1}} x_{2},
$$

we obtain

$$
\begin{array}{lll}
{\left[e_{2}, e_{1}\right]=e_{3},} & {\left[e_{1}, e_{2}\right]=\alpha e_{3},} & \\
{\left[e_{1}, x_{1}\right]=e_{1}+a_{2} e_{2},} & {\left[e_{2}, x_{1}\right]=a_{4} e_{3},} & {\left[e_{3}, x_{1}\right]=e_{3}} \\
{\left[e_{1}, x_{2}\right]=b_{2} e_{3},} & {\left[e_{2}, x_{2}\right]=e_{2}+b_{4} e_{3},} & {\left[e_{3}, x_{2}\right]=e_{3}}
\end{array}
$$

Since $\alpha \neq 0$, then it is easy to see that the right annihilator of L consists of only $\left\{e_{3}\right\}$. Therefore,

$$
\begin{array}{ll}
{\left[x_{1}, e_{1}\right]=-e_{1}+\alpha_{2} e_{2},} & {\left[x_{1}, e_{2}\right]=\alpha_{4} e_{3},} \\
{\left[x_{2}, e_{1}\right]=\beta_{2} e_{3},} & {\left[x_{2}, e_{2}\right]=-e_{2}+\beta_{4} e_{3} .}
\end{array}
$$

Then considering the Leibniz identity

$$
0=\left[x_{1},\left[e_{1}, e_{2}\right]\right]=\left[\left[x_{1}, e_{1}\right], e_{2}\right]-\left[\left[x_{1}, e_{2}\right], e_{1}\right]=\left[-e_{1}+\alpha_{2} e_{3}, e_{2}\right]-\left[\alpha_{4} e_{3}, e_{2}\right]=-\alpha e_{3}
$$

we get a contradiction.

Proposition 3.4. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is isomorphic to λ_{5}. Then L is isomorphic to one of the following two nonisomorphic algebras:

$$
L_{2}:\left\{\begin{array}{l}
{\left[e_{1}, e_{1}\right]=e_{3},} \\
{\left[e_{1}, x_{1}\right]=e_{1},} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} \\
{\left[e_{3}, x_{1}\right]=2 e_{3},} \\
{\left[e_{2}, x_{2}\right]=e_{2},}
\end{array} \quad L_{3}: \quad\left\{\begin{array}{l}
{\left[e_{1}, e_{1}\right]=e_{3},} \\
{\left[e_{1}, x_{1}\right]=e_{1},} \\
{\left[x_{1}, e_{1}\right]=-e_{1}} \\
{\left[e_{3}, x_{1}\right]=2 e_{3},} \\
{\left[e_{2}, x_{2}\right]=e_{2},} \\
{\left[x_{2}, e_{2}\right]=-e_{2}}
\end{array}\right.\right.
$$

Proof. Let L be a 5 -dimensional Leibniz algebra with nilradical λ_{5}. Similar to those of previous propositions we take a basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ of L as an extension of the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of λ_{2} chosen in Theorem 2.8. Taking into account Lemma 3.1 and applying Proposition 2.9 for $N=\lambda_{5}$ case we get

$$
\begin{array}{lll}
{\left[e_{1}, e_{1}\right]=e_{3},} & & \\
{\left[e_{1}, x_{1}\right]=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3},} & {\left[e_{2}, x_{1}\right]=a_{4} e_{2}+a_{5} e_{3},} & {\left[e_{3}, x_{1}\right]=2 a_{1} e_{3},} \\
{\left[e_{1}, x_{2}\right]=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3},} & {\left[e_{2}, x_{2}\right]=b_{4} e_{2}+b_{5} e_{3},} & {\left[e_{3}, x_{2}\right]=2 b_{1} e_{3},}
\end{array}
$$

where $a_{1} b_{4}-a_{4} b_{1} \neq 0$, since $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent.
Taking the same base change as in the proof of Proposition 3.2 and due to the fact that $e_{1} \notin A n n_{r}(L)$, we can write:

$$
\begin{array}{ll}
{\left[e_{1}, e_{1}\right]=e_{3},} & {\left[e_{1}, x_{1}\right]=e_{1},} \\
{\left[e_{2}, x_{1}\right]=a_{5} e_{3},} & {\left[e_{3}, x_{1}\right]=2 e_{3},} \\
{\left[e_{1}, x_{2}\right]=b_{2} e_{2},} & {\left[e_{2}, x_{2}\right]=e_{2},} \\
{\left[x_{1}, e_{1}\right]=-e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3},} & {\left[x_{1}, e_{2}\right]=\alpha_{4} e_{2}+\alpha_{5} e_{3},} \\
{\left[x_{2}, e_{1}\right]=\beta_{2} e_{2}+\beta_{3} e_{3},} & {\left[x_{2}, e_{2}\right]=\beta_{4} e_{2}+\beta_{5} e_{3},} \\
{\left[x_{1}, x_{1}\right]=\gamma_{1} e_{2}+\gamma_{2} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{3} e_{2}+\gamma_{4} e_{3},} \\
{\left[x_{2}, x_{1}\right]=\delta e_{1}+\gamma_{5} e_{2}+\gamma_{6} e_{3},} & {\left[x_{1}, x_{2}\right]=-\delta e_{1}+\gamma_{7} e_{2}+\gamma_{8} e_{3} .}
\end{array}
$$

Applying sequentially to triples of basis vectors from $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ the Leibniz identity together with the table above we obtain the following relations for the structure constants

$$
\begin{gathered}
a_{5}=b_{2}=\delta=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=0, \\
\beta_{2}=\beta_{3}=\beta_{5}=\gamma_{1}=\gamma_{4}=\gamma_{8}=0 \\
\beta_{4}\left(1+\beta_{4}\right)=0, \quad \beta_{4} \gamma_{3}=0, \quad \gamma_{5}=\gamma_{7} \beta_{4}
\end{gathered}
$$

Owing to $\beta_{4}\left(1+\beta_{4}\right)=0$ we have the following two choices: $\beta_{4}=0$ and $\beta_{4}=-1$.

If $\beta_{4}=0$, then taking the basis transformation of the form

$$
x_{1}^{\prime}=x_{1}-\gamma_{7} e_{2}-\frac{\gamma_{2}}{2} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{3} e_{2}-\frac{\gamma_{6}}{2} e_{3}
$$

we obtain L_{2}.
But if $\beta_{4}=-1$, then $\gamma_{3}=0$ and taking the basis transformation of the form

$$
x_{1}^{\prime}=x_{1}-\gamma_{7} e_{2}-\frac{\gamma_{2}}{2} e_{3}, \quad x_{2}^{\prime}=x_{2}-\frac{\gamma_{6}}{2} e_{3},
$$

we get L_{3}.
Since $\operatorname{Ann}_{r}\left(L_{2}\right)=\operatorname{Span}\left\{e_{2}, e_{3}\right\}$ and $\operatorname{Ann}_{r}\left(L_{3}\right)=\operatorname{Span}\left\{e_{3}\right\}$ the algebras L_{2} and L_{3} are not isomorphic.

3.2. Abelian nilradical case

Let L be a five-dimensional solvable Leibniz algebra with a basis $\left\{x_{1}, x_{2}, e_{1}, e_{2}, e_{3}\right\}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the basis of three-dimensional abelian nilradical λ_{6} chosen in Theorem 2.8. Due to Lemma 3.1 the operators $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent derivations of the nilradical N. Further we need the description of the actions of $R_{x_{1}}$ and $R_{x_{2}}$ on N.

Proposition 3.5. The basis $\left\{x_{1}, x_{2}, e_{1}, e_{2}, e_{3}\right\}$ of L can be chosen such a way that the actions of the right multiplication operators $R_{x_{1}}$ and $R_{x_{2}}$ on the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of N are expressed as follows:
A. $\quad R_{x_{1}}\left(e_{1}\right)=e_{1}, \quad R_{x_{1}}\left(e_{3}\right)=\mu_{1} e_{3}, \quad R_{x_{2}}\left(e_{2}\right)=e_{2}, \quad R_{x_{2}}\left(e_{3}\right)=\mu_{2} e_{3}$,
B. $R_{x_{1}}\left(e_{1}\right)=e_{1}, \quad R_{x_{1}}\left(e_{2}\right)=e_{2}, \quad R_{x_{2}}\left(e_{1}\right)=e_{2}, \quad R_{x_{2}}\left(e_{3}\right)=e_{3}$, C. $\quad R_{x_{1}}\left(e_{1}\right)=e_{1}+e_{2}, \quad R_{x_{1}}\left(e_{2}\right)=e_{2}, \quad R_{x_{2}}\left(e_{1}\right)=\mu e_{2}, \quad R_{x_{2}}\left(e_{3}\right)=e_{3}$, where nonwritten actions are zero.

Proof. First of all we have some freedom of choosing the matrix of $R_{x_{1}}$ depending on multiplicity of eigenvalues of $R_{x_{1}}$. The following three cases may occur: the matrix of $R_{x_{1}}$ is congruent to

$$
\left(\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
0 & \mu_{2} & 0 \\
0 & 0 & \mu_{3}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
\mu_{1} & 1 & 0 \\
0 & \mu_{1} & 0 \\
0 & 0 & \mu_{2}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
\mu_{1} & 1 & 0 \\
0 & \mu_{1} & 1 \\
0 & 0 & \mu_{1}
\end{array}\right) .
$$

Let us now search the possibilities for the matrix of $R_{x_{2}}$. Put

$$
R_{x_{2}}\left(e_{i}\right)=\alpha_{i, 1} e_{1}+\alpha_{i, 2} e_{2}+\alpha_{i, 3} e_{3}, \quad 1 \leq i \leq 3
$$

Since L is solvable and its nilradical $N=\lambda_{6}$ is abelian this implies $R_{\left[x_{1}, x_{2}\right]}(y)=0$ for any $y \in \lambda_{6}$. Now we make a case by case consideration according to the above matrix view of $R_{x_{1}}$.

Case 1. Let the matrix of $R_{x_{1}}$ be congruent to

$$
\left(\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
0 & \mu_{2} & 0 \\
0 & 0 & \mu_{3}
\end{array}\right)
$$

Then we have

$$
R_{x_{1}}\left(e_{1}\right)=\mu_{1} e_{1}, \quad R_{x_{1}}\left(e_{2}\right)=\mu_{2} e_{2}, \quad R_{x_{1}}\left(e_{3}\right)=\mu_{3} e_{3}
$$

By the use of the identities $R_{\left[x_{1}, x_{2}\right]}\left(e_{i}\right)=0$ for $1 \leq i \leq 3$ we obtain the following constraints:

$$
\begin{array}{ll}
\left(\mu_{1}-\mu_{2}\right) \alpha_{1,2}=0, & \left(\mu_{1}-\mu_{3}\right) \alpha_{1,3}=0, \\
\left(\mu_{2}-\mu_{1}\right) \alpha_{2,1}=0, & \left(\mu_{2}-\mu_{3}\right) \alpha_{2,3}=0, \\
\left(\mu_{3}-\mu_{1}\right) \alpha_{3,1}=0, & \left(\mu_{3}-\mu_{2}\right) \alpha_{3,2}=0 . \tag{3.1}
\end{array}
$$

Case 1.1. Let $\mu_{1} \neq \mu_{2}, \mu_{1} \neq \mu_{3}, \mu_{2} \neq \mu_{3}$. Owing to the constraints (3.1) we have

$$
\alpha_{1,2}=0, \quad \alpha_{1,3}=0, \quad \alpha_{2,1}=0, \quad \alpha_{2,3}=0, \quad \alpha_{3,1}=0, \quad \alpha_{3,2}=0
$$

Since $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent, without loss of generality we can assume that $\mu_{1} \alpha_{2,2}-\mu_{2} \alpha_{1,1} \neq 0$. Then applying the transformation

$$
\begin{aligned}
x_{1}^{\prime} & =\frac{\alpha_{2,2}}{\mu_{1} \alpha_{2,2}-\mu_{2} \alpha_{1,1}} x_{1}-\frac{\mu_{2}}{\mu_{1} \alpha_{2,2}-\mu_{2} \alpha_{1,1}} x_{2}, \\
x_{2}^{\prime} & =-\frac{\alpha_{1,1}}{\mu_{1} \alpha_{2,2}-\mu_{2} \alpha_{1,1}} x_{1}+\frac{\mu_{1}}{\mu_{1} \alpha_{2,2}-\mu_{2} \alpha_{1,1}} x_{2}
\end{aligned}
$$

we get $\mu_{1}=\alpha_{2,2}=1, \mu_{2}=\alpha_{1,1}=0$, that means the operators $R_{x_{1}}$ and $R_{x_{2}}$ have the form A in the proposition.

Case 1.2. Let any two of $\mu_{1}, \mu_{2}, \mu_{3}$ be equal. Then, without loss of generality, we can assume that $\mu_{1}=\mu_{2} \neq \mu_{3}$. Then due to the constraints (3.1) we get

$$
\alpha_{1,3}=0, \quad \alpha_{2,3}=0, \quad \alpha_{3,1}=0, \quad \alpha_{3,2}=0
$$

Changing the basis we bring the matrix $\left(\begin{array}{cc}\alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2}, 1 & \alpha_{2,2}\end{array}\right)$ to one of the following Jordan's forms

$$
\left(\begin{array}{cc}
\alpha_{1,1} & 0 \\
0 & \alpha_{2,2}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\alpha_{1,1} & 1 \\
0 & \alpha_{1,1}
\end{array}\right)
$$

In the former case the actions of $R_{x_{1}}$ and $R_{x_{2}}$ have the form A.
In the later case we use the base change

$$
\begin{aligned}
x_{1}^{\prime} & =\frac{\alpha_{3,3}}{\mu_{1} \alpha_{3,3}-\mu_{3} \alpha_{1,1}} x_{1}-\frac{\mu_{3}}{\mu_{1} \alpha_{3,3}-\mu_{3} \alpha_{1,1}} x_{2} \\
x_{2}^{\prime} & =-\frac{\alpha_{1,1}}{\mu_{1} \alpha_{3,3}-\mu_{3} \alpha_{1,1}} x_{1}+\frac{\mu_{1}}{\mu_{1} \alpha_{3,3}-\mu_{3} \alpha_{1,1}} x_{2}
\end{aligned}
$$

to get

$$
R_{x_{1}}\left(e_{1}\right)=e_{1}+\alpha e_{2}, \quad R_{x_{1}}\left(e_{2}\right)=e_{2}, \quad R_{x_{2}}\left(e_{1}\right)=\beta e_{2}, \quad R_{x_{2}}\left(e_{3}\right)=e_{3}
$$

- if $\alpha=0, \beta=0$, then the actions of $R_{x_{1}}$ and $R_{x_{2}}$ have the form A with $\mu_{1}=1$, $\mu_{2}=0$;
- if $\alpha=0, \beta \neq 0$, then by the change $e_{2}^{\prime}=\beta e_{2}$ we see that $R_{x_{1}}$ and $R_{x_{2}}$ act like B;
- if $\alpha \neq 0$, then applying $e_{2}^{\prime}=\alpha e_{2}$ we obtain that the actions of $R_{x_{1}}$ and $R_{x_{2}}$ have the form C.

Case 1.3. Let $\mu_{1}=\mu_{2}=\mu_{3}$. Then the operator $R_{x_{1}}$ acts as the identity operator on N. Let us consider Jordan's form of $R_{x_{2}}$. Since the operators $R_{x_{1}}$ and $R_{x_{2}}$ are linearly nil-independent the following two possibilities may occur:

If

$$
\left(\begin{array}{ccc}
\alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\
\alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\
\alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3}
\end{array}\right) \quad \text { is congruent to } \quad\left(\begin{array}{ccc}
\beta_{1} & 0 & 0 \\
0 & \beta_{2} & 0 \\
0 & 0 & \beta_{3}
\end{array}\right)
$$

then similar to Case 1.1 we obtain $R_{x_{1}}$ and $R_{x_{2}}$ in the form A.
But if

$$
\left(\begin{array}{lll}
\alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\
\alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\
\alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3}
\end{array}\right) \quad \text { is congruent to } \quad\left(\begin{array}{ccc}
\beta_{1} & 1 & 0 \\
0 & \beta_{1} & 0 \\
0 & 0 & \beta_{3}
\end{array}\right)
$$

then similar to Case 1.2 the $R_{x_{1}}$ and $R_{x_{2}}$ have the form B.
Case 2. Let the matrix of the operator $R_{x_{1}}$ be congruent to

$$
\left(\begin{array}{ccc}
\mu_{1} & 1 & 0 \\
0 & \mu_{1} & 0 \\
0 & 0 & \mu_{2}
\end{array}\right)
$$

Then we have

$$
R_{x_{1}}\left(e_{1}\right)=\mu_{1} e_{1}+e_{2}, \quad R_{x_{1}}\left(e_{2}\right)=\mu_{1} e_{2}, \quad R_{x_{1}}\left(e_{3}\right)=\mu_{2} e_{3}
$$

Using the identities $R_{\left[x_{1}, x_{2}\right]}\left(e_{i}\right)=0$ for $1 \leq i \leq 3$ we get the following constraints:

$$
\begin{array}{lll}
\alpha_{2,1}=0, & \alpha_{2,3}=0, & \alpha_{3,1}=0 \\
\alpha_{2,2}=\alpha_{1,1}, & \left(\mu_{2}-\mu_{1}\right) \alpha_{1,3}=0, & \left(\mu_{2}-\mu_{1}\right) \alpha_{3,2}=0 . \tag{3.2}
\end{array}
$$

Similarly to Case 1, considering all possibilities for parameters μ_{1} and μ_{2}, we obtain the operators $R_{x_{1}}$ and $R_{x_{2}}$ in one the forms A, B, C.

Case 3. Let the matrix of the operator $R_{x_{1}}$ be congruent to

$$
\left(\begin{array}{ccc}
\mu_{1} & 1 & 0 \\
0 & \mu_{1} & 1 \\
0 & 0 & \mu_{1}
\end{array}\right)
$$

Then

$$
R_{x_{1}}\left(e_{1}\right)=\mu_{1} e_{1}+e_{2}, \quad R_{x_{1}}\left(e_{2}\right)=\mu_{1} e_{2}+e_{3}, \quad R_{x_{1}}\left(e_{3}\right)=\mu_{1} e_{3}
$$

Again due to the identities $R_{\left[x_{1}, x_{2}\right]}\left(e_{i}\right)=0$ for $1 \leq i \leq 3$, it is easy to obtain

$$
\alpha_{2,1}=\alpha_{3,1}=\alpha_{3,2}=0, \quad \alpha_{1,1}=\alpha_{2,2}=\alpha_{3,3}
$$

which shows that $R_{x_{1}}$ and $R_{x_{2}}$ are nil-dependent. However, it contradicts to the hypothesis of the proposition. This contradiction completes Case 3.

Theorem 3.6. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is 3-dimensional abelian algebra. Then there exists a basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ of L such that on $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ the L is represented as one of the following pairwise nonisomorphic algebras

$$
\begin{aligned}
& M_{1}\left(\mu_{1}, \mu_{2}\right), \mu_{1} \neq 0: \\
& M_{2}\left(\mu_{1}, \mu_{2}\right): \\
& \begin{cases}{\left[e_{1}, x_{1}\right]=e_{1}} & {\left[e_{3}, x_{1}\right]=\mu_{1} e_{3},} \\
{\left[e_{2}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=\mu_{2} e_{3},} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[x_{1}, e_{3}\right]=-\mu_{1} e_{3},} \\
{\left[x_{2}, e_{2}\right]=-e_{2},} & {\left[x_{2}, e_{3}\right]=-\mu_{2} e_{3},}\end{cases} \\
& M_{3}(\mu), \mu \neq 0 \text { : } \\
& \begin{cases}{\left[e_{1}, x_{1}\right]=e_{1}} & \\
{\left[e_{2}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=\mu e_{3},} \\
{\left[x_{2}, e_{2}\right]=-e_{2},} & {\left[x_{2}, e_{3}\right]=-\mu e_{3},}\end{cases} \\
& \begin{cases}{\left[e_{1}, x_{1}\right]=e_{1}} & {\left[e_{3}, x_{1}\right]=\mu_{1} e_{3},} \\
{\left[e_{2}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=\mu_{2} e_{3},} \\
{\left[x_{2}, e_{2}\right]=-e_{2},} & \end{cases} \\
& M_{5}\left(\mu_{1}, \mu_{2}\right) \text { : } \\
& M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right): \\
& \left\{\begin{array} { l l }
{ [e _ { 1 } , x _ { 1 }] = e _ { 1 } } & { [e _ { 3 } , x _ { 1 }] = \mu _ { 1 } e _ { 3 } , } \\
{ [e _ { 2 } , x _ { 2 }] = e _ { 2 } , } & { [e _ { 3 } , x _ { 2 }] = \mu _ { 2 } e _ { 3 } , }
\end{array} \quad \left\{\begin{array}{ll}
{\left[e_{1}, x_{1}\right]=e_{1}} & {\left[e_{2}, x_{2}\right]=e_{2},} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[x_{2}, e_{2}\right]=-e_{2},} \\
{\left[x_{1}, x_{1}\right]=\lambda_{1} e_{3},} & {\left[x_{2}, x_{1}\right]=\lambda_{2} e_{3},} \\
{\left[x_{1}, x_{2}\right]=\lambda_{3} e_{3},} & {\left[x_{2}, x_{2}\right]=\lambda_{4} e_{3},}
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{cases}{\left[x_{1}, x_{1}\right]=\lambda_{1} e_{3},} & {\left[x_{2}, x_{1}\right.} \\ {\left[x_{1}, x_{2}\right]=\lambda_{3} e_{3},} & {\left[x_{2}, x_{2}\right.}\end{cases}
$$

$M_{9}:$
M_{10} :

$$
\left\{\begin{array} { l l }
{ [e _ { 1 } , x _ { 1 }] = e _ { 1 } } & { [e _ { 2 } , x _ { 2 }] = e _ { 2 } , } \\
{ [e _ { 3 } , x _ { 1 }] = e _ { 3 } } & { } \\
{ [x _ { 1 } , e _ { 1 }] = - e _ { 1 } , } & { [x _ { 2 } , e _ { 1 }] = - e _ { 3 } , }
\end{array} \quad \left\{\begin{array}{ll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{3}, x_{1}\right]=e_{3}} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[x_{2}, e_{1}\right]=e_{3}} \\
{\left[e_{2}, x_{2}\right]=e_{2}} & {\left[x_{2}, e_{2}\right]=-e_{2}}
\end{array}\right.\right.
$$

P_{1} :
P_{2} :

$$
\left\{\begin{array} { l l }
{ [e _ { 1 } , x _ { 1 }] = e _ { 1 } , } & { [e _ { 2 } , x _ { 1 }] = e _ { 2 } , } \\
{ [e _ { 1 } , x _ { 2 }] = e _ { 2 } , } & { [e _ { 3 } , x _ { 2 }] = e _ { 3 } , }
\end{array} \quad \left\{\begin{array}{ll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{2}, x_{1}\right]=e_{2}} \\
{\left[e_{1}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=e_{3}} \\
{\left[x_{2}, e_{3}\right]=-e_{3}}
\end{array}\right.\right.
$$

P_{3} :
P_{4} :

$$
\left\{\begin{array} { l l }
{ [e _ { 1 } , x _ { 1 }] = e _ { 1 } , } & { [e _ { 2 } , x _ { 1 }] = e _ { 3 } , } \\
{ [e _ { 1 } , x _ { 2 }] = e _ { 2 } , } & { [e _ { 3 } , x _ { 2 }] = e _ { 3 } , } \\
{ [x _ { 1 } , e _ { 1 }] = - e _ { 1 } , } & { [x _ { 1 } , e _ { 2 }] = - e _ { 2 } , } \\
{ [x _ { 2 } , e _ { 1 }] = - e _ { 2 } , } & { }
\end{array} \left\{\begin{array}{ll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{2}, x_{1}\right]=e_{2},} \\
{\left[e_{1}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=e_{3},} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[x_{1}, e_{2}\right]=-e_{2},} \\
{\left[x_{2}, e_{1}\right]=-e_{2},} & {\left[x_{2}, e_{3}\right]=-e_{3},}
\end{array}\right.\right.
$$

\[

\]

\[

\]

where $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \neq(0,0,0,0)$.
Moreover,

- $M_{1}\left(\mu_{1}, \mu_{2}\right) \cong M_{1}\left(\mu_{2}, \mu_{1}\right) \cong M_{1}\left(\frac{1}{\mu_{1}},-\frac{\mu_{2}}{\mu_{1}}\right)$,
- $M_{2}\left(\mu_{1}, \mu_{2}\right) \cong M_{2}\left(\mu_{2}, \mu_{1}\right)$,
- $M_{5}\left(\mu_{1}, \mu_{2}\right) \cong M_{5}\left(\mu_{2}, \mu_{1}\right)$,
- $M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \cong M_{6}\left(\lambda_{4}, \lambda_{3}, \lambda_{2}, \lambda_{1}\right)$,
- $M_{8}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \cong M_{8}\left(\lambda_{4}, \lambda_{3}, \lambda_{2}, \lambda_{1}\right)$.

Proof. Let L be a 5 -dimensional solvable Leibniz algebra, whose nilradical is 3-dimensional abelian algebra. The products $\left[e_{i}, x_{j}\right]$ are due to Proposition 3.5. For the other products we let

$$
\begin{cases}{\left[x_{1}, e_{i}\right]=\alpha_{i, 1} e_{1}+\alpha_{i, 2} e_{2}+\alpha_{i, 3} e_{3},} & {\left[x_{2}, e_{i}\right]=\beta_{i, 1} e_{1}+\beta_{i, 2} e_{2}+\beta_{i, 3} e_{3}, \quad 1 \leq i \leq 3} \\ {\left[x_{1}, x_{1}\right]=\gamma_{1,1} e_{1}+\gamma_{1,2} e_{2}+\gamma_{1,3} e_{3},} & {\left[x_{2}, x_{1}\right]=\gamma_{2,1} e_{1}+\gamma_{2,2} e_{2}+\gamma_{2,3} e_{3}} \\ {\left[x_{1}, x_{2}\right]=\gamma_{3,1} e_{1}+\gamma_{3,2} e_{2}+\gamma_{3,3} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{4,1} e_{1}+\gamma_{4,2} e_{2}+\gamma_{4,3} e_{3}}\end{cases}
$$

Case 1. Let $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ be the basis corresponding to part A in Proposition 3.5. Therefore

$$
\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{3}, x_{1}\right]=\mu_{1} e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2}, \quad\left[e_{3}, x_{2}\right]=\mu_{2} e_{3}
$$

We use the Leibniz identity for the products

$$
\begin{aligned}
& {\left[x_{1},\left[e_{1}, x_{1}\right]\right],\left[x_{1},\left[e_{1}, x_{2}\right]\right],\left[x_{1},\left[e_{2}, x_{1}\right]\right],\left[x_{1},\left[e_{2}, x_{2}\right]\right],\left[x_{1},\left[e_{3}, x_{1}\right]\right],\left[x_{1},\left[e_{3}, x_{2}\right]\right],} \\
& {\left[x_{2},\left[e_{1}, x_{1}\right]\right],\left[x_{2},\left[e_{1}, x_{2}\right]\right],\left[x_{2},\left[e_{2}, x_{1}\right]\right],\left[x_{2},\left[e_{2}, x_{2}\right]\right],\left[x_{2},\left[e_{3}, x_{1}\right]\right],\left[x_{2},\left[e_{3}, x_{2}\right]\right] \text {, }}
\end{aligned}
$$

to obtain the following constraints for the structure constants

$$
\left\{\begin{array}{lllll}
\alpha_{1,2}=0, & \alpha_{2,3} \mu_{1}=0, & \alpha_{1,3} \mu_{2}=0, & \alpha_{1,3}\left(\mu_{1}-1\right)=0, & \alpha_{2,3}\left(\mu_{2}-1\right)=0 \tag{3.3}\\
\alpha_{2,1}=0, & \alpha_{3,2} \mu_{1}=0, & \alpha_{3,1} \mu_{2}=0, & \alpha_{3,1}\left(\mu_{1}-1\right)=0, & \alpha_{3,2}\left(\mu_{2}-1\right)=0 \\
\beta_{1,2}=0, & \beta_{2,3} \mu_{1}=0, & \beta_{1,3} \mu_{2}=0, & \beta_{1,3}\left(\mu_{1}-1\right)=0, & \beta_{2,3}\left(\mu_{2}-1\right)=0 \\
\beta_{2,1}=0, & \beta_{3,2} \mu_{1}=0, & \beta_{3,1} \mu_{2}=0, & \beta_{3,1}\left(\mu_{1}-1\right)=0, & \beta_{3,2}\left(\mu_{2}-1\right)=0
\end{array}\right.
$$

Case 1.1. Let $\left(\mu_{1}, \mu_{2}\right) \notin\{(0,1),(1,0)\}$. Then by virtue of (3.3) one has

$$
\begin{array}{r}
\alpha_{1,2}=\alpha_{2,1}=\alpha_{1,3}=\alpha_{2,3}=\alpha_{3,1}=\alpha_{3,2}=0 \\
\beta_{1,2}=\beta_{2,1}=\beta_{1,3}=\beta_{2,3}=\beta_{3,1}=\beta_{3,2}=0
\end{array}
$$

The Leibniz identities

$$
\begin{aligned}
& 0=\left[\left[x_{1}, x_{1}\right], e_{2}\right]=\left[x_{1},\left[x_{1}, e_{2}\right]\right]+\left[\left[x_{1}, e_{2}\right], x_{1}\right]=\left[x_{1}, \alpha_{2,2} e_{2}\right]+\left[\alpha_{2,2} e_{2}, x_{1}\right]=\alpha_{2,2}^{2} e_{2} \\
& 0=\left[\left[x_{2}, x_{2}\right], e_{1}\right]=\left[x_{2},\left[x_{2}, e_{1}\right]\right]+\left[\left[x_{2}, e_{1}\right], x_{2}\right]=\left[x_{2}, \beta_{1,1} e_{1}\right]+\left[\beta_{1,1} e_{1}, x_{2}\right]=\beta_{1,1}^{2} e_{1}
\end{aligned}
$$

give

$$
\alpha_{2,2}=0, \quad \beta_{1,1}=0
$$

Considering the Leibniz identity for the products

$$
\left[x_{1},\left[x_{1}, x_{2}\right]\right], \quad\left[x_{2},\left[x_{2}, x_{1}\right]\right], \quad\left[x_{1},\left[x_{2}, x_{1}\right]\right], \quad\left[x_{2},\left[x_{1}, x_{2}\right]\right]
$$

we get

$$
\begin{array}{lll}
\gamma_{1,2}=0, & \gamma_{3,1}\left(\alpha_{1,1}+1\right)=0, & \gamma_{3,3} \alpha_{3,3}=\gamma_{1,3} \mu_{2}-\gamma_{3,3} \mu_{1} \\
\gamma_{4,1}=0, & \gamma_{2,2}\left(\beta_{2,2}+1\right)=0, & \gamma_{2,3} \beta_{3,3}=\gamma_{4,3} \mu_{1}-\gamma_{2,3} \mu_{2} \\
& \gamma_{3,1}=\gamma_{2,1} \alpha_{1,1}, & \gamma_{2,3} \alpha_{3,3}=\gamma_{3,3} \mu_{1}-\gamma_{1,3} \mu_{2} \\
& \gamma_{2,2}=\gamma_{3,2} \beta_{2,2}, & \gamma_{3,3} \beta_{3,3}=\gamma_{2,3} \mu_{2}-\gamma_{4,3} \mu_{1} \tag{3.4}
\end{array}
$$

As well as sequentially applying the Leibniz identity to $\left[x_{1},\left[x_{1}, e_{1}\right]\right]$, $\left[x_{1},\left[x_{1}, e_{3}\right]\right]$, $\left[x_{1},\left[x_{1}, x_{1}\right]\right],\left[x_{1},\left[x_{2}, e_{3}\right]\right],\left[x_{1},\left[x_{2}, x_{2}\right]\right],\left[x_{2},\left[x_{1}, e_{3}\right]\right],\left[x_{2},\left[x_{1}, x_{1}\right]\right],\left[x_{2},\left[x_{2}, x_{2}\right]\right],\left[x_{2},\left[x_{2}, e_{3}\right]\right]$ and $\left[x_{2},\left[x_{2}, x_{2}\right]\right]$ we obtain the constraints

$$
\begin{gather*}
\alpha_{1,1}\left(\alpha_{1,1}+1\right)=0, \\
\alpha_{3,3}\left(\alpha_{3,3}+\mu_{1}\right)=0, \\
\alpha_{1,1} \gamma_{1,1}=0, \quad \alpha_{3,3} \gamma_{1,3}=0, \\
\alpha_{3,3}\left(\beta_{3,3}+\mu_{2}\right)=0, \\
\alpha_{3,3} \gamma_{4,3}=0, \\
\beta_{3,3}\left(\alpha_{3,3}+\mu_{1}\right)=0, \\
\beta_{3,3} \gamma_{1,3}=0, \\
\beta_{2,2}\left(\beta_{2,2}+1\right)=0, \\
\beta_{3,3}\left(\beta_{3,3}+\mu_{2}\right)=0, \quad \text { and } \\
\beta_{2,2} \gamma_{4,2}=0, \quad \beta_{3,3} \gamma_{4,3}=0, \tag{3.5}
\end{gather*}
$$

respectively.
Therefore the table of multiplication of L is written

$$
\left\{\begin{array}{lll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[x_{1}, e_{1}\right]=\alpha_{1,1} e_{1},} & {\left[x_{1}, x_{1}\right]=\gamma_{1,1} e_{1}+\gamma_{1,3} e_{3}} \\
{\left[e_{3}, x_{1}\right]=\mu_{1} e_{3},} & {\left[x_{1}, e_{3}\right]=\alpha_{3,3} e_{3},} & {\left[x_{2}, x_{1}\right]=\gamma_{2,1} e_{1}+\gamma_{2,2} e_{2}+\gamma_{2,3} e_{3}} \\
{\left[e_{2}, x_{2}\right]=e_{2},} & {\left[x_{2}, e_{2}\right]=\beta_{2,2} e_{2},} & {\left[x_{1}, x_{2}\right]=\gamma_{3,1} e_{1}+\gamma_{3,2} e_{2}+\gamma_{3,3} e_{3}} \\
{\left[e_{3}, x_{2}\right]=\mu_{2} e_{3},} & {\left[x_{2}, e_{3}\right]=\beta_{3,3} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2}+\gamma_{4,3} e_{3}}
\end{array}\right.
$$

with the conditions (3.4) and (3.5).
It is observed that if $\mu_{1}=\mu_{2}=0$, then $\alpha_{3,3}=\beta_{3,3}=0$ and $C(L)=\operatorname{Span}\left\{e_{3}\right\}$, otherwise $C(L)$ is trivial. Thus, we distinguish following two cases $\left(\mu_{1}, \mu_{2}\right) \neq(0,0)$ and $\left(\mu_{1}, \mu_{2}\right)=(0,0)$, which correspond to $C(L)=\operatorname{Span}\left\{e_{3}\right\} \neq 0$ and $C(L)=0$, respectively.

Case 1.1.1. Let $\left(\mu_{1}, \mu_{2}\right) \neq(0,0)$ (i.e., $\left.C(L)=0\right)$.

- Let $\alpha_{1,1}=-1, \beta_{2,2}=-1$ (i.e., $\left.e_{1}, e_{2} \notin A n n_{r}(L)\right)$. Then one has $\gamma_{1,1}=0, \gamma_{4,2}=0$, $\gamma_{3,1}=-\gamma_{2,1}, \gamma_{3,2}=-\gamma_{2,2}$.

Taking the base change

$$
x_{1}=x_{1}+\gamma_{2,2} e_{2}, \quad x_{2}=x_{2}-\gamma_{2,1} e_{1}
$$

we can assume that $\gamma_{2,1}=\gamma_{2,2}=0$.
Note that, due to the symmetricity of the basis vectors e_{1}, e_{2} and x_{1}, x_{2}, without loss of generality we can assume that $\mu_{1} \neq 0$.

- If $\alpha_{3,3}=-\mu_{1}, \beta_{3,3}=-\mu_{2}$ (i.e. $\operatorname{Ann}_{r}(L)=0$), then we obtain $\gamma_{1,3}=0, \gamma_{4,3}=0$, $\gamma_{3,3}=-\gamma_{2,3}$ and taking the base change $x_{2}=x_{2}-\frac{\gamma_{2,3}}{\mu_{1}} e_{1}$ we get the algebra $M_{1}\left(\mu_{1}, \mu_{2}\right)$.
- If $\alpha_{3,3}=0, \beta_{3,3}=0$, (i.e. $\operatorname{Ann}_{r}(L)=\operatorname{Span}\left\{e_{3}\right\}$), then one has $\gamma_{3,3}=\frac{\gamma_{1,3} \mu_{2}}{\mu_{1}}$, $\gamma_{4,3}=\frac{\gamma_{2,3} \mu_{2}}{\mu_{1}}$ and considering the base change $x_{1}^{\prime}=x_{1}-\frac{\gamma_{1,3}}{\mu_{1}} e_{3}, x_{2}^{\prime}=x_{2}-\frac{\gamma_{2,3}}{\mu_{1}} e_{3}$, we derive $M_{2}\left(\mu_{1}, \mu_{2}\right)$.
- Let $\alpha_{1,1}=0, \beta_{2,2}=-1$, or $\alpha_{1,1}=-1, \beta_{2,2}=0$. Due to the symmetricity of the basis elements e_{1}, e_{2} and x_{1}, x_{2}, without loss of generality we can assume that $\alpha_{1,1}=0$, $\beta_{2,2}=-1$. This gives

$$
\gamma_{3,1}=0, \quad \gamma_{4,2}=0, \quad \gamma_{3,2}=-\gamma_{2,2}=0
$$

- If $\alpha_{3,3}=-\mu_{1}, \beta_{3,3}=-\mu_{2}$, then $\gamma_{1,3}=0, \gamma_{4,3}=0, \gamma_{3,3}=-\gamma_{2,3}$. The change $x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}+\gamma_{2,2} e_{2}, x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}$, gives the following table of multiplication:

$$
\begin{cases}{\left[e_{1}, x_{1}\right]=e_{1}} & {\left[e_{3}, x_{1}\right]=\mu_{1} e_{3}} \\ {\left[e_{2}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=\mu_{2} e_{3}} \\ {\left[x_{1}, e_{3}\right]=-\mu_{1} e_{3},} & \\ {\left[x_{2}, e_{2}\right]=-e_{2},} & {\left[x_{2}, e_{3}\right]=-\mu_{2} e_{3}} \\ {\left[x_{2}, x_{1}\right]=\gamma_{2,3} e_{3},} & {\left[x_{1}, x_{2}\right]=-\gamma_{2,3} e_{3}}\end{cases}
$$

* If $\mu_{1} \neq 0$, then taking the base change $e_{1}^{\prime}=e_{3}, e_{3}^{\prime}=e_{1}, x_{1}^{\prime}=\frac{1}{\mu_{1}} x_{1}, x_{2}^{\prime}=$ $x_{2}-\frac{\mu_{2}}{\mu_{1}} x_{1}-\frac{\gamma_{2,3}}{\mu_{1}} e_{3}$ we obtain the algebra $M_{2}\left(\mu_{1}, \mu_{2}\right)$.
* If $\mu_{1}=0$, then $\mu_{2} \neq 0$ and after the base change $x_{1}^{\prime}=x_{1}+\frac{\gamma_{2,3}}{\mu_{2}} e_{3}$ we get $M_{3}\left(\mu_{2}\right)$.
- If $\alpha_{3,3}=0, \beta_{3,3}=0$, then we get $\gamma_{3,3}=\frac{\gamma_{1,3} \mu_{2}}{\mu_{1}}, \gamma_{4,3}=\frac{\gamma_{2,3} \mu_{2}}{\mu_{1}}$ and by the base change $x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}+\gamma_{2,2} e_{2}-\frac{\gamma_{1,3}}{\mu_{1}} e_{3}, x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\frac{\gamma_{2,3}}{\mu_{1}} e_{3}$, we derive $M_{4}\left(\mu_{1}, \mu_{2}\right)$.
- Let $\alpha_{1,1}=0, \beta_{2,2}=0$, then one has $\gamma_{3,1}=0, \gamma_{2,2}=0$.
- If $\alpha_{3,3}=-\mu_{1}, \beta_{3,3}=-\mu_{2}$, then $\gamma_{1,3}=0, \gamma_{4,3}=0, \gamma_{3,3}=-\gamma_{2,3}$. Applying the base change $x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}-\gamma_{3,2} e_{2}, x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\gamma_{4,2} e_{2}-\frac{\gamma_{2,3}}{\mu_{1}} e_{3}$, we obtain the following table of multiplications

$$
\begin{cases}{\left[e_{1}, x_{1}\right]=e_{1}} & {\left[e_{3}, x_{1}\right]=\mu_{1} e_{3}} \\ {\left[e_{2}, x_{2}\right]=e_{2},} & {\left[e_{3}, x_{2}\right]=\mu_{2} e_{3}} \\ {\left[x_{1}, e_{3}\right]=-\mu_{1} e_{3},} & {\left[x_{2}, e_{3}\right]=-\mu_{2} e_{3}}\end{cases}
$$

It is easy to see that the base change $e_{1}^{\prime}=e_{2}, e_{2}^{\prime}=e_{3}, e_{3}^{\prime}=e_{1}, x_{1}^{\prime}=\frac{1}{\mu_{1}} x_{1}$, $x_{2}^{\prime}=x_{2}-\frac{\mu_{2}}{\mu_{1}} x_{1}$ in the table gives $M_{4}\left(\mu_{1}, \mu_{2}\right)$.

- If $\alpha_{3,3}=0, \beta_{3,3}=0$, we get $\gamma_{3,3}=\frac{\gamma_{1,3} \mu_{2}}{\mu_{1}}, \gamma_{4,3}=\frac{\gamma_{2,3} \mu_{2}}{\mu_{1}}$ and taking the change $x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}-\gamma_{3,2} e_{2}-\frac{\gamma_{1,3}}{\mu_{1}} e_{3}, x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\gamma_{4,2} e_{2}-\frac{\gamma_{2,3}}{\mu_{1}} e_{3}$, we obtain $M_{5}\left(\mu_{1}, \mu_{2}\right)$.

Case 1.1.2. Let $\mu_{1}=\mu_{2}=0$ (i.e., $C(L)=\operatorname{Span}\left\{e_{3}\right\}$). Then we get $\alpha_{3,3}=\beta_{3,3}=0$ and obtain the following table of multiplication

$$
\begin{array}{ll}
{\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[x_{1}, e_{1}\right]=\alpha_{1,1} e_{1},} & {\left[x_{1}, x_{1}\right]=\gamma_{1,1} e_{1}+\gamma_{1,3} e_{3},} \\
{\left[x_{2}, x_{1}\right]=\gamma_{2,1} e_{1}+\gamma_{2,2} e_{2}+\gamma_{2,3} e_{3},} \\
{\left[e_{2}, x_{2}\right]=e_{2}, \quad\left[x_{2}, e_{2}\right]=\beta_{2,2} e_{2},} & {\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2}+\gamma_{4,3} e_{3},} \\
{\left[x_{1}, x_{2}\right]=\gamma_{3,1} e_{1}+\gamma_{3,2} e_{2}+\gamma_{3,3} e_{3}} &
\end{array}
$$

with restrictions

$$
\begin{gathered}
\alpha_{1,1}\left(\alpha_{1,1}+1\right)=0, \quad \beta_{2,2}\left(\beta_{2,2}+1\right)=0, \quad \alpha_{1,1} \gamma_{1,1}=0, \\
\gamma_{3,1}\left(\alpha_{1,1}+1\right)=0, \quad \beta_{2,2} \gamma_{4,2}=0, \\
\gamma_{2,2}\left(\beta_{2,2}+1\right)=0,
\end{gathered} \gamma_{3,1}=\gamma_{2,1} \alpha_{1,1}, \quad \gamma_{2,2}=\gamma_{3,2} \beta_{2,2} .
$$

Considering the basis change $x_{1}^{\prime}=x_{1}-\gamma_{3,2} e_{2}, x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}$, we can assume that

$$
\gamma_{2,1}=\gamma_{2,2}=\gamma_{3,1}=\gamma_{3,2}=0
$$

- If $\alpha_{1,1}=-1, \beta_{2,2}=-1$, then we have $\gamma_{1,1}=0, \gamma_{4,2}=0$, and the algebra $M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ appears.
- If $\left(\alpha_{1,1}, \beta_{2,2}\right)=(0,-1)$ or $(-1,0)$ then without loss of generality we can suppose that $\alpha_{1,1}=0, \beta_{2,2}=-1$. Then we have $\gamma_{4,2}=0$, and applying the base change $x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}$, we obtain $M_{7}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$.
- But if $\alpha_{1,1}=0, \beta_{2,2}=0$, then the base change

$$
x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}, \quad x_{2}^{\prime}=x_{2}-\gamma_{4,2} e_{2}
$$

gives $M_{8}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$.

It is easy to see that

$$
M_{6}(0,0,0,0) \cong M_{2}(0,0), \quad M_{7}(0,0,0,0) \cong M_{4}(0,0), \quad M_{8}(0,0,0,0) \cong M_{5}(0,0)
$$

moreover, choosing appropriate base change one of the λ_{i} which is not zero can be reduced to 1 .

Case 1.2. Let $\left(\mu_{1}, \mu_{2}\right) \in\{(0,1),(1,0)\}$. Without loss of generality we can suppose that $\mu_{1}=1, \mu_{2}=0$. Then because of (3.3) we have

$$
\begin{aligned}
& \alpha_{1,2}=\alpha_{2,1}=\alpha_{2,3}=\alpha_{3,2}=0 \\
& \beta_{1,2}=\beta_{2,1}=\beta_{2,3}=\beta_{3,2}=0
\end{aligned}
$$

From the Leibniz identity

$$
0=\left[\left[x_{1}, x_{1}\right], e_{2}\right]=\left[x_{1},\left[x_{1}, e_{2}\right]\right]+\left[\left[x_{1}, e_{2}\right], x_{1}\right]=\left[x_{1}, \alpha_{2,2} e_{2}\right]+\left[\alpha_{2,2} e_{2}, x_{1}\right]=\alpha_{2,2}^{2} e_{2},
$$

we get $\alpha_{2,2}=0$.
Thus the table of multiplication in this case looks like

$$
\begin{array}{lll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[x_{1}, e_{1}\right]=\alpha_{1,1} e_{1}+\alpha_{1,3} e_{3},} & {\left[x_{1}, x_{1}\right]=\gamma_{1,1} e_{1}+\gamma_{1,2} e_{2}+\gamma_{1,3} e_{3},} \\
{\left[e_{3}, x_{1}\right]=e_{3},} & {\left[x_{1}, e_{3}\right]=\alpha_{3,1} e_{1}+\alpha_{3,3} e_{3},} & {\left[x_{2}, x_{1}\right]=\gamma_{2,1} e_{1}+\gamma_{2,2} e_{2}+\gamma_{2,3} e_{3},} \\
{\left[e_{2}, x_{2}\right]=e_{2},} & {\left[x_{2}, e_{1}\right]=\beta_{1,1} e_{1}+\beta_{1,3} e_{3},} & {\left[x_{1}, x_{2}\right]=\gamma_{3,1} e_{1}+\gamma_{3,2} e_{2}+\gamma_{3,3} e_{3},} \\
{\left[x_{2}, e_{2}\right]=\beta_{2,2} e_{2},} & {\left[x_{2}, e_{3}\right]=\beta_{3,1} e_{1}+\beta_{3,3} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{4,1} e_{1}+\gamma_{4,2} e_{2}+\gamma_{4,3} e_{3} .}
\end{array}
$$

Now we distinguish the two cases depending on the views of the Jordan forms of the matrix $\left(\begin{array}{cc}\alpha_{1,1} & \alpha_{1,3} \\ \alpha_{3,1} & \alpha_{3,3}\end{array}\right)$, i.e. a multiple root case $\left(\begin{array}{cc}\alpha_{1,1} & 1 \\ 0 & \alpha_{1,1}\end{array}\right)$ and simple roots case $\left(\begin{array}{cc}\alpha_{1,1} & 0 \\ 0 & \alpha_{3,3}\end{array}\right)$.

The former case is impossible due to the following observation. Let us consider the Leibniz identity

$$
\begin{aligned}
0 & =\left[\left[x_{1}, x_{1}\right], e_{1}\right]=\left[x_{1},\left[x_{1}, e_{1}\right]\right]+\left[\left[x_{1}, e_{1}\right], x_{1}\right]=\left[x_{1}, \alpha_{1,1} e_{1}+e_{3}\right]+\left[\alpha_{1,1} e_{1}, x_{1}\right] \\
& =\left(\alpha_{1,1}^{2}+\alpha_{1,1}\right) e_{1}+\left(1+2 \alpha_{1,1}\right) e_{3} .
\end{aligned}
$$

From that we get the system of equations

$$
\begin{gathered}
\alpha_{1,1}\left(\alpha_{1,1}+1\right)=0 \\
1+2 \alpha_{1,1}=0
\end{gathered}
$$

which is obviously not consistent.
Therefore we consider the case when $\left(\begin{array}{cc}\alpha_{1,1} & \alpha_{1,3} \\ \alpha_{3,1} & \alpha_{3,3}\end{array}\right)$ is congruent to $\left(\begin{array}{cc}\alpha_{1,1} & 0 \\ 0 & \alpha_{3,3}\end{array}\right)$. There are a few subcases here.

- Let $e_{1}, e_{3} \in A n n_{r}(L)$. Then we have

$$
\alpha_{1,1}=\alpha_{3,3}=\beta_{1,1}=\beta_{1,3}=\beta_{3,1}=\beta_{3,3}=0
$$

Let us consider the Leibniz identity for $\left[x_{1},\left[x_{1}, x_{2}\right]\right],\left[x_{2},\left[x_{1}, x_{2}\right]\right]$. This yields

$$
\gamma_{1,2}=\gamma_{3,1}=\gamma_{3,3}=\gamma_{4,1}=\gamma_{4,3}=0, \quad \gamma_{2,2}=\gamma_{3,2} \beta_{2,2}
$$

Then as a result of the basis change

$$
x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}-\gamma_{3,2} e_{2}-\gamma_{1,3} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\gamma_{2,3} e_{3}
$$

we conclude that $\gamma_{1,1}=\gamma_{1,3}=\gamma_{2,1}=\gamma_{2,3}=\gamma_{3,2}=0$.
Therefore we derive the following products

$$
\begin{gathered}
{\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{3}, x_{1}\right]=e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2}} \\
{\left[x_{2}, e_{2}\right]=\beta_{2,2} e_{2}, \quad\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2}}
\end{gathered}
$$

- Now if $e_{2} \in \operatorname{Ann}_{r}(L)$, then we have $\beta_{2,2}=0$ and taking the change $x_{2}^{\prime}=x_{2}-\gamma_{4,2} e_{2}$, we get $M_{5}(1,0)$.
- But if $e_{2} \notin \operatorname{Ann_{r}}(L)$, then we get $\beta_{2,2}=-1, \gamma_{4,2}=0$. Hence, L is isomorphic to $M_{4}(1,0)$.
- Let us now consider the case when one of the basis vectors e_{1}, e_{3} is not in $A n n_{r}(L)$, then without loss of generality we can suppose that $e_{1} \notin A n n_{r}(L), e_{3} \in A n n_{r}(L)$. Therefore

$$
\alpha_{1,1}=-1, \quad \alpha_{3,1}=\beta_{1,1}=\beta_{3,1}=\beta_{3,3}=\gamma_{1,1}=\gamma_{4,1}=0, \quad \gamma_{3,1}=-\gamma_{2,1}
$$

Analogously to that of the previous case considering the Leibniz identities $\left[x_{1},\left[x_{1}, x_{2}\right]\right],\left[x_{2},\left[x_{1}, x_{2}\right]\right]$ we derive

$$
\gamma_{1,2}=\gamma_{3,3}=0, \quad \gamma_{2,2}=\gamma_{3,2} \beta_{2,2}, \quad \gamma_{4,3}=\gamma_{2,1} \beta_{1,3}
$$

Then applying the base change

$$
x_{1}^{\prime}=x_{1}-\gamma_{3,2} e_{2}-\gamma_{1,3} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\gamma_{2,3} e_{3}
$$

we get $\gamma_{1,3}=\gamma_{2,1}=\gamma_{2,3}=\gamma_{3,2}=0$. Hence the table of multiplications in this case is given as follows:

$$
\begin{array}{lll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{3}, x_{1}\right]=e_{3},} & {\left[e_{2}, x_{2}\right]=e_{2}} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[x_{2}, e_{1}\right]=\beta_{1,3} e_{3},} & {\left[x_{2}, e_{2}\right]=\beta_{2,2} e_{2},}
\end{array} \quad\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2} .
$$

- If $e_{2} \in \operatorname{Ann}_{r}(L)$, then $\beta_{2,2}=0$ and the base change $x_{2}^{\prime}=x_{2}-\gamma_{4,2} e_{2}$, yields $\gamma_{4,2}=0$.
* If $\beta_{1,3}=0$, then we obtain $M_{4}(0,1)$.
* But if $\beta_{1,3} \neq 0$, then the base change $e_{3}^{\prime}=\beta_{1,3} e_{3}$, gives M_{9}.
- And if $e_{2} \notin A n n_{r}(L)$, then
$\beta_{2,2}=-1, \gamma_{4,2}=0$. Here if $\beta_{1,3}=0$, we obtain the algebra $M_{2}(1,0)$, otherwise considering the base change $e_{3}^{\prime}=\beta_{1,3} e_{3}$, we get M_{10}.
- Let now none of e_{1}, e_{3} is in $A n n_{r}(L)$. Then

$$
\begin{gathered}
\alpha_{1,1}=\alpha_{3,1}=-1, \quad \beta_{1,1}=\beta_{1,3}=\beta_{3,1}=\beta_{3,3}=0 \\
\gamma_{1,1}=\gamma_{1,3}=\gamma_{4,1}=\gamma_{4,3}=0, \quad \gamma_{3,1}=-\gamma_{2,1}, \quad \gamma_{3,3}=-\gamma_{2,3}
\end{gathered}
$$

Applying the Leibniz identities $\left[x_{1},\left[x_{1}, x_{2}\right]\right],\left[x_{2},\left[x_{1}, x_{2}\right]\right]$ we obtain

$$
\gamma_{1,2}=0, \quad \gamma_{2,2}=\gamma_{3,2} \beta_{2,2}
$$

After the base change

$$
x_{1}^{\prime}=x_{1}-\gamma_{3,2} e_{2}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\gamma_{2,3} e_{3}
$$

we get $\gamma_{2,1}=\gamma_{2,3}=\gamma_{3,2}=0$ and as a result the table of multiplications is written as follows

$$
\begin{array}{lll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{3}, x_{1}\right]=e_{3},} & {\left[e_{2}, x_{2}\right]=e_{2}} \\
{\left[x_{1}, e_{1}\right]=-e_{1},} & {\left[x_{1}, e_{3}\right]=-e_{3},} & {\left[x_{2}, e_{2}\right]=\beta_{2,2} e_{2},}
\end{array} \quad\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2} .
$$

- If $e_{2} \in \operatorname{Ann}_{r}(L)$, then $\beta_{2,2}=0$ and the base change $x_{2}^{\prime}=x_{2}-\gamma_{4,2} e_{2}$, gives $M_{3}(1)$.
- But if $e_{2} \notin A n n_{r}(L)$, then $\beta_{2,2}=-1, \gamma_{4,2}=0$ and one obtains $M_{1}(1,0)$.

Case 2. Let the basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ be such that $R_{x_{1}}$ and $R_{x_{2}}$ have the form B in Proposition 3.5.

Similar to Case 1, applying the Leibniz identity we get the table multiplications:

$$
\begin{array}{lll}
{\left[e_{1}, x_{1}\right]=e_{1},} & {\left[x_{1}, e_{1}\right]=\alpha_{1,1} e_{1},} & {\left[x_{1}, x_{1}\right]=\gamma_{1,1} e_{1}+\gamma_{1,2} e_{2},} \\
{\left[e_{2}, x_{1}\right]=e_{2},} & {\left[x_{1}, e_{2}\right]=\alpha_{1,1} e_{2},} & {\left[x_{2}, x_{1}\right]=\gamma_{2,1} e_{1}+\gamma_{2,2} e_{2}+\gamma_{2,3} e_{3}} \\
{\left[e_{1}, x_{2}\right]=e_{2},} & {\left[x_{2}, e_{1}\right]=\beta_{1,2} e_{2},} & {\left[x_{1}, x_{2}\right]=\gamma_{3,1} e_{1}+\gamma_{3,2} e_{2}+\gamma_{3,3} e_{3}} \\
{\left[e_{3}, x_{2}\right]=e_{3},} & {\left[x_{2}, e_{3}\right]=\beta_{3,3} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2}+\gamma_{4,3} e_{3}}
\end{array}
$$

with constraints

$$
\begin{array}{lll}
\alpha_{1,1}\left(\alpha_{1,1}+1\right)=0, & \gamma_{3,1}=\gamma_{2,1} \alpha_{1,1}, & \gamma_{3,2}=\gamma_{1,1}+\gamma_{2,2} \alpha_{1,1} \\
\gamma_{2,3}=\gamma_{3,3} \beta_{3,3}, & \gamma_{2,1}=\gamma_{4,2}+\gamma_{3,1} \beta_{1,2}
\end{array}
$$

Case 2.1. Let $e_{1} \in A n n_{r}(L)$, then

$$
\alpha_{1,1}=0, \quad \beta_{1,2}=0, \quad \gamma_{3,1}=0, \quad \gamma_{3,2}=\gamma_{1,1}, \quad \gamma_{2,1}=\gamma_{4,2}
$$

Then the base change

$$
x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}-\gamma_{1,2} e_{2}-\gamma_{3,3} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\gamma_{2,2} e_{2}
$$

yields $\gamma_{1,1}=\gamma_{1,2}=\gamma_{2,1}=\gamma_{2,2}=\gamma_{3,3}=0$.

- If $e_{3} \in A n n_{r}(L)$, then $\beta_{3,3}=0$, and taking the change $x_{2}=x_{2}-\gamma_{4,3} e_{3}$ and we obtain P_{1}.
- If $e_{3} \notin A n n_{r}(L)$ then $\beta_{3,3}=-1, \gamma_{4,3}=0$ and we get P_{2}.

Case 2.2. Let $e_{1} \notin \operatorname{Ann} n_{r}(L)$, then

$$
\begin{gathered}
\alpha_{1,1}=-1, \quad \beta_{1,2}=-1, \quad \gamma_{1,1}=\gamma_{1,2}=\gamma_{4,2}=0 \\
\gamma_{3,1}=-\gamma_{2,1}, \quad \gamma_{3,2}=-\gamma_{2,2}
\end{gathered}
$$

Applying the base change

$$
x_{1}^{\prime}=x_{1}+\gamma_{2,2} e_{1}-\gamma_{3,3} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}
$$

we can assume that $\gamma_{2,1}=\gamma_{2,2}=\gamma_{3,3}=0$.

- If $e_{3} \notin A n n_{r}(L)$, then $\beta_{3,3}=0$, and the base change $x_{2}=x_{2}-\gamma_{4,3} e_{3}$ gives P_{3}.
- If $e_{3} \in \operatorname{Ann}_{r}(L)$ then $\beta_{3,3}=-1, \gamma_{4,3}=0$ and we get P_{4}.

Case 3. Let now the basis $\left\{e_{1}, e_{2}, e_{3}, x_{1}, x_{2}\right\}$ be such that $R_{x_{1}}$ and $R_{x_{2}}$ have the form C in Proposition 3.5.

By using the Leibniz identity, we obtain the table of multiplications as follows

$$
\begin{array}{lll}
{\left[e_{1}, x_{1}\right]=e_{1}+e_{2},} & {\left[x_{1}, e_{1}\right]=\alpha_{1,1} e_{1}+\alpha_{1,2} e_{2},} & {\left[x_{1}, x_{1}\right]=\gamma_{1,1} e_{1}+\gamma_{1,2} e_{2},} \\
{\left[e_{2}, x_{1}\right]=e_{2},} & {\left[x_{1}, e_{2}\right]=\alpha_{1,1} e_{2},} & {\left[x_{2}, x_{1}\right]=\gamma_{2,1} e_{1}+\gamma_{2,2} e_{2}+\gamma_{2,3} e_{3},} \\
{\left[e_{1}, x_{2}\right]=\mu e_{2},} & {\left[x_{2}, e_{1}\right]=\beta_{1,2} e_{2},} & {\left[x_{1}, x_{2}\right]=\gamma_{3,1} e_{1}+\gamma_{3,2} e_{2}+\gamma_{3,3} e_{3},} \\
{\left[e_{3}, x_{2}\right]=e_{3},} & {\left[x_{2}, e_{3}\right]=\beta_{3,3} e_{3},} & {\left[x_{2}, x_{2}\right]=\gamma_{4,2} e_{2}+\gamma_{4,3} e_{3}}
\end{array}
$$

with constraints

$$
\begin{gathered}
\alpha_{1,1}\left(\alpha_{1,1}+1\right)=0, \quad \gamma_{3,1}=\gamma_{2,1} \alpha_{1,1} \\
\gamma_{3,2}=-\gamma_{3,1}+\gamma_{1,1} \mu+\gamma_{2,1} \alpha_{1,2}+\gamma_{2,2} \alpha_{1,1} \\
\alpha_{1,1}\left(2 \alpha_{1,2}+1\right)=-\alpha_{1,2}, \quad \gamma_{2,3}=\gamma_{3,3} \beta_{3,3}, \quad \gamma_{4,2}=\gamma_{2,1} \mu-\gamma_{3,1} \beta_{1,2}
\end{gathered}
$$

Case 3.1. Let $e_{1} \in A n n_{r}(L)$. Then

$$
\begin{aligned}
& \alpha_{1,1}=0, \quad \alpha_{1,2}=0, \quad \beta_{1,2}=0, \quad \gamma_{3,1}=0, \\
& \gamma_{3,2}=\gamma_{1,1} \mu, \quad \gamma_{4,2}=\gamma_{2,1} \mu, \quad \gamma_{2,3}=\gamma_{3,3} \beta_{3,3} .
\end{aligned}
$$

Taking the base change

$$
x_{1}^{\prime}=x_{1}-\gamma_{1,1} e_{1}-\left(\gamma_{1,2}-\gamma_{1,1}\right) e_{2}-\gamma_{3,3} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\left(\gamma_{2,2}-\gamma_{1,2}\right) e_{2},
$$

we can assume that $\gamma_{1,1}=\gamma_{1,2}=\gamma_{2,1}=\gamma_{2,2}=\gamma_{3,3}=0$.

- If $e_{3} \in \operatorname{Ann}_{r}(L)$, then $\beta_{3,3}=0$, and taking the base change $x_{2}=x_{2}-\gamma_{4,3} e_{3}$ we obtain the algebra $Q_{1}(\mu)$.
- If $e_{3} \notin A n n_{r}(L)$ then $\beta_{3,3}=-1, \gamma_{4,3}=0$ and we obtain $Q_{2}(\mu)$.

Case 3.2. Let $e_{1} \notin A n n_{r}(L)$, then

$$
\begin{array}{ccc}
\alpha_{1,1}=\alpha_{2,1}=-1, & \beta_{1,2}=-\mu, & \gamma_{1,1}=\gamma_{1,2}=\gamma_{4,2}=0 \\
\gamma_{3,1}=-\gamma_{2,1}, & \gamma_{3,2}=-\gamma_{2,2}, & \gamma_{2,3}=\gamma_{3,3} \beta_{3,3}
\end{array}
$$

The base change

$$
x_{1}^{\prime}=x_{1}-\gamma_{3,3} e_{3}, \quad x_{2}^{\prime}=x_{2}-\gamma_{2,1} e_{1}-\left(\gamma_{2,2}-\gamma_{2,1}\right) e_{1},
$$

gives

$$
\gamma_{2,1}=\gamma_{2,2}=\gamma_{3,3}=0
$$

- If $e_{3} \notin A n n_{r}(L)$, then $\beta_{3,3}=0$, and taking the base change $x_{2}=x_{2}-\gamma_{4,3} e_{3}$ we obtain $Q_{3}(\mu)$.
- But if $e_{3} \in \operatorname{Ann}_{r}(L)$ then $\beta_{3,3}=-1, \gamma_{4,3}=0$ and we obtain $Q_{4}(\mu)$.

Remark 3.7. Impossibility of an isomorphism between elements of the classes

- $M_{1}\left(\mu_{1}, \mu_{2}\right)$ except for $M_{1}\left(\mu_{1}, \mu_{2}\right) \cong M_{1}\left(\mu_{2}, \mu_{1}\right) \cong M_{1}\left(\frac{1}{\mu_{1}},-\frac{\mu_{2}}{\mu_{1}}\right)$,
- $M_{2}\left(\mu_{1}, \mu_{2}\right)$ except for $M_{2}\left(\mu_{1}, \mu_{2}\right) \cong M_{2}\left(\mu_{2}, \mu_{1}\right)$,
- $M_{5}\left(\mu_{1}, \mu_{2}\right)$ except for $M_{5}\left(\mu_{1}, \mu_{2}\right) \cong M_{5}\left(\mu_{2}, \mu_{1}\right)$,
- $M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ except for $M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \cong M_{6}\left(\lambda_{4}, \lambda_{3}, \lambda_{2}, \lambda_{1}\right)$,
- $M_{8}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ except for $M_{8}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \cong M_{8}\left(\lambda_{4}, \lambda_{3}, \lambda_{2}, \lambda_{1}\right)$
can be proven by taking general base change in each case. This is a long and rather technical work. We decided not to include these routine examinations in the paper. They are available from the authors.

Remark 3.8. Due to Proposition 3.5 we conclude that any two algebras from different classes M_{i}, P_{i} and Q_{i} are not isomorphic. Pairwise nonisomorphness of any two algebras from the same classes can be easily seen by comparing the isomorphism invariants which are presented below.

L	$\operatorname{dim} A n n_{r}(L)$	$\operatorname{dim} L^{2}$	$\operatorname{dim} L^{3}$	$\operatorname{dim} A n n_{l}(L)$	$\operatorname{dim} \operatorname{Lie}(L)$
$M_{1}\left(\mu_{1}, \mu_{2}\right)$	0				
$M_{2}(0,0)$	1	2			
$M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$	1	3	2		
$M_{3}(\mu)$	1	3	3	1	
M_{10}	1	3	3	0	3
$M_{2}\left(\mu_{1}, \mu_{2}\right),\left(\mu_{1}, \mu_{2}\right) \neq(0,0)$	1	3	3	0	4
$M_{4}(0,0)$	2	2			
$M_{7}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$	2	3	2		
M_{9}	2	3	3	0	
$M_{4}\left(\mu_{1}, \mu_{2}\right),\left(\mu_{1}, \mu_{2}\right) \neq(0,0)$	2	3	3	1	
$M_{5}(0,0)$	3	2			
$M_{8}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$	3	3	2		
$M_{5}\left(\mu_{1}, \mu_{2}\right),\left(\mu_{1}, \mu_{2}\right) \neq(0,0)$	3	3	3		

L	P_{1}	P_{2}	P_{3}	P_{4}
$\operatorname{dim} \operatorname{Ann}_{r}(L)$	3	2	1	0
L	$Q_{1}(\mu)$	$Q_{2}(\mu)$	$Q_{3}(\mu)$	$Q_{4}(\mu)$
$\operatorname{dim} A n n_{r}(L)$	3	2	1	0

The list of isomorphism classes of 5 -dimensional solvable complex Leibniz algebras with 3 -dimensional nilradical.

Representative	Table of multiplication
H	$\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{3}, \quad\left[e_{2}, e_{1}\right]=-e_{3}, \quad\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{3}, x_{1}\right]=e_{3}, \quad\left[x_{1}, e_{1}\right]=-e_{1},} \\ & {\left[x_{1}, e_{3}\right]=-e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2}, \quad\left[e_{3}, x_{2}\right]=e_{3}, \quad\left[x_{2}, e_{2}\right]=-e_{2}, \quad\left[x_{2}, e_{3}\right]=-e_{3} .} \end{aligned}$
L_{1}	$\begin{aligned} & {\left[e_{2}, e_{1}\right]=e_{3}, \quad\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{2}, x_{2}\right]=e_{2},} \\ & {\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[e_{3}, x_{1}\right]=e_{3},\left[e_{3}, x_{2}\right]=e_{3} .} \end{aligned}$
L_{2}	$\left[e_{1}, e_{1}\right]=e_{3}, \quad\left[e_{1}, x_{1}\right]=e_{1},\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[e_{3}, x_{1}\right]=2 e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2}$.
L_{3}	$\begin{aligned} & {\left[e_{1}, e_{1}\right]=e_{3}, \quad\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[x_{1}, e_{1}\right]=-e_{1}} \\ & {\left[e_{3}, x_{1}\right]=2 e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2},\left[x_{2}, e_{2}\right]=-e_{2}} \end{aligned}$
$\begin{aligned} & M_{1}\left(\mu_{1}, \mu_{2}\right) \\ & \mu_{1} \neq 0 \end{aligned}$	$\begin{array}{ll} {\left[e_{1}, x_{1}\right]=e_{1},} & {\left[e_{3}, x_{1}\right]=\mu_{1} e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2}, \quad\left[e_{3}, x_{2}\right]=\mu_{2} e_{3},} \\ {\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[x_{1}, e_{3}\right]=-\mu_{1} e_{3}, \quad\left[x_{2}, e_{2}\right]=-e_{2},} & {\left[x_{2}, e_{3}\right]=-\mu_{2} e_{3} .} \end{array}$
$M_{2}\left(\mu_{1}, \mu_{2}\right)$	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{3}, x_{1}\right]=\mu_{1} e_{3}, \quad\left[e_{2}, x_{2}\right]=e_{2},} \\ & {\left[e_{3}, x_{2}\right]=\mu_{2} e_{3}, \quad\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[x_{2}, e_{2}\right]=-e_{2} .} \end{aligned}$
$\begin{aligned} & M_{3}(\mu) \\ & \mu \neq 0 \end{aligned}$	$\left[e_{1}, x_{1}\right]=e_{1},\left[e_{2}, x_{2}\right]=e_{2},\left[e_{3}, x_{2}\right]=\mu e_{3},\left[x_{2}, e_{2}\right]=-e_{2},\left[x_{2}, e_{3}\right]=-\mu e_{3}$.
$M_{4}\left(\mu_{1}, \mu_{2}\right)$	$\left[e_{1}, x_{1}\right]=e_{1},\left[e_{3}, x_{1}\right]=\mu_{1} e_{3},\left[e_{2}, x_{2}\right]=e_{2},\left[e_{3}, x_{2}\right]=\mu_{2} e_{3},\left[x_{2}, e_{2}\right]=-e_{2}$.
$M_{5}\left(\mu_{1}, \mu_{2}\right)$	$\left[e_{1}, x_{1}\right]=e_{1},\left[e_{3}, x_{1}\right]=\mu_{1} e_{3},\left[e_{2}, x_{2}\right]=e_{2},\left[e_{3}, x_{2}\right]=\mu_{2} e_{3}$.
$\begin{aligned} & M_{6}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \\ & \left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \\ & \quad \neq(0,0,0,0) \end{aligned}$	
$\begin{aligned} & M_{7}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \\ & \left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \\ & \quad \neq(0,0,0,0) \end{aligned}$	
$M_{8}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$	$\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{2}, x_{2}\right]=e_{2}, \quad\left[x_{1}, x_{1}\right]=\lambda_{1} e_{3},$
$\begin{aligned} & \left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \\ & \quad \neq(0,0,0,0) \end{aligned}$	$\left[x_{2}, x_{1}\right]=\lambda_{2} e_{3},\left[x_{1}, x_{2}\right]=\lambda_{3} e_{3},\left[x_{2}, x_{2}\right]=\lambda_{4} e_{3}$.
M_{9}	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{2}, x_{2}\right]=e_{2}, \quad\left[e_{3}, x_{1}\right]=e_{3},} \\ & {\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[x_{2}, e_{1}\right]=-e_{3} .} \end{aligned}$
M_{10}	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{3}, x_{1}\right]=e_{3}, \quad\left[x_{1}, e_{1}\right]=-e_{1},} \\ & {\left[x_{2}, e_{1}\right]=e_{3},\left[e_{2}, x_{2}\right]=e_{2},\left[x_{2}, e_{2}\right]=-e_{2} .} \end{aligned}$

Representative	Table of multiplication
P_{1}	$\left[e_{1}, x_{1}\right]=e_{1},\left[e_{2}, x_{1}\right]=e_{2},\left[e_{1}, x_{2}\right]=e_{2},\left[e_{3}, x_{2}\right]=e_{3}$.
P_{2}	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{2}, x_{1}\right]=e_{2}, \quad\left[e_{1}, x_{2}\right]=e_{2},} \\ & {\left[e_{3}, x_{2}\right]=e_{3},\left[x_{2}, e_{3}\right]=-e_{3} .} \end{aligned}$
P_{3}	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{2}, x_{1}\right]=e_{3}, \quad\left[e_{1}, x_{2}\right]=e_{2}, \quad\left[e_{3}, x_{2}\right]=e_{3},} \\ & {\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[x_{1}, e_{2}\right]=-e_{2},\left[x_{2}, e_{1}\right]=-e_{2} .} \end{aligned}$
P_{4}	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}, \quad\left[e_{2}, x_{1}\right]=e_{2}, \quad\left[e_{1}, x_{2}\right]=e_{2}, \quad\left[e_{3}, x_{2}\right]=e_{3},} \\ & {\left[x_{1}, e_{1}\right]=-e_{1}, \quad\left[x_{1}, e_{2}\right]=-e_{2}, \quad\left[x_{2}, e_{1}\right]=-e_{2}, \quad\left[x_{2}, e_{3}\right]=-e_{3} .} \end{aligned}$
$Q_{1}(\mu)$	$\left[e_{1}, x_{1}\right]=e_{1}+e_{2},\left[e_{2}, x_{1}\right]=e_{2},\left[e_{1}, x_{2}\right]=\mu e_{2},\left[e_{3}, x_{2}\right]=e_{3}$.
$Q_{2}(\mu)$	$\begin{array}{ll} {\left[e_{1}, x_{1}\right]=e_{1}+e_{2},} & {\left[e_{2}, x_{1}\right]=e_{2},} \\ {\left[e_{3}, x_{2}\right]=e_{3},} & {\left[e_{1}, x_{2}\right]=\mu e_{2},} \\ {\left[x_{2}, e_{3}\right]=-e_{3} .} \end{array}$
$Q_{3}(\mu)$	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}+e_{2}, \quad\left[e_{2}, x_{1}\right]=e_{2}, \quad\left[e_{1}, x_{2}\right]=\mu e_{2}, \quad\left[e_{3}, x_{2}\right]=e_{3},} \\ & {\left[x_{1}, e_{1}\right]=-e_{1}-e_{2}, \quad\left[x_{1}, e_{2}\right]=-e_{2}, \quad\left[x_{2}, e_{1}\right]=-\mu e_{2} .} \end{aligned}$
$Q_{4}(\mu)$	$\begin{aligned} & {\left[e_{1}, x_{1}\right]=e_{1}+e_{2}, \quad\left[e_{2}, x_{1}\right]=e_{2}, \quad\left[e_{1}, x_{2}\right]=\mu e_{2}, \quad\left[e_{3}, x_{2}\right]=e_{3},} \\ & {\left[x_{1}, e_{1}\right]=-e_{1}-e_{2}, \quad\left[x_{1}, e_{2}\right]=-e_{2}, \quad\left[x_{2}, e_{1}\right]=-\mu e_{2}, \quad\left[x_{2}, e_{3}\right]=-e_{3} .} \end{aligned}$

4. Conclusion

Combining the results of [12] and the present paper we conclude that there are 12 parametric families and 10 concrete nonisomorphic solvable Leibniz algebra structures with three-dimensional nilradicals on 5 -dimensional complex vector space.

Acknowledgements

The first named author would like to gratefully acknowledge the hospitality of the Institute for Mathematical Research, UPM (Malaysia). The authors are very grateful to the reviewer for his/her valuable comments and suggestions which helped to improve the presentation.

References

[1] S. Albeverio, B.A. Omirov, I.S. Rakhimov, Varieties of nilpotent complex Leibniz algebras of dimensions less then five, Comm. Algebra 33 (5) (2005) 1575-1585.
[2] J.M. Ancochea Bermúdez, R. Campoamor-Stursberg, L. García Vergnolle, Classification of Lie algebras with naturally graded quasi-filiform nilradicals, J. Geom. Phys. 61 (2011) 2168-2186.
[3] D.W. Barnes, On Levi's theorem for Leibniz algebras, Bull. Aust. Math. Soc. 86 (2) (2012) 184-185.
[4] A. Blokh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165 (1965) 471-473.
[5] E.M. Cañete, A.Kh. Khudoyberdiyev, The classification of 4-dimensional Leibniz algebras, Linear Algebra Appl. 439 (1) (2013) 273-288.
[6] R. Campoamor-Stursberg, Solvable Lie algebras with an \mathbb{N}-graded nilradical of maximum nilpotency degree and their invariants, J. Phys. A 43 (14) (2010) 145202, 18 pp.
[7] J.M. Casas, M.A. Insua, M. Ladra, S. Ladra, An algorithm for the classification of 3-dimensional complex Leibniz algebras, Linear Algebra Appl. 436 (2012) 3747-3756.
[8] J.M. Casas, M. Ladra, B.A. Omirov, I.A. Karimjanov, Classification of solvable Leibniz algebras with null-filiform nilradical, Linear Multilinear Algebra 61 (6) (2013) 758-774.
[9] J.M. Casas, M. Ladra, B.A. Omirov, I.A. Karimjanov, Classification of solvable Leibniz algebras with naturally graded filiform nil-radical, Linear Algebra Appl. 438 (7) (2013) 2973-3000.
[10] A. Fialowski, A.Kh. Khudoyberdiyev, B.A. Omirov, A characterization of nilpotent Leibniz algebras, Algebr. Represent. Theory 16 (5) (2013) 1489-1505.
[11] A.Kh. Khudoyberdiyev, M. Ladra, B.A. Omirov, On solvable Leibniz algebras whose nilradical is a direct sum of null-filiform algebras, Linear Multilinear Algebra (2013), http://dx.doi.org/10.1080/ 03081087.2013.816305.
[12] Lindsey Bosko-Dunbar, Jonathan D. Dunbar, J.T. Hird, Kristen Stagg, Solvable Leibniz algebras with Heisenberg nilradical, arXiv:1307.8447 [Math], 2013, 14 pp.
[13] J.L. Loday, Une version non commutative des algébres de Lie: les algébres de Leibniz, Enseign. Math. 39 (1993) 269-293.
[14] G.M. Mubarakzjanov, On solvable Lie algebras, Izv. Vyssh. Uchebn. Zaved. Mat. (1963) 114-123 (in Russian).
[15] J.C. Ndogmo, P. Winternitz, Solvable Lie algebras with abelian nilradicals, J. Phys. A 27 (1994) 405-423.
[16] I.S. Rakhimov, U.D. Bekbaev, On isomorphism classes and invariants of finite dimensional complex filiform Leibniz algebras, Comm. Algebra 38 (12) (2010) 4705-4738.
[17] I.S. Rakhimov, S.K. Said Husain, On isomorphism classes and invariants of low dimensional complex filiform Leibniz algebras, Linear Multilinear Algebra 59 (2) (2011) 205-220.
[18] I.S. Rakhimov, S.K. Said Husain, Classification of a subclass of nilpotent Leibniz algebras, Linear Multilinear Algebra 59 (3) (2011) 339-354.
[19] L. Šnobl, P. Winternitz, A class of solvable Lie algebras and their Casimir invariants, J. Phys. A 38 (2005) 2687-2700.
[20] Y. Wang, J. Lin, S. Deng, Solvable Lie algebras with quasifiliform nilradicals, Comm. Algebra 36 (11) (2008) 4052-4067.

[^0]: * Corresponding author.

 E-mail addresses: khabror@mail.ru (A.Kh. Khudoyberdiyev), risamiddin@gmail.com (I.S. Rakhimov), skartini@science.upm.edu.my (Sh.K. Said Husain).

