
Linear Algebra and its Applications 457 (2014) 428–454
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

On classification of 5-dimensional solvable Leibniz 

algebras

A.Kh. Khudoyberdiyev a, I.S. Rakhimov b,∗, Sh.K. Said Husain b

a Institute of Mathematics, Do’rmon yo’li str. 29, 100125, Tashkent, Uzbekistan
b Institute for Mathematical Research (INSPEM), Department of Mathematics, 
FS, Universiti Putra Malaysia, Malaysia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2013
Accepted 20 May 2014
Available online 21 June 2014
Submitted by P. Semrl

MSC:
17A32
17A36
17A60
17A65
17B30

Keywords:
Leibniz algebra
Solvability
Nilpotency
Nilradical
Derivation

In the paper we describe 5-dimensional solvable Leibniz alge-
bras with three-dimensional nilradical. Since those 5-dimen-
sional solvable Leibniz algebras whose nilradical is three-
dimensional Heisenberg algebra have been classified before 
we focus on the rest cases. The result of the paper together 
with Heisenberg nilradical case gives complete classification 
of all 5-dimensional solvable Leibniz algebras with three-
dimensional nilradical.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: khabror@mail.ru (A.Kh. Khudoyberdiyev), risamiddin@gmail.com (I.S. Rakhimov), 

skartini@science.upm.edu.my (Sh.K. Said Husain).
http://dx.doi.org/10.1016/j.laa.2014.05.034
0024-3795/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2014.05.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:khabror@mail.ru
mailto:risamiddin@gmail.com
mailto:skartini@science.upm.edu.my
http://dx.doi.org/10.1016/j.laa.2014.05.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2014.05.034&domain=pdf


A.Kh. Khudoyberdiyev et al. / Linear Algebra and its Applications 457 (2014) 428–454 429
1. Introduction

According to the structural theory of Lie algebras a finite-dimensional Lie algebra is 
written as a semidirect sum of its semisimple subalgebra and the solvable radical (Levi’s 
theorem). The semisimple part is a direct sum of simple Lie algebras which were com-
pletely classified in the fifties of the last century. At the same period the essential progress 
has been made in the solvable part by Mal’cev reducing the problem of classification of 
solvable Lie algebras to that of nilpotent Lie algebras. Since then all the classification 
results have been related to the nilpotent part.

Leibniz algebras, a “noncommutative version” of Lie algebras, were first introduced 
in the mid-1960’s by Blokh [4] under the name of D-algebras. They came in again in the 
1990’s after Loday’s work [13], where he introduced calling them Leibniz algebras. During 
the last 20 years the theory of Leibniz algebras has been actively studied and many results 
on Lie algebras have been extended to Leibniz algebras (see, e.g. [10,16–18]). Particularly, 
in 2011 the analogue of Levi’s theorem has been proven by D. Barnes [3]. He showed that 
any finite-dimensional complex Leibniz algebra is decomposed into a semidirect sum of 
the solvable radical and a semisimple Lie algebra. As above, the semisimple part can 
be composed by simple Lie algebras and the main issue in the classification problem of 
finite-dimensional complex Leibniz algebras is to study the solvable part. Therefore the 
classification of solvable Leibniz algebras is important to construct finite-dimensional 
Leibniz algebras.

Owing to a result of [14], a new approach for studying the solvable Lie algebras by 
using their nilradicals was developed [2,6,15,19,20], etc. The analogue of Mubarakzjanov’s 
[14] results has been applied for Leibniz algebras case in [8] which shows the importance 
of the consideration of their nilradicals in Leibniz algebras case as well. The papers [5,
8,9,11] are also devoted to the study of solvable Leibniz algebras by considering their 
nilradicals.

The classification, up to isomorphism, of any class of algebras is a fundamental and 
a very difficult problem. It is one of the first problems that one encounters when trying 
to understand the structure of a member of this class of algebras. Due to results of [5,7]
there are complete lists of isomorphism classes of complex Leibniz algebras in dimensions 
less then five.

The focus of the present paper is on classification of Leibniz algebras in dimension 
five. Since the description of the whole of isomorphism classes in 5-dimensional Leib-
niz algebras seems to be hard we deal with the study of 5-dimensional solvable Leibniz 
algebras with three-dimensional nilradical. It should be noted that the description of 
solvable Leibniz algebras with three-dimensional Heisenberg nilradical has been given 
in [12]. Moreover, it was shown that a 5-dimensional solvable Leibniz algebra with three-
dimensional Heisenberg nilradical is a Lie algebra. Therefore, in this paper we don’t 
consider this case.
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Throughout the paper all the algebras (vector spaces) considered are finite-dimensional 
and over the field of complex numbers. Also in tables of multiplications of algebras we 
give nontrivial products only.

2. Preliminaries

This section is devoted to recalling some basic notions and concepts used throughout
the paper.

Definition 2.1. A vector space with bilinear bracket (L, [·, ·]) is called a Leibniz algebra 
if for any x, y, z ∈ L the so-called Leibniz identity

[
x, [y, z]

]
=

[
[x, y], z

]
−
[
[x, z], y

]
,

holds.

Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, 
there exists the version corresponding to the left Leibniz identity,

[
[x, y], z

]
=

[
x, [y, z]

]
−

[
y, [x, z]

]
.

The sets Annr(L) = {x ∈ L : [y, x] = 0, ∀y ∈ L} and Annl(L) = {x ∈ L : [x, y] =
0, ∀y ∈ L} are called the right and left annihilators of L, respectively. It is observed that 
for any x, y ∈ L the elements [x, x] and [x, y] + [y, x] are always in Annr(L), and that is 
Annr(L) is a two-sided ideal of L.

The set C(L) = {z ∈ L : [x, z] = [z, x] = 0, ∀x ∈ L} is called the Center of L.
For a given Leibniz algebra (L, [·, ·]) the sequences of two-sided ideals defined recur-

sively as follows:

L1 = L, Lk+1 =
[
Lk, L

]
, k ≥ 1, L[1] = L, L[s+1] =

[
L[s], L[s]], s ≥ 1

are said to be the lower central and the derived series of L, respectively.

Definition 2.2. A Leibniz algebra L is said to be nilpotent (respectively, solvable), if there 
exists n ∈ N (m ∈ N) such that Ln = 0 (respectively, L[m] = 0). The minimal number n
(respectively, m) with such property is said to be the index of nilpotency (respectively, 
solvability) of the algebra L.

Evidently, the index of nilpotency of an n-dimensional Leibniz algebra is not greater 
than n + 1.

Definition 2.3. An ideal of a Leibniz algebra is called nilpotent if it is nilpotent as 
subalgebra.
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It is easy to see that the sum of any two nilpotent ideals is nilpotent. Therefore the 
maximal nilpotent ideal always exists.

Definition 2.4. The maximal nilpotent ideal of a Leibniz algebra is said to be a nilradical 
of the algebra.

Definition 2.5. A linear map d: L → L of a Leibniz algebra (L, [·, ·]) is said to be a 
derivation if for all x, y ∈ L, the following condition holds:

d
(
[x, y]

)
=

[
d(x), y

]
+

[
x, d(y)

]
.

The set of all derivations of L is denoted by Der(L). The Der(L) is a Lie algebra with 
respect to the commutator.

For a given element x of a Leibniz algebra L, the right multiplication operator 
Rx: L → L, defined by Rx(y) = [y, x], y ∈ L is a derivation. In fact, a Leibniz algebra is 
characterized by this property of the right multiplication operators (remind that the left 
Leibniz algebras are characterized the same property of the left multiplication operators). 
As in Lie case these kinds of derivations are said to be inner derivations. Let the set of 
all inner derivations of a Leibniz algebra L denote by R(L), i.e. R(L) = {Rx | x ∈ L}. 
The set R(L) inherits the Lie algebra structure from Der(L):

[Rx, Ry] = Rx ◦Ry −Ry ◦Rx = R[y,x].

Here is the definition of nil-independency imitated from Lie case (see [14]).

Definition 2.6. Let d1, d2, . . . , dn be derivations of a Leibniz algebra L. The derivations 
d1, d2, . . . , dn are said to be a linearly nil-independent if for α1, α2, . . . , αn ∈ C and a 
natural number k

(α1d1 + α2d2 + · · · + αndn)k = 0 implies α1 = α2 = · · · = αn = 0.

Note that in the definition above the power is understood with respect to the compo-
sition.

Let L be a solvable Leibniz algebra. Then it can be written in the form L = N + Q, 
where N is the nilradical and Q is the complementary subspace. The following is a result 
from [8] on the dimension of Q which we make use in the paper.

Theorem 2.7. Let L be a solvable Leibniz algebra and N be its nilradical. Then the 
dimension of Q is not greater than the maximal number of nil-independent derivations 
of N .

In this paper we classify the class of 5-dimensional solvable Leibniz algebras with 
3-dimensional nilradical. To do this we need to know their nilradicals and the maximal 
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number of linearly nil-independent derivations of the nilradicals. Below we present the 
list of all the three dimensional nilpotent Leibniz algebras from [1].

Theorem 2.8. Let L be a 3-dimensional nilpotent Leibniz algebra. Then L is isomorphic 
to one of the following pairwise nonisomorphic algebras:

λ1: [e1, e1] = e2, [e2, e1] = e3,

λ2(α): [e2, e1] = e3, [e1, e2] = αe3, α �= α−1,

λ3: [e1, e1] = e3, [e2, e1] = e3, [e1, e2] = −e3,

λ4: [e1, e2] = e3, [e2, e1] = −e3,

λ5: [e1, e1] = e3,

λ6: abelian.

Note that the list of isomorphism classes of all three-dimensional Leibniz algebras has 
been given in [7]. For some conveniences we change the bases of the algebras λ2(α) and 
λ3, therefore their tables of multiplications are a slightly different those are in [1] and [7].

We declare the following subsidiary result. The proof can be given by direct compu-
tations.

Proposition 2.9. The matrix forms of the derivations of λ1, λ2(α), λ3, λ4, λ5 and λ6 are 
represented as follows

Der(λ1) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a1 a2 a3

0 2a1 a2
0 0 3a1

⎞
⎟⎠∣∣∣ai ∈ C

⎫⎪⎬
⎪⎭ ,

Der
(
λ2(α)

)
=

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a1 0 a3

0 b2 b3
0 0 a1 + b2

⎞
⎟⎠∣∣∣ai, bj ∈ C

⎫⎪⎬
⎪⎭ ,

Der(λ3) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a1 a2 a3

0 2a1 b3
0 0 3a1

⎞
⎟⎠∣∣∣ai, bj ∈ C

⎫⎪⎬
⎪⎭ ,

Der(λ4) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a1 a2 a3

b1 b2 b3
0 0 a1 + b2

⎞
⎟⎠∣∣∣ai, bj ∈ C

⎫⎪⎬
⎪⎭ ,

Der(λ5) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a1 a2 a3

0 b2 b3
0 0 2a

⎞
⎟⎠∣∣∣ai, bj ∈ C

⎫⎪⎬
⎪⎭ ,
1
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Der(λ6) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a1 a2 a3

b1 b2 b3
c1 c2 c3

⎞
⎟⎠∣∣∣ai, bj , ck ∈ C

⎫⎪⎬
⎪⎭ .

It is observed that due to Proposition 2.9 the number of maximal linearly nil-
independent derivations of the algebras λ1 and λ3 equals one, the algebra λ4 is Heisenberg 
algebra and the number of maximal linearly nil-independent derivations of the algebras 
λ2(α), λ5, λ6 is two.

3. Main result

In this section we give the list of isomorphism classes of those five-dimensional solvable 
Leibniz algebras with three-dimensional nilradical which is not Heisenberg’s algebra, the 
latter case, i.e., for five-dimensional solvable Leibniz algebras with three-dimensional 
Heisenberg’s nilradical, the result is known from [12]. So we deal with the classification 
of 5-dimensional solvable Leibniz algebras with the 3-dimensional nilradical having at 
least two nil-independent derivations. These are the algebras λ2(α), λ5 and λ6 from the 
list above. Therefore, it remains to describe 5-dimensional solvable Leibniz algebras with 
these nilradicals cases one by one.

Note that in constructing the multiplication tables we simplify them applying base 
changes. To simplify notations after each of this kind changes we keep writing vectors in 
the tables without “prime” although the basis vectors should be written with “primes”. 
To describe five-dimensional solvable Leibniz algebras with nilradical N which is one of 
λ2(α), λ5 and λ6 first we extend the basis {e1, e2, e3} of N to a basis {e1, e2, e3, x1, x2}
of five-dimensional space and keep track the products of basis vectors under the base 
changes.

Under this circumstances one has

Lemma 3.1. The restrictions of the right multiplication operators Rx1 and Rx2 to N are 
nil-independent derivations.

Proof. Let us assume that there exists k such that (α1Rx1 +α2Rx2)k = Rk
α1x1+α2x2

= 0. 
Consider y = α1x1 + α2x2, and the subspace K spanned by {e1, e2, e3, y}. Since L is 
solvable the derived subalgebra L2 is nilpotent, i.e., L2 ⊆ N . Therefore, K is an ideal 
of L. Moreover, the operators Re1 , Re2 , Re3 also are nilpotent on K. Hence, due to 
Engel’s Theorem K is nilpotent. But K contains N which contradicts to the maxi-
mality of N . This means α1 = 0, α2 = 0 which shows that Rx1 and Rx2 are linearly 
nil-independent. �
3.1. Nonabelian nilradical case

We start with N = λ2(0).
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Proposition 3.2. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is 
isomorphic to λ2(0). Then there exists a basis {e1, e2, e3, x1, x2} such that the L on this 
basis is represented by the table of multiplication as follows:

[e2, e1] = e3, [e1, x1] = e1, [e2, x2] = e2,

[x1, e1] = −e1, [e3, x1] = e3, [e3, x2] = e3.

Proof. The required basis of L is constructed as follows. First we choose a basis 
{e1, e2, e3, x1, x2} of L such that {e1, e2, e3} is a basis of λ2(0) chosen in Theorem 2.8. 
By using the fact that the nilradical of L is λ2(0) we define the products of the basis 
vectors. Since the nilradical of the algebra L is three-dimensional, the restriction of the 
right multiplication operators Rx1 and Rx2 to λ2(0) are nil-independent derivations of 
λ2(0) (see Lemma 3.1). Then owing to Proposition 2.9 we have a part of the table of 
multiplication of L on this basis as follows

[e2, e1] = e3,

[e1, x1] = a1e1 + a2e3, [e2, x1] = a3e2 + a4e3, [e3, x1] = (a1 + a3)e3,

[e1, x2] = b1e1 + b2e3, [e2, x2] = b3e2 + b4e3, [e3, x2] = (b1 + b3)e3,

where a1b3 − a3b1 �= 0, since Rx1 and Rx2 are linearly nil-independent.
The base change

x′
1 = b3

a1b3 − a3b1
x1 −

a3

a1b3 − a3b1
x2, x′

2 = − b1
a1b3 − a3b1

x1 + a1

a1b3 − a3b1
x2,

brings the table to

[e2, e1] = e3,

[e1, x1] = e1 + a2e3, [e2, x1] = a4e3, [e3, x1] = e3,

[e1, x2] = b2e3, [e2, x2] = e2 + b4e3, [e3, x2] = e3.

Here we can suppose that b2 = a4 = b4 = 0 since the base change

e′1 = e1 − b2e3, e′2 = e2 − a4e3, x′
2 = x2 − b4e1

yields the result.
Note that these changes don’t effect the other products in the table.
Let us to form the other products. First of all taking into account the fact that 

e1 /∈ Annr(L) and applying the properties

[x, x] ∈ Annr(L) and [x, y] + [y, x] ∈ Annr(L)

of the right annihilator we can write:
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[x1, e1] = −e1 + α2e2 + α3e3, [x1, e2] = α4e2 + α5e3, [x1, e3] = 0,
[x2, e1] = β2e2 + β3e3, [x2, e2] = β4e2 + β5e3, [x2, e3] = 0,
[x1, x1] = γ1e2 + γ2e3, [x2, x2] = γ3e2 + γ4e3,

[x2, x1] = δe1 + γ5e2 + γ6e3, [x1, x2] = −δe1 + γ7e2 + γ8e3.

Indeed, the coefficient −1 of e1 in the expansion of [x1, e1] is derived as follows: let 
[x1, e1] = α1e1 + α2e2 + α3e3 be the expansion of [x1, e1]. Then

[x1, e1] + [e1, x1] = (1 + α1)e1 + (a2 + α2)e2 + α3e3 ∈ Annr(L),

i.e.,
[
L, (1 + α1)e1 + (a2 + α2)e2 + α3e3

]
= 0.

Particularly, [e2, (1 + α1)e1 + (a2 + α2)e2 + α3e3] = (1 + α1)e3 = 0. This gives α1 = −1.
The coefficient of e1 in the expansion of [x2, e1], [x1, e2], [x2, e2], [x1, x1] and [x2, x2]

to be zero also can be easily derived by the same manner.
The products [x1, e3] = 0 and [x2, e3] = 0 are obtained from the fact that [e1, e2] +

[e2, e1] = e3, i.e., e3 ∈ Annr(L).
Now we simplify this table by using the Leibniz identity.
Applying the Leibniz identity to the triples e1, x2, x1 and e2, x2, x1 as follows

0 =
[
e1, [x2, x1]

]
=

[
[e1, x2], x1

]
−

[
[e1, x1], x2

]
= −[e1 + a2e3, x2] = −a2e3,

δe3 =
[
e2, [x2, x1]

]
=

[
[e2, x2], x1

]
−
[
[e2, x1], x2

]
= [e2, x1] = 0,

we get

a2 = 0, δ = 0.

The identities

[
x1, [e1, x1]

]
=

[
[x1, e1], x1

]
−

[
[x1, x1], e1

]
= [−e1 + α2e2 + α3e3, x1] − [γ1e2 + γ2e3, e1]

= −e1 + (α3 − γ1)e3,[
x1, [e1, x1]

]
= [x1, e1] = −e1 + α2e2 + α3e3

give

α2 = γ1 = 0.

Similarly applying the Leibniz identity to [x1, [x1, e2]]; [x2, [e1, x1]]; [x2, [e1, x1]]; 
[x2, [e2, x1]]; [x2, [e2, e1]]; [x1, [e1, x2]]; [x2, [e1, x2]]; [x1, [x2, x1]] and [x2, [x2, x1]] we get 
α4 = α5 = 0; β2 = γ5 = 0; β4 = 0; β5 = 0; α3 = γ7; β3 = γ3; γ8 = γ2 and γ6 = γ4, 
respectively.
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Finally we change the basis as follows

x′
1 = x1 − γ7e2 − γ2e3, x′

2 = x2 − γ3e2 − γ4e3,

to obtain the required table of multiplication. �
The 5-dimensional solvable Leibniz algebra from Proposition 3.2 we denote by L1.
Next we prove the following

Proposition 3.3. There is no a five-dimensional solvable Leibniz algebra with three-
dimensional nilradical λ2(α) with α �= 0.

Proof. Let us assume the contrary and L be a 5-dimensional Leibniz algebra with nilrad-
ical λ2(α), α �= 0. We choose a basis {e1, e2, e3, x1, x2} of L such a way that {e1, e2, e3}
is a basis of λ2(α) chosen in Theorem 2.8. According to Lemma 3.1 the restriction of 
the right multiplication operators Rx1 and Rx2 to λ2(α) are linearly nil-independent 
derivations of λ2(α). Then using Proposition 2.9 we get

[e2, e1] = e3, [e1, e2] = αe3,

[e1, x1] = a1e1 + a2e3, [e2, x1] = a3e2 + a4e3, [e3, x1] = (a1 + a3)e3,

[e1, x2] = b1e1 + b2e3, [e2, x2] = b3e2 + b4e3, [e3, x2] = (b1 + b3)e3,

where a1b3 − a3b1 �= 0, since Rx1 and Rx2 are linearly nil-independent.
Taking the change

x′
1 = b3

a1b3 − a3b1
x1 −

a3

a1b3 − a3b1
x2, x′

2 = − b1
a1b3 − a3b1

x1 + a1

a1b3 − a3b1
x2,

we obtain

[e2, e1] = e3, [e1, e2] = αe3,

[e1, x1] = e1 + a2e2, [e2, x1] = a4e3, [e3, x1] = e3,

[e1, x2] = b2e3, [e2, x2] = e2 + b4e3, [e3, x2] = e3.

Since α �= 0, then it is easy to see that the right annihilator of L consists of only {e3}. 
Therefore,

[x1, e1] = −e1 + α2e2, [x1, e2] = α4e3,

[x2, e1] = β2e3, [x2, e2] = −e2 + β4e3.

Then considering the Leibniz identity

0 =
[
x1, [e1, e2]

]
=

[
[x1, e1], e2

]
−

[
[x1, e2], e1

]
= [−e1 + α2e3, e2] − [α4e3, e2] = −αe3,

we get a contradiction. �
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Proposition 3.4. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is 
isomorphic to λ5. Then L is isomorphic to one of the following two nonisomorphic
algebras:

L2:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[e1, e1] = e3,

[e1, x1] = e1,

[x1, e1] = −e1,

[e3, x1] = 2e3,

[e2, x2] = e2,

L3:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[e1, e1] = e3,

[e1, x1] = e1,

[x1, e1] = −e1,

[e3, x1] = 2e3,

[e2, x2] = e2,

[x2, e2] = −e2.

Proof. Let L be a 5-dimensional Leibniz algebra with nilradical λ5. Similar to those of 
previous propositions we take a basis {e1, e2, e3, x1, x2} of L as an extension of the basis 
{e1, e2, e3} of λ2 chosen in Theorem 2.8. Taking into account Lemma 3.1 and applying 
Proposition 2.9 for N = λ5 case we get

[e1, e1] = e3,

[e1, x1] = a1e1 + a2e2 + a3e3, [e2, x1] = a4e2 + a5e3, [e3, x1] = 2a1e3,

[e1, x2] = b1e1 + b2e2 + b3e3, [e2, x2] = b4e2 + b5e3, [e3, x2] = 2b1e3,

where a1b4 − a4b1 �= 0, since Rx1 and Rx2 are linearly nil-independent.
Taking the same base change as in the proof of Proposition 3.2 and due to the fact 

that e1 /∈ Annr(L), we can write:

[e1, e1] = e3, [e1, x1] = e1,

[e2, x1] = a5e3, [e3, x1] = 2e3,

[e1, x2] = b2e2, [e2, x2] = e2,

[x1, e1] = −e1 + α2e2 + α3e3, [x1, e2] = α4e2 + α5e3,

[x2, e1] = β2e2 + β3e3, [x2, e2] = β4e2 + β5e3,

[x1, x1] = γ1e2 + γ2e3, [x2, x2] = γ3e2 + γ4e3,

[x2, x1] = δe1 + γ5e2 + γ6e3, [x1, x2] = −δe1 + γ7e2 + γ8e3.

Applying sequentially to triples of basis vectors from {e1, e2, e3, x1, x2} the Leibniz 
identity together with the table above we obtain the following relations for the structure 
constants

a5 = b2 = δ = α2 = α3 = α4 = α5 = 0,

β2 = β3 = β5 = γ1 = γ4 = γ8 = 0,

β4(1 + β4) = 0, β4γ3 = 0, γ5 = γ7β4.

Owing to β4(1 + β4) = 0 we have the following two choices: β4 = 0 and β4 = −1.
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If β4 = 0, then taking the basis transformation of the form

x′
1 = x1 − γ7e2 −

γ2

2 e3, x′
2 = x2 − γ3e2 −

γ6

2 e3,

we obtain L2.
But if β4 = −1, then γ3 = 0 and taking the basis transformation of the form

x′
1 = x1 − γ7e2 −

γ2

2 e3, x′
2 = x2 −

γ6

2 e3,

we get L3.
Since Annr(L2) = Span{e2, e3} and Annr(L3) = Span{e3} the algebras L2 and L3

are not isomorphic. �
3.2. Abelian nilradical case

Let L be a five-dimensional solvable Leibniz algebra with a basis {x1, x2, e1, e2, e3}, 
where {e1, e2, e3} is the basis of three-dimensional abelian nilradical λ6 chosen in The-
orem 2.8. Due to Lemma 3.1 the operators Rx1 and Rx2 are linearly nil-independent 
derivations of the nilradical N . Further we need the description of the actions of Rx1

and Rx2 on N .

Proposition 3.5. The basis {x1, x2, e1, e2, e3} of L can be chosen such a way that the 
actions of the right multiplication operators Rx1 and Rx2 on the basis {e1, e2, e3} of N
are expressed as follows:

A. Rx1(e1) = e1, Rx1(e3) = μ1e3, Rx2(e2) = e2, Rx2(e3) = μ2e3,

B. Rx1(e1) = e1, Rx1(e2) = e2, Rx2(e1) = e2, Rx2(e3) = e3,

C. Rx1(e1) = e1 + e2, Rx1(e2) = e2, Rx2(e1) = μe2, Rx2(e3) = e3,

where nonwritten actions are zero.

Proof. First of all we have some freedom of choosing the matrix of Rx1 depending on 
multiplicity of eigenvalues of Rx1 . The following three cases may occur: the matrix of 
Rx1 is congruent to

⎛
⎝μ1 0 0

0 μ2 0
0 0 μ3

⎞
⎠ or

⎛
⎝μ1 1 0

0 μ1 0
0 0 μ2

⎞
⎠ or

⎛
⎝μ1 1 0

0 μ1 1
0 0 μ1

⎞
⎠ .

Let us now search the possibilities for the matrix of Rx2 . Put

Rx2(ei) = αi,1e1 + αi,2e2 + αi,3e3, 1 ≤ i ≤ 3.
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Since L is solvable and its nilradical N = λ6 is abelian this implies R[x1,x2](y) = 0 for 
any y ∈ λ6. Now we make a case by case consideration according to the above matrix 
view of Rx1 .

Case 1. Let the matrix of Rx1 be congruent to
⎛
⎝μ1 0 0

0 μ2 0
0 0 μ3

⎞
⎠ .

Then we have

Rx1(e1) = μ1e1, Rx1(e2) = μ2e2, Rx1(e3) = μ3e3.

By the use of the identities R[x1,x2](ei) = 0 for 1 ≤ i ≤ 3 we obtain the following 
constraints:

(μ1 − μ2)α1,2 = 0, (μ1 − μ3)α1,3 = 0,
(μ2 − μ1)α2,1 = 0, (μ2 − μ3)α2,3 = 0,
(μ3 − μ1)α3,1 = 0, (μ3 − μ2)α3,2 = 0. (3.1)

Case 1.1. Let μ1 �= μ2, μ1 �= μ3, μ2 �= μ3. Owing to the constraints (3.1) we have

α1,2 = 0, α1,3 = 0, α2,1 = 0, α2,3 = 0, α3,1 = 0, α3,2 = 0.

Since Rx1 and Rx2 are linearly nil-independent, without loss of generality we can 
assume that μ1α2,2 − μ2α1,1 �= 0. Then applying the transformation

x′
1 = α2,2

μ1α2,2 − μ2α1,1
x1 −

μ2

μ1α2,2 − μ2α1,1
x2,

x′
2 = − α1,1

μ1α2,2 − μ2α1,1
x1 + μ1

μ1α2,2 − μ2α1,1
x2

we get μ1 = α2,2 = 1, μ2 = α1,1 = 0, that means the operators Rx1 and Rx2 have the 
form A in the proposition.

Case 1.2. Let any two of μ1, μ2, μ3 be equal. Then, without loss of generality, we can 
assume that μ1 = μ2 �= μ3. Then due to the constraints (3.1) we get

α1,3 = 0, α2,3 = 0, α3,1 = 0, α3,2 = 0.

Changing the basis we bring the matrix ( α1,1 α1,2
α2,1 α2,2 ) to one of the following Jordan’s 

forms (
α1,1 0
0 α2,2

)
and

(
α1,1 1
0 α1,1

)
.
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In the former case the actions of Rx1 and Rx2 have the form A.
In the later case we use the base change

x′
1 = α3,3

μ1α3,3 − μ3α1,1
x1 −

μ3

μ1α3,3 − μ3α1,1
x2,

x′
2 = − α1,1

μ1α3,3 − μ3α1,1
x1 + μ1

μ1α3,3 − μ3α1,1
x2

to get

Rx1(e1) = e1 + αe2, Rx1(e2) = e2, Rx2(e1) = βe2, Rx2(e3) = e3.

• if α = 0, β = 0, then the actions of Rx1 and Rx2 have the form A with μ1 = 1, 
μ2 = 0;

• if α = 0, β �= 0, then by the change e′2 = βe2 we see that Rx1 and Rx2 act like B;
• if α �= 0, then applying e′2 = αe2 we obtain that the actions of Rx1 and Rx2 have the 

form C.

Case 1.3. Let μ1 = μ2 = μ3. Then the operator Rx1 acts as the identity operator 
on N . Let us consider Jordan’s form of Rx2 . Since the operators Rx1 and Rx2 are linearly 
nil-independent the following two possibilities may occur:

If
⎛
⎜⎝ α1,1 α1,2 α1,3

α2,1 α2,2 α2,3
α3,1 α3,2 α3,3

⎞
⎟⎠ is congruent to

⎛
⎜⎝ β1 0 0

0 β2 0
0 0 β3

⎞
⎟⎠

then similar to Case 1.1 we obtain Rx1 and Rx2 in the form A.
But if

⎛
⎜⎝ α1,1 α1,2 α1,3

α2,1 α2,2 α2,3
α3,1 α3,2 α3,3

⎞
⎟⎠ is congruent to

⎛
⎜⎝ β1 1 0

0 β1 0
0 0 β3

⎞
⎟⎠

then similar to Case 1.2 the Rx1 and Rx2 have the form B.
Case 2. Let the matrix of the operator Rx1 be congruent to

⎛
⎝μ1 1 0

0 μ1 0
0 0 μ2

⎞
⎠ .

Then we have

Rx1(e1) = μ1e1 + e2, Rx1(e2) = μ1e2, Rx1(e3) = μ2e3.
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Using the identities R[x1,x2](ei) = 0 for 1 ≤ i ≤ 3 we get the following constraints:

α2,1 = 0, α2,3 = 0, α3,1 = 0,
α2,2 = α1,1, (μ2 − μ1)α1,3 = 0, (μ2 − μ1)α3,2 = 0. (3.2)

Similarly to Case 1, considering all possibilities for parameters μ1 and μ2, we obtain 
the operators Rx1 and Rx2 in one the forms A, B, C.

Case 3. Let the matrix of the operator Rx1 be congruent to
⎛
⎝μ1 1 0

0 μ1 1
0 0 μ1

⎞
⎠ .

Then

Rx1(e1) = μ1e1 + e2, Rx1(e2) = μ1e2 + e3, Rx1(e3) = μ1e3.

Again due to the identities R[x1,x2](ei) = 0 for 1 ≤ i ≤ 3, it is easy to obtain

α2,1 = α3,1 = α3,2 = 0, α1,1 = α2,2 = α3,3,

which shows that Rx1 and Rx2 are nil-dependent. However, it contradicts to the hypoth-
esis of the proposition. This contradiction completes Case 3. �
Theorem 3.6. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is 
3-dimensional abelian algebra. Then there exists a basis {e1, e2, e3, x1, x2} of L such that 
on {e1, e2, e3, x1, x2} the L is represented as one of the following pairwise nonisomorphic
algebras

M1(μ1, μ2), μ1 �= 0: M2(μ1, μ2):⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1 [e3, x1] = μ1e3,

[e2, x2] = e2, [e3, x2] = μ2e3,

[x1, e1] = −e1, [x1, e3] = −μ1e3,

[x2, e2] = −e2, [x2, e3] = −μ2e3,

⎧⎨
⎩

[e1, x1] = e1 [e3, x1] = μ1e3,

[e2, x2] = e2, [e3, x2] = μ2e3,

[x1, e1] = −e1, [x2, e2] = −e2,

M3(μ), μ �= 0: M4(μ1, μ2):⎧⎨
⎩

[e1, x1] = e1
[e2, x2] = e2, [e3, x2] = μe3,

[x2, e2] = −e2, [x2, e3] = −μe3,

⎧⎨
⎩

[e1, x1] = e1 [e3, x1] = μ1e3,

[e2, x2] = e2, [e3, x2] = μ2e3,

[x2, e2] = −e2,

M5(μ1, μ2): M6(λ1, λ2, λ3, λ4):

{
[e1, x1] = e1 [e3, x1] = μ1e3,

[e2, x2] = e2, [e3, x2] = μ2e3,

⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1 [e2, x2] = e2,

[x1, e1] = −e1, [x2, e2] = −e2,

[x1, x1] = λ1e3, [x2, x1] = λ2e3,
[x1, x2] = λ3e3, [x2, x2] = λ4e3,
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M7(λ1, λ2, λ3, λ4): M8(λ1, λ2, λ3, λ4):⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1,

[e2, x2] = e2, [x2, e2] = −e2
[x1, x1] = λ1e3, [x2, x1] = λ2e3,

[x1, x2] = λ3e3, [x2, x2] = λ4e3,

⎧⎨
⎩

[e1, x1] = e1 [e2, x2] = e2,

[x1, x1] = λ1e3, [x2, x1] = λ2e3,

[x1, x2] = λ3e3, [x2, x2] = λ4e3,

M9: M10:⎧⎨
⎩

[e1, x1] = e1 [e2, x2] = e2,

[e3, x1] = e3
[x1, e1] = −e1, [x2, e1] = −e3,

⎧⎨
⎩

[e1, x1] = e1, [e3, x1] = e3,

[x1, e1] = −e1, [x2, e1] = e3,

[e2, x2] = e2 [x2, e2] = −e2,

P1: P2:{
[e1, x1] = e1, [e2, x1] = e2,

[e1, x2] = e2, [e3, x2] = e3,

⎧⎨
⎩

[e1, x1] = e1, [e2, x1] = e2,

[e1, x2] = e2, [e3, x2] = e3,

[x2, e3] = −e3,

P3: P4:⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1, [e2, x1] = e3,

[e1, x2] = e2, [e3, x2] = e3,

[x1, e1] = −e1, [x1, e2] = −e2,

[x2, e1] = −e2,

⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1, [e2, x1] = e2,

[e1, x2] = e2, [e3, x2] = e3,

[x1, e1] = −e1, [x1, e2] = −e2,

[x2, e1] = −e2, [x2, e3] = −e3,

Q1(μ): Q2(μ):{
[e1, x1] = e1 + e2, [e2, x1] = e2,

[e1, x2] = μe2, [e3, x2] = e3,

⎧⎨
⎩

[e1, x1] = e1 + e2, [e2, x1] = e2,

[e1, x2] = μe2, [e3, x2] = e3,

[x2, e3] = −e3,

Q3(μ): Q4(μ):⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1 + e2, [e2, x1] = e2,

[e1, x2] = μe2, [e3, x2] = e3,

[x1, e1] = −e1 − e2, [x1, e2] = −e2,

[x2, e1] = −μe2,

⎧⎪⎪⎨
⎪⎪⎩

[e1, x1] = e1 + e2, [e2, x1] = e2,

[e1, x2] = μe2, [e3, x2] = e3,

[x1, e1] = −e1 − e2, [x1, e2] = −e2,

[x2, e1] = −μe2, [x2, e3] = −e3,

where (λ1, λ2, λ3, λ4) �= (0, 0, 0, 0).
Moreover,

• M1(μ1, μ2) ∼= M1(μ2, μ1) ∼= M1( 1
μ1
, −μ2

μ1
),

• M2(μ1, μ2) ∼= M2(μ2, μ1),
• M5(μ1, μ2) ∼= M5(μ2, μ1),
• M6(λ1, λ2, λ3, λ4) ∼= M6(λ4, λ3, λ2, λ1),
• M8(λ1, λ2, λ3, λ4) ∼= M8(λ4, λ3, λ2, λ1).
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Proof. Let L be a 5-dimensional solvable Leibniz algebra, whose nilradical is 3-dimen-
sional abelian algebra. The products [ei, xj ] are due to Proposition 3.5. For the other 
products we let
⎧⎪⎨
⎪⎩

[x1, ei] = αi,1e1 + αi,2e2 + αi,3e3, [x2, ei] = βi,1e1 + βi,2e2 + βi,3e3, 1 ≤ i ≤ 3,
[x1, x1] = γ1,1e1 + γ1,2e2 + γ1,3e3, [x2, x1] = γ2,1e1 + γ2,2e2 + γ2,3e3,

[x1, x2] = γ3,1e1 + γ3,2e2 + γ3,3e3, [x2, x2] = γ4,1e1 + γ4,2e2 + γ4,3e3.

Case 1. Let {e1, e2, e3, x1, x2} be the basis corresponding to part A in Proposition 3.5. 
Therefore

[e1, x1] = e1, [e3, x1] = μ1e3, [e2, x2] = e2, [e3, x2] = μ2e3.

We use the Leibniz identity for the products
[
x1, [e1, x1]

]
,
[
x1, [e1, x2]

]
,
[
x1, [e2, x1]

]
,
[
x1, [e2, x2]

]
,
[
x1, [e3, x1]

]
,
[
x1, [e3, x2]

]
,

[
x2, [e1, x1]

]
,
[
x2, [e1, x2]

]
,
[
x2, [e2, x1]

]
,
[
x2, [e2, x2]

]
,
[
x2, [e3, x1]

]
,
[
x2, [e3, x2]

]
,

to obtain the following constraints for the structure constants
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1,2 = 0, α2,3μ1 = 0, α1,3μ2 = 0, α1,3(μ1 − 1) = 0, α2,3(μ2 − 1) = 0,
α2,1 = 0, α3,2μ1 = 0, α3,1μ2 = 0, α3,1(μ1 − 1) = 0, α3,2(μ2 − 1) = 0,
β1,2 = 0, β2,3μ1 = 0, β1,3μ2 = 0, β1,3(μ1 − 1) = 0, β2,3(μ2 − 1) = 0,
β2,1 = 0, β3,2μ1 = 0, β3,1μ2 = 0, β3,1(μ1 − 1) = 0, β3,2(μ2 − 1) = 0.

(3.3)

Case 1.1. Let (μ1, μ2) /∈ {(0, 1), (1, 0)}. Then by virtue of (3.3) one has

α1,2 = α2,1 = α1,3 = α2,3 = α3,1 = α3,2 = 0,

β1,2 = β2,1 = β1,3 = β2,3 = β3,1 = β3,2 = 0.

The Leibniz identities

0 =
[
[x1, x1], e2

]
=

[
x1, [x1, e2]

]
+
[
[x1, e2], x1

]
= [x1, α2,2e2] + [α2,2e2, x1] = α2

2,2e2,

0 =
[
[x2, x2], e1

]
=

[
x2, [x2, e1]

]
+
[
[x2, e1], x2

]
= [x2, β1,1e1] + [β1,1e1, x2] = β2

1,1e1,

give

α2,2 = 0, β1,1 = 0.

Considering the Leibniz identity for the products
[
x1, [x1, x2]

]
,

[
x2, [x2, x1]

]
,

[
x1, [x2, x1]

]
,

[
x2, [x1, x2]

]
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we get

γ1,2 = 0, γ3,1(α1,1 + 1) = 0, γ3,3α3,3 = γ1,3μ2 − γ3,3μ1,

γ4,1 = 0, γ2,2(β2,2 + 1) = 0, γ2,3β3,3 = γ4,3μ1 − γ2,3μ2,

γ3,1 = γ2,1α1,1, γ2,3α3,3 = γ3,3μ1 − γ1,3μ2,

γ2,2 = γ3,2β2,2, γ3,3β3,3 = γ2,3μ2 − γ4,3μ1. (3.4)

As well as sequentially applying the Leibniz identity to [x1, [x1, e1]], [x1, [x1, e3]], 
[x1, [x1, x1]], [x1, [x2, e3]], [x1, [x2, x2]], [x2, [x1, e3]], [x2, [x1, x1]], [x2, [x2, x2]], [x2, [x2, e3]]
and [x2, [x2, x2]] we obtain the constraints

α1,1(α1,1 + 1) = 0,

α3,3(α3,3 + μ1) = 0,

α1,1γ1,1 = 0, α3,3γ1,3 = 0,

α3,3(β3,3 + μ2) = 0,

α3,3γ4,3 = 0,

β3,3(α3,3 + μ1) = 0,

β3,3γ1,3 = 0,

β2,2(β2,2 + 1) = 0,

β3,3(β3,3 + μ2) = 0, and

β2,2γ4,2 = 0, β3,3γ4,3 = 0, (3.5)

respectively.
Therefore the table of multiplication of L is written

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[e1, x1] = e1, [x1, e1] = α1,1e1, [x1, x1] = γ1,1e1 + γ1,3e3,

[e3, x1] = μ1e3, [x1, e3] = α3,3e3, [x2, x1] = γ2,1e1 + γ2,2e2 + γ2,3e3,

[e2, x2] = e2, [x2, e2] = β2,2e2, [x1, x2] = γ3,1e1 + γ3,2e2 + γ3,3e3,

[e3, x2] = μ2e3, [x2, e3] = β3,3e3, [x2, x2] = γ4,2e2 + γ4,3e3,

with the conditions (3.4) and (3.5).
It is observed that if μ1 = μ2 = 0, then α3,3 = β3,3 = 0 and C(L) = Span{e3}, 

otherwise C(L) is trivial. Thus, we distinguish following two cases (μ1, μ2) �= (0, 0) and 
(μ1, μ2) = (0, 0), which correspond to C(L) = Span{e3} �= 0 and C(L) = 0, respectively.

Case 1.1.1. Let (μ1, μ2) �= (0, 0) (i.e., C(L) = 0).

• Let α1,1 = −1, β2,2 = −1 (i.e., e1, e2 /∈ Annr(L)). Then one has γ1,1 = 0, γ4,2 = 0, 
γ3,1 = −γ2,1, γ3,2 = −γ2,2.
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Taking the base change

x1 = x1 + γ2,2e2, x2 = x2 − γ2,1e1,

we can assume that γ2,1 = γ2,2 = 0.
Note that, due to the symmetricity of the basis vectors e1, e2 and x1, x2, without 
loss of generality we can assume that μ1 �= 0.
– If α3,3 = −μ1, β3,3 = −μ2 (i.e. Annr(L) = 0), then we obtain γ1,3 = 0, γ4,3 = 0, 

γ3,3 = −γ2,3 and taking the base change x2 = x2 − γ2,3
μ1

e1 we get the algebra 
M1(μ1, μ2).

– If α3,3 = 0, β3,3 = 0, (i.e. Annr(L) = Span{e3}), then one has γ3,3 = γ1,3μ2
μ1

, 
γ4,3 = γ2,3μ2

μ1
and considering the base change x′

1 = x1 − γ1,3
μ1

e3, x′
2 = x2 − γ2,3

μ1
e3, 

we derive M2(μ1, μ2).
• Let α1,1 = 0, β2,2 = −1, or α1,1 = −1, β2,2 = 0. Due to the symmetricity of the basis 

elements e1, e2 and x1, x2, without loss of generality we can assume that α1,1 = 0, 
β2,2 = −1. This gives

γ3,1 = 0, γ4,2 = 0, γ3,2 = −γ2,2 = 0.

– If α3,3 = −μ1, β3,3 = −μ2, then γ1,3 = 0, γ4,3 = 0, γ3,3 = −γ2,3. The change 
x′

1 = x1−γ1,1e1+γ2,2e2, x′
2 = x2−γ2,1e1, gives the following table of multiplication:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[e1, x1] = e1 [e3, x1] = μ1e3,

[e2, x2] = e2, [e3, x2] = μ2e3,

[x1, e3] = −μ1e3,

[x2, e2] = −e2, [x2, e3] = −μ2e3,

[x2, x1] = γ2,3e3, [x1, x2] = −γ2,3e3.

∗ If μ1 �= 0, then taking the base change e′1 = e3, e′3 = e1, x′
1 = 1

μ1
x1, x′

2 =
x2 − μ2

μ1
x1 − γ2,3

μ1
e3 we obtain the algebra M2(μ1, μ2).

∗ If μ1 = 0, then μ2 �= 0 and after the base change x′
1 = x1+ γ2,3

μ2
e3 we get M3(μ2).

– If α3,3 = 0, β3,3 = 0, then we get γ3,3 = γ1,3μ2
μ1

, γ4,3 = γ2,3μ2
μ1

and by the base 
change x′

1 = x1 − γ1,1e1 + γ2,2e2 − γ1,3
μ1

e3, x′
2 = x2 − γ2,1e1 − γ2,3

μ1
e3, we derive 

M4(μ1, μ2).
• Let α1,1 = 0, β2,2 = 0, then one has γ3,1 = 0, γ2,2 = 0.

– If α3,3 = −μ1, β3,3 = −μ2, then γ1,3 = 0, γ4,3 = 0, γ3,3 = −γ2,3. Applying the 
base change x′

1 = x1 −γ1,1e1 −γ3,2e2, x′
2 = x2 −γ2,1e1 −γ4,2e2 − γ2,3

μ1
e3, we obtain 

the following table of multiplications

⎧⎨
⎩

[e1, x1] = e1 [e3, x1] = μ1e3,

[e2, x2] = e2, [e3, x2] = μ2e3,
[x1, e3] = −μ1e3, [x2, e3] = −μ2e3.
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It is easy to see that the base change e′1 = e2, e′2 = e3, e′3 = e1, x′
1 = 1

μ1
x1, 

x′
2 = x2 − μ2

μ1
x1 in the table gives M4(μ1, μ2).

– If α3,3 = 0, β3,3 = 0, we get γ3,3 = γ1,3μ2
μ1

, γ4,3 = γ2,3μ2
μ1

and taking the change 
x′

1 = x1 − γ1,1e1 − γ3,2e2 − γ1,3
μ1

e3, x′
2 = x2 − γ2,1e1 − γ4,2e2 − γ2,3

μ1
e3, we obtain 

M5(μ1, μ2).

Case 1.1.2. Let μ1 = μ2 = 0 (i.e., C(L) = Span{e3}). Then we get α3,3 = β3,3 = 0
and obtain the following table of multiplication

[e1, x1] = e1, [x1, e1] = α1,1e1, [x1, x1] = γ1,1e1 + γ1,3e3,

[x2, x1] = γ2,1e1 + γ2,2e2 + γ2,3e3,

[e2, x2] = e2, [x2, e2] = β2,2e2, [x2, x2] = γ4,2e2 + γ4,3e3,

[x1, x2] = γ3,1e1 + γ3,2e2 + γ3,3e3

with restrictions

α1,1(α1,1 + 1) = 0, β2,2(β2,2 + 1) = 0, α1,1γ1,1 = 0, β2,2γ4,2 = 0,

γ3,1(α1,1 + 1) = 0, γ2,2(β2,2 + 1) = 0, γ3,1 = γ2,1α1,1, γ2,2 = γ3,2β2,2.

Considering the basis change x′
1 = x1 − γ3,2e2, x′

2 = x2 − γ2,1e1, we can assume that

γ2,1 = γ2,2 = γ3,1 = γ3,2 = 0.

• If α1,1 = −1, β2,2 = −1, then we have γ1,1 = 0, γ4,2 = 0, and the algebra 
M6(λ1, λ2, λ3, λ4) appears.

• If (α1,1, β2,2) = (0, −1) or (−1, 0) then without loss of generality we can suppose 
that α1,1 = 0, β2,2 = −1. Then we have γ4,2 = 0, and applying the base change 
x′

1 = x1 − γ1,1e1, we obtain M7(λ1, λ2, λ3, λ4).
• But if α1,1 = 0, β2,2 = 0, then the base change

x′
1 = x1 − γ1,1e1, x′

2 = x2 − γ4,2e2

gives M8(λ1, λ2, λ3, λ4).

It is easy to see that

M6(0, 0, 0, 0) ∼= M2(0, 0), M7(0, 0, 0, 0) ∼= M4(0, 0), M8(0, 0, 0, 0) ∼= M5(0, 0),

moreover, choosing appropriate base change one of the λi which is not zero can be 
reduced to 1.

Case 1.2. Let (μ1, μ2) ∈ {(0, 1), (1, 0)}. Without loss of generality we can suppose that 
μ1 = 1, μ2 = 0. Then because of (3.3) we have
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α1,2 = α2,1 = α2,3 = α3,2 = 0,

β1,2 = β2,1 = β2,3 = β3,2 = 0.

From the Leibniz identity

0 =
[
[x1, x1], e2

]
=

[
x1, [x1, e2]

]
+
[
[x1, e2], x1

]
= [x1, α2,2e2] + [α2,2e2, x1] = α2

2,2e2,

we get α2,2 = 0.
Thus the table of multiplication in this case looks like

[e1, x1] = e1, [x1, e1] = α1,1e1 + α1,3e3, [x1, x1] = γ1,1e1 + γ1,2e2 + γ1,3e3,

[e3, x1] = e3, [x1, e3] = α3,1e1 + α3,3e3, [x2, x1] = γ2,1e1 + γ2,2e2 + γ2,3e3,

[e2, x2] = e2, [x2, e1] = β1,1e1 + β1,3e3, [x1, x2] = γ3,1e1 + γ3,2e2 + γ3,3e3,

[x2, e2] = β2,2e2, [x2, e3] = β3,1e1 + β3,3e3, [x2, x2] = γ4,1e1 + γ4,2e2 + γ4,3e3.

Now we distinguish the two cases depending on the views of the Jordan forms of the 
matrix ( α1,1 α1,3

α3,1 α3,3 ), i.e. a multiple root case ( α1,1 1
0 α1,1

) and simple roots case ( α1,1 0
0 α3,3

).
The former case is impossible due to the following observation. Let us consider the 

Leibniz identity

0 =
[
[x1, x1], e1

]
=

[
x1, [x1, e1]

]
+

[
[x1, e1], x1

]
= [x1, α1,1e1 + e3] + [α1,1e1, x1]

=
(
α2

1,1 + α1,1
)
e1 + (1 + 2α1,1)e3.

From that we get the system of equations

α1,1(α1,1 + 1) = 0

1 + 2α1,1 = 0

which is obviously not consistent.
Therefore we consider the case when ( α1,1 α1,3

α3,1 α3,3 ) is congruent to ( α1,1 0
0 α3,3

). There are 
a few subcases here.

• Let e1, e3 ∈ Annr(L). Then we have

α1,1 = α3,3 = β1,1 = β1,3 = β3,1 = β3,3 = 0.

Let us consider the Leibniz identity for [x1, [x1, x2]], [x2, [x1, x2]]. This yields

γ1,2 = γ3,1 = γ3,3 = γ4,1 = γ4,3 = 0, γ2,2 = γ3,2β2,2.

Then as a result of the basis change

x′
1 = x1 − γ1,1e1 − γ3,2e2 − γ1,3e3, x′

2 = x2 − γ2,1e1 − γ2,3e3,
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we conclude that γ1,1 = γ1,3 = γ2,1 = γ2,3 = γ3,2 = 0.
Therefore we derive the following products

[e1, x1] = e1, [e3, x1] = e3, [e2, x2] = e2,

[x2, e2] = β2,2e2, [x2, x2] = γ4,2e2.

– Now if e2 ∈ Annr(L), then we have β2,2 = 0 and taking the change x′
2 = x2−γ4,2e2, 

we get M5(1, 0).
– But if e2 /∈ Annr(L), then we get β2,2 = −1, γ4,2 = 0. Hence, L is isomorphic to 

M4(1, 0).
• Let us now consider the case when one of the basis vectors e1, e3 is not in Annr(L), 

then without loss of generality we can suppose that e1 /∈ Annr(L), e3 ∈ Annr(L). 
Therefore

α1,1 = −1, α3,1 = β1,1 = β3,1 = β3,3 = γ1,1 = γ4,1 = 0, γ3,1 = −γ2,1.

Analogously to that of the previous case considering the Leibniz identities
[x1, [x1, x2]], [x2, [x1, x2]] we derive

γ1,2 = γ3,3 = 0, γ2,2 = γ3,2β2,2, γ4,3 = γ2,1β1,3.

Then applying the base change

x′
1 = x1 − γ3,2e2 − γ1,3e3, x′

2 = x2 − γ2,1e1 − γ2,3e3,

we get γ1,3 = γ2,1 = γ2,3 = γ3,2 = 0. Hence the table of multiplications in this case 
is given as follows:

[e1, x1] = e1, [e3, x1] = e3, [e2, x2] = e2,

[x1, e1] = −e1, [x2, e1] = β1,3e3, [x2, e2] = β2,2e2, [x2, x2] = γ4,2e2.

– If e2 ∈ Annr(L), then β2,2 = 0 and the base change x′
2 = x2 − γ4,2e2, yields 

γ4,2 = 0.
∗ If β1,3 = 0, then we obtain M4(0, 1).
∗ But if β1,3 �= 0, then the base change e′3 = β1,3e3, gives M9.

– And if e2 /∈ Annr(L), then
β2,2 = −1, γ4,2 = 0. Here if β1,3 = 0, we obtain the algebra M2(1, 0), otherwise 
considering the base change e′3 = β1,3e3, we get M10.

• Let now none of e1, e3 is in Annr(L). Then

α1,1 = α3,1 = −1, β1,1 = β1,3 = β3,1 = β3,3 = 0,

γ1,1 = γ1,3 = γ4,1 = γ4,3 = 0, γ3,1 = −γ2,1, γ3,3 = −γ2,3.
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Applying the Leibniz identities [x1, [x1, x2]], [x2, [x1, x2]] we obtain

γ1,2 = 0, γ2,2 = γ3,2β2,2.

After the base change

x′
1 = x1 − γ3,2e2, x′

2 = x2 − γ2,1e1 − γ2,3e3,

we get γ2,1 = γ2,3 = γ3,2 = 0 and as a result the table of multiplications is written 
as follows

[e1, x1] = e1, [e3, x1] = e3, [e2, x2] = e2,

[x1, e1] = −e1, [x1, e3] = −e3, [x2, e2] = β2,2e2, [x2, x2] = γ4,2e2.

– If e2 ∈ Annr(L), then β2,2 = 0 and the base change x′
2 = x2 − γ4,2e2, gives M3(1).

– But if e2 /∈ Annr(L), then β2,2 = −1, γ4,2 = 0 and one obtains M1(1, 0).

Case 2. Let the basis {e1, e2, e3, x1, x2} be such that Rx1 and Rx2 have the form B in 
Proposition 3.5.

Similar to Case 1, applying the Leibniz identity we get the table multiplications:

[e1, x1] = e1, [x1, e1] = α1,1e1, [x1, x1] = γ1,1e1 + γ1,2e2,

[e2, x1] = e2, [x1, e2] = α1,1e2, [x2, x1] = γ2,1e1 + γ2,2e2 + γ2,3e3,

[e1, x2] = e2, [x2, e1] = β1,2e2, [x1, x2] = γ3,1e1 + γ3,2e2 + γ3,3e3,

[e3, x2] = e3, [x2, e3] = β3,3e3, [x2, x2] = γ4,2e2 + γ4,3e3

with constraints

α1,1(α1,1 + 1) = 0, γ3,1 = γ2,1α1,1, γ3,2 = γ1,1 + γ2,2α1,1,

γ2,3 = γ3,3β3,3, γ2,1 = γ4,2 + γ3,1β1,2.

Case 2.1. Let e1 ∈ Annr(L), then

α1,1 = 0, β1,2 = 0, γ3,1 = 0, γ3,2 = γ1,1, γ2,1 = γ4,2.

Then the base change

x′
1 = x1 − γ1,1e1 − γ1,2e2 − γ3,3e3, x′

2 = x2 − γ2,1e1 − γ2,2e2,

yields γ1,1 = γ1,2 = γ2,1 = γ2,2 = γ3,3 = 0.

• If e3 ∈ Annr(L), then β3,3 = 0, and taking the change x2 = x2 − γ4,3e3 and we 
obtain P1.
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• If e3 /∈ Annr(L) then β3,3 = −1, γ4,3 = 0 and we get P2.

Case 2.2. Let e1 /∈ Annr(L), then

α1,1 = −1, β1,2 = −1, γ1,1 = γ1,2 = γ4,2 = 0,

γ3,1 = −γ2,1, γ3,2 = −γ2,2.

Applying the base change

x′
1 = x1 + γ2,2e1 − γ3,3e3, x′

2 = x2 − γ2,1e1,

we can assume that γ2,1 = γ2,2 = γ3,3 = 0.

• If e3 /∈ Annr(L), then β3,3 = 0, and the base change x2 = x2 − γ4,3e3 gives P3.
• If e3 ∈ Annr(L) then β3,3 = −1, γ4,3 = 0 and we get P4.

Case 3. Let now the basis {e1, e2, e3, x1, x2} be such that Rx1 and Rx2 have the form C

in Proposition 3.5.
By using the Leibniz identity, we obtain the table of multiplications as follows

[e1, x1] = e1 + e2, [x1, e1] = α1,1e1 + α1,2e2, [x1, x1] = γ1,1e1 + γ1,2e2,

[e2, x1] = e2, [x1, e2] = α1,1e2, [x2, x1] = γ2,1e1 + γ2,2e2 + γ2,3e3,

[e1, x2] = μe2, [x2, e1] = β1,2e2, [x1, x2] = γ3,1e1 + γ3,2e2 + γ3,3e3,

[e3, x2] = e3, [x2, e3] = β3,3e3, [x2, x2] = γ4,2e2 + γ4,3e3

with constraints

α1,1(α1,1 + 1) = 0, γ3,1 = γ2,1α1,1,

γ3,2 = −γ3,1 + γ1,1μ + γ2,1α1,2 + γ2,2α1,1,

α1,1(2α1,2 + 1) = −α1,2, γ2,3 = γ3,3β3,3, γ4,2 = γ2,1μ− γ3,1β1,2.

Case 3.1. Let e1 ∈ Annr(L). Then

α1,1 = 0, α1,2 = 0, β1,2 = 0, γ3,1 = 0,

γ3,2 = γ1,1μ, γ4,2 = γ2,1μ, γ2,3 = γ3,3β3,3.

Taking the base change

x′
1 = x1 − γ1,1e1 − (γ1,2 − γ1,1)e2 − γ3,3e3, x′

2 = x2 − γ2,1e1 − (γ2,2 − γ1,2)e2,

we can assume that γ1,1 = γ1,2 = γ2,1 = γ2,2 = γ3,3 = 0.
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• If e3 ∈ Annr(L), then β3,3 = 0, and taking the base change x2 = x2 − γ4,3e3 we 
obtain the algebra Q1(μ).

• If e3 /∈ Annr(L) then β3,3 = −1, γ4,3 = 0 and we obtain Q2(μ).

Case 3.2. Let e1 /∈ Annr(L), then

α1,1 = α2,1 = −1, β1,2 = −μ, γ1,1 = γ1,2 = γ4,2 = 0,

γ3,1 = −γ2,1, γ3,2 = −γ2,2, γ2,3 = γ3,3β3,3.

The base change

x′
1 = x1 − γ3,3e3, x′

2 = x2 − γ2,1e1 − (γ2,2 − γ2,1)e1,

gives

γ2,1 = γ2,2 = γ3,3 = 0.

• If e3 /∈ Annr(L), then β3,3 = 0, and taking the base change x2 = x2 − γ4,3e3 we 
obtain Q3(μ).

• But if e3 ∈ Annr(L) then β3,3 = −1, γ4,3 = 0 and we obtain Q4(μ).

Remark 3.7. Impossibility of an isomorphism between elements of the classes

• M1(μ1, μ2) except for M1(μ1, μ2) ∼= M1(μ2, μ1) ∼= M1( 1
μ1
, −μ2

μ1
),

• M2(μ1, μ2) except for M2(μ1, μ2) ∼= M2(μ2, μ1),
• M5(μ1, μ2) except for M5(μ1, μ2) ∼= M5(μ2, μ1),
• M6(λ1, λ2, λ3, λ4) except for M6(λ1, λ2, λ3, λ4) ∼= M6(λ4, λ3, λ2, λ1),
• M8(λ1, λ2, λ3, λ4) except for M8(λ1, λ2, λ3, λ4) ∼= M8(λ4, λ3, λ2, λ1)

can be proven by taking general base change in each case. This is a long and rather 
technical work. We decided not to include these routine examinations in the paper. 
They are available from the authors. �

Remark 3.8. Due to Proposition 3.5 we conclude that any two algebras from different 
classes Mi, Pi and Qi are not isomorphic. Pairwise nonisomorphness of any two algebras 
from the same classes can be easily seen by comparing the isomorphism invariants which 
are presented below.
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L dim Annr(L) dim L2 dim L3 dim Annl(L) dim Lie(L)
M1(μ1, μ2) 0
M2(0, 0) 1 2
M6(λ1, λ2, λ3, λ4) 1 3 2
M3(μ) 1 3 3 1
M10 1 3 3 0 3
M2(μ1, μ2), (μ1, μ2) �= (0, 0) 1 3 3 0 4
M4(0, 0) 2 2
M7(λ1, λ2, λ3, λ4) 2 3 2
M9 2 3 3 0
M4(μ1, μ2), (μ1, μ2) �= (0, 0) 2 3 3 1
M5(0, 0) 3 2
M8(λ1, λ2, λ3, λ4) 3 3 2
M5(μ1, μ2), (μ1, μ2) �= (0, 0) 3 3 3

L P1 P2 P3 P4

dim Annr(L) 3 2 1 0

L Q1(μ) Q2(μ) Q3(μ) Q4(μ)
dim Annr(L) 3 2 1 0

The list of isomorphism classes of 5-dimensional solvable complex Leibniz algebras 
with 3-dimensional nilradical. 

Representative Table of multiplication
H [e1, e2] = e3, [e2, e1] = −e3, [e1, x1] = e1, [e3, x1] = e3, [x1, e1] = −e1,

[x1, e3] = −e3, [e2, x2] = e2, [e3, x2] = e3, [x2, e2] = −e2, [x2, e3] = −e3.

L1 [e2, e1] = e3, [e1, x1] = e1, [e2, x2] = e2,
[x1, e1] = −e1, [e3, x1] = e3, [e3, x2] = e3.

L2 [e1, e1] = e3, [e1, x1] = e1, [x1, e1] = −e1, [e3, x1] = 2e3, [e2, x2] = e2.

L3 [e1, e1] = e3, [e1, x1] = e1, [x1, e1] = −e1,
[e3, x1] = 2e3, [e2, x2] = e2, [x2, e2] = −e2.

M1(μ1, μ2)
μ1 �= 0

[e1, x1] = e1, [e3, x1] = μ1e3, [e2, x2] = e2, [e3, x2] = μ2e3,
[x1, e1] = −e1, [x1, e3] = −μ1e3, [x2, e2] = −e2, [x2, e3] = −μ2e3.

M2(μ1, μ2) [e1, x1] = e1, [e3, x1] = μ1e3, [e2, x2] = e2,
[e3, x2] = μ2e3, [x1, e1] = −e1, [x2, e2] = −e2.

M3(μ)
μ �= 0

[e1, x1] = e1, [e2, x2] = e2, [e3, x2] = μe3, [x2, e2] = −e2, [x2, e3] = −μe3.

M4(μ1, μ2) [e1, x1] = e1, [e3, x1] = μ1e3, [e2, x2] = e2, [e3, x2] = μ2e3, [x2, e2] = −e2.

M5(μ1, μ2) [e1, x1] = e1, [e3, x1] = μ1e3, [e2, x2] = e2, [e3, x2] = μ2e3.

M6(λ1, λ2, λ3, λ4)
(λ1, λ2, λ3, λ4)

�= (0, 0, 0, 0)

[e1, x1] = e1, [e2, x2] = e2, [x1, e1] = −e1, [x2, e2] = −e2,
[x1, x1] = λ1e3, [x2, x1] = λ2e3, [x1, x2] = λ3e3, [x2, x2] = λ4e3.

M7(λ1, λ2, λ3, λ4)
(λ1, λ2, λ3, λ4)

�= (0, 0, 0, 0)

[e1, x1] = e1, [e2, x2] = e2, [x2, e2] = −e2,
[x1, x1] = λ1e3, [x2, x1] = λ2e3, [x1, x2] = λ3e3, [x2, x2] = λ4e3.

M8(λ1, λ2, λ3, λ4)
(λ1, λ2, λ3, λ4)

�= (0, 0, 0, 0)

[e1, x1] = e1, [e2, x2] = e2, [x1, x1] = λ1e3,
[x2, x1] = λ2e3, [x1, x2] = λ3e3, [x2, x2] = λ4e3.

M9 [e1, x1] = e1, [e2, x2] = e2, [e3, x1] = e3,
[x1, e1] = −e1, [x2, e1] = −e3.

M10 [e1, x1] = e1, [e3, x1] = e3, [x1, e1] = −e1,
[x2, e1] = e3, [e2, x2] = e2, [x2, e2] = −e2.
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(continued)
Representative Table of multiplication
P1 [e1, x1] = e1, [e2, x1] = e2, [e1, x2] = e2, [e3, x2] = e3.

P2 [e1, x1] = e1, [e2, x1] = e2, [e1, x2] = e2,
[e3, x2] = e3, [x2, e3] = −e3.

P3 [e1, x1] = e1, [e2, x1] = e3, [e1, x2] = e2, [e3, x2] = e3,
[x1, e1] = −e1, [x1, e2] = −e2, [x2, e1] = −e2.

P4 [e1, x1] = e1, [e2, x1] = e2, [e1, x2] = e2, [e3, x2] = e3,
[x1, e1] = −e1, [x1, e2] = −e2, [x2, e1] = −e2, [x2, e3] = −e3.

Q1(μ) [e1, x1] = e1 + e2, [e2, x1] = e2, [e1, x2] = μe2, [e3, x2] = e3.

Q2(μ) [e1, x1] = e1 + e2, [e2, x1] = e2, [e1, x2] = μe2,
[e3, x2] = e3, [x2, e3] = −e3.

Q3(μ) [e1, x1] = e1 + e2, [e2, x1] = e2, [e1, x2] = μe2, [e3, x2] = e3,
[x1, e1] = −e1 − e2, [x1, e2] = −e2, [x2, e1] = −μe2.

Q4(μ) [e1, x1] = e1 + e2, [e2, x1] = e2, [e1, x2] = μe2, [e3, x2] = e3,
[x1, e1] = −e1 − e2, [x1, e2] = −e2, [x2, e1] = −μe2, [x2, e3] = −e3.

4. Conclusion

Combining the results of [12] and the present paper we conclude that there are 12 
parametric families and 10 concrete nonisomorphic solvable Leibniz algebra structures 
with three-dimensional nilradicals on 5-dimensional complex vector space.
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