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0 Introduction 

The homology of Lie algebras is closely related to the cyclic homology of associative 
algebras [LQ]. In [L] the first author constructed a "noncommutative" analog of Lie 
algebra homology which is, similarly, related to Hochschild homology [C, L]. For a 
Lie algebra g this new theory is the homology of the complex 

C,(g)  . . .  ~ ~| g| --+ . . .  ~ 1  ~ k,  

whose boundary map d is given by the formula 

d ( g l | 1 7 4  = ~ ( - -1 )J (g l@'" |174174174  " 
l<i<j<n 

Note that d is a lifting of the classical Chevalley-Eilenberg boundary map d: Ang 
A~-tg.  One striking point in the proof of d 2 = 0 is the following fact: the only 
property of the bracket, which is needed, is the so-called Leibniz identity 

[x, [y, z]] = [[x, y], z] - [[x, z], y] , for a l lx ,  y, z E g .  

So, it is natural to introduce new objects: the Leibniz algebras, which are modules 
over a commutative ring k, equipped with a bilinear map [ - , - ] : 9  • 9 "--* g 
satisfying the Leibniz identity. Since the Leibniz identity is equivalent to the classical 
Jacobi identity when the bracket is skew-symmetric, this notion is a sort of "non- 
commutative" analog of Lie algebras. 

Hence for any Leibniz algebra there is defined a homology theory (and dually a 
cohomology theory) H L ,  (9): = H ,  (C,  (9), d). 

The principal aim of this paper is to answer affirmatively the following question. 
Is H L ,  (resp. HL*)  a Tor-functor (resp. Ext-functor)? This leads naturally to the 
search for a universal enveloping algebra of a Leibniz algebra. 

In Sect. 1 we give examples of Leibniz algebras and we show that the underlying 
module of a free Leibniz algebra is a tensor module. Then we define the notion of 
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representation (and co-representation) of a Leibniz algebra. This enables us to define 
homology and cohomology with nontrivial coefficients. 

In Sect. 2 we construct the universal enveloping algebra UL(g) of a Leibniz 
algebra g [as a certain quotient of the tensor algebra T(g �9 g)] and prove that the 
category of UL(g)-modules is equivalent to the category of g-representations. We 
show a Poincar6-Birkhoff-Witt theorem in this framework. 

In Sect. 3 we prove the main theorem, that is the isomorphisms 

H L ,  (I~, A) TM TorU L(tl)(U(f~Lie), A) , 

H L * (g, M)  = Extu L(9)(U (ItLi~), M )  . 

Here tJLie is the Lie algebra associated to 1~, U(t~Li~) is the ordinary enveloping algebra 
of BLie, A is a co-representation of g and M a representation of 1~. The main tools that 
are used are Cartan's formulas and a Koszul type complex in the noncommutative 
framework. As a consequence we get the triviality of these theories for free Leibniz 
algebras. 

In the last section we relate central extensions of sin(A) with the Hochschild 
homology group HHI(A)  of the associative algebra A (analog of a theorem of 
Bloch-Kassel-Loday). It is interesting to note that the Virasoro algebra is a universal 
extension of Der(C[z, z - l ] )  both in the Lie framework and in the Leibniz framework. 

In the whole paper k is a commutative ring with unit. 

1 Representations of Leibniz algebras and (co)homology groups 

(1.1) Definition of Leibniz algebras. A Leibniz algebra ~ over k is a k-module 
equipped with a bilinear map, called bracket, 

[ - , - ] : 0  x g ~ O, 

satisfying the Leibniz identity: 

(1.1.i) [x , [ y , z ] ]=[[x , y ] , z ] - [ [x , z ] , y ]  foral lx ,  y, z E g ,  

This is in fact a right Leibniz algebra. The dual notion of left Leibniz algebra is 
made out of the dual relation [[x, y], z] = Ix, [y, z]] - [y, Ix, z]], for all x, y, z E t~. 
In this paper we are considering only right Leibniz algebras. A morphism of Leibniz 
algebras g ---* B' is a k-linear map which respects the bracket. 

A Leibniz algebra is a Lie algebra if the condition 

(1.1.2) [x,x] = 0 for all x E 1~, 

is fullfilled. Note that this condition implies the skew-symmetry property: [x, y] + 
[y, x] = 0. Then the Leibniz identity is equivalent to the Jacobi identity. 

For any Leibniz algebra 0 there is associated a Lie algebra l~Lie, obtained by 
quotienting by the relation (1.1.2). The quotient map tt --* gLie is universal for the 
maps from 0 to any Lie algebra which respect the bracket. The image of x E t~ in 
gLie is denoted :~. 

(1.2) Examples. (a) Obviously any Lie algebra is a Leibniz algebra. 
(b) Let A be an associative k-algebra equipped with a k-module map D:  A --4 A 

satisfying the condition 

(1.2.1) D(a(Db)) = DaDb = D((Da)b) for any a, b e A.  
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Define a bilinear map on A by 

[x, y]: = x ( D y )  - ( D y ) x .  

Then, it is immediate to verify that this bracket satisfies the Leibniz relation. So A 
becomes a Leibniz algebra, that we denote by A L. In general it is not a Lie algebra 
(unless D = id). Here are examples of  operators D which satisfy condition (1.2.1): 

(bl) D is an algebra map, and is an idempotent (D z = D). 
(b2) A is a superalgebra (i.e. A is Z/2-graded), so that any x can be uniquely 

written x = x+ + x .  Then take D(x )  = x+. 

(b3) D is a square-zero derivation, that is D(ab) = (Da)b + a(Db) and D2a = O. 
(c) Let A be an associative algebra and b:A  | ---, A | the Hochschild boundary. 

Then A @ A~ Im b, equipped with the bracket [a | b, c @ d] = (ab - ba) | (cd - de) 
is a Leibniz bracket (cf. 4.4.). 

(d) Let V be a k-module. The free Leibniz algebra ~ ( V )  over V is the universal 
Leibniz algebra for maps from V to Leibniz algebras. It can be constructed as a 
quotient of  the free non-associative k-algebra over V like in [CE, p. 285]. Here is a 
more explicit description. 

(1.3) Lemma.  The tensor module T ( V )  = V | V | @ . . .  | V | |  equipped with 
the bracket defined inductively by 

(1.3.1) [ x , v ] = x |  for  x c T ( V ) , v E V ,  

(1.3.2) [ x , y |  for  x, y C T ( V ) , v E V ,  

is the free Leibniz algebra over V.  

Proof. Let us first prove that we have defined a Leibniz algebra. Since 5r(V) is graded 
we can work by induction. The hypothesis implies that the Leibniz relation is true 
for any z r V | V | �9 . . .  O V @n- l .  Let z = t @ v E V | with t E V |  and 
v E V. By applying (1.3.2) and the induction hypothesis one gets, on one hand, 

[x, [y, z]] = [x, [y, t | v]] = [x, [y, ~] | v] - [x, [y | v, t]] 

= [x, [y, t]] | v - [x | v, [y, t]] - [[x, y | v], t] + [[x, t], y | v] 

= [x, [y, t]] | v - [x | v, [y, t]] - [[z, y | v], t] 

+ [[x, t], y] | v - [[x, t] | v, y] .  

On the other hand, one gets, 

[[x, y], z] = [[x, y], t | v] = I[x, y], t] | v - [[x, y] | v, t] 

= [[x, y], t] | v - [[x, y | v], t] - [[x | v, y], t] 

and 
[x~ z], y] = [[x, t @ v], y] = [[x, tJ | v, y] - [[x | v, t], y] .  

Now adding these three elements one gets 

Ix, [y, z]] - [[x, y], z] + [[x, z], y] = 0 

by the induction hypothesis, some cancellation arid (1.3.2). 
Let us now prove that the inclusion map V ~ T(V)  is universal among the k- 

linear maps r  V --~ 9 where g is a Leibniz algebra. Define f :  2P(V) ---* 9 inductively 
by 

f ( v )  = O(v) and f ( v  1 |  |  = [ f ( v  I |  |  , f ( vn ) ]  , 
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where the latter is the bracket in ~. Note that this definition is forced by relation 
(1.3.1). Since g is a Leibniz algebra, f satisfies relation (1.3.2). This proves that 
2P(V) is universal and therefore ~ ( V )  = T(V).  [] 

(1.4) Remarks. If  V is one-dimensional, generated by x, then 7~(V) = kx | kx 2 | 
. . .  ~ kx '~ | . . .  and the Leibniz structure is given by 

{ 0  '+1 i f j = l ,  
[xi 'xJ] = if j > 2 

For any V the Lie algebra associated to S ( V )  is the free Lie algebra L(V) ,  which 
can be identified with the primitive part of the tensor Hopf  algebra T ( V )  = k @ T(V) .  
Let us denote by [ - ,  --]L the Leibniz bracket on 7~(V) and by [ - , - ]  the Lie bracket 
on T(V),  i.e. [a, b] = a b -  ba. Then [ . . .  [vl, V2 ] L , V3] L . . . , Vn] L = V l @ V 2 |  | V,~ 
and the map "~ :L~ (V) --~ L ( V )  is given by ~,(v 1 N . . .  | v~) = [ . . .  [v l, v2], v 3] . . . ,  v~]. 

(1.5) Representations and co-representations. An abelian extension o f  Leibniz alge- 
bras 

0 ---~ M ---* b --* t~ --* 0 

is an exact sequence of Leibniz algebras, which is split as a sequence of k-modules 
and which verifies [M, M]  = 0. 

Then M is equipped with two actions (left and right) of  g, 

[ - , - ] = g x M - - * M  and [ - , - ] : M x ~ - - ~ M  

which satisfy the following three axioms, 

( M L L )  [m, Ix, yll = Jim, x], yl - [[m, y], x] 

( L M L )  [x, Ira, y]] = [Ix, m],  y] - [[x, y], m]  

( L L M )  [x, [y, m]] = [[x, y], m]  - [[x, m],  y] 

for any m E M and x , y  E g. 
Note that the last two relations imply the following: 

( Z D )  [x, [m, y]] + [x, [y, m]] = 0 .  

By definition a representation of the Leibniz algebra 9 is a k-module M equipped 
with two actions of  tt satisfying these three axioms. 

Dually, a co-representation of  the Leibniz algebra ~1 is a k-module N equipped 
with two actions of  g satisfying the following three axioms 

( M L L ) '  [[x, y], m]  = [x, [y, m]]  - [y, Ix, m]]  

( L M L y  [y, Ira, x]] = [[y, m],  x] - [m, [x, y]] 

( L L M ) '  [[m, x], y] = [m, Ix, y]] - [[y, m],  x ] .  

The last two relations imply 

( Z D ) '  [y, [m, x]] + [[m, x], y] = 0 .  

A representation is called symmetric when 

[m, x] + [x, m]  = 0 for a l l m E M ,  x E { t .  

Under this hypothesis any one of  the six axioms implies the other five. 
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In particular a symmetric representation is also a symmetric co-representation and 
is equivalent to a module o v e r  gLie (that is a Lie representation). 

A symmetric representation is uniquely determined by a right action and axiom 
(MLL).  

The actions (left and right) of  a Leibniz algebra on itself determine a representation. 
A representation (resp. co-representation) is called anti-symmetric when 

[ x , m ] = 0 ,  ( r e s p . [ m , x ] = 0 ) , x c g ,  m c M .  

A representation or co-representation is called trivial when 

[x ,m]  = 0 = fro, x], x E g, m E M .  

A morphism f : M  --~ M '  of g-representations is a k-linear map which is 
compatible with the left and right actions of  tJ (and similarly for co-representations). 

(1.6) Action of a Leibniz algebra on another Leibniz algebra and crossed modules. 
An exact sequence of Leibniz algebras 

0 - - ,  g ' & l j P g "  ~ 0 

is said to be split when there exists a Leibniz morphism s :g" ~ g such that 
p o s = id0,,. 

By using s and the Leibniz product [ - ,  - ]0  of g one gets two actions of OH on f(: 

[ - ,  -1  : gJ' x g'  ~ 9 ' ,  [x", x ' ]  := [s(x"), i(x')]O, 

[ - ,  - 1 : 0 '  x g" ~ gJ, Ix ' ,  x"] := [i(x'),  s (x") l~,  

These actions satisfy 6 relations, which are obtained from the Leibniz relation by 
taking one variable in g and two in g~ (3 relations), and one variable in 1~ ~j and two 
in g~ (3 relations). 

Let us define an action of the Leibniz algebra g" on the Leibniz algebra g~ as two 
actions of  g"  on f( (denoted as above) satisfying these 6 relations. 

It is clear that such a data enables us to reconstruct the semi-direct product 
g = ~t ~ ~< g~J (i.e. a split extension). 

A crossed module is a homomorphism of  Leibniz algebra #:  g --4 19 together with 
an action of 19 on g such that 

(a) #[h, 9] = [h, #g], ~[g, h] = [pg, h], 
(b) [g, #g'] = [g, g'] = [pg, g'], for g, g'  E g, h E b- 

(1.7) Extensions of Leibniz algebras. Let it be a Leibniz algebras and M be a 
representation of 9. An abelian extension of  9 by M is a short exact sequence of 
Leibniz algebras 

(19) 0 ~ M ~  b ~ 1 ~ - - + 0  

such that the sequence is split over k, the Leibniz bracket on M is trivial and the 
action of tt on M induced by the extension is the prescribed one. Two such extensions 
(I)) and (b j) are isomorphic when there exists a Leibniz algebra map from D to b r 
which is compatible with the identity on M and on g. One denotes by Ext(tL M )  the 
set of  isomorphism classes of  extensions of  g by M.  

Let f :  g| ~ M be a k-linear map. We define a bracket on i) = M @ 9 by 

[(ml,  xl) ,  (m2, x2)] = ( [ml ,  x21 + [x 1, m2] + f ( x  I , x2), [xl, x21). 
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Then [l is a Leibniz algebra iff 

(1.7.1) [x, f(y,  z)] + [f(x, z), y] - [f(x, y), z] 
- f ( [ x ,  y], z) + f([x, z], y) + f(x, [y, z])  = 0 

for all x, y, z E 9. I f  this condition holds, then we obtain an extension 

0 ~ m ~ P g ~ o  
of Leibniz algebras, where i (m) = (ra, 0), p(ra, x) = x. Moreover this extension is 
split in the category of Leibniz algebras iff there exists a k-linear map 9 :9  ~ M 
such that 

(1.7.2) f (x ,  y) = [x, 9(Y)] + [g(x), y] - 9([x, y]), x, y E 9. 

An easy consequence of these facts is the following natural bijection: 

(1.7.3) Ext(9, J~f) ~ Z2(9, M)/B2(9,  M) .  

Here Z 2 ( g , M )  is the set of  all k-linear maps f : 9  | ~ M satisfying (1.7.1) and 
B2(ft, M )  is the set of such f which satisfy (1.7.2) for some k-linear map 9 :9  ---+ M. 

(1.8) Cohomology of Leibniz algebras. Let 9 be a Leibniz algebra and M be a 
representation of g. Denote 

Cn(9, M )  := Homk(9 | M ) ,  n => 0.  

Let 
a m :Cn(9,  M )  ~ Cn+t(9,  M)  

be a k-homomorphism defined by 

( d ' f )  (xl,  . . . ,  x,~+~) 
n+l 

:----- [Xl' f ( x 2 '  . . . .  Xr~+l)] + Z ( - - 1 ) / [ f ( x l '  "' " Xi, " " ,  Xn+l), Xi] 
/=2 

+ Z (--l)J+l f ( x l  . . . .  , Xi_l,[Xi,Xj],Xi+l, . . . ,  2~j, . . . ,  Xn). 
~<i<3<n 

In the notation of Sect. 3 below we have 

C*(9,M) = Hom~;L(g ) (W, (9 ) ,M)  and d ~ = HomuL(~)(dn, M) 

and from I .emma 3.1 below it follows that 

d ~ + l d ' ~ = 0 ,  for n_>-0.  

Therefore (C*(g,  M) ,  d) is a cochain complex, whose cohomology is called the 
cohomotogy of  the Leibniz algebra 9 with coefficients in the representation M: 

H L * ( g ,  M)  := H*(C*(9 ,  M),  d).  

For n = 0,  HL~ M) is the submodule of  left invariants of M ,  i.e. 

HL~ M )  = {m E M t [x, m]  = 0 for any x E 9}.  

For n = 1 a l - c oc yc l e  is a k -module  homomorphism 

6:[I --* M 
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satisfying the identity 

~([x, y]) = [~(x), y] + Ix, 6(y)]. 

Such a map is called a derivation from fl to M and the k-module of derivations is 
denoted Der(l~, M). It is a coboundary if it has the form adm(x ) = [x, m] for some 
m E M; ad m is called an inner derivation. Therefore 

H L ~ (1~, M)  =- Der(~, M ) / {inner derivations}. 

When M is antisymmetric we have 

HLI(9,  M)  = Der(0, M) = { f : 9  --+ M I f([x,  y]) = [x, f (y)]}.  

It is clear that 1~ ~ HLI(~, 9a), where $a is the antisymmetric representation, whose 
underlying k-module is ~ and B a • $ ~ go is the ordinary bracket on ~. Therefore if 

# 0, then HLt(g,  fja) + O. 
When M is symmetric, then H L  I(o, M)  = HL1(gLie, M)  = Hl(~.ie, M). 
It is easy to check that the sets of 2-cocycles and 2-boundaries coincide with 

Z2(I~,M) and /~2(9, M) respectively. Therefore by (1.7.3) the group HL2(g ,M)  
classifies the equivalence classes of extensions of the Leibniz algebra ~ by M. 

(1.9) Proposition. For any Leibniz algebra ~ and any representation M, there is a 
natural bijection 

Ext(~, M) ~ HL2($, M ) .  [] 

Like in [C] we can easily show that crossed modules of Leibniz algebras are 
classified by H L  3. 

(1.10) Characteristic element o fa  Leibniz algebra. Let 1~ be a Leibniz algebra. We 
denote by ~ n  the kernel of the natural projection ~t --* ~Lir Therefore we have an 
exact sequence of Leibniz algebras, 

(1.10.1) 0 --~ l~ arm "--+ ~1 --+ ~lLi e --'+ O .  

By definition of ~Li~ the Leibniz algebra ~t a"n coincides with the right ideal of $ 
generated by the elements of the form [x, x], x E g. It follows from the Leibniz 
identity that 

[ x , [ y , y ] ] = 0 ,  for z, y e ~ t .  

Therefore (1.10.1) is an abelian extension of t~C~r by $ann. Moreover the induced struc- 
ture of representation of 9Lir on 9 ann is anti-symmetric. By (1.9) the extension (1.10.1) 
determines an element in HL2(gLie,gann). We call this element the characteristic 
element of the Leibniz algebra ~t and denote it by ch(o) e HLZ(gLie, ~tann). 

For example, when $ is a free Leibniz algebra with one generator, then 
HL2(gLir gain) ~ k and ch(fj) is a generator. 

Let M be a representation of 1~. Let us denote by M~y m the quotient of M by the 
relations [x, m] + [m, x] = 0 for x E 9, m E M. This is a symmetric representation. 
The kernel of the projection map M ~ M~y,~ is antisymmetric and is denoted by 
"~//anti" Therefore we obtain a short exact sequence 

0 --. Manti ~ M ---* Msy m ~ 0 

and so a canonical element in Extl(Msym, Manti), where the Ext-group is taken 
in the category of representations of  9. Note that the categories of antisymmetric 
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representations and symmetric representations are both equivalent to the category of 
Lie representations of ~Lie" 

(1.11) Homology of Leibniz algebras. Let g be a Leibniz algebra and A be a co- 
representation of [i. Denote Cn([t, A) := A | ~1 | n _-> 0. We define a k-linear 
map 

d~ = d e :C.(t~, A) ~ C,_t(g,  A) 

by 

d~(m, xl, . . . ,  xn) 
92 

= (It/z, Xl] , X2, . . . ,  Xn) q- Z ( -  1)i ([xi' m], Xl,  . . . ,  :~i, " " ,  Xn) 

-k- Z ( - - 1 ) J + l ( m ' x l '  " ' ' '  Xi-l '[X~'XJ ]' " ' ' '  xJ' " ' ' '  xn)" 
l<__i<j<n 

In the notation of Sect. 3 below we have 

C,(g, A) = W,(g) | A 

and from Lemma 3.1 below it follows that 

and d ~ = d  W Q 1 A ,  

dnd,~+l = O, n _-> O. 

Therefore (C,(tt, A), d) is a well-defined chain complex, whose homology is called 
the homology of the Leibniz algebra 9 with coefficients in the co-representation A: 

HL, (g ,  A) := H , (C , (9 ,  A), d). 

When A is symmetric, then HL,(g, A) coincides with the homology theory defined 
in [L] and [C]. A similar remark applies for cohomology. 

(1.12) Relation with the Chevalley-Eilenberg (co)homology of Lie algebras. Let g be a 
Leibniz algebra and M be a symmetric representation. Then M has a natural structure 
of gLie-module and the natural projection 

C~(~t, M) = M | t~ | + M @ A~t~, n > 0, 

is compatible with boundary maps. Therefore it induces a homomorphism 

H L , ( g ,  M) --* H,(gLie, M) 

to the classical Chevalley-Eilenberg homology of the Lie algebra gLie, which is an 
isomorphism in dimensions 0 and 1 and a surjection in dimension 2. One has a similar 
homomorphism for cohomology 

H (flLie, M) --* HL*(g, M). 

2 Universal enveloping algebra of a Leibniz algebra 

(2.1) Let g~ and gr be two copies of the Leibniz algebra 9 which is supposed to be 
free as a k-module. We denote by 1 x and r x the elements of g~ and gr corresponding 
to X E g. Consider the tensor k-algebra T(fj t | gr), which is associative and unital. 
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Let I be the two-sided ideal corresponding to the relations 

(i) r[x,y ] = rxry -- ryr  x ,  

(ii) l [ x , y  ] : l x r y  - -  rylz , 

(iii) (r u + l v ) l  ~ = 0 ,  for a n y x ,  y E g .  

(2.2) Definition. The unii~ersal enveloping algebra of the Leibniz algebra g is the 
associative and unital algebra 

UL(g)  := T(g z | g r ) / I .  

(2.3) Theorem.  The category o f  representations (resp. co-representations) of  the 
Leibniz algebra g is equivalent to the category o f  right (resp. left) modules over UL(g). 

Proof. Let M be a representation of  0. Define a right action of UL(g)  on the k-module 
M as follows. First 91 and gr act on M by 

m . 1 z = [x,m] , m . r z = [ m , x ] .  

These actions are extended to an action of T(g I | gT-) by composition and linearity. 
Axiom ( M L L )  (resp. ( L M L ) )  of representations implies that the elements of type (i) 
(resp. (ii)) act trivially. In presence of ( L M L ) ,  axiom ( L L M )  is equivalent to (ZD) .  
This relation implies that elements of  type (iii) act trivially. So M is equipped with 
a structure of right UL(g)-module. 

In the other direction it is immediate that, starting with a right UL(0)-module, the 
restrictions of the actions to it ~ and gr give two actions of  g which make M into a 
representation. 

The proof in the co-representation case is analogous. [] 

(2.4) Proposition. The map ~7 : U(gLie) | U(l~Lie) ~ g --~ UL(g), 5: ~ r x, 1 | y ~ ly, 
is a U(i~Lie)-module isomorphism. Under this isomorphism the product structure on 
the former module is induced by the product structure o f  U(0Lie) and the formulas 

(2.4.1) (1 | z ) ~  = z) | x + 1 | [x ,y] ,  

(2.4.2) ( l | 1 7 4 1 7 4  for x, y E g .  

Proof. Recall that the image of x E g in gLie is denoted by 2. By (2.l.i) it is clear 
that r[z,~ ] = 0, and so g" generates in UL(g) an algebra isomorphic to U(gLie). Hence 
the map y is well-defined. 

Define a map O:UL(g) ~ U(0Lie) O U(gLi e) | g as follows: 8(rx) = 2 and 
0(l~ ) = 1 | y. Then 0 is extended over T(g 1 �9 g ' )  by product, using formulas (2.4.1) 
and] (2.4.2). Obviously formula (2.1.i) is fulfilled. Formula (2.1.ii) is a consequence 
of (2.4.1). Formula (2.l.iii) is a consequence of (2.4.2). [] 

(2.5) Proposit ion.  There are algebra homomorphisms 

do, d 1 : UL(g)  --* U(~Lie)  and s o : U(~lLie ) --~ UL(g) ,  

which satisfy 
dos o = dis  o = i d ,  and 

Proof. Define do, d 1 : UL(0) --~ U(~Lie)  by 

do(/x) = 0 

do(rz) = 2 

and So: U(gLie) ~ UL(g)  by So(5: ) = r z. 

(Ker d I) (Ker do) = 0 .  

dl(lx) = - 5c 

dl(rx)  = ~c 
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It is clear that d o, d 1 and s o are well-defined algebra homomorphisms (since 
r[x,x ] = 0). 

The ideal Kerd 0 (resp. Kerdl)  is generated by the lx's (resp. (r~ + t~)'s), so the 
formula (Ker d l) (Ker do) follows from the relation (r z + l~)1 u = 0. [] 

(2.6) Induced representation from Lie-modules. Let M be a Lie-representation of the 
Lie algebra gLie, that is a right U(~tLie)-module. There are two ways to look at it as 
a module over UL(g): under d o or under d 1. The first one gives an anti-symmetric 
representation of g, and the second one gives a symmetric representation of ~. 

(2.7) Examples. (a) Suppose that $ is an abelian Leibniz (hence Lie) algebra, that 
is [x, y] = O, for x, y E g. Then U(gLie) = U(g) = S(~) (symmetric algebra) and 
UL(g) ~ S(t~) (9 S($) @ O, where the product is induced by the product of S($) and 

(1 @x)y = y |  E S(I~) @ g,  

(1 Nx) (1  @y) = - y @ x  c S(g) @9.  

(b) Let V be a k-module and let ~ ( V )  be the free Leibniz algebra over V (cf. 
1.3). It is well-known that U ( ~ ( V ) L i e  ) = U(L(V))  ~ T(V) .  Since L~(V) ~ 7~(V) = 
T(V) / k  as a k-module, one has an isomorphism of k-modules: 

UL(~(V) )  TM T(V)  | T(V) | T(V)  -~ T(V) | T(V) .  

But the aIgebra structure is not the product of the two algebra structures. Denoting 
by r v (resp. lv) the generators of the first (resp. second) copy of T(V), the product 
is induced by the classical product structure on the first copy of T(V) and by 

{ lvr~ = rwl~ + tI~ ~1 
l~ l~  = - r ~ l ~ .  ' 

For instance, if V is 1-dimensional, then UL(~(V) )  is isomorphic to the algebra 
k{x, y}/(xy = 0), where { - , - }  means non-commutative polynomials. 

(2.8) A Poincard-Birkhoff-Witt type isomorphism. Let ~-: V --- W be an epimorphism 
of k-modules. Define the associative algebra SL(T) as the quotient of S(W) N T(V) 
by the 2-sided ideal generated by t @ xy + r(x) | y, for all x, y E V. 

Note that UL(g) is a filtered algebra, the filtration being induced by the filtration 
of T(fl t @ g~), that is FnUL(tt) = {image of k @ E |  | E | in UL(9)}, where 
E = 9 t | 9~. 

The associated graded algebra is denoted gr UL(t~) := ~ gr,, UL(t~). 
n>0 

(2.9) Theorem (PBW). For any Leibniz k-algebra $ such that ~ and SLie are free as 
k-modMes, there is an isomorphism of graded associative k-alsebras 

gr UL(g) ~- SL(g ~ gLie) " 

Proof, Note that, as a k-module, SL(73 is isomorphic to S(W) | S(W) | V. The 
classical PBW theorem gives an isomorphism gr U(gLie) ~ ~($Lie)" By Proposition 
2.4, the expected isomorphism is induced by the PBW isomorphism and the canonical 
isomorphism gt ~ g. [] 

3 Cohomology and homology of Leibniz algebras as derived functors 

In this section we prove that homology and cohomology of Leibniz algebras are 
suitable Tor and Ext groups respectively. 
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(3.0) Let ~I be a Leibniz algebra and UL(g) be the universal enveloping algebra 
of ~. We define a chain complex W,(ft)  in the category of right UL(g)-modules 
as follows. Denote by W~(~I) the right UL(g)-module tl | | UL(o). Since g| is 
free over k, W,~(g) is free over UL(g). For short, we shall write (Xl, . . . ,  x ~ ) r  for 
(x 1 |  | x~) | r, where xl ,  . . . ,  x n E $, r E UL(g). Let 

dn : Wn(g) ---+ 1u n > 1, 

be the homomorphism of right UL(9)-modules given by 

dn(xl, . . . ,  z~) 
n 

= iX2 '  " ' ' '  XT~) ~Z 1 + Z ( - 1 )  i (Xl, " " ,  :ri, " " ,  Xn)rz~ 

q- Z (--1)J+1(Xl' ' " '  X z - l ' [ X i ' X j  ] ' x i+l '  " " '  XJ' " ' "  z n ) "  
l<i<j<n 

We shall prove that (W,(9)  , d) is a free resolution of U(gLie) considered as a fight 
UL(fl)-module under d 1 : UL(9) --~ U(gLi e) (cf. 2.5). We first show that (W,(tt),  d) is 
a complex. The proof is along the same line as in the Lie case ICE, HS]. 

We define, for any y E ~, homomorphisms of right UL($)-modules 

O(y) :Wn(~)  --~ W n ( g )  , n >>~ O, 

i(y):Wn($) --~ Wn+l(9) , n > O, 

as follows: 
t?(y) is left multiplication by ly for n = O, and 

O(y) (Xl,  . . . ,  z ~ ) =  - ( z l ,  . . . ,  x~)% 
7Z 

+ Z (xl'  ' " '  [xi' y]' ' ' ' '  x~) for n > O ,  
i=l 

i (y)(xl ,  . . . ,  z . )  = ( - 1 )  = ( x l , . . . ,  xn ,y  ) .  

(3. l) Proposi t ion (Cartan's formulas). We have the following identities 
(i) i(y)d~_~ + d,j(y)  = O(y), 

(ii) O ( x ) O ( y )  - e(y)O(x) = - O([x, y ] ) ,  for n > O, 
(iii) O(x)i(y) - i ( y )O(x )  = i([y,x]), for n > O, 
(iv) O(y)d,~ = dnO(y), for n > O, 
(V) dndn+ 1 = O. 

Proof. i) The statement is easy when n = 1. Let us consider the case when n > O. 
By definition one has 

i(y)d~_l (x t, . . . ,  x~_ 1) 
n--1 

= ( -1)  ~-2 (~2 , - . . ,  x~-~,~)G1 + Y'~(-1)~(x~, . . - ,  ~ , - . . ,  ~,_l ,Y)r~,  
i=2 

+ Z (--1)J+l (xl '  " " '  [xi 'xj  l ' ' ' ' '  xJ '  " " '  x n - l ' Y ) ~  ' 
l<i<j<n-- l .I 
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and 

d~i(y) (xl, . . . ,  X n _ l )  

= (-1)r~-ldn{Xl , . . . ,  Xn_l,y } 

= ( - 1 )  n - '  (x:, . . . ,  Xn_l ,y)  l z l §  ( - 1 ) ' ( x t , . . .  , & i , . . . , x n _ j , y ) r x i  
i=2 

+ ( - -  1) '~ {Xl, . . . ,  X,~_l ) ry  

-Jr E ( - -1 ) J+ l  (Xl '  " ' ' '  [Xu'XJ ]' " ' ' '  :~fi' " ' ' '  Xn - - I 'B}  
l<i<2<n--1 

+ ~ (--1)n+~(x~, . . . ,  [x,~]~. . . ,  ~ - ~ > / "  
l<_i<_n ) 

Therefore one gets 

(i(y)dn_ 1 + dni(y)) (xl, . . . ,  xn_l) 

= -(x~,. . . ,  x~_~)~ + ~ (x~,..., ~x~,~,..., z~_~ 
l<i<n 

= O(y)(x~, . . . ,  x~_~). 

ii) We have 

O(x)e(y){xl ,  . . . ,  x~) = (xl ,  . . . ,  z~) r~% - ~ (xl,  - . . ,  [x~, x], .. , x~ )% 
i=1 

-- ~ (Zl, . . . ,  [x~,y], . . . ,  xn}rx 
i=1 

n 

+ ~ (x~, . . . ,  I~, y], . . . ,  [xj, ~1, . . . ,  ~ )  
i , j=l  
~r 

+ ~ ( x ~ ,  . . . ,  [Ix i , y ] ,x ] ,  . . . ,  x,~). 
i= l  

Using the Leibniz identity and relation (i) of 2.1 we obtain 

(e(x) O(y) - O(y) O(x)) (x~, . . . ,  x~} 

= (~,  . . . ,  x~) r~,~ 1 + ~ (~1, . . . ,  [x~, [y, ~l], . . . ,  z~) 
i=l 

= -- O ( [ ~ , y ] )  (Xl ,  . . . ,  X,~). 
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and 

iii) By definition one has 

O(z)i(y)  (xl ,  . . . ,  xn)  

= ( - 1 )  ~ - (x 1, . . . ,  x ~ , y ) r ~  -4- (x t, . . . ,  [xi ,x] ,  . . . ,  x ~ , y )  
i=i 

+ (Xl, . . . ,  Xn,[Y,X])~, 
J 

i(y)O(x) {Xl~ . . . ,  Xn> 

= ( - l ) n  ( - {Xl' ' ' "  X n ' Y ) r x  § ~ (Xl'  ' ' "  [x i ' x] '  ' ' "  x ~ ' Y )  } 

Therefore one obtains 

(O(x)i(y) - i (y)O(x))  (x l ,  . . . ,  xn)  = ( - 1 )  '~ (Xl, . . . ,  x~,  [y ,x])  

= i ( [y ,x] )  (xl ,  . . . ,  x ~ ) .  

(iv) We proceed by induction on n. For n = 1 we have O(y)d l (x  ) = lulx and 
doO(y) (x) = - l~ru + t [x  y]. Therefore the statement in this case follows from the 
relations (ii) and (iii) of  2~1. For n > 1 we have 

(O(y)d~ - dnO(y)) (xl, . . . ,  xn) 

= ( - 1 )  n-1 {O(Y)dni(X,,  ) - dnO(y)i(x,~)} (xl, . . . ,  x,~_l). 

Thus it is sufficient to show that 

O(y) dn i (x )  - d~O(y) i (x)  = O. 

But 

O(y) dn i (x )  - d~O(y) i (x)  = O(y) ~(x) - O(y) i (x)  d~_ t 

- d ~ i ( x ) O ( y ) -  d~i([x,  y]) (by (i) and (iii)), 

= O(y) O(x) - O(y) i (x)  d n_ 1 - O(x) O(y) + i (x )  d~_ ~O(y) 

- 0([x,  y]) + i ( [x ,  y ] ) d ~ _  1 (by (i)) ,  

= - O(y)i(x)d~_~ -4- i ( x )O(y )d~_ l  

4- i([x, y ] )dn_  1 (by (ii) and inductive hypothesis), 

= 0 (by (iii)).  

v) In low dimension we have 

d id  2 (x 1, x2) = dl((x2)Ix, -4- (Xl)rz= - ([xl, x2] )) 

= l~21x~ + l*lrx2 - l[*l,X:l (by (iii) of  2.1), 

= - r~2I*~ + l*~rz2 -/[~1,~2] = 0 (by (ii) o f  2 .1) .  

To prove d=dn+~ = 0 we proceed by induction. We have, for n > 2, 

d,~d~+ 1 (xl, . . . ,  xn+l) = ( -  1)~d~dn+li(x~+l)  (xl, . . . ,  x,~), 
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but by (i) we obtain 

dndn+li(x)  : duO(x ) - dni(x  ) d n 

= dnO(x ) - O(x)d n + i ( x ) d u _ l d  n = 0 

by (iv) and the inductive hypothesis. [] 

(3.2) Non-commutative Koszul complex. For the proof that W,  is acyclic in positive 
dimensions we need one more complex, which corresponds to the Koszul complex in 
Lie theory. 

Let 7-: V --+ W be an epimorphism of free k-modules, and SLO')  be the algebra 
defined in (2.8). Let 

U~('c) = V | | SLO-) 

and d n : UnO') --~ Un_l(V) be the homomorphism of tight SL(T)-modules given by 

d~Ol ,  . . . ,  on) = 02,  . . . ,  ~,~) (l | vl) 
n 

+ E ( -1 ) i (v l ,  . . . ,  % . . . ,  vn} (Tvi | 1). 
i=2 

It is not hard to show that d~+ld n = 0. Thus (U,0-), d) is a chain complex. 

(3.3) Lemma.  Ho(U,(T),  d) ~- S ( W )  and Hi(U,(T) ,  d) = O for  i > O. 

Proof. The first isomorphism follows from the isomorphism of k-modules S L ( , )  ~- 
S ( W )  | S ( W )  | V.  This is also an isomorphism of tings if we define a product on 
the right-hand side by 

( f  + g @ v) ( f '  + g' | v ')  = f f '  + f g '  | v '  + f '  g | v - gg'T(v) | v ' ,  

where f ,  g, f ' ,  g' E S ( W ) ,  v, v'  6 V. Therefore 

UnO-) ~ (V | | S(W)) | (V | | S(W) o V).  

It follows from the definition of d that 

d(V @n | S ( W )  | V) C V | | S ( W )  | V 

and the projection of d[v|174 ) onto V | | S ( W )  | V coincides with the 
standard isomorphism 

V @n | S ( W )  "-~ V | | S ( W )  | V .  

This means that the kernel of the augmentation map, given by the first part of Lemma 
3.3, 

(U,(T),  d) ~ S ( W )  

is the cone of the map 
. , r U .  d"~ a , . ( U ; , d ' )  ~ , ,  , ,  



Leibniz Algebras 153 

where the chain complexes (U~, dr), (U~ I, d ' )  and the chain map a ,  are defined as 
follows: 

U~' = V | | S ( W ) ,  U" = V | | S (W)  | V ,  
n + l  

d~(vl' " " '  Vn+l ' f )  = Z ( - - I ) / ( V l '  " ' "  ~3,, . . . ,  Vn+I, 'cvif  ) 
/=2 

n 

, "" ,  vn, f , v ) =  (-1)i(vl ,"" vi, "" ,  vn , rvJ ,  v) 
i= l  

c~,~(v~, . . . ,  v n + l , f )  = (v2, . . . ,  v~+ l , f ,  v l ) .  

Thus Hi(U, (r ) ,d  ) = 0 for i > 0, because c~, is an isomorphism. [] 

Now we prove the main result of this paper. 

(3.4) Theorem.  Let g be a Leibniz algebra, such that g and gLie are free as k-modules, 
M be a representation of g, and A be a co-representation of g. Then 

HL*(o, M)  '~ Ext~yL(o) , , = (U(gLi~) M)  
UL(o) HL, (g ,  A) ~- Tor,  (U(gLie) , A) ,  

where the right U L(g)-module structure o n  U(~Lie) is given by the map d o : UL(g) 
g(~Lie) defined in 2.5. 

Proof It follows from the definitions that 

C*(g,  M)  = HomuL(o)(W,(g), M)  

C,(g ,  A) = W,(0)  | A .  

On the other hand W, (g )  is a componentwise free complex in the category of right 
UL(g)-modules. Therefore we need only to check that 

H 0 ( V i z , ( g ) )  ~ U(OLie) , 

HAW,(g)) = o, i > 0 .  

The first isomorphism follows from Proposition 2.4. In order to prove the second one 
we consider the submodule 

3~Y~(~) = ~| | ~_~UL(g )  C W~(fl). 

By definition of the boundary map d, we have 

Therefore we obtain the filtered chain complex 

0 C Yo(W,(~)) C . . .  C ~ ( W , ( g ) )  c . . .  C W, (~ ) .  

By (2.9) we have an isomorphism 

@ ~ ( w , ( ~ ) ) / ~ _ , ( w , ( o ) )  ~ u,(~ -~ ouJ 
i>=o 

and the statement follows from Lemma 3.3. [] 
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(3.5) Corollary. Let ~ be a free Leibniz algebra. Then 

H L i ( g , - ) = O ,  for i = 2 ,  

H L ~ ( g , - ) = O ,  for i_->2. 

Proof. By Proposition 1.9, we have HL2(~ , - )  : 0. Therefore the projective 
dimension of U(~Lie) in the category of right UL(~)-modules is less than or equal 
to 1. [] 

4 Central extensions of Leibniz algebras 

In this section we prove that 

HL2(sl~(A), k) HH~ (A), 

when A is an associative and unital algebra (free over k), n => 5 and k a commutative 
ring. Here HHI(A)  denotes the Hochschild homology groups of A with coefficients 
in A. In particular, when A is commutative, then HHa(A) is the module of Kfihler 
differentials f2~l k. Note that there is no characteristic hypothesis on k. If k is of 
characteristic zero, then this isomorphism follows from previous results [C, L]. This 
isomorphism is the noncommutative analog of the isomorphism 

H2(sl,~(A), k) = ~ HCI(A) 

proved by Bloch [B] when A is commutative and by Kassel and Loday [KL] in 
general. 

(4.1) A central extension of a Leibniz algebra 9 is an exact sequence of Leibniz 
algebras 

such that [a, O] = [0, a] = 0 and (0) is split as exact sequence of k-modules. A central 
extension (0) is called universal if, for every central extension (0') of g there exists 
one and only one homomorphism f :  0 --~ •' satisfying p = plf.  Classical arguments 
based on the universal coefficient theorem show that the following proposition is true. 

(4.2) Proposition. i) A central extension ([3) of g is universal if and only if b is pelfect 
(i.e. [[3, i~] = b) and every central extension of 13 splits. 

ii) A Leibniz algebra g admits a universal central extension if and only if g is 
perfect. 

iii) The kernel of  the universal central extension is canonically isomorphic to 
HLz(O, k). [] 

(4.3) Noncommutative Steinberg algebra. Let A be an associative algebra with unit 
over k. 

(4.3.1) Definition. For n > 3 the noncommutative Steinberg algebra stln(A) is the 
Leibniz algebra defined by generators vii(a), a E ~ ,  1 < i =~ j < n, subject to the 
relations 

v i j (Aa+#b)=Avi j (a )+#v i j (b )  , for X,p. E k ,  and a, b E A ,  

[Vii(a), Vml(b)] = 0 if i 4 t and j 4 m 

=-Vmj (ba )  if i = l  and j ~ m  

=vu(ab) if i=~l  and j-----re. 
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Let sl,~(A) be the Lie algebra of matrices with entries in A whose trace in A / [ A ,  A] 
is zero. Let 

~: st l~(A) .4  s ly (A)  

be the map defined by 
~(V i j (X) )  = E i j ( x ) ,  

where Ei j (x  ) is the matrix with only non-zero element x in place (i, j). 

(4.4) Theorem. For n >= 3 the kernel of  qo is central in st ln(A) and is isomorphic to 
HHI (A) .  Moreover if n >- 5 then 

0 .4  H H I ( A )  .4  stl~(A) ~ sl~(A) -~ 0 

is the universal central extension of  sl~(A) (in the category of  Leibniz algebras). 

Proof. The proof is essentially the same as in [KL], except for the definition of h(a, b). 
In our case we denote 

Hij (a  ~ b) := [v~j(a), vji(b)] , 1 < i 4 J < n ,  and a, b ~ A ,  

hij(a, b) := Hij (a  , b) - H~j(ba, 1). 

It follows from the Leibniz identity that 

(4.4.1) H~j (a, be) = Him(ab, c) + Hmj (ca, b), m ~- i, j .  

By using 4.4.1, we obtain 

(4.4.2) hij(a , b) = him (a , b) 

(4.4.3) h~j(a, b) = H~m(ab - ha, 1) + hmj(a , b), 

It follows from (4.4.1)-(4.4.3) that 

(4.4.4) h i j ( a  , bc) = hij(ab , e) + h~j(ca, b). 

Hence r?(a | b) = hij(a, b) yields a homomorphism 

~ : A  | A / I m b  -4 st l~(A) 

for which the following diagram is commutative 
b 

0 , HH~(A)  .~ A |  , A , HHo(A)  , 0 

1 1 l 
qo 

0 , Ker~  , s t l~(A) ., gln(A) , HHo(A)  , O, 

where b is the Hochschild boundary map. Similar arguments as in [KL] show that the 
restriction of r / to H H  1 (A) is an isomorphism onto Ker ~. [] 

(4.5) Corollary. Let k be a commutative ring and A an associative and unital k- 
algebra which is free as a k-module. For any n >= 5 there is an isomorphism 

HLa(sl~(A) ,  k) -~ H H I ( A ) .  

In particular, if  A is commutative, then 

HL2(sln(A) ,  k) ~ ~C21A[ k �9 [] 
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From the universality of this extension it is clear that stl~(A) inherates a structure 
of En(A)-module, which is lifted from the adjoint representation on sl~(A). So 
stln(A) is an extension of sln(A) in the category of E,~(A)-modules. Theorem 4.4 and 
results of [DI] imply that stl,~(A) is isomorphic, as E,(A)-module, to the "additive 
Steinberg group" St(A, A) of Dennis. 

(4.6) Characteristic element of the noncommutative Steinberg algebra. Let ~t = 
stl,~(A). It follows from the definition that l~tLie = 8~n(A), where st~(A) is defined 
in [KL]. We recall that, for n => 5 this is the universal central extension of sI~(A) in 
the category of Lie algebras. The commutative diagram 

0 , sln(A) > 0 

shows that 

0 sl~(A) , 0 

HCo(A) 

1, 
HHI(A) 

1 
...... , H C  I ( A )  

, stl~(A) 

1 
st~(A) 

0 0 

l} a~ = Ker(0 ~ IJLie) ~ Im/3 ,  

where B is Connes operator [LQ]. Hence 

0 ~ Im B ~ stl~ --* st~ ~ 0 

is a central extension. Moreover for n > 5 this is a universal central extension by 
(4.2) and (4.5). Therefore 

HLzst ~ = Im B .  

Thus 
2 1t1111 e ~  HL (l}Lie, t~ ) = Hom(HL2st~, Im B) = End(Im B) 

and eh(t~) corresponds to inn B. 

(4.7) Virasoro algebra. By (4.6) the universal central extension of stn(A) in the 
category of Lie algebras and in the category of Leibniz algebras do not coincide in 
general. What happens for the Virasoro algebra [KR] which is the universal central 
extension of the Lie algebra Der(C[z, z - l ] )  in the category of Lie algebras? The 
answer is given by the following. 

(4.7.1) Prolmsition. The Virasoro algebra is the universal central extension of the 
Lie algebra Der(C[z, z - l ] )  in the category of Leibniz algebras. 
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Proof. (Compare with [KR]). It is sufficient to show that 

H2(9, C) --* HLZ(g, C) 

is an isomorphism, where 9 = Der (C[z , z - l ] )  �9 Since it is already injective it is 
sufficient to prove surjectivity. 

The elements 

dn = Z _ n +  1 d 
d--z' n E Z  

form a basis for 9. It is well-known that 

[d~, d m] = (n - m) d,~+,~. 

Let (dn, d~) ~ f(n~ m) be a Leibniz 2-cocycle of 9. Then 

(4.7.2) ( n - m ) f ( n + m , k ) = ( n - k ) f ( n + k , m ) + ( m - k ) f ( n , m + k ) .  

If we put n = m = x, k = y -  x, we obtain 

(4.7.3) (2x - y)( f (y ,  x) + f (x ,  y)) = O. 

Take m + n = 0, k = 0 in (4.7.2) we obtain 

(4.7.4) f(0,  0) = 0.  

1 
Let g(n) = - f(O, n) if n @ 0 and g(0) = 0. It follows from (4.7.4) that 

n 

( f  - 59) (0, 70 = f(O, n) - rig(n) = f(0,  n)  - f(0,  n) = 0 ,  n E Z .  

Therefore we can assume that 

f(0,  n)  = 0,  n ~ Z .  

If we put n = k = 0 in  (4 . 7 .2 ) ,  we obtain 

f (m,O) = O, m c Z.  

Take k = 0 in (4.7.2) we obtain 

(4.7.5) (n + m) f (n ,  m) = O. 

It follows from (4.7.3)-(4.7.5) that f (n ,  m) + f (m ,  n) = 0 for all n, m and so f is 
also a Lie cocycle and hence Proposition 4.7.1 is proved. [] 

Remark. In fact H2(Der(C[z,z-l]) ,C) -~ HLZ(Der(C[z,z-1]),C) ~ C and a 
generator is given by the cocycle f such that 

f ( n , - n ) = n ( n  2 - 1 )  for a l l n E Z .  
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