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Sur les algébres de Bernstein. (French) [On Bernstein algebras]

Proc. London Math. Soc. (3) 58 (1989), no. 1, 51-68.

A Bernstein algebra A over a commutative ring K is one that admits a homomorphism
w: A — K and satisfies the identity (z%)? = {w(z)}?2?, z € A. Relative to each idempo-
tent e, Kerw has a Pierce decomposition U @ V', such that ex = %x forxeU, ex=0
for x € V. Jacobi’s identity holds in U, z(yz) +y(zz) =0 for x,y € U, z € V, (zy)(zt) +
(z2)(yt) + (xt)(yz) =0 for z,y, z € Kerw, t € A, and U> CV, UV CU, V2 €U, UV? =
0.

The authors begin with the study of derivations of Bernstein algebras. Theorem 3.1
gives the necessary and sufficient conditions for a linear mapping d to be a derivation
when char K # 2. They include d(e) € U and the fact that d has the representations
d(z) = fa(z) +2zd(e), d(z) = —2zd(e) + ga(x) where fq, g4 are endomorphisms of U, V,
respectively, corresponding to d in a morphism of Lie algebras f: Derx(A) — Endg (U),
g:Derg (A) — Endg (V). The remaining conditions relate to the effects of f and g on
U,V. As a corollary we have w-d = 0. The type of a Bernstein algebra is (dimU + 1,
dim V). The theorem is applied to Bernstein algebras of the extreme types. If dim A =
n+1, type A= (n+1,0), then Derg(A) is isomorphic to K™ x M, (K), the product
being semidirect and M, the full matrix algebra over K. If type A = (1,n), then
Derg (A) is isomorphic to M, (K).

The next section deals with derivations in the case char K = 2. Here, the conditions
include d(e) = 0, a decomposition d(x) = (w-d)(z)e + fq(z), and an appropriately
modified set of detailed identities. In order that w-d = 0, it is necessary and sufficient
that f should be injective. Further interesting results are obtained for char K = 2,
the first time that this case has been extensively studied in the context of genetic
algebras. The next sections deal with the automorphism group of A for char K # 2,
= 2, respectively. The general theorems are, mutatis mutandis, related to those on
derivations, but the exposition is illustrated by a wide range of examples. An important
role is played by the abelian group K (), # € K. It comprises those elements A € K such
that 1 —4M\0 € U(K), U the group of invertible elements of K (an unfortunate clash
of notation), with addition defined by A@ X = A+ X —4AN. In some cases Aut™ (A)
is isomorphic to K (0). If type A = (n+1,0), then Autg(A) is isomorphic to I,(A) x
GLk (U), while if type A= (1,n), Autx(A) is isomorphic to GLg (V). The final section
examines in detail the cases of all Bernstein algebras of dimension 3.

{See also the following review. } P. Holgate
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