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In this paper the authors define (U, W)-graded Bernstein algebras. Initially they prove
that if (B,w) is a Bernstein algebra then N(B) = kerw is a (U, V.)-graded Bernstein
algebra, where e € A is a nonzero idempotent and U, and V, are the subspaces of the
Peirce decomposition of B relative to e. Conversely if A is a (U, W)-graded Bernstein
algebra then the extended algebra A(e) = Fe+ U + W is a Bernstein algebra.

The concept of isotopy is introduced for (U, W)-graded Bernstein algebras and it is
proved that two graded Bernstein algebras are isotopic if and only if their extended
algebras are isomorphic.

In this context, it is possible to define Bernstein superalgebra and it is proved that
there are no semiprime Bernstein superalgebras over a field F' of characteristic # 2, 3.

Following this line the authors define (X,Y)-Bernstein supermodule over a (U, W)-
graded Bernstein algebra. They give two examples of irreducible Bernstein supermod-
ules, supermodules of type M (K,V,«a) and type M (W, X). They prove that if A is
a (U, W)-Bernstein superalgebra over a field F' of char F' # 2,3 and M is an almost
faithful irreducible (X,Y’)-Bernstein supermodule over A then M is isomorphic to a
supermodule of one of the types: M(K,V,«a), M(K,V,a)®, M(W,X), where an A-
(super)module M is almost faithful if its annihilator Ann M = {a € A| Ma = 0} does
not contain nonzero ideals of A. Henrique Guzzo, Jr.
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