

Citations

From References: 0 From Reviews: 0

MR1475912 (98k:17038) 17D92

Catalan, A. [Catalán S., Abdón] (RCH-FRN); Mallol, C. (RCH-FRN); Costa, R. [Costa, Roberto C. F.] (BR-SPL)

E-ideals in baric algebras: basic properties. (English summary)

Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 491–503.

If A is a commutative algebra over a field F (ch $F \neq 2$) and $\omega: A \to F$ is a nonzero homomorphism of algebras (weight homomorphism), the algebra (A, ω) is called a baric algebra. Then $N = \{a \in A | \omega(a) = 0\}$ is an ideal of codimension 1.

Etherington introduced the notion of train algebra over **R** or **C** as a baric algebra that satisfies an equation of the type p(a) = 0, for every $a \in A$, where $p(x) = x^n + \gamma_1 \omega(x) x^{n-1} + \cdots + \gamma_{n-1} \omega(x)^{n-1} x$ and also the ideals P and Q_{λ} generated, respectively, by the elements $a^2 - \omega(a)a$ and $a^3 - (1 + \lambda)\omega(a)a^2 + \lambda\omega(a)^2a$, where a runs over A.

In the present paper generalized Etherington ideals (*E*-ideals) are considered. Now $E_A(1, \gamma_1, \dots, \gamma_{n-1})$ or $E_A(p)$ is the ideal generated by all elements of the form $a^n + \gamma_1 \omega(a) a^{n-1} + \dots + \gamma_{n-1} \omega(a)^{n-1} a$, where *a* runs over *A*. So $P = E_A(1-1)$ and $Q_{\lambda} = E_A(1, -(1+\lambda), \lambda)$, respectively.

Some properties of E-ideals are studied, some of them in relation to the duplicate algebra. Among other results it is proved that $E_A(p) \subset E_A(1,-1)$ and that $E_A(r) = E_A(p) + E_A(q)$, where r is the greatest common divisor of p and q. In particular, the result by Etherington: If p and q are relatively prime then $E_A(1,-1) = E_A(p) + E_A(q)$, is obtained here as a corollary.

Santos González

© Copyright American Mathematical Society 1998, 2015