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Let K be a field of characteristic # 2 and denote by K(X) the free noncommutative and
nonassociative algebra on the set of variables X = {z1,...,x,}. A baric algebra is a pair
(A,w) consisting of an algebra A over K and a nonzero algebra homomorphism w: A —
K. The gametic algebras are the commutative baric algebras satisfying xy = %{w(x)y +
w(y)x} for all z,y € A.

The notion of gametization of baric algebras was introduced by the authors and
R. Benavides [J. Algebra 261 (2003), no. 1, 1-18; MR1967153 (2004a:17038)]. Given
v € K*, the gametization A, of a baric algebra (A,w) is the algebra with the same
underlying vector space as that of A and the new product (zy), = yzy + 1_T'Y{(w(ac)y +
w(y)z)}. The gametization reduces the study of algebras defined by an identity to
the study of algebras satisfying simpler identities. Applications of gametization were
given by the authors in [Algebras Groups Geom. 22 (2005), no. 1, 49-60; MR2140589
(2006a:17033)], and by M. Nourigat and Varro in [Comm. Algebra 39 (2011), no. 8,
2764-2778; MR2834129; Comm. Algebra 39 (2011), no. 11, 3956-3968; MR2855103].

After gametization, certain w-polynomial identities remain invariant and other iden-
tities called universal invariants are invariant for every gametization. Using an action of
the group of gametization operators on K(X), the authors give all identities which are
invariant and universally invariant by gametization. Luiz Antonio Peresi
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