Preface

These are notes from a course given during the academic year 1971/72

at the University of Virginia. My aim was to give an introduction to
the theory of algebras and triple system which should be accessible to
anyone who had had the basic algebra course. I attempted to give a
selfcontained exposition and provide a background that will enable the
reader to understand much of the current work with.triple gystems. I
also attempted to develop most of the results for arbitrary rings of
scalars, resp. without restriction on the characteristic of the field
of scalars. For this purpose the definitions of Jordan triple systems
and alternative triple systems had to be changed; the present axioms
were suggested to me by Kevin McCrimmon.

The material of Chapter I and II is standard and can be found in
[#] and [28] (the numbers in brackets refer to the bibliography at the
end of these notes). The introduction of the Jacobson radical via
symmetry principle, shifting principle and addition formula will show
the pattern after which one can introduce the radical in many kinds of
algebras and triple systems. The equivalence relation in 2.4. is

studied in more detail in [11].

Associative triple systems of the first kind were studied by Lister

and the a.t.s. of the second kind at first by Hestenes [3] and some of
his students; the structure theory I present in these notes is due to
Loos [f6], (his assumption char # 2 is not really necessary).

For results on Lie algebras (Chapter V) one may consult [4].



The theory of Lie triple systems has been developed by Lister [#]:
some generalizations and different proofs are due to myself [2g. The
method of computing the Killing form cam be found in [1].

For all results on linear Jordan algebras I refer te [i], [5] and
[#1. The short proof of the fundamental formula is due to McCrimmon
and myself (independently), see [5]' and [3]. The material in Chapter IX
(quadratic Jordan algebras) is taken from an unpublished manuscript of
McCrimmon. (See also [&].)

Jordan triple systems made their first appearance In the literature
(not vet with a name) in [§]. Thev were first studied per se by myself
([20], [24] and [43). A structure theory for finite dimensional Jts over
an algebraically closed field of char # 2 has been developad by Loos in
[1¥1. The classification of minimal inner ideals (10.6) is modeled after
the known results in Jordan algebras and is still incomplete for Jts's.
The remarks on regularity in 10.7. are standard (see £1, R).

The construction of Lie algebras from Jordan triple systems was
digcovered by M. Koecher [§). It turned out that Koecher's construetlon
in the case in which the Jts is a unital Jordan algebra (viewad as a Jta)
is a special case of a construction given previcusly by J. Tits in [25].
In my approach to the RKoecher-Tits-comstruction I tried to make the
construction look very natural by emphasising the conmection between
Jordan triple systems and Lie triple systems. This enabled me to apply
the results of Chapter VI. For the asignificance of Jts and the Koescher-
Tits algebras 1in differential geometry I refer to [10].

Most of the material in Chapter XIII is due to mysealf. I general-

ized to arbitrary rings of scalars and simplified my pravious results in



[24]. The theory of the Jacobson radical of a Jts includes a radical
theory for many other structures (for example Jordan algebras, alterna-
tive algebras, assoclative and alternative triple systems). Tha nice
result concerning strongly semiprime {ideals (Theorem 13.13) 1is due to
Lewand [72].

In Chapter XIV I give a simple proof of the von Neumann-regularity
of a semi simple Jts with dcc end thus generalize results of MeCrimmon's
[M]. Theorem 14.4 1is due to Helwig-Hirzebruch [Z].

The Pelrece decomposition is modeled after corresponding reaults
for quadratic Jordan algebras, ([£] and [iI8]). The concept and a first

structure theory of alternative triple systems is due to Loos [17].

He discovered the connection between alternative and Jordan triple
gystems. In the given presentation I followed closely his notes [#7],
but generalized most of the results to arbitrary rings of scalars (and
thus was forced to do some lengthy compuctations, see 16.3, 16.4). The
final classification 1is takem from Loos's notes.

I wish to thank John Faulkner and Kevin McCrimmon for their continued
Interest and many helpful sugpgestions and improvements. Finally I would
like to thank Georgia Murphy, Suyin Liang and Bok Scon Park for typing

the manuscript.

Charlottesville, July 1972

Furt Mevberg
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I. Nonassociative Algebras.

1.1. Let ¢ be a commutative ring with 1. A unitary ¢ -module Ck
together with a bilinear map (multiplication) Ax0 — 0 , (a,b) — ab,
is called an algebra over ¢ (or ¢-algebra). An algebra ar is

called commutative if ab = ba for all a,bell ; it is called

associative, if (ab)c = a(bec) for all a,b,cEO‘/ ;

Examples. 1l). Any %-module \}” together with (a,b)+ 0 is an
algebra.

2). If0{ is a ¢-module, then End @m together with
the usual composition of méppings is an algebra,
the algebra of endomorphisms of n . End (;n?.
is associative (but in general not commutative).

3) & (p(n,n) , the ®-module of nxn matrices over ¢

together with usual matrix multiplication is an
associative algebra.

4). In an associative algebraar one often considers the
commutator |a,b] : = ab - ba. (1 together with the
map (a,b) [a,b] is an algebra, denoted by OL_.

One easily checks

[a,a] =0
a6 .} + {[b,c] ,a) # [[e.a] 5] = o
for all a,b,c € (".
5). If one considers the anticommutator a ob: = ab + ba
in OL (GL associative) thena together with

(a,b)~ aob is denoted by (Ol* and one checks




aob =be a

ac((asa)eb) = (aca)e (aeb) for all a,be:-Ol/+.

An algebrazﬁ (over &) is called a Lie algebra, if

(L.1) xx = 0
(L.2) (xy)z + (y2)x + (2x)y = 0 (Jacobi identity)
for all x,y,zex .
Example: If Ol,is associative then (1~ is a Lie algebra and

any submodule of(lvclosed under [x,y] is a Lie algebra.

An algebra} is called a Jordan algebra, if
(3.1) Xy = yX
(T.2) (xx) (xy) = x((xx)y)
for all x,yé} -
Example: Any submodule of an associative algebra which is closed

under xoy is a Jordan algebra, in particular le is a Jordan algebra.

1.2. Let Gl'be any nonassociative (that means not necessarily
associative) ¢-algebra. For submodules W ,FOC‘_OL we use the
notations Ul+AO and UWQ for the submodules generated by all
u+ v rsp. uv, eu,vef@ . A submoduleu is a gubalgebra,
if WL e W, it is an ideal, if OV + WO e W . an ideal
o\Gﬁ of ins called a proper ideal, if I—+ 0 and & 1=0L . A is

simple, if Olsas o0 proper ideal and ad ¥ 0.
1f DL is an ideal ina , then one defines in a natural way in

the guotient module

= _ O
o - 5

a multiplication




(a+W)md +WV): =ab + W
&V together with this multiplication is called the gquotient
algebra of OL mod Ui.

A homomorphism of ¢-algebras D[/ ’ OL' is a ¢-linear map

£: O — Q' such that £(ab) = £(a)£(b) for all a,be (.
Isomorphisms and automorphisms are defined in the usual way.

We have the standard results.

Theorem 1. (i) A subset o& COLE an ideal, _:!.__f_:_E_x is the kernel

of some homomorphism.

(ii) If £: OL — OV is a homomorphism (of algebras)
- O
then £(0)) = 4rnel £

(1i1) Ibe LO are ideals in Gv then

0 s X

T3k Leta be an algebra. A linear map D: A =0 is called a

derivation of Ol , if

D(ab) = (Da)b + a(Db)  for all a,bell .
One easily checks that for derivations D;s» D, the commutator
[Dl,Dz.] again is a derivation, hence the $-module of all
derivations of OL together with the map (Dl,Dz) - [Dl,D2] is a
Lie algebra (a subalgebra of (End ¢(}L)_) . It is denoted by
r&'(OL) and called the derivation algebra of G/

1.4. For anL we define endomorphisms L(a) and R(a) of 0], by

L(a): x+ ax; R(a): x++ xa
i.e. L(a)x = ax, R(a)x = xa.

We call L(a) rsp R(a) the left (rsp. right) multiplication of a.




With these notations we rewrite some definitions.
a) O/ is associative, i.e., (xy)z = x(yz) for all x,y,zc—'_a, is

equivalent to either

(1) L(xy) = L(x)L(y)
(ii) R(yz) = R(z)R(y)
(iii) L(x)R(z) = R(z)L(x)

(for all x,y,z € OL ) Jo
An easy computation shows that L(x) - R(x), x 6(1r, are derivations
™
of GL.
b) Letd& be a Lie algebra. In (L.l) we replace X by x + y and

obtain 0 = (x + y)(x + y) = xx + Xy + yx + yy = xy + yx, or

Xy = - yX.
with this the Jacobi identity may be written as
(xy)z = x(yz) - y(x2z).
In terms of the left and right multiplications the last two
equations are equivalent to
(1.3 L(x) = = R(x)
(L.2') L(xy) = [L(x),L(y)]
for all x,y ei’ .

c) Looking at (J.1) and (J.2) we see that an algebra }- is
a Jordan algebra, iff
(F.1") L(x) = R(x)
(7.2"7) L(x)L(xx) = L(xx)L(x)

for all x e_} .
d) A linear map D: 0 —0b is a derivation, iff

L(Dy) = |D,L(y)] for all ye O} .
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(L.2') shows that in a Lie algebra all left multiplications are

derivations.

1.5, For any algebra 0l one defines the "derived series"”
C;'= (l!“] 3 OL(IJ GL{Z} =5 DL{H
(©) (k+1) (k)
by O " =0, O - UL Ol—

Il-'.}
(0)
In general only v and OL arr-: ideals of O .
(k)
Exercise. Ifx is a Lie algebra, then & + k20, is an ideal of uta

An algebraa«is called sclvable, if (ltn} = 0 for scme n.

Lemma 1. Subalgebras and homomorphic images of solvable

algebras are solvable.

Proof. Easy exercise.

Lemma 2. I£.L is an ideal of Ob, then ( is solvable iff & and

[}f;ﬁ_ are solvable.

Proof. One direction follows from lemma 1. By the definition

of multiplication in a}’x_ we get

k) (k)
(%ﬁ 1
The guotient being solvable implies m'{,)" = (0 for some k, or
equivalently GJH‘:;@ But then
C:I,-{k+5} ) U.,“ﬂ}{s} = ;'3{51' = () for some s, since & is
solvable.

Theorem 2. (i) EUL ,a"-ﬂ are solvable ideals in an algebra ':L, then

! +4 s a solvable ideal.

_

(1) If (I is Noetherian then (l has a unique maximal

solvable ideal R{ﬁlﬁ} which contains all other solvable ideals

and Eurthermore K ( Ui:,n UJU] = 0.




(Note: We callOv Noetherian, if every nOn-e-mpty set of ideals
has a maximal element.)

Proof. By theorem 1 (iii) we have

WV +’&

V-
Since /10 is a homomorphic image of the solvable 1dealm it is

vmno )

solvable by lemma 1. Henceu % is solvable, and lemma 2 then
shows that W+4 is solvable.

LetOL be Noetherian and ® (l) a maximal element in the
set of all solvable ideals in Olr (this set contains the zero
ideal). Let K' be any solvable ideal; then R(OL) + R
solvable by part (i) of the theorem. Since R ((V)c R () + T
we have R(O) = B (0) + R by the maximality of R (). This
implies R' < ®(Ol) and if in particular ®K' is maximal solvable
then 'EQ,' = ’R(OLJ If U/:Ls solvable in /) then’U], is solvable

in OV , hence contained in ¥ (OL) and consequently ,UL = 0, which

shows R{{%O“) = 0.

The unique maximal solvable ideal & (O/J is called the solvable
radical of OL .

1.6. Powers of an element aEO]r (af an arbitrary algebra)
are defined recursively by

1l n+l n
a” = a, a = a a.

In general aa + aa”.

An algebraq/ is called power-associative, if

n_m n+m
a'a = a for all aea , n,m21.



7
aEGL is nilpotent, if a™ = 0 for some n. (0 is nilpotent).

An ideal E < G iz ecalled nil, if all elements in L are nilpotent.

Lemma 3. Let (bbe an algebra in which (a™)™ = a™ for all

aell, n,m. E_;E_z & are nil ideals EEUL’ , then & +4&

is nil.

Proof. Let b + cF_;f-Hﬂ_ {bez F cE'{r- ), then

(b + -::}n bn + d where det{: « Since b 1s nilpotent we get

(b + E]n d for some n. Since dE'C ; 1t is nilpotent and with

our assumption it follows
(b +c)™=((b+c)™M™ =0 for some m.

Since the property of an idea 5 defined elementwise we get
the existence of a maximal nil ideal Wr{ml by Zorn's lemma.
The previous lemma shows that ifav is power associative then ’SL

is uniguely determined; it is called the nilradical of a' -

1.7. An element e (b (again a arpbitrary) is called a unit element,

if ea = aa = a for all a Ea s Or equivalently, if
L{e) = R{e) = id, the identity mapping. GE’U.- is called an idem-
potent ufgl- if ¢ # 0 and ¢2 = C,

e ——

There is a standard construction to imbed any algebra (U into
an algebra ﬁ.»with unit element. Consider the ¢-module
a = v-100 = f (ot ,2); xe0, acO}
and define a multiplication in a« by the formula
(K ,a)(B,b): = (xB,cb +Ba + ab) ,
then 01 has a unit element (1,0) and a+= (0,a) defines an iso-

-

morphism of L into OL . By means of this isomorphism one ldentifies
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~

OV with its image, so Ol is an ideal in 0. Instead of

(X ,a)é& d« we writeal + a. If OL is associative, so is 6!, (easy
exercise) , but if b is a Lie algebra, éwis not 1 Lie algebra, since
a Lie algebra does not have a unit element # 0.

1.8. An endomorphism j: M- 0 of an algebra is called an

involution, if

j(ab) = j(b)j(a)
j(i(a)) = a for all a,bG,OL,

1f O1°P genotes the algebra which has the same module as@z but
multiplication (x,y)H—> xoy defined by xoy = yx for all x,y EOL ’
then an involution may be viewed as a isomorphism j:OL — C,\,OP.
A submodule % C O is j-stable if j(Z)CZ. . Let Ol have an
involution j. The pair (a,j) is called simple, 1£0) has no

proper j-stable ideal and @2 $+ 0.

Theorem 3. Leta be an algebra with involution j and (OL,j)

simple. Then either

(1) Ol is simple, or
(i) 02 & ® $°P, £ a simple ideal of Ol ana

j(bysb,) = (by,by).
Proof. 1If OL is not simple, then it has a proper ideal z‘ .
0 +£+0). It is obvious that j(&)n& and j(e) +% are
j-stable ideals, consequently j(x')r\\-ﬁ‘ = 0 and j(aﬁ)eﬁ- =0
since ( OJ,3) is simple. By the previous remarks j (&) may be
viewed as isomorphic image of %Op, hence 0\, & ® L °P and

{8
j(bl'bz) - (b2’bl) « If fcis an ideal ofrx then GL‘C C &K .
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since LPL <L °PAY% = 0. This shows that & is an ideal
inOl ana if 4<:'+ 0 the above construction shows
(]L = v @3 (JC) . This implies % = 'CJ and #r is simple.
1.9. An important tool in the structure theory of algebras are
certain bilinear forms.

Let O/ be an algebra over ¢ and y le& > ¢ a bilinear

form. A is called associative, if

AMxy,2z) = A(x,y2)
Example. If Gv is a finite dimensional associative algebra over
a field, then (x,y)** trace L(xy) is an associative bilinear form.
The importance of such forms can be seen from

Theorem 4. (Dieudonne). Let apg_ a finite dimensional algebra

over a field F satisfying

(i) O has a symmetric non degenerate associative bilinear form ),

(ii) if & + 0 is an ideal of Ol , then £2 % o.

Then@/i;s_ a direct sum of simple ideals of (1 i

Proof. Let :é be a minimal ideal (#0) of 0 . The associativity

of A shows that xi-={x, l(x,x-) = O}is an ideal ofOL. Since
ﬁ-’\\ﬁ* is an ideal inx , we get o‘@ﬂ:@} =:@- or o%‘?nfr-L= 0,

by the choice of & . Suppose the first case holds and let

b, b'e?; ; aé:a ; then 0 = A (ab,b') = N(a,bb'). Since A is
non degenerate, bb' = 0 and o‘éz = 0, contrary to assumption.

Hence ﬁr\ ‘£-L = 0 and O]«= & e;ﬁ-l (Here we make use of the finite
dimensionality of @,), Any ideal of ;g is an ideal of Olr(same

argument as in the proof of theorem 3), then by the minimality of




—

10
s z : 2 ;
£ it has no proper ideal. Since %- 4 0 by assumption,
we see that:ﬁ-is simple. Since the assumptions (i) and (ii)
i
are tvue in & we get by an induction argument the decomposition

of(l'as a direct sum of simple ideals.

II. Associative Algebras

2.1 Letcn be an associative algebra over a ring ¢ and
assume that Ol has a unit element e. An element aéO]r is called

left invertible (resp. right invertible) if there is an element

be b (b'ficqv ) such that ba = e (resp. ab' = e). a is

invertible if a is left and right invertible.

Lemma 1. The following statements are equivalent,

(i) aeO is invertible,

(ii) there is a unique element a-lé'O]r such that

ala = aa”l =e

(iii) L(a) is invertible (in endq;OL ) .

Proof. Let b,b'e(l be such that ba = ab' = e. Then

b = be = b(ab') = (ba)b' = eb' = b', consequently (i) »> (ii).

-, ], 1

If a "a = aa e then L(a_l)L(a) = L(a)L(a

d

) = id . This

I

shows that L(a) is invertible and L(a ) = L(a)_l, thus
(ii) * (iii). To show (iii) = (i) assume L(a) invertible,
i.e. L(a)U = UL(a) = id for a unique UE€ endov (apply

(i) => (ii) to &nd (Ol ). All terms of this -equation acting on

e & A gives au = Ua = e for u = Ue. But then L(a)L(u) = id
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it has no proper ideal. Since % 3 0 by assumption,
we see that «x- is simple. Since the assumptions (i) and (ii)
i
are twvue in e we get by an induction argument the decomposition

of a as a direct sum of simple ideals.

II. Associative Algebras

2l LetOl be an associative algebra over a ring ¢ and
assume thatOL has a unit element e. An element aGOL is called

left invertible (resp. right invertible) if there is an element

bEO'L (b'eOL ) such that ba = e (resp. ab' = e). a is

invertible if a is left and right invertible.

Lemma 1. The following statements are equivalent,

(i) acE€ OL is invertible,

(ii) there is a unigue element a tell such that

a a = aa =e

(iii) L(a) is invertible (in endgQ ).

Proof. Let b,b'cUl be such that ba = ab' = e. Then

b = be = b(ab') = (ba)b' = eb' = b', consequently (i) -+ (ii).

1 1)

= e then L(a-l)L(a) = L(a)L(a id . This

If ‘& —a =@
shows that L(a) is invertible and L(a-l) = L(a)_l, thus
(ii) » (iii). To show (iii) =+ (i) assume L(a) invertible,
i.e. L(a)U = UL(a) = id for a unique U € enda (apply

(i) > (ii) to &na Ol ). All terms of this .equation acting on

eG:Cl gives au = Ua = e for u = Ue. But then L(a)L(u) = id
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and L(a)U = id, consequently U= L(u) (since the inverse is
unique). It follows au = ua = e. (Observe that the associative
law was used at essential steps).

Lemma 2, If ue b is nilpotent, then e - u is invertible.

Proof. Let uk =0, then put v=e + u +...+ uk_l

and

check (e - u)v = v(e - u) = e.

2.2. Lemma 2 leads to the following definition. Let BV be an
associative algebra (not neccessarily with unit element) and

EW = 9100 be the algebra obtained from.arby adjoining a unit
element (see 1.7.).

erOL is called quasi invertible (g.i.) with gquasi inverse vy,

if 1 - x is invertible in (A with inverse 1 + y. (Remark: If
1 - u has left or right inverse ol + v in (| then
l1=(1+vVv)(1l-u) =1+ v -0u - vu implies™= 1.)

Lemma 3. The following statements are equivalent:

(1) xe(l is quasi invertible,

(ii) there exists yell such that v - x = yx = xy,

" (1iii) 4id - L(x) is invertible.

In either case the quasi inverse y is uniquely determined by

(2.1)  y = (id - L(x)) “Ix.

Proof. (ii) » (i). Assume y - X = yX = Xy, then
l=1+y-x=-yx= (1l +y)(l -x) and
l1=1+y-x=-xy=(1=-x)(1+y).

(i) » (iii) If 1 - x is invertible in (Ol then by lemma 1 the

left multiplication L(1 - x) of 1 - x in Ol is invertible and
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consequently the restrictinnltogmrfil - xlil = 1id - L{x)
must be invertible since OLiﬂ an ideal cf'a,- If (ii4)
holds, set y: = (id - Lix]}‘lx and cbhtain y - ¥ = xy = yx,

(For xy = yx use the fact that L(x) (id -~ th}—l -

(id - L(x}]ilL{x}.! Since the inverse of an element is
uniguely determined, y is unigue and we just saw
y = (id - L[x}}-lx.
Remarks. 1) Lemma 2 shows that nilpotent elements are
guasi invertible.

2) The egquivalence (i) =<=> (ii) shows that if arhas

a unit element e, then x is g.i. iff e - x is invertible inil .
2.3, Letgb be an associative algebra and ue:-'.a « The map
(x,y) =+ xuy, x.y:zUL defines another multiplication on Q.
The mndulel]ftugether with this multiplication is denoted by

aau and is called the u-homotope of CL . 1t is obvious that
any homotope of an associative algebra is associative.
Lemma 3 shows that x g.i. in (Eh with guasi inverse y, iff
(2.2) ¥y - X = Xuy = yux.
We introduce the following notations; we say gix,y) exists, if
¥ is ¢.i. in EL} with quasi inverse q(x,y); if x is g.i. in OL
we denote the quasi inverse of x by g(x,1l). Furthermore, we
define

(2.3) B(x,y): = id -L(xy)

Lemma 4. (Symmetry principle). The following statements are

eguivalent,
(1) 4q(x,y) exists,

(ii) gixy,l) exists,
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(iii) g(y,x) exists,
(iv) qgl(yx,l) exists,
(v) B(x,y) invertible,
(vi) B(y,x) invertible,

In either case

(2.4) a(x,y) = B(x,y) 'x

Exercise. g(x,x) exists » q(x,l) exists.

Proof. (i) -» (ii). Let u = gq(x,y). Then by (2.2)

u - X = Xyu = uyx. Multiply by y from the right to obtain
uy - Xy = Xyuy = uyxy, this means that g(xy,l) exists.

(ii) + (iii) Let w = g(xy, 1), then

W - Xy = WXy = Xyw, hence
YW = YXy = ywxy = yxyw. It follows

(yw + y) - y = yw = ywxy + yxy =yxw+.yxy = (yw + y)xy = yx(yw + y).
But this means that g(y,x) exists.
(iii) & (iv) » (i) follows from interchanging x and y in the
parts we already proved. (ii) <=> (v) follows from lemma 3.
Then (2.4) follows from (2.1) in the y-homotope.
Remark. Actually we proved a stronger result, namely if

u = gq(x,y) then uy = gq(xy, 1) and

aly,x) = ya(x,y)y + y.

Lemma 5. (Shifting principle).

If ¢, ¥ are endomorphisms @Ol such that

L(Px)R(Py) = PLIX)R(YIVY
and L(yx)R(¥y) = YL(x)R(y)p for all x.yéa’ ’
then q(x,Vy) exists iff q(¥Px,y) exists.

In either case
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Walx, vy) = qglex,y).

Proof. Let u = qlx,yy), i.e.
u-x= . ulpylx = x(yy)u.
Apply ‘¥ to obtain (using the assumptions on ¥, V¥ )
Pu -px Pludyx) = F (xpyu)
(Puy(P x} = (¥x)y(Pu)
This shows @q(x/4y) = al ¥x,y).
Assume g(Px,y) exists, then by the symmetry principle g(y. ¥x)

exists, by the part we already proved we get that g( ¥Yy,x) exists,
again the symmetry principle implies that g(x, yy) exists.

Remark: <= L(a),t = R(a) and = R(b) ,¥ = L(b) ,a,be GT,- satisfy
the hypotheses of the lemma.

Corollary. If a,be (O} ,x,y€ 0L , then

gl(axb,y) exists iff g(x,bya) exists.

Lemma 6. (Addition formula.) If g(x,y) exists, then

(1) B(x,y)B(gf(x,y) ,z) = Blx,y + z)
(ii) alg(x.y) ,2z) exists iff g(x,y + z) exists. If this is

the case then

(2.5) glgix,y).,2) = qlx,y + 2)
Proof. Put u = g(x,y). Since u - x = uyx = xyu we get

(id - L{xy)) (id - L(uz)) = id - L(xy) - L(uz) + L(xyuz)
= id = Li(x(y + z)) = B(x,y + =)
This is (i). Since g(a,b) ex. iff B(a,b) invertible, the first
part of (ii) can be read off from (i) since B(x,y) is invertible.

Using (2.4) and (i) we get
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glx,y + 2) « B(g(x,v),2) " Blx,y) "Tx = Blalx,y) ,2) Falx,y)
= glg(x,y) .2).
Now we define

Rad G’I.,: =-{_xé @v ¢ glx,y) exists for all yEur}

Note: If x<=Radll then in particular g(x,1l) exists (see

exercise, p.13).

Theorem 1. Rad(l is an ideal ina, and Rad{g’l;z/ ) = 0.

Proof., x& Rad& is equivalent to B(x,y) invertible for all
vell , by lemma 4. If e 9, xe Radll then & xe Radll follows
immediately from B(&xx,y) = B(x,xy). If y,ze Radﬂr then
B{x,y) and B(u,z) are invertible for all x.u&'ar (symmetry
principle) in particular B(g(x,y).,2z) is invertible. The
addition formula then shows that B(x,y + 2z) is invertible

for all x, thus y + z€ radb . we proved that Rad(l is a
submodule. If g(x,y) exists for all ye a, g(x,ayb) exists

for all a,be L'.l:. But then g(bxa,y) exists (Shifting principle
resp. Lts coreocllary). Consequently &Radala‘l’c Radoy and

Rad{l is an ideal. If EERad{l ’ CI- Dﬁ/ ﬂ.: then for every
Rad

— ——

vy there exists u such that u - X = uyx = Xyu or equivalently
u=-x = u}FKERBdUL . But then B{u - x - uyx, - y) =

B{u, - v)B(x,y) is invertible and therafore B(x,y) is right
invertible, similar!ywe. get that B(x,y) is also left invertible,
hence invertible. This is true for all yEa' + hence

X € raa and x = 0.
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The ideal Radmz is called the Jacobscon radical of CL. C}l is
called semi QEEEJ.EI, if Radm- =0,

A submodule i of ais called a left ideal, if Gbﬁ':# ;

:g is called gquasi invertible (nil) if every element of «ﬁ is

quasi invertible (resp. nilpotent). Since a nilpotent element

is quasi invertible, every nil module is quasi invertible.

Theorem 2, EE is a guasi invertible left ideal gﬂl«, then
ol < Ra&ﬂ* ’

Proof. Let bé&fr ' xéar  then xbe X and is guasi invertible

by assumption, i.e., g(xh,l) ex. From the symmetry principle
we get that g(b,x) exists for all anr , hence be raa O .

Corollary. Rad(l contains every nil left ideal ﬂﬂr .

Remark: The sam argument applies to right ideals.

Theorem 3. 5;_2@ is an ideal ﬂa ;, then
padl =EA paalh,

Proof. Clearly &~ radll «¢ Rad%& since the guasi inverse of

an element of & is inag'(by (2.1)). Conversely let % be an
alement in Rad & ; then g(x,b) exists for all be % and therefore
B(x,h) is invertible for all b & ;ﬁ— . BSince B(x, - z}B{xlz] =
B(x,2z)B(x, - 2) = B(x,zxz) for all ze(l and zxze& (xeZ ),
we get that B(x,z) has to be invertible for all zeOL , or
xERad(l .

Corollary. _Every ideal of a semi simple associative algebra is

semi. simple.

Exercise: IE ol C‘l + [1- is an automorphism, then

o (Rad L) = raa L
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2.4. Using the notion of quasi invertibility we can introduce
a relation on Glrby the following definition

R: = { (x,y) & A =01 , x =qly,w) for some we (Ol j’

Using lemma 3 we see (x,y)€ R iff x - y = xwy = ywx for some
well .

Theorem 4. R is an equivalence relation on av.

Proof. (x,x)€ R for all x oL and
(x,y)€ R => (y,X)€ R are obvious.
If (x,y).,(y,2)e R, then x = g(y,w) for some w0l and
y = gq(z,u) for some u. But then from the addition formula we

get x = q(g(z,u) ,w) = gq(z,u + w), in particular (x,z)E€ R.

2.5. The Peirce decomposition. LetOL be an associative

algebra and c = 02 an idempotent inOL . Clearly
(2.6) x = cxc + (cx - cxc) + (xc = cxc) + (x - cx - xc + cxc)

Define

GLll=cCLc, ULlo=cOL(1 R T 0Loo=

ol

(1L - O]/ (L - c)jit is immediately seen

& OLll = OLllc = Ol’11'c Ol’lo = Ol’ln' O’loc = Dl COLOJ. =0,
G e = Ol’Ol'c OLOO = O’OOC

01l
shows

(2.7) O =08 G0 Oy O,

0. This together with (2.6)

The decomposition (2.7) is called the Pefice decomposition of

OL relative to ¢ and O”ij are the Peirce spaces (resp. modules).

, . C , _
Exercmse.G\/ii O‘/iic OLii(l = 0;1) ,01/110/ 10 OLlO' q’ll CLOl = 0,

etc.
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Lemma 7. i :E‘Cﬁ. 8 an ideal, then

| — —

=1 @ (O nd)

i;j - nrl—
Proof. The decomposition (2.6) (which is unique) shows that
the components of be' in the different Peirce spaces are

elements of & since 5 is an ideal.

Thecrem 5. (i) Ra.dm = 8 Ui-ij.ﬁ rad (L )
(ii) Rad U!rii = Ohyyn raa Qb

Proof. Clearly G"iin Radgr': Rad a’ii' Assume i = 1 and

X € Rad 01«11. then x = cxc and g(x,cyc) exist for all y& OL .
But by the symmetry principle this is the case iff g(cxc,y) =
g(x,y) exists for all yE{l , consequently x& Rad@lf.
Example. Letar'be an associative %-algebra with unit element
e. Consider the ®-algebra ﬂ,‘n'n} of all nxn matrices with
coefficients in Cﬁ, « The multiplication is the usual matrix
multiplication. Ol,{n'n] is associative.

. 0 P +sP+9=n
The matrix E = a

cbvicusly is an idempotent,

For the computation of the Peirce components Aij of
X8
. ALl A NP
A= —1‘—2 we use (2.6) and get
33}34
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1!;11 = EAE = ("‘1 ﬂ) as componetl of A in Gq"ll' Similarly
0 0

0 A o o) 0 0
A = 2 A, = A =
10 (c: ﬂ)* 01 (A3 ﬂ) ! 00 (G AJ.

2.6. OL—mcdul&s, I.et@/ be an associative ¢-algebra and

TTL a unital #-module. m together with a map vam + M '
(a,m) a'm is called a left m-mdule, if (a,m) = a-m isg

¢=bilinear and if x+(y*m) = (xy)+'m for all x,yEUl' m Em .

Example. Any left ideal incﬂ/ is an Ulr-mdule.

Remark: If L is a subalgebra of GL P thenmtﬂgether with

the induced mapwxxm.+ m ; (b,m)V>b+*m, is a x;-—mndule.
Right Cﬂt—mndules are defined accordingly.

2.7. An associative algebra is called (left) Artinian, if
any non-empty set of left ideals has a minimal element.
Exercise. OV is left Artinian, iff any descending chain of
left ideals of 0L p Z 11'-" iz 3 - - D:ﬁkbu + becomes stationary,
184 p ﬁn = %n_'_j, jzl1 for some n.__l-;im:e we will be mainly
concerned with the radical of Artinian algebras, we shall only
prove the fundamental result about the radical in an Artinian
algebra. We need a definition. If0L is an associative
algebra andrx-l' a subalgebra, then the powers oftﬁ are defined
recursively by q\ﬁl =X , iiﬁl = kau"&-’ - x‘ is called
nilpotent if £ = 0 for some n3l.

Theorem 6. _I_f_ol« is Artinian, then Rﬂ.daf is nilpotent.

Proof. We set & : = Radll and consider the descending chain

'531?312::... Rflp--.
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then Rk = Rn for some k and all nrk.

Suppose Rk' + 0 and let
5 = {_ﬂ £+, Wis 1eft ideal of Ol ana REU $ ﬂ& -
S + ¢ since RER = 'Ek"'l = 'R.k 4 0 implies Ke S. Let
7 be a minimal element of S ( OV is Artinian). '['E,kx}' £ 0
implies that there exists an element be® such that Kb + 0.
Clearly RXbC#& . Since BX( ¥ = RZkb = Rkh + 0 we
get that Rrpes. Consequently R* =% since & is minimal in
5. Now we have b = pb for some v Eﬂkcn or eguivalently
(1 =r) b= 0. But T’EJE', implies 1 =Y invertible in a.: (ses
remark on p. 15 ), thus b = 0 which is a contradiction to

R*¥s £ 0. Hence R* = 0.

Coropllary. A simple Artinian associative algebra [1-_::._5 semi simple.

Proof. If Rad(l is not trivial then A = raa(l ; Since rRad Ol
is an ideal anda is simple, By the preceding theorem we get
that ais nilpotent. Then L fc"-’ (otherwise ﬂ!,k =l for all
k and then 0L = 0). since WOV is an ideal in (U it has to be
zero. This is a contradiction to (Lfl+ 0.

We state without proof the main results on semi simple
associative Artinian algebras.

Theorem 7: An Artinian algebra is semi simple, i1ff it is

the direct sum of a finite number of simple Artinian algebras.

An associative algebra is a division algebra, if every

element # 0 is invertible,

Theorem 8. Eﬂli_s a simple Artinian algebra over a field K,

then a'j._s_ isomoxphic to the K-algebra of all nxn matrices over

a K-division algebra (for scme n).
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A semi simple Artinian algebra has a unit element.

Exercise. Let OLbe an Artinian algebra. Show thatU]/ is
semisimple iff any ideal -:73'1 in 0V has a direct (ideal)
complement i P BT (1/= %—10 é@z, £‘2 an ideal ofol' -
If Q/has an involution j and \b'é’l is j=invariant, then %‘2
is j-invariant. (Hint: decompose the unit element e in

OV as e = e, + e , Show ey unit element in %i and j(eﬁ) = e{.).

1 2

III. Triple Systems.

3.1. A unital ¢-module ¥ together with a trilinear map

?" x F x?-—*?)(x,y,z) - <xyz> 1is called a triple system.

Examples. 1) Let -\F = Q{P’q) be the ¢-module of rectangular

t t

pxg-matrices. If A,B,CG‘:F , then ABC is in:', where B

denotes the transposed of B. Since (A,B,C)+w> <ABC>: = astc
is trilinear, £ together with this "triple product" is a triple

system.
2) 1£ () is any (non associative) ¢-algebra. Then

Q, together with the map (x,y,z)+ <xyz> : = (xy)z is a triple
system and any submodule closed under (xy)z is a triple system.
\

Note: ifa, has a unit element e then xz = <xez> and the

structure of O\ras an algebra can be completely recovered from
the triple system structure onOL .
3) Most important examples for the situation just

described are the following. LetOL be a ¢-algebra and

j: 0L - Cﬂ, an involutorial automorphism (i.e. j(ab) = j(a)j(b)»j2 =

id) then 01/8 = )LerL yJ(x) = ex &,e = +', are closed under

(x,y,2) ¥~ (xy)z, but in general OL_ is not a subalgebra.
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A semi simple Artinian algebra has a unit element.

Exercise. Let Oir be an Artinian algebra. Show that UI/ is
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II1. Triple Systems.

3.1. A unital ¢-module f'; together with a trilinear map

T xY x‘?*?,{x.y,z] - <xyz> is called a triple system.

Examples. 1) Let 1?-' = ¢<F'q} be the ¢-module of rectangular

t t

pxg-matrices. If A,B,C E¥ ¢ then AB™C is intr,whara B

denotes the transposed of B. Since (A,B,C)+> <RBC>: = A.Btc
is trilinear, Ef? together with this "triple product" is a triple

system,
2) Ifa- is any (non associative) ¢-algebra. Then

O, together with the map (x,y,z)+ <xyz> : = (xy)z is a triple
system and any submodule closed under (xy)z is a triple system.
i

Note: iffl has a unit element e then %z = <xez> and the

structure ofmfas an algebra can be completely recovered from
the triple system structure anmr .

3) Most important examples for the situation just
described are the following. Letm be a ¢-algebra and
3 OV » O} an involutorial automorphism (i.e. j(ab) = j(a)j(b) rjz -
id) then Ul/E = IL:-:EUL- (j(x) = ex ]],E = + , are c¢losed under
(x,y,2)~ (xy)z, but in general UL_ is not a subalgebra.

—
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The abéve examples show that a theory of triple
systems of course includes a theory of algebras and "minus
spaces" of algebras relative to involutorial aﬁtomorphisms.

For submodules Ub, 1 5 ’I"OC? ; we denote by < W /—OMO >
the submodule of 7 generated by all "triple products" <uvw> ,
ue W el ,we”o . A submodule Ulzis a subsystem if
<WW W >cW, it is an ideal, if <UFF > + <FU¥> +

<FFW sclh a ¢-linear map f:& — ¥ is a homomorphism

of triple systems ¢, Y¥', if f(<xyz>) = <£(x)£(y)£(z)>
for all x,y,z e . Isomorphisms and automorphisms are
defined the usual way and the standamr results hold. (Thé
proofs are the same as for algebras.) Ifur is an ideal in a

triple system ? ,» then F = 7/“, together with

<x+ W)y + W)z + W)>: = <xyz> + U
again is a triple system.

Theorem 1. (i) W< ¥ is an ideal, iff || is the kernel of

some homomorphism.

(ii) If £: ¥ » ¥ ' is a homomorphism, then

£(7) =7

kernel £

(iii) _fVL,LO are ideals of ¥, then

U +l&} = U?// .
A Wndd
A triple system? is called simple if <?¥?’> +# 0 and ? has

no proper ideals.

3.2. The derivatives of a triple system 7 are defined recursive-

ly

1(0) =? ' :F(n+l) _ <N_F(n) :L-(n) 7(n]> )
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L™

£ is solvable, if ‘-'f{n} = 0 for scme n.
Exercise. State and prove the corresponding results to 1.5.
If 7 is Noetherian then there exists a unigue maximal solvable

ideal Rad ¥ in ¥ , the solvable radical of ¥ . Radf?}aad?] =0,

and if Ra&(?/m) = 0 then Rad f < VI . Powers of an element
a€ 7 are defined recursively

1 aE[n+l:i+l=

a~: = a, 2n+laa

= <3 >

Note: Only odd power are defined.

2n+l

a é? is nilpotent, if a = 0 for some n. A sub!f:‘ttm

WeF is nil, if every element in W is nilpotent. If

2n+l, 2m+l _

(a )| a{2n+1] (2m+1) for all m,n > 0 and all as_‘-T ’

then there exists a unique maximal nil ideal in £ , the nilradical
of ? -
Exercise. Prove existence and uniqueness of the nilradical.
3.3. Similar to the definition of left and right multipli-
cation in algebras we define bilinear maps
L,R,P: F x'F — End'¥ , L:(x,y) — L(x,y)R:(x,y) » R(x,y),P:
(x,y)++ B(x,y), by L(x,y)z = <xyz>,R(x,y)z = <zyx>,B(x,y)z =
<xX2y?. Then

<xyz> = L(x,y)z = R(z,y)x = P(x,2)y.
Caution: Observe the reversed order in <xyz> = R(z,y)x.
Derivations are defined the obvious way. D& End,:F is a
derivation of ¥ , if
(3.1) D<xyz> = <(Dx)yz> + <x(Dy)z> + <xy(Dz)>
for all x,y,zFLf , Oor eguivalently

(3.2) [p,n(x,9)] = L(Dx,y) + L(x,Dy) for all x,y€F .
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Again f\?‘(:f} the ¢-module of all derivations of ¥ is a sub-
algebra of (Endq)‘?-' )~
Exercise. If O} is a triple system coming from an algebra
(see example 2) then any algebra derivation or homomorphism
is a derivation or homomorphism of the triple syst.em.
3.4. There is still another aspect of triple systems we want
to mention. Let'# be an arbitrary triple system over
®,L(x,y)z = <xyz> . Then by definition (x,y) ® L(x,y) is
a bilinear map of 7x Y into End,¥ . But from the definition

of the tensor product of ¢-modules, we get a unique linear map

S: Y&+ + End¥ , such that

S(xey) = L(x,y).
And obviously any linear map of 70';7: —~ End¥ defines a triple
system structure on ¥ .

Now we restrict to a special case. Assume? is finite
dimensional over a field F. Then +® ¥ = End¥ , but there
are many ways to obtain this isomorphism. We assume, that A
is a non degenerate symmetric bilinear form on :7 . We define

*
Xy éEnd‘I by
*
(xy )z: = A(z,y)x
*
It is easy to prove and is left as an exercise,x®y + Xy
defines an isomorphism (of vector spaces) —?@?’ and End;‘ =
in particular
*
(i) {xy ,x,yé:r} generates End'-? . Furthermore
*
(3.3) (ii) trace xy = A(x,y)
R * %k *
(iii) (xy ) = yx
* * *
(iv) A(xy )B = Ax(By) for all x,y< ¥ ,A,B€End ¥

*
where A denotesthe adjoint of A relative to .
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As in the case of algebras (see l1.9.), associative
bilinear-forms might be useful.

There are more possibilities to define associative
bilinear forms on.?'. One possible definition is as
follows: ) is called associative, if
(3.5) (1) A(<xyz>,u) = A(x,<uzy>) = A(z,<yxu>) for all
X,¥:2 ,ur;-:;f . Assume )\ non degenerate, symmetric and
associative. Then (3.5) is equivalent to
(3.5') Lix,y) = Lly,%) ;R(z,y) = R(y,2). If A€End¥ then
there exists a unique S(A)e End ¥ such that
(3.6) trace AL(x,v) = A(S(A)x,y) (since i is non degenerate).
Next we show
¢37) Stuv’) = L(u,v)

*
where uv z

Il

Alz,v)u (see (3.3)).
l{SluV*}x,yJ = trace uv*L{x,y} = tr L[x,y)uv*
= A{<xyu>,v) = Alx,<vay>)
= A<uvx>,y) = A(L(u,v)x,y) .
(3.6) and (3.7) imply trace AS(xy ) trace S(A)xy , consequent-
ly
(3.8) +trace S(A)B = trace AS(B).
Exercise: Define S'(A) by trace AR(x,y) = A(S8'(A)x,y) and

show tr S'(A)B = tr AS5'(B).

IV. Associative Triple Systems.

4.1. As we have seen in example 2) of the previous chapter,
one can associate to any class of algebras a corresponding
class of triple systems by considering the triple composition

(a,b,e) = <abe> = (ab)ec, where (a,b) + ab is the product in
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the algebra. Starting with associative algebras we come to
the definition:

A triple system‘? is associative (of the first kind), if

(4.1) <xy<uvw>> = <<L<xyu>vw> = <x<yuv>w> for all x,y,u,v,wcf;? .
In terms of left and right multiplications (4.1l) is equivalent

to either

(4.2) L(x,y)L(u,v) = L(<xyu>,v) = L(x,<yuv>)
R(w,v)R(u,y) = R(<uvw>,y) = R(w,<yuv>)
L(x,y)R(w,v) = R(w,Vv)L(x,y) = P(x,w)P(y,v)

Example. Any associative algebracl together.with (x,y,2) = (xy)z
is an associative triple system of the first kind, and so is any
submodule of a»closed under (xy)z.

Let %?: = EndQ;re(End¢f¥')op the direct sum of the algebra
of endomorphisms of ¥ with its opposite algebra. Consider &fo
the submodule of-E’generated by all A{x,y): = (L(x,y) ,R(y,x)) theﬁ

(4.2) and (4.3) show

A(x,y)A(u,v) (L(x,y) ,R(y,x))(L(u,v) ,R(v,u))

(L(x,y)L(u,v),R(v,u)R(y,x))

i

(L (<xyu>,v) ,R(v,<xyu>))

(L(x,éyuv>),R(<yuv>,xn, i.e.

(4.5) A(x,y)A(u,v) = X(x,<yuv>) = X(<xyu>,u)
consequently

;f; is a subalgebra of %?. Let E denote the unit element of

%f, then
af:=¢E+x0

is a subalgebra of f , too.
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The ¢-module 7 is in a natural way an-E'_ left and an -E right
module according to the following definitions. If
A = (AI'AZ}E'E , define

(4.6} Asx: = Alx, Xth: = sz

and it is obvious that (A,x) =+ A*x makes"T a left{' module
and (A,x) + x%-A makes T a right -E’modula. Since & is a
subalgebra ﬂf-glwe have the following result:

Lemma 1. # together with the maps

D'fofr’ +'.?-" e (A,%)— A-x, '?'xf *;" p(%,A)» x+A is a left and

a right{ module. (even an  -bimodule)

Consider the ?¢-module

Q:=LoF

and define a product inOLby the formula

(4.7) (a@x) (B@y): = AB + A(x,y)@A.y + %-B

Theorem 1. 55'1'35_55 associative triple system of the first

kind, then (L= ®¥ with multiplication as defined in (4.7)

is an associative algebra with unit element containing pra

(isomorphically imbedded) such that <xyz> = (xy)z for all

X ¥z EF . ), & , e, %
The proof is left as an exercise,

4.2, Since for later applications we need a classification of
a very similar type of triple systems we do not present a
structure theory for associative triple systems of the first

kind. We leave it as an exercise to use the methods and argu-

ments we shall develop below to build up parts of a structure
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theory of associative triple systems of the first kind.
Very similar to the definition in 4.1 is the following:

A triple syshan?nis called associative (of the second kind), if

(4.8) <<xyzuvs> = <xy<zuvss> = <X<UzZy>v>

Note: The right hand side equations of (4.1) and (4.8) are
different. In the sequel "associative triple system' (= a.t.s)
always means "associative triple system of the second kind".

(4.8) is eguivalent to either

(4.9) L(x,yviL(z,u) L{<xyz>,u) = L(x,<uzy>)

(4.10) R(v,u)R(z,v)

R(<zuv>,y) = R(v,<uzy>)

(4.11) R(v,u)}L(x,y)

L(x,y)R(v,u) = P(x,v)P(u,y)

Example, Let(Ol be an associative algebra with involution
e X, then.artngether with the map (x,y,z)+ xyz is an
associative triple system, and so is any submodule uf[n'which
is closed under xyz. In particular the ¢-module of all pxq-
matrices over % together with (A,B,C)+ aB°C is an a.t.s.
(see example l)in 3.1.).

Let Mbe an a.t.s. We set  : = End, M ®(End, M )°P
we define

L(x,y) ¢ =(L{x,y) ,L(y,x))

rix,y): = (R(y.x) .Rix,y)).

Let Qfﬂ be the submodule of { spanned by all 1(x,y),%,y e M

and ';30 be the submodule of .EOP spanned by all y(x,y) .xfyént .
(4.9) and (4.10) imply (do the computations)

(4.12) 1(x,y)l(u,v) = l(<xyu>,v) = l(x,<vuy>)

(4.13) r(x,y)r{u,v) = r(x,<yuv>) = r(<uyx>,v)

(Note: the product on the left hand side of (4.13) is taken
in £ °P.)
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The last two equations show that i’:u Iesp. ’feu are subalgebras
of {resp. _EGP. The algebras -g and _‘{QP have a natural
involution, namely (A,B)+ (A,B) = (B,A). Obviously
m = 1{y;x) 'I(X,y) = r(y,x). Let E, resp. E,
be the unit element in}f resp. {fOP. We define

L:=08 +&, K= 5,+R,

From the preceding discussion it follows

Lemma 2. 3{? ami?? are subalgebras E'.E{ resp. _QCDGP invariant under

the canonical involution. ﬂ‘fu{'ﬂﬂ} is an ideal E-Ex resg.ae -

The ¢-module /Ml is in a natural way a left %-maule and
a right {OP-mudule, according to the following compositions.

IfT A = tﬁl;iziég , B = IEl,Bz} i .tﬂp and xém we set
(4.14) Avx: = Ayx ’ #+B: = le

We take an isomorphic copy Gfm. dencoted by 'm,_. By the
definitions

(4.15) x*A: = B,X , Bex: = sz

12 XxeT, A= (a;,8,)¢€ and B = (By,B,) € £ F
it is obvious thatTi becomes a right {-mﬂdule and a left _Eup-modula.

Since & and K are subalgebras nf{ resp .E’QP we have the

following result

Lemma 3, [i}m together with the mappings defined by (4.14) is

|

left i-mudule and a right ?e -module,

|

(ii)m together with the mappings defined by (4.15) is
right K—mdule and a leftTE, -module.

Exercise, Show that m{resp.ﬁfj is an lf,'r&:l—bimndule (resp.
(X,%)-bimodule), i.e. it is not only a left o -module and a
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righ\&mndule. but furthermore (A«x)+B = A-(%+B) helds for

all aed ,Be® , xeM .

Now we consider the module

O :=leMme e &

For the convenience of notation we write the elements of {L in

matrix form

(ix)i aeX ,BeR , xeM, e 1.
y B
AOD

and by means of the module isomorphisms RH'[D D)' x*—*(g :)

atc, , we identify I, r 2 m , M with its image. We define

d multiplication on Gihy

A ¥ /2, x! aa’ 4+ 1(x.y"), Ax' + xB'
(4.16) *) == ;o=

vy Bl \y', & y*A + By’ , r(y,x') + BB'

The fellowing result is fundamental:

Theorem 2. Emﬂa_n a.t.s. then

(1) b <¥eTMe MeR together with the product defined by (4.16)

0 E

i_s an associative ¢—algehra with unit element e = (El 0 )
2

(ii)

(iii)

(iv)

(v)

0’0 - % e Me e R, is an ideal in (I

The map j: u n(f x) — 1 =(f"3f)i_s an involution of OL
y B X,B

If x,y,z€ /0l , then <xyz> = x*J*z.

—_—

The Peirce component g_f_@ relative to the idempotent E,, are

01'11=x ’ Ilm =T, Gl'nl =M. Oltm =R
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(For the notations concerning Peirce decomposition see 2.5.).

Proof, The only difficulties related to this theorem are in
finding the given construction. The verification of the above
statements is done by straightforward computations using

(4.9)-(4.16) and the previous 2 lemmas =.-. = + .= and is left

as an exercise.
OL = Clriml is called the standard imbedding of m -

Lemma 4. Let Illbe an a.t.s. ana ()} its standard imbedding. If

& is an ideal in () then

(1) & = (LAX Ie(LAM I8N TRIOEAR)

(1) If§ is j-stable then &AM is an ideal in M
(iii) 1f f<=Lo'R , then¥= 0.

Proof. (i) feollows from part (v) of the above theorem and II,
Lemma 7.

(ii) If be ANl and %,y «M then

<xyb> = x*y*b and <bxy> = b*X*y

are in Hla% . Sinceof is j-invariant b is in<& and consequently
<xby> = x*bry elenl .

(iii) 1f & L8R then & =(LN £)8(RA%) ana

kaM =& n T =0, by part (i). Ifa= (A2 )eLln%

then A*TL = a- M = aleLc:Eaﬂl- 0, thus A, = 0 similarly

A, = 0 and alsoXn X =8 n¥%& = 0.

4.3, Let Ml be an a.t.s. For fixed uem wea consider the map:
(%,y) = <ruy> = %*y. The resulting algebra is denoted by Tﬂ.u.
It is immediately seen from the equation (4.8) (put y = u) that

‘rﬁ'.n is an associative algebra with left multiplication
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Lu{x} = Li{x,u). In mu we have the notion of guasi invertibility

(see 2,2.-2.3.). % is guasi invertible in Tl';_l, iff there exists

an element y¢ MM such that

Y = X = <yux> = <xuy>

But thinking of m ags being a submodule of its standard

imbedding this is equivalent to:

X Em is guasi invertible in OLE and the gquasi inverse y is in m.

Lemma 5., If x,u€ [l then the following statements are equivalent

(i) =x is quasi invertible in n

= Tu
(ii) x is guasi invertible in OI'E

Proof. We need only prove (ii) + (i). This follows from a
result on Peirce decomposition. If xe Ll = GLI.O is guasi-
invertible then by II, lemma 3 (ii) its quasi-inverse is also
in [Llu -?ﬂe.

(WO @ g+ Oy ana Oby 01 © ‘1'11 + Q)

We define

Rad TV » ={::f--’:r11'l',J X 8 g.i. In m_l for all uEm}

Rarﬂm is called the Jacobson radical nfh'l- 2 T‘ﬁ', is called semi

simple, 4if Rad Il = 0.
Theorem 3. _I_fm is an a.t.s. ai_ti(]/ its standard imbedding, then
(i) Rraall = Raa¥eraallerad T erad ¥

(ii) Radl is an ideal in T

(11i) b is semi simple, iff M is semi simple.

Proof. According to lemma 4(i), RadﬂL is a direct sum of its

components in f,g\?,ﬁ,’m . But these are the Peirce spaces
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relative to E; and II, theorem 5(ii) shows

= (Rad WNZL = raa L ,(RaaW)nR = rad R, .
It remains to show Rad Nl = {Rada’}ﬁm . If xf{Ra&mh'm then in
particular x g.i. in CLE for all u& 7 but then x€Rad M by lemma
5. If conversely xe rad M , then inO’v, q(x,y) exists for all
vy€ T (again lemma 5.). By theorem 2(v), we have
L = (1 - Elfl GLE]_, hence g(x, (1 - Elha:E.'l} exists for every
anL . From the shifting principle (see 2.3.) it follows that
gqlx,a) = q{Elx{l - El] ,a) exists for every a & Ulf fnote x & CLI

)4
0
this is x€ Rad(V by definition. Hence Rad Tl =(Rad(})an M . sSince

Rad(} is j-invariant it follows firstly, that(Rad(bh TR = RadaM.

(this completes the proof of (i)) and secondly that Rad Il = raa b n ML
is an ideal (by lemma 4(ii)). Now, if radll = o, cbviously

Rad 1M = 0. If conversely Rad = 0 then Rad b = @ K , hence

Rad V= 0 by lemma 4(iii).

Exercise. 1) Radtm'

2) 1£1l is an ideal inM then Rad I =1lA RadM .

3) Carry over the above definitions to a.t.s.'s of the
first kind and prove corresponding results,

4) Show that the direct sum of two semi simple
a.t.s.'s is semi simple.

The following lemma will be useful;
Lemma 6. ZIfN is a simple a.t.s. and £+ 0 a j-stable ideal of O,

then OLQC & .

Proof. Since :éﬂm is an ideal inM[lamma 4(ii)) andm is
simple we have LM = 0 or LaM =M . clearly EnT = 0 is

equivalent toxﬁ T = o since s is j=stable. If LA = o
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then ATl =0 and 4= L oW by lemma 4(i). But theni = 0
by lemma 4(iii). Since o + 0 we must have ﬁﬁm ='m_ and

I: ~ WL =Pl. Again lemma 4 implies ’F?La TEC?@- . Since

m=* m ='fu and TI* M = 'nﬂ we get OLG:;@ .

4.4, Letm be an a.t.s. The powers of a submocdule U**‘-:""'t are

defined recursively
W =W, W2 = cal*uw >

(Note: Only odd powers are defined.) W is nilpotent, if
" = 0 for some n. 1£ Ol is the standard imbedding andW is

contained in a j=-invariant subalgebra Qif-af Un'/ » then

(4.17) W e .

The proof of (4.17) is by an easy induction. By assumption
Wek |, ie. MACEL. Assume (4.17). By theorem 2(iv) and

the j-invariance of Q\?we get

W2 = W NN BT E - B

Theorem 4. Hmiﬁ an a.t.s. and the standard imbed&ingOL of

m is Artinian, then Radm is nilpotent.
proof. Radlllc Raall by theorem 3, therefore by (4.17)

(Rada M )X (raa OV)¥
since Rad M is j=invariant. Since {l is Artinian we get (Rad s) y* =0

for some n by II, theorem 6.

Corollary, EUL is a simple ideal ﬂm !azhrtinian} then U} is

seml simple.

Proof. Since Radlﬁfc Rad M. (see exercise 2 above) v Rad ) is

nilpotent by theorem 4. Now see the proof of the corollary to 1T,

theorem 6.
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Exercise: UL <1l is a left ideal of M, if <MMi>clU,
Ml is called Artinian, ifm}ias the descending chain condition
on left ideals. Show: OL' Artinian :i.mpliesm Artinian. (It is
most likely that the converse statement is true .i.f'm is semi
simple; see Lister: Ternary rings.).

Theorem 5. If M is an a.t.s. such that the standard imbedding

L'R. is Artinian, then

Ei'.iT}L is semi simple, iffm_i_i the direct sum of a finite

number of ideals which are as a.t.s.'s simple and Artinian.

(11) M is simple, iff ( (L ,3) is simple.

Proof., The following observation makes the things go: If Ulis
an ideal of m, then
(.18) £ =% W =0 W0 & 0« g0
is a j-invariant ideal inOl such thatxﬁm =,
(The verification of this statement is an =asy exercise.).

Let M be semi simple; then() is semi simple (theorem 3). If
1}1 is a minimal ideal inm:: W exists, since M is Artinian, see
exercise above) then the j-invariant ideal £'= & (W) is comple-
mented in G[« , i.2., there exists a j-invariant ideal £I .i.nc].r
such that 01 = Lo 2’ (see 2.7.) Now
M= (KA1 }Gtﬁlnml =WMe VW vhere ‘UL"' = 2£'AMW. is an ideal.
Continue this construction with r|-J'l" (take a minimal ideal in L’t: '
which is an ideal inCi/] etc. After a finite number of steps we
must have come to an end since any proper chain of ideals of M
has finite length. Furthermore these ideals are simple (by
construction they don't have a proper ideal and <WWULs = 0

1eads to Ul nilpotent in(Ol ana then We raa Ol , by 1I, Corollary to

theorem 2). Conversely letm be the direct sum of simple ideals.
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Since the simple ideals ofmare semi simple (Corollary to theorem
4) and a finite direct sum of semi simple a.t.s.'s is semi simple
(see exercise 4) we get that mis semi simple. This proves part
(i) of the theorem. ad(ii): If (Gl/,j) is simple, and W an ideal
in M, then 5 % (W) (see (4.18)) is either 0 or OV, consequent-
ly W =£nﬂ'7, either 0 or m, T converselymis simple and if
:éa-# 0 is a j-stable ideal in Ofrthen by lemma 6 Oloc & . Since
aeis semi simple, 0@ has a direct complement ng" and if 3@" $ 0
then C-],OC .}@-I by the same lemma, but then Q/OC £ n \i@ﬂ = 0.
This is a contradiction, thus og =O]/ :

Corollary: m is a simple a.t.s. with Artinian standard imbedding,

iffm is equal to the Peirce space O-LlO relative to some idempotent

c in a simple pair (OL,j) » where Q is an Artinian algebra, j

an involution g(l such that j(c) = c, and the ternary composition

(x,y,2) > <xyz> _J,_Em_?gg given by <xyz> = XJ (y)z.ﬁ(ﬂ/lo is

a simple a.t.s. and its standard imbedding is isomorphic toOL is

an easy exercise.

4.5. The above corollary shows that whenever one knows all

simple pairs (a,j) , Ol an Artinian associative algebra with
involution j, one gets all simple a.t.s.'s with Artinian standard
imbedding by computing the OLlO spaces relative to idempotents which
are fixed under the involution. A classification of the simple

pairs ((l,j) can be found in Jacobson's "Lectures &;_1_ Abstract Algebra'".

The result is as follows:
It (Oir,j) is a simple pair, a an Artinian associative algebra
over a field F, then eitherx
(1) A z=Le £ P yhere & = End, (V) is the F-algebra of endo-

morphisms - of a finite dimensional right vector space V over
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an (associative) division algebra A over F, the involution
j is given by j(a,b) = (b,a).
(13) OLEE;? 4 ;; as in (i) and for j one has the following

possibilities:

a) A =T a (commutative) field extension of F,
dim, V = 2n, V has a non degenerate alternating bilinear
form X (i.e., A(x,x) = 0 for all xgV) and j(a) = a*,
where a* is the adjoint of ae;EndrV relative to A (i.e.,
Alax,y) = A(x,a*y)).

B) A has an involution a + a , V has a nonalternating
Hermitian sesquilinear form Al(i.e., X(x,y) = AMy,x) and
Ax,ye) = ar(x,y)) and j(a) = a*, where & is the adjoint

of a relative to A . (Note & = o is not exéluded.)

Let(%-be as in (i). e = (cl,cz) an idempotent, j(e) = e
shows ¢, =¢c, =cC and obviously ¢ is an idempotent Mné?. From

the definitions we get
= oP
Ol’]_ﬂ Eﬁ'loe(;@ )19+ Where %ij are the

Peirce spaces ofgg relative to ¢. Since c2 = ¢ we have
V =1Im c® kernel c. (Im c: = image c). Let

xl""'xp’xp+l""xp+q be a A-basis of V consisting of a basis

xl,...,xp of Im ¢ and a basis x of kernel c, then we

p+l'lli,xp+q -
identify relative to this basis EndﬁV with the F-algebra of all

(p + g)x(p + g) matrices over A. c is then of the form

c = (E 0) , where E is the pxp unit matrix. Now (see the example
0 0

in 2.5.) we have that :@lo is the space of all pxg matrices over A.

Q?Op, of course, will be identified with the matrices over A°P,
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Putting this together we can conclude that

(1)

' (id)

Tn, = OLlO is the space of all pxq matrices over A& °P
and <xyz> = xy°z , where y= is the transposed conjugate

_ op 2 2 e - .
of y (aij},aij€la$ﬂ y -ue Y (aij) where a + a is the

canonical involution in A®A°P,
IfOL = Endav, dim LV:§]< o, A division algebra over F and A

either Skew symmetric or hermitian. A j-invariant idem-
potent ¢ is in either case selfadjoint and consequently Im c
and kernel c are orthogonal with respect to A (i.e.,

A(Im c, kernel c) = 0) and the restrictions of A to these
two subspaces are non degenerate.

a) If A is skew symmetric, we choose a basis of Im c,

xl,...,xp and a basis of kernel c'xp+l""'xp+q' such
that the matrix of A,i.e.. (A(xi,xj)}, is of the form
-l 0 1
= 8 = diag($,8 ,ee.s8 S = ‘
Q p+q g( £ 1y ’ ) ’ z -

The same argument as in (i) shows that we can identify
)TL= OLlO with the space of 2px2g matrices over A, the
* -
adjoint of a is then a = QatQ 1, consequently we get

for x,y,z e OI/IO

. t_.-1
< > = = xS S .
Xy 2> xj(y) z X qy p z

B) If A is hermitian and non alternating we can choose
a basis of Im c and kernel ¢ such that the matrix of A

is of the form D = diag(a;,«..,0 +q)' a ¥ a; = a;€A4.

P
Again we can identify77k= GLIO with the space of

pxXg matrices over A. The involution is then
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& = -
a*a = DatD L consequently if x,y,z € Gblu

& -
<HyZE = ¥y z = xaqythpz, where

= diag{ﬁ_l;qu-;u-l J-

aq = dlagtap+1r---r&p+q] ’ bp P

We proved

Theorem 6. EEQTLEE.E simple associative triple system over a

field F such that its standard embedding is Artinian,thenmi_g:_

isomorphic to one of the following types:

(1)

(ii)

(iii)

The pxg matrices over EGEQP,E a division algebra over F,
=

together with triple product <xyz> = x(¥y Ze

The 2px2q matrices over a field extension I' of F with

triple product <xyz> = xsqyt5;1

z where

| /o 1
Sn = diag{s,...;s},ﬁ =%l ﬂ -
n

The pxqg matrices over a division algebra A (over F)

with involution a + @&, the triple product is given by

<Xyz> = xai?t)bz, where a = diag (&l,...,uqi

b - diag{ﬂlroro;sp}; 0 + ui - Ei' U + Bi == Eil
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(5.2)

(5.3)
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V. lie Algebras

5.1. We recall that an algebra -J-.f over @{with multiplication

(x,v) —> [xy]) 1is called a Lie algebra, if

[xx] = 0

[{xy]z] + [[yz]x] + [[2x]y] = 0  (Jacobi identity)

for all x,v,z2 € ﬁ .

In Lie algebras (and only in Lie algebras) ome denotes the laft-multi-

plications by adx, (adx)y = [xy]l. (5.1) implies

[xy] = = [¥yx] ,

and the Jacobl identity then may be written as
ad[xy] = [adx, ady].

Let % be a Lie algebra.

temma 1. If ) 0 are 1desls of & , then [ WD) ] 4s an ddesl of

“
oL,

Proof. We need only prove [aluv]] € [U.HLOI for a & x , U U.; i

v & LQ « But this is immediately seen from the Jacobl identity.

Corollary, If % 1is an idesl of & , then the "derived modules" #& (°)

s & | JEO*D -[:ﬁ ) ﬁf_(“} and the povers of &K =& , LT
=[§_ “.;E’J are ideals of r - Ifﬂx is Wégtherian (i.e. has a.c.c. on

ideals) then there exists a unique maximal golvable ideal of ;f « the

radical of oz' (see 1.5). Alsoc there exists a unique maximal nilpotent
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tdasl in < , the nilradical.

Exercise. a) [ - b o o L
jul
¢) The nilradical is contained in the radical,

We assume now, that o 15 a finite dimensional Lie algebra over a field

F. In this case, there is a cancnical bilineaqfnrm \ on & s, the so=

called Killing form, defined by

wix,¥) = trace (adx) (ady).

Lemma 2. (i) ) is symmetric and assoeciative

(11) Alax,y) = h(x,a-ly] for any o € Auc oL .

Proof. (1) the symmerry of % is obvious. By definition and Jaechi iden-
ity A{[xv],2z) = tr ad[xyladz = ctr (adx ady adz - ady adx adz)
= tr (adx [ady, adz]) = tr adx ad[yz] = A(x,[vz]).
(11) o e Aut¥ 1s equivalent to o adx nvl = ad(ax). Therefors
A\(ax,y) = tr ad ax ady = tr & adx a - ady
= tr adx o L(ady)a = A(X, & *y).

There is a fundamental result.

Theorem 1. (CARTAN Criterion). Let ;t: be a finite dimensional Lie algebra
over a fleld of characteristic 0. Then & is seml simple, 1ff the Killing

form is non degenerate.

Exercise: Read the proof of the Cartan Criterion in any book on Lie algebras.
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/
An immediate application of theorem 1 and Dieudonne's theorem (1.9)

is the following:

Theorem 2. If Sf} is a finite dimensional semi simple Lie algebra over

g field of char. 0, then &f is a direct sum of simple ideals.

f
Note: Conditfon (ii) in Dieudonne's theorem holds since o has no

solvable ideal.

We shall give another application of the Cartan Criterion.

Theorem 3. (Zassenhaus). AF &f is as in theorem 2, then_apy derivation

D_O'_ETZJ isoftheformD-add,dE:{’ .

Proof. Since the Killing form X is non degenerate, there exists d G:ﬁf

such that

trace D adx = A(d,x).

Let E: = D - ad d, then E is a derivation and
(5.4) trace E ad x = trace D ad x - trace ad d ad x = 0.
Then A(Ex,y) = tr ad(Ex)ady = tr [E, adx]ady
= tr E[adx, ady] = tr E ad[xy] = 0, by (5.4)

Since ) is non degenerate, we get Ex = 0 for all x or D = ad d.
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VI. Lie Triple Systems

6.1. Let 7' be a unital é-module. ? together with a trilinear map

(x,y,2z) V> [xyz], is called a Lie triple system (= L.t.s.), if

(1) [xxz] =0
(11) [xyz] + [yzx] + [zxy] = 0 (Jacobi identity)

(i11) [uv[xyz]] = [[uvx]lyz] + [x[uvylz]l+ [xy[uvz]]

for all m; v %X ¥ zé? .

Examples. 1) Let ,f be a Lie algebra with product (x,y)t> [xy], then
L together with (x,y,z) > [[xy]z] is a L.t.s.
2) Any submodule of a Lie algebra closed under [[xy]z] is a

L.t.s.; the most important submodules of this type which are not subalgebras
are the modules % _ = {x, ax = - x} where o € Autﬂzo 4 a2 = id.
3) EE ‘1 together with (x,y,z)t> < xyz >1is an associative

triple system, then ? together with
[xyz]: = < Xyz > = < yXz > = < zxy > + < zyx >

is a L.t.s. An important example of this type is Fn the vector space of
column vectors over a field F;
4) Let CJV be a commutative algebra over ¢ with multiplication

(x,y)+> xy = L(x)y. Set D(x,y) = [L(x),L(y)]. Assume

[D(x,¥), D(u,v)] = D(D(x,y)u,v) + D(u, D(x,y)v) for all x,y,u,ve& O—L .

Lf 7 is a submodule of L closed under [xyz] = D(x,y)z then ?— together

with (%,y,z) > [xyz] is a Lie triple system. The most important examples
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(6,3)

(6.4)

by

for this type of algebras are the Jordan algebras.

Exercise. Verify that the given examples really are L.t.s.'s.

(b1L) dimplies (replace x by xty)
[xyz] = = [yx=z].

Define L(x,v), R(z,¥), Plx,2) € End;-T- (gee Chapter III) by [xyz] =

Lix,y)z = R(z,y)x = P(x,z)y. We see that (6.1) is equivalent to

(1) L(x,x) =0 (= L(x,y) = - L(v,x))
(1L) Lix,y) = Rix,y) - Riy,x)

(111) [L(x,y), L{u,v)] = L([xyu],v) + L{u,[xyv]).

Lemma 1. A submodule 1:’[; of F is an ideal of ? » 1ff [U‘,?EF ]Cur.

Proof. Clearly the condition is necessary. Since [WHFE 1= W
tmples [ F ULT1< UL (by (6.2)) and then [ ¥'F UL 1= V. by the

Jacobi identity, we see that the given condition is also sufficient.

6.2. Let ¥ be a Lie triple system. We recall that D EEnﬂa‘; is

a derivation, 1f

[HIL{xIF)] u L{stﬂ + L{x.ny}.

(6.3141) shows, that all L(x,y), X,y& % are derivations. Let %
be the submodule of '8("?) (derivation algebra of ? ) generated by all

Lix,¥y)s Xy € “rr . Another interpretation of (6.4) glves:

Lemma 2. ‘f} 15 a0 1dsat ot Y(¥) .

3
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Let CJ be a Subalgebra of "&(i) containing % . We consider

and define for elements X, = H, @ x,, HieoaL ) X € F  (1=1,2) a
product.

] L 4
|
[Xl, XZ]. = [Hl’ HZ] + L(xl, x2) @‘Qi_lXZ - Hzxi.

The following result is fundamental.

QO
Theorem 1. If 7-' is a Lie triple system, % a subalgebra of (“?7)

containing %a . then

1) \}C (()F o F ) = (3_ @ 7—’ together with the product (6.5) is a

Lie algebra,
(i1) ©: Hé x —> (-H) @ x defines an involution of . ,
(111) k‘(%,?)=“§e? isaniaealofot’ccg,‘?ﬂ),
(1v) if x,y,z& ¥ , then [xyz] = [[x,yl,z],
(v) 1if 1/2 € ¢ then 7={xef(<§,7); oX = X}.

Proof. Clearly [X,X] = 0 for all X € ;lo . We have to show 3« (Xl’XZ’XB)

= [[X},%,], X1 + [[X,,X,], X1 + [[X5,%;], X,] = 0 for all Xicsk“ . It
12%50%) & W g.tp x M,

where Ul AR WD is either O& or i . Since Cg. is a gubalgebra of

f\(i\‘;’(\)'z)we get }(C},Cy ,03 ) =0. If Hié‘:C} y X & :( we get

[[Hy,8,),x] = [H ,H)Jx = H (H,%) - B, (Hx) = [, [8,,x]] - [,[H,x]].

is sufficient to show this equality only for (X

This shows :-‘: ( C{}, L} 5 ?) = 0, then by cyclic permutation 3’ (C(-"} ,EF ; Cg )

= T (?: ,C}' ,CJ ) = 0. Using (6.5) and C‘} C/8(¥) we get
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([H,x],y] + [[x,y],H] + [[y,H],x] = L(Hx,y) + [L(x,y),H] + L(x,Hy) = 0.

Hence} ('L";‘},\-?’ ,?)=Oand also }(?,O{},\f ) = g (?,(?,O(})‘

= 0. Finally ‘fCX,y.z) = [[x,y],z] + [[y,z],x] + [[z,x],y]

L(x,y)z + L(y,z)x + L(z,x)y = 0, by (6.1 ii).
The other statements are easily verified (using definitions and lemma 2).

The Lie algebra .z,- .f(‘l;’) 5 ? ) -"5&37 is called the standard

imbedding of ‘:r , © is called the main involution ofa{O.

Examples. 1) Let F be a field, ?as Fn the L.t.s. of colum vectors
over F (see ex. 3,_9.43) We take as triple product [xyz] = yxtz - xytz
and get L(x,y)z = (yxt - xyt)z. Consequently we can identify L(x,y) with
the nX n matrix yxt-xyt. The space spanned by these matrices is the space
of all n xn skew symmetric matrices. We define a mapping of the standard
imbedding k&—j @ \,C onto the Lie algebra of all (n+l) x (n+l) skew symmetric

matrices by
A X
Aex +r— t

< 5 =X 0
This is a (well defined) 1-1 linear map onto. It is an easy computation
(and is left as an exercise) that the given map is a Lie algebra homo-
morphism, hence an isomorphism.

2) The above example may be generalized as follows. We

define on F(p,q)’ the space of all p xq matrices the triple composition
by (see ex. 3, p.%43)

[aBC] = BATC - AB'C - cB®A + ca®B.
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Use the same kind of argument to show that the standard imbedding of

K{p'qj is the Lie algebra of (ptq) =(ptq) skew symmetric matrices over F.

6.3. Let 71 (1 =1,2) be Lie triple systems and n‘zi = %i 2] “-I:l
the cerresponding etandard imbedding. If & :531 — 'ﬁ»z and n : :?'1 — 7"-2
are ¢-linear maps, then X : & i = ;:62 defined by A (H @ x) = ¢(Hn(x)

is obviously # linear.

Lemma 3. A ¢ xl'—-a-éflz is a Lie algebra homomorphism, if ¢ : 31-—-9§ 2

is a Lie algebra homomorphism and

(1) ¢ L, (xyy) = L,(nx, ny)
(i1) n H = $(H)n

(Li is the lefr mulciplicacion of ‘?1.}

Proof, Easy exercise.
A linear map Y: ?1”’72 is an L.t.-homomorphisms, if
nlxyz] = [(nx)(ny)(nz)] , or aquivalently
Ly Ge,y) = L,(nx, ny)n
If n: ?1—:- “?2 is an L.t,-lsomorphisms, then according to lemma 3, the
map

AN ue xl'—'?an_lm nx

is an isomorphism of &'1 onto k“'z- 'C.‘-il:ﬂu"in:maullr-rt'f'&1 cormutes with the main

involutions, i.e. A B, = GZA - If conversely A fl—?l‘oz iz an

1

isomorphismua such that AE‘I = BZA and if 1/2€ % then we get that

the rastrictieon m’A to h~z-1 maps onte \-;'-'2. hence is an L.t.-isomorphism.
The following trivial observation iz quite useful for applications.

Asgsume 1 iz an automorphism of ?:. ﬂ2 = id, Then A ¢ H+ x> nHn + nx



L8

is an automorphism of & and A? = {d. Hence the (=1)-elgenspace of
s dee.ol = XeZ AX = =X} 1s a L.t.s. (6.1 ex, 2), which is (ob~
viously) in most cases quite differant from ';' s but which has, in cercain

cases, the same (isomorphic) standard imbedding as ? s namely X,

6.4, From now on we assume 1/2 -Ef.ﬁ. In this case REI‘; s 1Ef Bx = x
(see theorem 1). We shall derive a rather strong connection between
{denls 4in a L.rt.s. ? gnd ideals in irs standard imbedding e

Since o 1s a Lie algebra wich inwvolution © we are mainly inrterested

in &-invariant ideals.

1f R 1s any G-invariant submodule of L, then He xe R implies
—Hﬂ\er y consequently E -5“5 ® h‘xﬂﬁ . Conversealy, any
submodule of this type is G-invariant. Let E = T??.PE Ui-' he a O-invariant
submodule of nf f??’?.r:‘ﬁ, . u:\; Y. K 1s an ideal of & , iff for
any K= M @& ueR sna any X = H® x &« we have [X,K] = [H,M] +
L{x,u) & Hu — Mx Eﬁ . This is equivalent to

(1) [H,M], fo,u}ﬁm for all Hé% ’ xe’; . Mell . ue Vi

(11) Hu, Mx < U} for all H&"i . XEE Hem » ue VL
We define 1( VL) = L(F W)

1V = faeh  AF< W)

and get immediately from the above consideratioms,

Lemma 4. R C X is a G-invariant ideal of < _1_._@;5 =TLe LV -
where \l- 1e an {deal af F , VIl an fdeal of ﬁ, such that 1( U )c ML <

c 1.

Corollary 1. T (LYY = 1R H)e . }{UL} = 3fﬁ}ell are
(G-invariant) ideals of o 1ff |} is an ideal of ¥ .
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We need only prove that i( W) < A W) and that both are ideals’
of (b 1f Ul 1s an ideal. Assume U} ideal, then L( 7 ,UL)?-‘C W , this
already shows i(Ul)c + (W). Let xe¥ , uel , HER AeJ(lx?,-')
then the equations

[H, L(x,u)] = L(Hx,u) + L(x,Hu)
[H,Alx = HAx - AHx

show that i(ll) and j(Ul ) are idealf of 5, >

Theorem 2. ? is simple, iff (OZ.D, ©) is simple.

The proof is an immediate application of the above corollary and

lemma 4.

T ?‘ is simple, then either x is simple, or x = ;@ @ %vc’b
(1.8, theorem 3) O(bl, b2) = (bz, bl). In the second case we get some
more informations. Since we assume 1/2 € ¢ we get (up to an identifica-

tion) (b b2) € ;C? is in ‘\f 1fE @(bl, bZ) = (bl, bz), this is the case,

1!
1Ef 'D1 = b2, consequently

F =, b), be k).
The map (b, b) —> (b, 0) is obviously a module isomorphism, but further-

more, since

this map is an Lt - homomorphism of ? onto the Lts
&, (bysbysb,) > [[bb,], byl. We proveds

Theorem 3. If ?'-' is a simple Lie triple system, then either 7: is a

simple Lie algebra and the triple product is [xyz] = [[xylz] or 'Z 1is

the +1 - space of an involution of a simple Lie algebra.
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If ':,1 1s simple and every ideal of :Z’ is @ invariant, then £
is simple, too. If, for example, E e% such that [E, [E, H + x]] = X
(there are important examples of this type; see Chapter XI) then any
tdoal & of % 1s pdiwvartant. TetE =N+ w e &, stice [B, [LE]] =

u & EZ , we see that M and u are both in 5 « This shows

Theorem 4. If \; is simple and there is an element E 65 such that

[E, [E, H+ X]] = %, then x is simple.

It is far beyond the scope of these lectures to give a classifi-
cation of all simple L.t.s.'s (finite dimensional over fields). We
restrict ourselves to the presentation of those parts in the theory of
L.t.s. which are useful for a better understanding of certain constructions

we shall perform later in connection with Jordan algebras and Jordan tri-

ple systems.

6.5. Let ;Z be an arbitrary L.t.s. and ‘20-% ®¥ its standard imbed-

ding. We have seen that for an ideal W of ¥
T =1abe, I =y(Wre W

are ideals of Z’ , and if S@=n‘l@uf is a G-invariant ideal of &

then J (L) & -%(%).

For submodules uwl. Ulfz we set
Wy, . -
1’1 Woeas(Upw, + 12U WU,
this is in terms of triple product lll* ’ULZ = ['M,l “—.ﬁ 'UI«Z] + [M,z\if “ubl].

! *
Lemma 5. If ULl, 1}[/2 are ideals of ?:, then ULl ]/Lz is an i1ideal and
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1V, + Ve (U, 1B 1+ UL W) 3 « ).

Proof. 1In rz we have

- F\I " ' ]
[T U, TUM = 11U, 11+ LW, U +1U U,
+.i( L:?'2) Lal) since the product of two ideals in a Lie algebra is an
ideal (¥, lemma 1) and if both ideals are @-invariant, then, of

course, the product is 6-invariant. The result now follows from

lemma 4.

(6.6) Corollary. J( Vb «Wpc 1J (U, T (Up1< T (U, «Uy
(uiC.\?‘ ideals.)

We define V <o> : =vlf, L‘,\,/(k-i-l:* o rlj)]'<k> . ,q{(k*» - ['Ul,‘k} -?- w<k>] ‘

ULCk)

1/1/ is called L-solvable, if = 0 for some k.

Exercise. L’l L-solvable "’———busolvable (for def. see ch. III)

Lemma 6. f "UL ”b’bz are L-solvable ideals of ‘.’,Z , then u’l + vlfz

B l’
is L-solvable.

Proof. We show by induction
(6.7) (U, + ’1/12)4“'(: Ulr;k’ + w;k’ + Uin Wz.
k = 0 is trivial. Assume (6.7) then
i <k+1> 1 <k <k>
cU,+ Uy = (U + UNTF (U + VPN
[( L-’l,l‘k"‘ + U 2‘k> + U, 00 2)?’(1»[;1"

+ W, + U, AU, <
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1y <ktls Yoozk+ls W
& L'Ll +L<.g2 +'Lplq ULE.

| <k, <> - -” <kt

Since cbviously ( v ] , tha lamma is an immadiate

consaquence of (6.7).

Asgume ';L Noetherian, then there is a3 wmique maximal L-solvable
tdeal X (7 ), the L-radical of £ . ¥ is called L-semi-simple,
1t K(F)=o.

Theorem 5. N ( T/ R (¥)) =0 and 12 W(F/1) = 0 then
KOEYS Ly

ki

Proof. The ideals of ?i - ;;‘ K (¥ ) have the form ""f ®ix D,

whara L} is an ideal of ¥ containing ;Q {\:p':' Y. Since

i LL,: e l’L {kbﬂ;-@'tﬁg_’ B
("&E{??‘ } —REF

if 1!‘,4' E{k} iz L=-solvable, then 'u- <> v ]?_ ( k;] for some k.

This imnlies that Ll is L-solvable in ? , hence 1] = X (‘-?: y, and

¥ R La L-sent-simple, In * [ the ideal ®. = { + + (L,

v =3(A ) is L-solvable. Consequently "!1,1, L-semi-simple implies

Tapand N¢(FI)SW .

lemma 6. If LLCY¥ is an ideal, then

@ 0 fHJ.‘fj e 1( W)
(11) ] {blf}(kﬂ:'.: ¢ Wy ) <1 (W) @

(Note: in (1ii) we have Lie algebra notationm).

Proof. LA E | (L) thenm: 4 and i 7=Vl . since
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[H, Lix,y)] = L(Hx,y) - L(Hy,x) and Hx, Hy«= UL, we get [H,L(x,y)] e
¢ (LL). This tmplies (1).

In particular, since (LrLJ:“Ij v we ger [ {Li}.i (Wl 1011

and g ( 19— 50y % by dnduction. The other inclusion is

erivial, since for an ideal Ybwe have £(VL )<= 4¢ L),

Corollary. 1(tl ) solvable in j , 1fF j{lrh solvable in ':1 :
=i

Leamma 7. If:i is an ideal of ?f! then

(1) I .-J' VW L1e <4 ¢ W
an feny® e 7eny®e 'j{L'H{H

Proof. [ (Ll)w '-",“-j““fl'[J{u}- 1+ L, #) +
{ “L] H 11"— j { Li), by lemma 6.1, (i1} follows

fram (1) by induction.

Corollary, .J (W) is solvable fnod , Lff 3’{ W) is solvable,

Theorem 6. If -UL c ? is an ideal, then the following statements are

equivalent,
(1) Ll is L-solvable in ?

(11) T (Ll) 1s solvable in =L
(111) T¢Ll) is solvable in< .

i

Proof. ((11) => (iii) 1s the above Corollary) We show by induction

J(W*ye TW®,

k=1 1is trivial. Assume (6.8), then by (6.6)
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T p'ta™esy o e R Y U™, T O
ey ™, Ty ®)y o ey Y,

As consegquence of (6.8) we see (i1) =2 (1).
Next we show by induction
o TPV T W*), a2
» I T HeF ™) k=20
1f k = 1 then a) follows from (6.6) and b) 1is trivial for k = 0,

Assume a), b) for k. Then

TeRyR0H=1 & 1 Feh ™, Ty e e 50l 3 ey
. (Lemma 74) F ( Uty

I;'

i A just proved a) for k+1)C J( Ay by lemma. 74,

Now (1) =>(i1), by a) and b).

Now we agsume :ZFHcethﬂrian. Then the radical nf;(n exists.
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Theorem 7. Radoz;= 3-’(32(?‘—)) =J (‘32(¥))-

Corollary (i) WR(F) =¥ N Rad
(ii) fsemi-—simple, iff ?fL-semi-simple.

Proof (Of Thm. 7). Let & = Radk; . Obviously the isomorphic
(or antiisomorphic) image of a solvable ideal is solvable and
since every solvable ideal is contained in the radical, it is
clear that Zf is€ -invariant, then £=’m9 \/L ; by lemma 4, and
JWe = 3_'(1)[,) . Since J(W) as a submodule of a solvable
ideal is solvable, we get g}ll) solvable by theorem 6. But

% is maximal solvable, thus :f=} (W) . Theorem 6 also states
that his L-solvable, hence L c®('£) and &= g(M)C ?(&(}?‘)) .
Conversely 32(\‘7-) is L-solvable, then 3(32(57-)) solvable and

3(&(3})::% . Hence£=}(&(¥)). From this the corollary

is already an immediate consequence. We now consider

- Y +J(R)
¥ = '}’({F{,)/’ ®=R(%), with canonical induced triple

product. ¥ is a L.t.s. It is easily checked, that the natural

module isomorphisms

Z = /% ¥ are L.t.-isomorphisms,
I ) T®R)nF R(F)

hence £ is L-semi-simple. Obviously

- £ e
i = % = F +[_? ’ :FJ and it is clear that the results so
(05)

far proved apply to ¥ and & , in particular & semi-simple iff

F L-semi-simple. Hence ¥ is semi-simple and RadfC'.:r (R .
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This implies J(R) =Rad &L .

Open question: We know K ( %C) & Rad ¥ (see exercise). Is the
converse true? Or more generally, is a solvable ideal of ';C
L-solvable? This is true for special cases (see theorem 9 Yoo
Exercise. Complete the proof of thm.'7 and show ; is
L-semi-simple, iff E semi-simple.

6.6. Since we want to apply the results from Lie theory we
indicated in chapter V, we make for the rest of this chapter the
assumption, that ;C is a finite dimensional Lie triple system

over a field F. Our first result is an application of V, theorem 2.

-Theorem 8. _I£?-'_1_§ a finite dimensional L.t.s. over F of Char O,

then tF is L-semi-simple, iff 7 is_the direct sum of simple ideals.

Proof. Let Mr'l be a mmiééal of ? -. 3 (\f—l) is r;m ideél of
cf , which is semi-simple by theorem V4 , and then a finite sum

of simple ideals (or equivalently every ideal ofuza is complement-
ed) . Consequently Z,= Jq ;tl)eof '. Since J ( ?—‘l) is ©-invariant,

the complement f’ (which is the orthogonal complement of J{'? l)
relative to the Killing form) is @—invariant, too (see V, lemma 2).
Then.;('f’ ! ='Me‘LiL, w, ideal of ; and'\f' =;fn? = 3’191/1,. Standard
arguments show that ‘;zl is simple. The result now follows by
induction on the dimension. ? simple impliesﬂza semi-simple and

consequently = = semi-simple.

Theorem 9. If \i is finite dimensional over F of char. 0, then

an ideal ]/'Lﬂ? is L solvable, iff u_:_._g_ solvable.

Proof. 1If 7 is L-semi-simple and UL# 0 a solvable ideal then

theorem 8 implies that W is a direct sum of simple ideals ?1

This leads to a contradiction to(}’i ﬁi :fl] = ?i‘ Hence Ul/= 0 and
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Ragd 7 = 0. Assume ’E-{ii ¥ 0, then 7-_:" o is L-gsemi-simple
R(F)

consequently Radﬁ:{&{;) = 0. Then Iad ?CR{‘-}"—} i by IIX; J.2.

[see also theorem 5}. Since fE{::} = Ra.d? (see exercise p.9!) we

get Eadl}"= E{? ). Conseguently, ifLﬂLis solvable 1t is contain-

ed in &(¥) and then L-solvable.

Theorem 10. If ¥ is a semi-simple L.t.s. over F of char. 0,

then any derivation D E:; is of the form D = L L(uirvi} .

Proof. Verify that 8§ :f + L,

§(x): = [p,H]®@Da (if X = H@a)
is a derivation of ¥ . Since ¥ is L-semi-simple, iff % is semi-
simple, we get i':semi-simple and therefore we can apply V, theorem 3.

Consequently & (X) = [U,X] y U = H.Ba &Z . Then Da = da =

! S R
Hla “+ L{al,aj. But Da &'\; ; implies Ll:al,a} = 0. We end up with
Da=Hla for all aorD=H1?—.__l§ '

6.7. 8Since the Killing form in Lie algebras is of fundamental
importance (in the finite dimensional case) we shall compute the

Killing form of the standard imbedding ffnr finite dimensional

L.t.5. \1[ over F of characteristic # 2. Let be G‘Z’= lﬁﬂ?’. X =

Héa, HE"L’a ; ae‘?- , and '\ the Killing form on& . Since -8 is an
automorphism of-bf, V, lemma 2,implies -A(H,a) = A(GH,a) =
AH,Ba) = W{H,a). Consaquantly'k{\s ,‘-‘FJ = 0. Hence
{6.9) A{X,X) = XA(H,H) + A(a,a).
We define

ad_l_}s'.: -Z." +«Lf' by

(aa,X)H' = [x,8'] , (ag,x)u = 0, H'{:(ﬁ ,ue F .
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and ad_X:i« — by
(ad-X)H' = 0, (ad-X)u = [X,u] .
Clearly
(6.10) adX = ad X + ad_X.
Next we show
(1) ad Had H = ad_Had H = 0

(6.11) (ii) [ad_f_a}z = (ad.a)? = 0. for all I-H-’"é , a€F .

Proof. For example,
{ad+Had_H}"% = o, by definition of ad_X.
(ad Had_H)a = (ad H)Ha = 0, by definition of ad X,

then ad+Had_H = 0.

The rest is left as an exercise.
(6.10) and (6.11) imply

{(6.12) (i) {adH?2

I

(ad,#)? + (ad_m)? and

(1) (ada)? = ad (@hd_a + adldad,a.

Now we compute traces. Since ad H is zero onF and equals adél:l
on Y'a , we get

trace [ad+H]2 = ) (H,H)
where ), denctes the Killing form Df% . (ad_H) 2 is zero on ‘ﬁ .

i
and on + we have [a.d_H}zu = qu, consequently

2 = trace H2

trace (ad_H)
Henece by (6#12) and these two eguations,
A (H,H) 4+ trace H2

Y

Ala,a) = 2 trace ad+aad_a.

Il

(6.13) A{H,H)

By (6.12i) we get

Again: fad+a’$d_a"|is ZEero onlﬁ and

{ad_l_a}ld_a]u = ad_ a ta.,u]

La,I_a,ull = fuaa} = R(a,a)u.




Hence

(6.14) wla,a) = 2 trace R(a,a).

Putting these results tagether{{ﬁ.gl. {6.13), {5.141)WE end up
with

= - . "
Thaorem 11. If f i a finite dimensional E.t.a. aver F g{ char

# 2, A resp. >, the Killing form D_l_i_'v{ resp. "fJ and X = HBa ¢« ,

then

MZX,X)

I

AE{H,H} + trace H2 + 2 trace R{a,a).

Corollary 1: A is non degenerate, iff

(H,H") = J-.%EH,H'} + trace (HH') and

(a,b}) += trace[R{a,h} + R{b,aﬂ

.are non degenerate bilinear forms gﬂ‘ﬁ resg.? .

Corollary 2: If ¥ is finite dimensional, semi-simple over F of

char 0, then (a,b)++ trace {?ta,b} + R{b,aﬂ is non degenerate.

We define ?{a,b}: =L trace[sta.b} + R{h,a{] and assume
? is non degenerate. {?Tfin. dim., char F # 2). Since ? is
(up to a scalar B) the restriction of the Killing form, which is
associative, we get
© (R(a,b)x,2z) = p(lxbal,z) = BA([{x,b],a),2) =
8rix, (b, [a,2]]) = g(x, [zab]) = g(x,R(b,a)2)

This shows

(6.14) ¢ ({x0a] ,2) = ¢ (x,[zab])
Using (6.14), the symmetry of ¢ and [;bé] = - [bac] ¢ We get a
chain

(6.15) Qf[xba:'irﬁ = ?ﬂx,Lzab]I = -fi[_azb].x} -Q{a,bez]} =
¢ ([bxz) ,a) = ¢(b,[azx])
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If A  denotes the adjoint of A;End¥ relative tc? then
we get from (6.15)
(6.16) (i) R(a,b) = R(b,a), (ii) L(x,b) = L(b,%) = - L(x,b).
Since trA = trA (6.18) implies trace R(a,b) = trace R(b,a) and
trace L(x,b) = 0, in particular

Sl fa,b) = trace R(a,b).
We define xy*rg End# by xytz = ?[z,y}x and consider the map
S: End £ + End'¥ defined by
trace AL(x,y) = §{E{ﬁlx,y]. By III, 3.4, we have
S(xy ) = L(x,y).

{(6.16ii) implies S{xb*}* = E{be*}*] = - S{xb*}r consequently
(6.17) s(a)" =s(a") = - s(a).

The defining identity (6.3ii) now becomes (using 6.17)

[s{xy*J . s{uv*}:] = E{S{xy'}uv* = uv*S(xy*H.

or

(6.18) [sa)r,s))] = s(s@ .8

Furthermore (6.15) implies

tr uv*LEx.Y] =?[[xyu'_],vl = ?Ex,[vuy]} - ?{Euw-g,y} = tr L(u,v}xy*.
Hence
(6.19) kr AS(B) = tr E(A)B

which means that S 1s selfadjoint with respect to the trace form
on End ¥ .

We shall compute another expression for the Killing form.
The Lie algebra\‘j is spanned by all L(x,y) or in terms of the Lie
algebra-f by {x,y] . To compute the Killing form it is sufficient

to compute itsd wvalue on the generators.
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tr ad(x,yladlu,v] k([x,y],[p,v] ), by (6.9),

A([[x,?],u],v ), by V, lemma 2i,

I

A(|xyu],v), by theorem 1 (iv),
=£?(L(X,Y)H,V) r by {6-14)
* *
= trace S(xy )uv ,
Consequently
(6.20) A(S8(Aa) ,S(B)) = trace S(A)B,.
From this expression it is obvious that )\ restricted bo%? is

non degenerate, consequently

Corollary 3. A is non degenerate, iff ? is non degenerate/;nd
7

Corollary 4. (Cartan's Criterion for L.t.s.). If.?'iﬁ.i finite

dimensional L.t.s. over a field of char 0, then ?'ig semi-simple,

iff¢ is non degenerate.

Proof. 9 non degenerate, iff A nondegen. (by cor. 3); this is the

case, iff&f semi-simple (Cartan Criterion, V, theorem 1) and by

the corollary to theorem 7 this is equivalent to‘? semi-simple.
As another applicaion of our computations of traces we find

an expression of the Killing form of'ﬁ,. Comparing (6.13) (in

linearized form) and (6.20), putting H = S(A), H' = S(B) and
observing tr S(A)S(B) = tr SzfA)B we get
(6.21) x%(sun ,S(B)) = trace [ 25(a) - S(s(a))]B.

This equation shows that A, is non degenerate, iff SZ(A) = 2S(A)

[

implies S(A) = 0. 1In the case of char F 0 this gives an interest-

ing criterion about semi simplicity of(ﬁ
Problem: (the answer is not known to me). Determine the
minimum polynomial of S for simple L.t.s.

Exercise. Define s': End? + Em:'i};’1 by

trace AR(x,y) = g(S'(A)x,y).



Shew. i) s'tuv") = R(u,v)
ii) tr s'(a)Bs = tr as'(B)

iii) s'(za) = 14

6.8. Let Ff-be a set of endomorphisms of a vector space V.

A subspace UcV is called )~ -invariant, ifsUcU for alloed .

One says that V is irreducible {rel.TJ or J" acts irreducibly

on V, if V has no proper ( # 0, # V) ?L— invariant subspace.
¥ is called completely reducible (on V), if V =2 U, , and
T'acts irreducibly on all subspaces U,. From linear algebra it

should be kncwn:ﬁhis completely reducible, iff everyir— invariant
subspace of V has a direct‘rl invariant complement, or eguivalently
vV = Bﬂi where the subspaces Ui are irreducible (rel. |). (see
p. 46 of N, Jacobson's Lie algebras).

It can be shown (the proof is non trivial and needs some
technigues from Lie theory).

Theorem 12. ££t¥ is a simple L.t.s., finite dimensional over F

of char 0, then '8{‘-?5'} is completely reducible (on'y ).

Note: By theorem 10 we have %{ ¥) =§.
Starting with this result we shall prove

Theorem 13. If F is as in thm. 12, then either ?IEE irreducible

relative -%{#:r or F = Hliﬂ “U],z with invariant irreducible sub-

systems and L{Liirlii} =0 (i=1,2).

Proof, Suppose ¥ not irreducible and ul a properfa- invariant
subspace. Since "V =ﬁ ; & = invaELance menns [?? Llle L{i
Then 1) Ltlﬂl.'UH} is an ideal in{% . (obvious by (6.4))

2) Ifln.is an ideal GEH% ¢ then TﬁﬁF iskﬁ invariant .

3) 1If 112 is a direct Y- invariant complement of 111



63

pr 3 Ue U, man[ululmzj = 0.

For L’L'lelhﬁzjch U 2—_\':: Mz and on the other hand
Ll ] c(¥rl,]le U, byJaces's identity
4) LL’;IMlULI] is an ideal in? . Ifu,vwell 1t XY T 4

then
lluwlxy] = [uv[wxy]] = (wluvx]v] - lwxf{evy]] €
e [0, %] +[lwaryIng +uy (wu,9)
< [y W] by 2) ana 3.
since £ is simple and ‘_u-l'ULl L-'Ll] CU/I 47 we have [Hl'wlb11] = Q.

This together with 3) shows

LUy, Uy = 0.
Suppose + - ‘{Ollﬁ ﬁzw...af@r rox 2y Jﬂi invariant irred., then

r‘Dla "-Oi is a proper invariant subspace and the above consider-
ation apply. Consequently, 0 = L{-‘Olm lﬂi, 10l$ Lﬂi} = L[lol,l.oij '
hanca[‘ﬂle \-F_-L = 0 and 4‘-01 is a proper ideal. This i1s & contra-
diction. We conclude that r £ 2 and ul,'l){/z irreducible. iff}

We Keep the assumptions Dn? . We consider the case, when
? is not irreducible. ;t - Vblﬂ vi’.?' We consider the map
D: ¥ =7, Dx = X, Xy LE X = x; 4oy, % &U}/i. An easy
verification (using L{Hi,ULi} = ) shows 0 = [D, L{u,v}] =
L{(Du,v) + L{u,Dv). D is a derivation of ?F , therefore containead

in "",jfsee theorem 10). We proved

Lemma 8. If 7_13 not irreducible, then there is an element D in

the center 9_2'5 such that Dx = ;< X, {E X = Xy + Xor %4 (= UL i}
('he center c:-ftfj is the set of all H*= Lb « such that 'Lli,‘féi_]= 0.)

We come to the conclusive resultk of this chapter which will
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‘(hopefully) give us a better understanding for certain results
and constructions we shall obtain later.

Theorem 14. If ?'ig a simple, finite dimensional L.t.s. over

an algebraically closed field of characteristic zero, then either

(1) \-7 is irreducible relative (\c)(i) and r\(}(?) is semi-simple,

(1) ¥ =Wel,, W, are irreducible (rel.AJ('#)) and

isomorphic subsystems such that L(l&i,vbi) = 0, furthermore

) (? ) has a one dimensional center.

Proof. (i) If‘??is not irreducible, then by lemma Bré}( ?ﬁ

has a nontrivial center (which is, of course, a solvable ideal).
Hence*%ﬂ‘¥) semi-simple implies¥¥ irreducible. If conversely
4}“13 not semi-simple, then the center ofé}~has to be non trivial.
This follows from an important result in Lie theory, that a
completely reducible Lie algebra of linear transformations can

be decomposed as a direct sum of its center and a semi-simple
subalgebra. H is in the center of’E}, iff H commutes with

g
every element offkf. 1f ?ris irreducible then by Schur's lemma

H = aId,0 €F (F is algebraically closed). But by (6.17) the
O

elements inL@’;}e skew symmetric; therefore 0 = trace H = adimT? .
Consequently o = 0. Thus, if ~J has nontrivial center, ‘? must be
reducible. So we are in case (ii). Since [_MiULi'Uli] = 0, they
are isomorphic if they have the same dimension. Consider

Dx = X; = X, by lemma 8 it is in@“ and therefore trace D = 0.

1
!
ButD|. = id | andDa =-Id)
Vly 'L{l' W, l},- Consequently
0 = trD = trD ’UL + trp | j, = dim I}, - aim'U,. Finally let c be
e+ 4 2
any element in the center of '\9" . Then by Schur's lemma, the

restriction of C to .Oli is ociid\m since 8’ acts irreducibly on ULl
(%
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_.. Thus C(xl + x2) = 0%y + X, Then 0 = trace C =
aldiml¢l + azdimqﬁz. Since dimlﬂl = dimU, we get @, = - a,
and C = a,D. This shows that D is a basis of the center ofA}.
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VII. Linear Jordan Algebras.

7.1. Let i be a commutative ring with unit element 1 containing
. An algehra} over§ with product (x,y)— xy is called a

linear Jordan algebra, if

(J.1) Xy = yx "commutativity"

(J.2) x{xzy} = xzixyi "Jordan identity"
for all x,y Ei—
In terms of the left and right multiplication L(x) ,R(x),
the above definition is ocbviously equivalent to
(J.1") L(x) = R(x)

(J.2'") L{OL(xZ) = L(x2)EL () for all x € F .

Example. If (L is an associative algebra over?ﬁ with product
(X,¥)— xy, then GL+, i.e., the mndulea/ together with multi-
plication (x,y)> xoy = H(xy + yx) is a Jordan algebra (see
1,1-1. , ex. 5 ). The powers of an element in GL"' are the same
as inCL . Furthermore, if (} has a unit element e, then e is

also the unit element of (1+.

Exercise. If } is a Jordan algebra over @ » then the unital
algebra 3 @-1&} is again a Jordan algebra (see 1.7.).

7.2. A linearized form of the Jordan identity is (replace x
by x +62, % = 1,%).
(7.1)  z(xy) + 2x((x2)y) = x*(zy) + 2(x2) (xy)
Linearizing again leads to (since we assume heﬁﬁ_)
(7.2) =z((xu)y) + u((xz)y) + x((uz)y) = (xu) (zy) + (uz)(xy) +
(xz) (uy) .

This is in operator form (acting on z)
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(7.3) Liy(xu)) + L{u)bL(y)L(x) + L{x)Liv)L{u) = Lixu)L(y) +
L{uy)L(x) +LxpL) .

Sinc:e the right hand side of this eguation is symmetric in x

and y we get

L(y(xu)) + L{uw)L{y)L(x) + L{x)L(y)L(u) = L{x(yu)) + L(u)L(x)L(y) +

Liy)L(x)L(u),

or egquivalently

(7.4)  Lixlyw) - vixa) = [[L0,0m ], now)

This equation has the following two interpretations

Lemma 1. The mappings [_th} ,Ltyﬂ ' x,ya:;_j‘ , are derivations

ot .

Lemma 2. Lt}} together with (L(x),L(y).,L(z)) [LLIX} ;Ll'!f!:l ;L{'z—-’__'

is a Lie triple system.

I
We denote by 3 the submodule of j‘r spanned by all associators
(xy)z - x(yz), x,y.2 E} . Equation (7.4) shows that any Lie

triple product of elements in L(}I is in L{}'}; consegquently,

L{ 3*1 is an ideal of L{i,\.

7.3. An important role in the theory of Jordan algebras plays
the so-called guadratic representation P of a Jordan algebra } .
This is a map P :}ﬂ End} y "> P(x), defined by

(7.5) PG =2mx? - nx®), xeF .

Note: [L(x),L(x®)] = 0 implies [L(x),P(x)] = o.

Example. If C‘L is associative, then the quadratic representation
of GL+ is given by P(x)y = xyx.

The map P is gquadratic in the sense that



P(ax) = a2P(x) for all oae& 9, x«aiﬁ , and
P(x,y): = P(x +y) - P(x) - P(y) is bilinear (in x and y).
From the definition (7.5) we obtain easily
(7.6) P(x,y) = 2 [L(XL(y) + L(Y)L(x) - L(xy)] , P(x,x) = 2P(x),
Using (7.6) and (7.3) we compute
P(xy,x) - L(y)P(x) - P(x)L(y) = 2L(xy)L(x) + 2L(x)L(xy) -
2L (x(xy)) = 2L(Y)L(x)% + L(y)L(x®) - 2L(x)°L(y) + L(x*)L(y)
= 2 [L(x),L(xyi} + [L(y), L(xz)] = 0, since the lastterm is
the linearized form of {L(x),L(xzﬂ =0 ,(J3.2").
Consequently,
(77) L(y)P(x) + P(x)L(y) = P(xy,X).
Furthermore we note that the linearization of [p(x),P(x)] =0
is
(7.8)  [Px,w,n0] =[rw,pe)] .
_ An important composition in (linear) Jordan algebras is
(x,y,2) > [xyz} G e P(x,z) ¥
This is obviously a trilinear composition, i.e.,.} together
with this composition is a triple system (see j?. ). The "left
multiplications" of this triple system are L(x,y)é&End‘? ’
defined by

L(x,y)z = {xyz} = P(x,z)y
Using (7.6) we observe

L(x,y) = 2[L(x) ,L(y)] + 2L(xy) .

Applying (7.7) repeatedly (and using L(xX)P(x) = P(x)L(x)) we

derive %P(x)L(y,x) = P(x)L(y)L(x) - L(x)P(x)L(y) + P(x)L(xy) =
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= [P{xy,x} - L{y]P{xil L(x) - L{x}[_P{xy,xl - L{y}P(xi] + P(x)L(xy)
L) ,niy)] P + [Plxy,x) ,nix)] + P(x)L(xy)

Lz (x) Liy)] P(x) + Lxy)P(x) (by (7.8) with u = xy)

il

4L (x,y)P(x).

We proved P(x)L(v,x) = L(x,y)P(x). Both sides of this equation
acting on u shows P(x){yxu} = {xyP(x)u} . Since the left hand
side of the last eguation is symmetric in y and u, we conclude
{xyP{x}uj = {xu?{xjy} . This is in operator form

Lix,y)P(x) = P(P(x)y,x). We proved

(7.9) L(x,y)BP(x) = P(x)L(y,x) = P(P(x)y,x) "Homotopy formula".

The linearization of (7.7) acting on VE? shows (after appropriate
change of notation),

(7.20) y-{uw} = {(yu}vw} - {u[yu}w} + {uv{yw}} .

It is obvious from the definition, that for any derivation D of 3;

D {uvw} = {{Du}vw} + {uva}w} + {uvfﬁwig
holds. Then, in particular, this eguation holds for D = [L[x},L[yi] 4
by lemma 1. Using this and (7.10) (y »+ xy), we derive
Lix,y) {uvw} = 2 [L(x) ,L(y)] {uvw} + 2L(xy) L uvw}
= {wywwl = {umy, 0w} + {uvnxywl .
This is
{7.11) {x:.r {uWH - {uv {:-:yw}]l -H_xyu} wi» -{ullyxv} w}- ,
or in operator form
(7.21%) [Lix,y} ,L{u,vﬂ = L{ Em} v} = L(u, {_yxv} ).
A particular case of this equation is (setting u = x, y = v)

{7.12) LIP(x)y,y) = L(x,P(y)x).
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Furthermore we observe that the left hand side of (7.11l) is

skew symmetric in the pairs (x,y), (u,v), hence
(7.13) k{xyu}vw} - {ulyxviw} = {x{vuy} wh —{juvx}yw} .

In order to prove the fundamental formula

(7.14)  P(P(wWv) = P(wWP(V)P(uw for all u,v € I,

we substitute x - &uvq},w + u in (7.11) and obtain (note:
{xyx& = 2P(x)y)

(7.15) 8P(P(u)v)y = 2 {uv {uy {uvu}}} - {u{y{uvu}} u} 3

Replacing u ~ y, y+u, x+v, v>u, w+v in (7.13) gives

{‘y fuvul v& = 2 [{vuy} uv} - {v{uyuj v} .
Substituting this in (7.15) implies
8P(P(u)v)y = 2 {uv fuy fuvulll - 2fu Sl uyvl uv} o)+
8P (u)P(v)P(u)y.

Since the homotopy formula (7.9) has asconsequence
Luviuy{uvull} = {uv{uhyuvfull = {u{yu{yuv}} u} ;
the foregoing reduces to (7.14).

We have seen that the deduction from the axioms (J.1),
(J.2 ) of all the important formulas in Jordan theory (in
particular (7.9), (7.12) and (7.14)) depends heavily on the fact
that we were able to cancel by 2. On the other hand, a theory of
linear Jordan algebras over fields of characteristic 2 does not
lead to results, which are "compatible" with results in the case
of char # 2. So one has to think of something else, which would
permit a "nice" theory for arbitrary rings. The best approach

so far is via "quadratic Jordan algebras", which where "invented"
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by K. McCrimmon., Before presenting some fundamentals of his theory

we shall study some examples of linear Jordan algebras.

VIII. Examples of Linear Jordan Algebras.

Throughout this chapter we assume k& @ G

8.1. We already know, that for an associative algebra (O} with
multiplication (x,y) =+ Xy, the algebra (L7, i.e., (L together with
®oys: = k(xy + yx), is a Jordan algebra., But then any submodule

ﬁ afGL ; closed under (x,y)% xoy, is also a Jordan algebra. A
(Linear) Jordan algebra is called special, if it is isomorphic to
a (Jordan - ) subalgebra of some ﬂ,+, (1. associative. Which makes
the theory more complicated, but more interesting, is the fact,
that there are Jordan algebras which are not special, These are

called exceptional Jordan algebras.

For the mest interesting applications of Jordan algebras one
needs simple algebras. Therefore we shall look for conditions on
ﬂl which force GL+ to be simple. Obviously any associative ideal

of Ol is an ideal of (L. We shall show the converse. We start with:

Lemma 1. If & is an ideal in (L%, then for all a,be'fy and

xéﬂy ; {ab+ba}x—x{ab+ba}€1£'.

Proof. An immediate verification shows

%{ab + ba) - (ab + ba)x = a(xbh - bx) + (xb - bx)a + (xa - ax)b +
b(xa - ax).

Since a,bé.y::r, we have that ya + ay and yb + by are elements in %
for all yc":mz ; S0 the right hand side of the above eguation is

iné , Eor all x::Ul/ . This already proves the lemma. An element
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Proof. An immediate verification shows

x(ab + ba) - (ab + ba)x = a(xb - bx) + (xb - bx)a + (xa - ax)b +
b(xa - ax).

Since a,b e%, we have that ya + ay and yb + by are elements in 'ﬁ-
for all yéimf ; so the right hand side of the above egquation is

inn@“j , For all xe0y . This already proves the lemma. An element




7a

xF:Ov is called trivial, if xOLx = 0.
Theorem 1. If (L has no trivial elements # 0, then any non-zero

ideal & of OL+ contains a non-zero ideal of (L.

Proof. Let ﬁ# 0 be an ideal of 0L+ . By lemma 1 we get for any
x €0 , Xc - cx € Iy , where ¢ = ab + ba, a,bef‘ . Since cef— i
we have Xc + cx e"ﬁr , consequently xc ékﬁ' (¥ € 3!) for all x el .
But then again (xc)y + y(xc) € ﬁ- for all y and therefore

xcy&ﬁ for all x,yeOL since we already showed y(xc) = (yx)c é:g—.
Then we have @cOL < ﬁ‘ . Since GLCOL is an ideal in(j]/ , we

are done, unless OLCO]/ = 0. In this case cOLcOLc a/c =0,

which forces c Olc = 0 and then c 0, sinceO]/ has no trivial
elements. If we can show, that for some a,b eﬁ- the element

c: = ab + ba # 0, then by the foregoing O,cOL # 0. Therefore
assume ab + ba = 0 for all a,b&% . Then in particular a2 =0
and 2 axa = alax + xa) + (ax + xa)a = 0 since ax + xa éﬁ'. This
shows a m/a =-0. Again our assumption implies a = 0, which contra-

dicts & # 0.

Corollary: iar is a simple associative algebra then OL+ is a simple

Jordan algebra.

Proof. Firstly we note that x OL = 0 implies that Ul/x is an ideal
of G/ . Since a/x -—-GL would imply 0\,2 = axO]/ = 0 we have ax = 0.
Then ¢x is an ideal and x # 0 leads to OL= ox, 01,2 = 0. Thus

x = 0. Also q/x = 0 implies x = 0, by the same argument. Next,

let ¢ be a trivial element in GL 7 € O((C = 0. We consider the ideal

LR,CO], . 'Since ﬁ-ic@'u =0L leads to G],Z = G],c(n GLCO]/COLCG\!CGL= 0
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we get OLCOL = 0. Then ac = () and ¢ = 0, by the foregoing
remark. Therefore afhas no trivial elements # 0 and the theorem
applies.
B.2. Let V be a vectorspace over & = F, P being a field, and
g t V+ F a quadratic formon V, i.e.,

gqlax) = uzq{xl for all aeF, xeV, and

atx,y) = %[qg(x +y) - q(x) - g(y)] is bilinear (in x and y).
We wish to associate with (V,g) a Jordan algebra. The most obvious
attempt will do it. We define

xy = glx,y)1l.
This, of course, is not a composition on V, but it leads to a
composition on
AR = reaev
if we define (al + x) (BL + y): = (aB+ g(x,y))1l + ay + Bx.
In particular, for z = gl + X we get
22 = Zgz + {uz + g(x,x))1, and furthermore 1 is unit element

of {Q This shows that the left multiplication L(Ezl is a linear
combination of L{z) and L({l) = .l:d, which trivially implies

Liz)L(z2) = L(z9)L(z). ThusW’ is a Jordan algebra.

Exercise: Show that ‘{0 is a guadratic extension of F or

LG = FaF if dim V = 1 and g non degenerate. |[Now assume dim V = 2.
Letw/be an ideal ofio. 1f WWnv # 0 and z # 0 is in this
intersection, then by the nondegeneracy of g we can find a vector
% such that xu = g{x,u) = 1. Since xu ew ¢ this shows 1<l ana
consequentlyulf = . Let ?1 + v be a non zero element in l'l and

g# 0. Then for any vector y # 0, orthogonal to v (dim V 2> 2), we
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get (gl + v)y =9y EWH? and we are back in the case, from

which we derived U =10 . We proved:

L

If dimV 22 and q{x,y}?g non degenerate bilinear form then the

Jordan algabralg: F18#V is simple,

Next we show that the Jordan algebra F18V, we considered above,
is special. For this purpose we have to introduce the Clifford
algebra ’Gl,'?,ql .

Let ?{vj be the tensor algebra over V, that is

. : 1
F(v) = 8v', where v%:=F1 and V' = @V, the multiplication in
iz0 =1
?W} is defined for the generators X* x =«x,

(a;8...8a ) (a_ ,@...8a ) = a;,&...8a_ ,@ Ka_. (then linearly
extended). It is obvious that #(V) is an associative algebra
with unit element 1. Let R be the ideal generated by

{xﬂx - gi(x)1l:x \-.-V} . The guotient algebra

S(v,q) = ‘FW.::"E

is called the Clifford algebra of q.
Let T:F18V =>4, the canonical map X% X + & + then by the

definition we have

Tlal 4+ x)2 = (a6l + x)-(ol + x) +8& = a%1 + 2ax + xax + &
=Ln2 + q[x,:-:]] 1+ 20x +R = m{(al + x) %)
which implies, that w(F1@V) is a (Jordan) subalgebra of of", and
m: Flev +4(:+ a homomorphism. One can show that 7 (restricted to
FleV) is 1 - 1. This shows that F1lé&V is isomorphie to the subalgebra

T(F18V) in & ', hence it is special.

QA
8.3. Let ' be an arbitrary algebra over F with involution




j :+ x > X. By g}g we denote the algebra of nxn matrices with entries

in‘E}. In 4}n we have the standard involution X -+ ﬁt, where

{}h. (Verify

X = (aij) if X = (aij) and Y is the transposed of Y €
that X -+ Rt is an involution.) The space of symmetric elements

X

relative to this involution is denoted by (Q/n).
BV -dxed s x-zt).

n n
Clearly XOY = %(XY + ¥X) é‘ﬁ, (&n) if X,¥ e‘:ﬁv&n)
(XY denotes the usual matrix product). This shows, that‘%(49n)
together with (X,¥)+ XOY is an algebra. Without proof we state the
following important result (see N. Jacobson, Structure and

Representations of Jordan Algebras).

Theorem 2. For n23 ( %}(&}n), 0) is a Jordan algebra, iff either

N is associative or n = 3 andf{}ig_alternative and any j-

Q
symmetric element o in V , satisfies (ax)y = a(xy) for all x,y*Eé; 5

An algebra*S)is called alternative, if
(8.1) x(xy) = x°y and (yx)x = yx® for all x,y ek,

S-
If (V,j) is a simple pair and "32 associative Artinian

algebra, then(ﬁ({}n) is a simple Jordan algebra.
8.4. In order to present a class of exceptional Jordan algebras
we first have to introduce Cayley algebras.
Letolé be an alternative algebra with unit element e and non
degenerate quadratic form g such that

x2 - t(x)x + g(x)e =0
for all x e!ﬁ-, where t(x): = gq(x,e) = g(x + e) - g(x) - g(e).

For example F, or FO®F, or the algebra of 2x2 matrices over F have
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these properties, relative to g(gy) = az,q(aeg) = gB or g(a) =
det a.
It is fairly easy to show that

X*X :=t(x)e - x
defines an involution on ai. (Compare the following with the
construction of the complex numbers from the reals.) Let;@ be as
described ahove and o1 an isomorphic copy of?ﬁ'(identify el with
l) and P &F,u # 0. In the direct sum

(&, u) = & ®dkl
we define a product by
(x + y1)(u + vl): = (xu + pvy) + (vx + yu)l.
A simple verification shows

(x + y1)2 - t(x + yl) (x + yl) + q(x + yl)e = 0,

where g(x + yl): = g(x) - ug(y), which is again non degenerate
(u# 0). But it is not clear whether the alternative laws (8.1)
hold in (;gﬂi). This is settled by the following result:

a) (R‘;,u) alternative, 1ff a'ﬁ associative,

b) (Rﬁ,p) associative, iff ¥ associative and commutative,

c) (&,u) commutative, iff & = Fe.

Therefore we can easily construct four classes of alternative

algebras with the required properties. Starting with

&C

0 Fe, and My # 0 we get
&31 = (Fe,ul), which is commutative; then for Mo # 0
hgé = (Fe,ul,uz) is associative, and
%, = (Fe,ul,uz,MB) is alternative (u3 # 0).
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It can be shown that %‘3 is not associative, therefore an
algebra a?;‘: = | 53,11;1 s U ¥ 0, would no longer be alternative,
The indicated construction is called the C-azleg—uiﬁltscin con—
struction.

:ﬁ‘l is either a guadratic extension of Fe, or ;éil = Fa®Fa.

\‘G’E = {Fe.ul.uz} is called a (generalized) guaternion algebra

and %:3 = tFe,ul.uZ.ua} is called a Cayley algebra (or octonion

algebra) .

Exercise: Choose an appropriate basis in %;i (i =1,2,3)

and determine the multiplication table of this basis. (For more
information about these algebras ( and, of course, many other
topics) see: Braun-Keoecher, Jordan-Algebren; N. Jacobson,
Structure and Representations of Jordan Algebras; and R.D.

Schafer, An Introduction to Nonassociative Algebras.).

8.5. HNow let the a Cayley algebra, thenl(’; has an involution
X * Xx = t(x)e- x, the symmetric elements then are obviously
exactly the elements in Fe. But for a€F we have trivially a(xy)=

x{ay). Therefore theorem 2 applies to show, that

[}
i
I

- st
ﬁ (9(.—3] Xy GaXy 3 uil‘: F, xi&c‘}

-

together with X9Y = %(XY + YX) is a Jordan algebra. This algebra

is simple and exceptional.

IX. Quadratic Jordan Algebras.

9.1. Let $he a commutative ring with unit element 1. A map of
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It can be shown that %3 is not associative, therefore an
algebra n'f-‘l = { a"fa.ul + W # 0, would no longer be alternative,

The indicated construction is called the Cayley-Diglson con-

struction.

ﬁ - 5 I3
%‘1 i1s @ither a guadratic extension of Fe, or -2‘31 = Fe®Fa.

%2 = (Fe,ul,pz} is called a (generalized) guaternion algebra

and -1‘:"-3 = (Fe,ul,uz,ua,'l is called a Cayley algebra (or octonion

algebra) .

Exercise: Choose an appropriate basis in :éi (i1 = 1,2,3)

and determine the multiplication table of this basis. (For more
information about these algebras ( and, of course, many other
topics) see: Braun-Koecher, Jordan-Algebren; N. Jacobson,
Structure and Representations of Jordan Algebras; and R.D.

Schafer, An Introduction to WNonassociative Algebras.).

B.5, HNow let ’\J}“be a Cayley algebra, thenic has an involutiecn
X - x = t(x)e- x, the symmetric slements then are obviously
exactly the elements in Fe. But for a&F we have trivially a(xy)=

x(ay). Therefore theorem 2 applies to show, that

®1%1 %y

le‘} IjaCE} Xy a,%, : niﬂ- F, xi [= o{;

i
-4
I

e A

together with XO0Y = %(XY + ¥YX) is a Jordan algebra. This algebra

is simple and exceptional.

X, Quadratic Jordan Algebras.

5.1. Let $ be a commutative ring with unit element 1. A map of
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(unital) ¢-modules Q: M =MW is called guadratic, if

2(ax) = x’Q(x) for all xelil aed, and Q(x,y): = Q(x + y) =
Q(x) - Qly) is linear in x and y. The kernel of Q, denoted by
ker Q, is the set of elements x & Il such that Q(x) = 0 and
o(x, My = o. Clearly ker Q is a submodule of /L. 1£ 1 is a
submodule of Il , contained in ker Q, then we can factorize Q in
the usual way. We define Q: TR = m'(i'l.*m' by Q(a +T): = Q(a).
since Il is in ker Q, this is well defined and it is obvious that

Q is quadratic. The above factorization is visualized in the

following commutative diagram:

Q
m—'—“"m' Q = Qn , where ¥ is the

, —
H“tu / Q canonical surjection.

Whenever we have such a commutative diagram with guadratic maps
Q,0Q, then e ker Q. If Q: h‘z—>m* is guadratic and

X = LoyyXi o€ mxieﬁL » then Q(x) = Euﬁﬁ(xi}+£§iuj{}(xi,xj}.
This shows that if X ={ xi,i-.t_- I_& is a set of generators nfm iy
then Q is uniquely determined by the wvalues Q[xill and Q{xi,xj}l ’
i:;4€ I,

If O is a unital commutative associative algebra over ¢ (i.e., an
extension of &) we denote TRQ: = ﬂﬂﬁm. {h‘lﬂ is an Q-module,

w' (wlm) = w'wem,)

Lemma 1. If Q: M-+ ' is a guadratic map of ¢-modules, and 2 an

'
extension of ¢, then Q has a unigue extension Qﬂ:mﬂ -rmn such
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that

(9.1) O, (Ew,8m.) = Twi@Q(m,) + AN ULUENE

Proof. Clearly if Q has an extension such that Qﬂtlﬂmi = Q(m) ,

it must have the form (9.1). Conversely, if we can show that (8,1)
defines a map TRR + m; then we are done. The gquadratic nature
of Dﬂ is obvious. We know that any module is the guotient of a
free module (up to isomorphism). Let M = ‘g—jﬁ-,?’ free and M a
submodule of 5'!. Let F = {_Ei,ie Ij be a basis of ¥ and

i *a-bi, {_i.j}—?bij mappings of I into ' resp. of the set of

unordered pairs {i,j} s 1;,J€ I, in Tﬂ_,’. If x EE‘_’, then x has a

unique representation x = Ezkfil-r.‘ Then
2
QU (x}) = ZILDH + L £.5.b i '
kKL k<1 k°17i,1, is well defined, hence Q : & — N

is a guadratic map. Let n: ‘S‘-"—?TTL be the canonical projection and
wfi = ci.ler. If we set hi = Q{ci} and bij = G(ci.cjl » then we
get a quadratic map Q': ¥ —> TI' (defined as above) which makes

the following diagram commutative
Q' !
g m
m
The projection w: @"...m has a natural extension #ﬁ:‘g_n — 3729,
namely i, : wikrr war(x) . Obviously, 7, is onto with kernel

.Tl.ﬂ = RER. Since {_lﬂfi,ie I} is a basis of the free {l-module

‘5-9, we get (as above) a guadratic map Qﬁ =§:ﬂ -* m_é; defined by

2
Q'ﬁiﬂwiﬂfi} == Ewi ﬂ{}{ci} + lijwiwjnﬂlci,cj] 5




The kernel of Qé clearly contains {i@ker Q'. Since by our construct-
ion ker =« =Tl is contained in ker Q', we see that}tﬁ is contained

in ker Qé. Therefore we have a factorization

%
& m!

2 2
\ 4
“g /Xj QR
m
f
where Qﬂ is the map given in (9.1).

9.2. Letm be a unital ¢-module and P:mﬂ’ End¢ht a guadratic

map. In this case we call [h[,E} a guadratic triple system. The

reason for this is the following: P induces in a natural way a
composition (x,y) + B(x)y nnm which is guadratic in x and linear
in y; and P induces a trilinear composition {x,y,xJH{xyzﬁ : = P(x,2)y.
Hence P induces on Ml the structure of a triple system in the sense
we studied in chapter 111'- . We observe that the induced trilinear
composition might be trivial,i.e., {mmmj= 0, although

P # 0. To refer to the fact that the guadratic map P is the prin-
ciple cbject (rather than the induced trilinear composition) we
use the adjective "gquadratic" in this context.

Example: Let @ be any algebra. The mapping x + LExz‘J obviocusly is
quadratic (L denotes the left multiplication). The induced
trilinear composition is leyzj = (xy + yx)2, which is trivial in

case 2 Qz = 0 and Olfcamutati\re.
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To a given quadratic map p: M — EndM we always associate a bilinear
map L: m x'm + Endll defined by

L(x,y)z : = {xyz} = P(x,2z)y.

In some cases the quadratic map and certain other assumptions
induce onm the structure of an algebra; and if we want to
emphasize the algebra structure we refer to (TYL ,P) as a quadratic

algebra (rather than a quadratic triple system).

9.3. A triple (},P,e) ;, where ? is a ¢-module, P:}+ End}

a quadratic map and e ét:frr , is called a unital guadratic Jordan algebra,

b 5 o

(U.Q.F.1) P(e) = Id

(U.Q.F.2) L(x,y)P(x) = P(x)L(y,x) "Homotopy formula"
(U.Q.F.3) P(P(x)y) = P(x)P(y)P(x) "Fundamental formula"

hold infi'and all extensions :?Q.

We agree to call?? , rather than the triple (Ef,P,e), the Jordan
algebra.

Examples. 1) It is easily seen that a linear Jordan algebra

(over ¢ containing %) remains a linear Jordan algebra under all

ring extensions of ®. Consequently (7.9) and (7.14) hold under all
extensions. Taking the quadratic representation P(x) =2L(x)2 - L(xz)

(see 7.3) it is obvious that P(e) = Id for a unit element e of‘ég -

Consequently:
WS
If €9 and?f:a_. linear Jordan algebra with unit element e and

quadratic representation P, then( },P,e) is a unital guadratic
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Jordan algebra.

Note: The examples of linear Jordan algebras given in chapter
VIII have analogs in the guadratic case. (For more information on
gquadratic Jordan algebras we refer to N. Jacobson's lecture notesg
(Tata Institut, Bombay) "Lectures on Quadratic Jordan Algebras").

Z2) A standard example for arbitrary ¢ is derived from an
associative a.lgebraﬂl with unit element e. We define P:m.,-*- EndDL
by P(x)a = xax, then it is easily checked, that ((l,P,e) is a
gquadratic Jordan algebra. In accordance with the linear notation,

we denote this algebra by (J+, too.

As in 7.3. we observe that the homotopy formula (U.Q.J.2) implies
(9.2) L(x%,y)P(x) = P(x)L(y,x) = P(P(x)y,x)

and this eguation also holds in all extensions _arﬁ.

The fact that (9.2) and the fundamental formula hold in all
extensionS allows us to linearize these formulas. Let A be an
indeterminate over ¢, and 0O = ¢L1] the ring of polynomials in A
(over #). Since @ is a free ¢-module ({A° = 1,4,3%,... %, .4

is a basis), the canonical map cfH into grr qr ¥ + l@x, is injective.
(Prove this statement.) So we may iﬁentifyg with its image in 5{“.
The elements of 351 then can be uniquely represented in the form

Elimi,mi E—? . The endomorphisms of ?rﬁ a.]:e of the form A =EliAi,

where &i& End} (extended to End }ﬂ." i.e., Ai{mnx‘.l = wﬂ&ix.} Note

. . _ iy ¢
xta, =ti'b,,a b, € % , then a; = by, and if ZN'A, =T Bi,p.i.BteEndjf,

then ﬁi = Bi‘ In other words, we can eguate corresponding coef-

ficients.
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We apply this method to linearize (9.2) and the fundamental
formula. Since by assumption these formulas hold,infjg,ﬂ = o[)\]
we can replace x by x + Au, x,u 67} .

L(x +Au,y)P(x + Au)

P(x + Au)L(y,x + Au) = P(P(x + Au)y,x + \u)

P(P(x + Au)y) P(x + A)P(y)P(x + Au).

Using P(a + b) = P(a) + P(a,b) + P(b) we represent both sides of

these equations in the form EAiAi, Aie Endif , and compare the

resulting coefficients of Ai. We obtain

(9.3) L(x,y)P(x,u) + L(u,y)P(x) = P(x)L(y,u) + P(x,u)L(y,x) =
P(P(x,u)y,x) + P(P(x)y,u) ,

(9.4) P(P(x)y,P(x,u)y) = P(x)P(y)P(x,u) + P(x,u)P(y)P(x)

!
(9.5) P(P(x,u)y) + P(P(x)y,P(u)y) = P(Xx)P(y)P(u) + P(u)P(y)P(x) +

P(x,u)P(y)P(x,u)

Note that we displayed only "new" identities obtained by this process.
It is obvious that equating constant coefficients and the coefficients
of the highest power of A does not yield any new identity. Notice
furthermore, in order to linearize an equation f(x) = 0, which is
quadratic in x, we don't need ring extension arguments since the
coefficient of A in f£(x + Au) equals f(x,u) = £(x + u) - £f(x) - f(u).
Another remark might be useful: If ¢ is a field with sufficiently
many elements, then one does not need ring extension arguments in
order to get the linearizations of a given formula. In this case

one replaces the "wvariable" x in the given formula, say f£(x) = 0,

by x + au, x,ue} , a€d. In the expansion f(x + ou) = Zaifi(x,u) =0

we can choose different elements aj(lsjss) and get a system of s linear
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equation Eu;fi{x,u} = 0. If the matrix of coefficients has
non zero determinant then we get fi{x,u] = 0. The determinant
in question is the Vandermonde determinant, which is # 0 if

allaxj are different (and # 0).

Exercise: Prove, if the fundamental formula and (9.2) - (9.5)

hold in*} , then they hold in all extensions ifﬂ' This shows that

it is eguivalent to assume either the homotopy- and fundamental

formula hold in all extensions .jh‘ or these formulas and all

their linearizations hold in‘} .

9.4. A homomorphism ¢ of unital guadratic Jordan algebras

( },P.el.i }T,P‘.e‘} is what it ought to be, namely a linear map
b 3,, 3- such that d¢(e) = e' and ¢(P(x)y) = B'(¢(x))d(y).

The ciass of unital guadratic Jordan algebras together with its

homomorphiams is the category of unital gquadratic Jordan algebras.

9.5. Unital quadratic Jordan algebras are in particular triple
systems. The reason why they are called algebras is the following:
If we look at our standard example Q,+, 0\« associative with unit

element e, we observe that we can recover the multiplication from

the guadratic map. Since in this example P(xX)y = XyX, we obtain
2

x° = P(x)e. Therefore, of course, we alsg define for an arbitrary
unital guadratic Jordan algebra {T,P,ej the "sguaring" x -+ xz,
by xzz = P(x)e.

The bilinearization of this map defines a multiplication
(x,v) xoy, where xoy = (x + y]z - xz - yz = P(x,y)e. Note:
B 3 . 2'3' = 0 the multiplication xoy might be trivial, whereas the

squaring is not,

From the definitions and P(e) = id, we obtain
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(9.6) 1) e? = e; xox = 2x° ; 1ii) xoy = yox.

Using the notations
L(x,y)z = {xyzﬁ = P(x,2)y,
(see 9.2) we get for the leftmultiplication L(x) : y » xoy = P(x,y)e

L(x) = L(x,e).

Taking x = e in the homotopy formula gives
L(y) = L(e,y), or equivalently {yex} =.{eyx} , or L(x) = P(x,e).
In particular L(e) = P(e,e) = 2P(e) = 2 Id. Thus
(9.7) L(x) = L(x,e) = L(e,x) = P(e,x); L(e) = 2I4.
Substituting u—>e in (9.3) (left hand side equation), applying
the result to e and using (9.7) gives
4P (x)y + yox2 = 2P(x)y + xo(xoy), i.e.
(9.8) 2P (x) = L(x)2 - L(x?).
The linearization of this is
(9.8') 2P(x,y) = L(x)L(y) + L(y)L(x) = L(xoy).
Note: Since a special case of the homotopy formula is L(X)P(x) =
P(x)L(x) we see immediately from (9.8) that 2L(x)L(x2) = 2L{x2)L(x)
wnich is L(x)L(xox) = L(xox)L(x). This shows thati% together with
(x,y) » %xoy is a linear Jordan algebra (if %€¢) and that the
quadratic representation of this linear Jordan algebra iS P (see
VII,7.3). Therefore if %E@ra unital gquadratic Jordan algebra
may as well be considered as a unital linear Jordan algebra, and
conversely.

Replacing x by e in (9.3) an using (9.8') we get

L(u,y) + L(y)L(u) P(y,u) + L(uoy)

]

P(y,u) + L(u)L(y) + L(y)L(u) - 2P(u,y),

consequently

(9.9) L(u,y) = L(u)L(y) - P(u,y).
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Setting u = e in (9.2), substituting x » e,y » X,u 5y in (9.4)

and u = e in (9.5), we obtain respectively,

(9.10) L(y)P(x) + L(x,y)L(x)= P(x)L(y)+ L(xX)L(y,x) = L(P(x)y) + P(xoy,x)
(9.11) P(xoy,x) = P(x)L(y) + L(y)P(x)

(9.12) P(xoy) + P(P(xX)y,y) = P(X)P(y) + P(y)P(x) + L(x)P(y)L(x)

Replacing the second term on the right hand side of (9.10)
by (9.11) shows
(9.13) L(P(x)y) + P(X)L(y) = L(x,y)L(x)

(9.13') L(P(x)y) + L(y)P(x) = L(x)L(y,x)

Observing that part of (9.12) is symmetric in x and y we conclude
(in other words, interchange x and y and substract)

(9.14) P(P(x)y,y) - P(x,P(y)x) = L(X)P(y)L(x) - L(y)P(x)L(y)

Now we are ready to prove the important formula

(9.15) L(P(x)y,y) = L(x,P(y)x).

Proof. Using (9.9) we see that (9.15) is equivalent to
L(P(x)y)L(y) - P(P(x)y,y) = L(X)L(P(y)x) - P(x,P(y)x).

But this equation is equivalent to (using (9.14))

L(P(x)y)L(y) + L(y)P(x)L(y) = LNL(B(y)x) + L(x)P(y)L(x)

Using (9.13) we see that the left hand side of this equation
equals L(x)L(y,x)L(y) and using (9.13') (x interchanged with y) the
right hand side equals

L(x)L{y,x)L(y); consequently the last equation holds and then
(9.15) holds, too.

9.6. We introduced unital quadratic Jordan algebras. But in the
classical theory of linear Jordan algebras (or any other theory of
algebras) generally one does not assume the existence of a unit

element. One has two alternatives: to forget all about multiplica-
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tion (this will be done in the next chapter) or to reguire (by a
set of axioms) the existence of a squaring which induces the
multiplication and which has properties compatible with the clas-
gsical theory. One requirement, which is most reasonable, is that
any kind of Jordan algebra should be imbeddable in a unital
Jordan algebra (see exercise in 7.l1.) These considerations led
te the following definition.

A triple {},P,zi where 3 is a unital J$-module, P: 3 + End-o{‘
and 2: 2} ~*3L, ¥ - xz, are guadratic maps, is called a guadratic

Jordan algebra, if

(Q.F.1) L(x,%) = L(x°)

(Q.F.2) P(x)L(x) = L(x)P(x)
(Q.F.3) p(x)x? = (x9)?2

(Q.F.4) PIx)B(y)x° = (P(x)y)°
(Q.F.5) p(x%) = P(x)?

(Q.F.6) P(P(x)y) = P(x)P(y}P(x)

hold in'gpand all extensions éfﬁ' where, as before, L(x)y =
xoy = (x + Y)z = xz - yz, Lix,ylz = {xyz} = P(x,z)y.

Without proof we state the following result.

Thecrem 1. Any guadratic Jordan algebra {E}ani can be imbedded

as subalgebra |

a unital guadratic Jordan algebra 3 = ¢l$}1 with

-

unit element 1 and quadratic map P defined by

(9.16) B(al + x) (Bl + y) = a2Bl + oy + 208X + oxoy + Bx° + P(X)y

Note: 1) Theorem 1 shows that a guadratic Jordan algebra is nothing

else than a submodule of a unital guadratic Jordan algebra closed




under cubic operation (x,y)H—>P(x)y and squaring xiapxz, but not
necessarily containing a unit element.

2) Since unital Jordan algebras are sometimes easier to
deal with, one often proves certain results at first for the
unital case,i.e., for :JP =@lméf ; then one gives an interpretation
of this rasult for ? . In particular, in order to prove identities
:i.n.—aL ;, they certainly hold if they are true inj  for example
{(9.15) holds in _.J_J;map p: } —_— ‘a‘l of guadratic Jordan algebras

is called a homomorphism, if P(x?) = fp(x) % and (p(P(x)y) =

p! l'ﬁptx]' (y). A submnduleu af% is a subalgebra, if W ECUL and

el cW. L is an ideal, i£Y%cY Mo 2(UyJ<W 2] el
As usual,m» iz an ideal, iff it is the kernel of some homomorphism.
Furthermore, if Mr ig an ideal, then we have nn? =ﬂj/vb a well

defined cubic operation (which gives a guadratic map of

?f—* Endi? ) and a squaring defined by

B(WR = BIOTR, X2 = x2.

Obviously, {3?,5,2} is a guadratic Jordan algebra an xr> x a
homomorphism of g anta} .

An inner ideal d&r l:'.~fiL is a submodule such that Pix 1}*::%— .

Exercise: Show that ifzi is an inner ideal in} » B0 is

p(x)ke for any xf:é,ﬁ .

9.7. Let {:]C,P,a] be a unital guadratic Jordan algebra., An

element x&} is called invertible, if there is an element yfg such
that '

(9.17) P(x)y=x and P(x)y° = e.

y is called an inverse of x.




89

Exercise: Show:'x is invertible in UL+, iff x is invertible inal« .

For later applications we need

Theorem 2. Let (},P,e) be a unital quadratic Jordan algebra

and xe} . The following statements are equivalent.

i) x is invertible

ii) P (x) _]‘._E invertible

iii) eé&Image P(x)

In either case the inverse y = : x © of x is uniquely determined

.EX x-l = P(x}-lx

amd fundamental formula
Proof. If x is invertible then by (9.17)Vthere exists an element

yé} such that P(x)P(yz)P(x) = Id; consequently P(X) is invert-

ible. ii) =+ iii) is trivial. Now assume P(x)u = e for some

u ¢ :f . Then P(x)P(u)P(x) = Id, in particular P(x) is surjective
and there is an element y such that P(x)y = x. Then P(x)y2 =
P(x)P(y)le = P(x)P(y)P(x)u = P(P(X)y)u = P(x)u = e. From (9.17)
and ii) the uniqueness and the formula x ! = P (x) _lx are clear.

Exercise: Assume x,yé'?f are invertible. Show

i) PxY) =p7Y, inxhT = x

1 1 -1

P(x) "y .

iii) P(x)y is invertible and (P(x)y)
The equivalence of ii) and iii) in theorem 2 suggests that the
same might be true in any quadratic Jordan algebra. This is the

case. An element e e} (‘J" an arbitrary quadratic Jordan algebra)

if called a unit element of ?’, if

P(e) = Id and P(x)e = x2 for all x é} .
If e, e' are unit elements of } » then
e = P(e)e = e2 = P(e)e' = e'. Hence there is at most one unit

element in:i:. Clearly the notion of unital gquadratic Jordan

algebras is equivalent to the notion of quadratic Jordan




algebras with unit element; only the homomorphisms are in general
not the same (why?)
9.8. Let I:a{ ,P,2} be a guadratic Jordan algebra (not necessarily

with unit element) and let u E-j' . We define a new gquadratic map

tg ;u]

Pu and squaring X + X by

x{z,u}

Pu{x]:= P(x)P(u) ; : = P(x)u

Theorem 4. If {} 2.4 is a quadratic Jordan algebra, then

for all u E} ' {J,Pu, [z,u}} éﬁ_ a guadratic Jordan algebra.

Proof: Since 3:12 remains a quadratic Jordan algebra for all
extensions we only have to verify (Q.7.1) - (Q.J.6). Using the
given formulas the verification is straight forward and is left as
an exercise. Observe that by the remark following theorem 1 the
homotopy formula holds in any Jordan algebra.

Notation: We sat —ju: = {3,5"_1,[2'“}} and call _j - the u-homotope
of [T,P,zl, In case u is invertible, we call gu the u—isot_qs_n_a
ot jr .

For unital Jordan algebras the u-homotope need not be unital,

for example take u = 0. But the following hold:

Theorem 5. Ei‘ is a guadratic Jordan algebra and u F?’ . Then

3:1.; has a unit element, iff"}r has a unit element and u is invertible

in T. In this case the unit element of j'“ is ut,

Proof. If g is a unit element of jcu' then by definition
{9.18) P(g)P(u) = Id and P(x)P(u)g = P(x)u. (see 9.7.)
The first eguation shows that P(g) is surjective, therefore Tcuntains

a unit element and g is invertible, by theorem 3. Then P{u) = F{g}‘_]‘




and u is invertible. Using theorem 2 we obtain the inverse of

u by ut (2,u)

}u‘

If conversely 3: has a unit and u is invertible, then from the

= Plg)u =g = g, since g is the unit element of

properties of inverse elements (see 9.7.) it is elear that (9.18)

holds for g = o

Exercise: 1) ( Ju}v = }P(u}v

2) If} has & Gnit alemerit and g 18 invereibls in 3"
_ _ =12
1:%11211._3r = }u}g where g (u 7)

9.9, One of the most powerful tools in the study of Jordan

algebras is the Peirce decomposition relative to an idempotent.

(sea 4.5). Let _Jr be a guadratic Jordan algebra and c 6? an

idempotent,i.e., ::2 = ¢, We define

El: = P{c); E;f = Plc,l = ¢g) ; Eo: = Pl = c}.

o

These are mappings of 3: = @153’- ¢ but they make sense inj '

since they leavej invariant.

We obhsearve Id = El + B’i & Eo'
We state (without proof) the following fundamental result.
Theorem 6. Let j be a gquadratic Jordan algebra and 1:'2 = c

an idempotent o_f?f . If we define ‘i]f = Eij » E; as above

(i = 0,%,1) then

a[ = ?ﬁ}ﬂ?ﬂ

and the following relatiom hold:

 Fiefrcfp s Fi G=0 ana T Tl

]
o
'




(2) ‘jiof}%‘:}%(i=0'l)'ﬂ:§cgl+§}[o

(3) P(?H) '}ic ?m. (i = 0,1) p(j’;ﬁ)g;ﬁcg%

@ F1fuFoic Fu

(5) {}’1 ?fi g%}cj}f% and {—Jr% }r%?i_}c %i (i =0,1)

and all other products are zero.

Notation: Efi are called the Peirce - i-spaces (or ccmponents, or

modules) on} relative c.

Note: 1) I’- and '}[o are inner ideals of}r ; €.y, P(gi)é(c :}Li
(i =0,1)

2) ﬁrl' }O are closed under P(x)y and squaring, hence they

are subalgebras.
3) Although-ﬂi% is not closed under squaring it is closed

under P(x)y.

More properties of Jordan algebras will be introduced when they
are needed. Concerning the examples of quadratic Jordan algebras,
wé may for a while content ourselves with OL+, OL associative,

and all submodules of(],which are closed under xyx and x2, for ex-
ample %(Gl,j) - jl xell, j(x) = x& where j is an involution of
CL . More examples are given in chapter VIII, for rings which

contain %.
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X Jordan Triple Systems.

10.1. 1In 9.2. we already introduced the notion of a quadratic

triple system. From now on we shall omit the adjective "quadratic".

We recall, if ¢ is a commutative ring with l,Cm a unital ¢-module

and P: OL > End(l a quadrétic map, then the pair ((V,P) is a

triple system. (Most often we call Ol/rather than ((l,P) the triple
system.) The map P induces a bilinear map L:C1XCl+ End(lf,(x,y) + L(x,y),

given by L(x,y)z = {xyz} =P(x,z)y.

The pair (CLQP} is called a Jordan triple system ( Jts), if

(T B 1) L(x,y)P(x) = P(x)L(y,x) "homotopy formula"
(J-.T.2) L(P(x)y,y) = L(x,P(y)x)
(T 3) P(P(x)y) = P(x)P(y)P(x) "fundamental formula"

hold in afand all extensions Ol/ﬁ

It is immediately clear from the definition that there must be a
strong connection between Jordan algebras and Jordan triple

systems.

I£ (E},gz) or (E},P,e) is a quadratic (or unital gquadratic) Jordan

algebra, then (j,P) :L_s_ a Jordan triple system, since the

fundamental formula is in each case among the axioms, the homotopy
formula is either an axiom or follows from Theorem 9.1, and
(T.T.2) was shown in (9.15) (see the remark following theorem 9.1).
But then any submodule of a Jordan algebra:g closed under P(x)y

is a Jts; this includes subalgebras, but also other submodules,
for exa&ple Peirce -%- spaces ofhg . (see 9.9.).

The homotopy formula has as immediate consequence (see 7.3)




(10.1) Lix,y)P(x) = P(x)L(y,x) = P(P(x)y,x).

Exercise: Let f be a Lie triple system over a field of char.

# 2,3 such that ? = REE, whererﬁ is isomorphic to -L-‘Land
LW \“f‘"] =Lﬁr‘ﬁ::‘:]= 0 (see 6.8.) Define P: W + Enall by
Pily = iffx] and show that {UL,FI is a Jordan triple system.
(Hint: Set {xyz} = P(x,2z)y. The Jacobi identity implies
[ifz] = Lz?x] and the Lie triple identity (6.1iii) yields

(%) {xy{uvw&} - {gv{;yw}j = {Exyu&vw} - {uiyxv}~ﬁ} . A special
case of (*) shows that (J.T.2) holds., Next put x =w = u in
[*) and use the fact that part of the resulting egquation is
symmetric in vy and v to derive the homotopy formula. For the

fundamental formula compare the results in 7.3.

10.2. There is no additional multiplicative structure (or
distinguished elements) required in defining a Jordan triple
system. But as we have seen in several instances before, the
quadratic map P induces multiplications. Guided by the correspon-
ding definitions in Jordan algebras we define for u E(l § EGL,P]

(2,u)

arbitrary Jts, a guadratic map P, and a sgquaring x = x by

x{E,u];

Pu[x}:= P(x)P(u) ., = P(x)u

The corresponding leftmultiplications are denoted by Lu{x}r IL&8sSp.
L, (x,¥). We have Lu[x} = xoy = P(x,y)u = L(x,u)y and L (x,y)z =
P(x,z2)P(u)y = L(x,P(u)y)z, thus

(10.2) 1) ©L,(x) = L(x,u) ii) Lu(x,y) = L{x,P(a)y).

The following result is important

Theorem 1. Let ((,p) be a Jordan triple system and u € Lt.
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{Z,u}:

Dafine Pu{ﬂ'}: = P[xjp{u} and x == P{K}u, then {arpuriszJ}

is a gquadratic Jordan algebra.

Proof. Sim:ea'ﬂ remains a Jts, for any extension , we only

have to verify the axioms (Q.F.1l) - (Q.F.6) in a Using (10.2)

we get

L,(%,%) = L(x,P(u)x) = L(P(x)u,u) (by F.T.2)) = L (x'%"¥).

This corresponds to (Q.F.1) From the homotopy formula (in 01«]

it follows Lutx}Pu(x} = L{x,u)P(x)P(u) = P(x)L(u,x)P(u) = P(¥)P(u)L(x,u)
- Pu{xl Lu[x] ¢+ S0 (Q.F.2) holds. Using the fundamental formula we sae
(0% 2 = poR(WR(OU = PRI = P(x2W ) = (x(2:0)) (2,005
this is [(Q.F.3). HNext

(2,u)

Pal®)1Bylyix = P(x)P(u)P(y)P(u)P(x}u = P(P(x)P(u)y)u = [gu(x1£]{2'u1

shows that (Q.F.4) holds. Again using the fundamental formula
we get Pu{x{‘?'ujj = P(Pl(x)u)P(u) = [P{x}P{u}j 2 l?"u{:tr.}2 and
Pu{Puix}y)= P(P(x}P(u)y)P(u) = Pu{x]Pu{y}Pu[x}. 8o (Q.J.5) and
(Q.F.6) hold and the proof is complete. (compare with 9.8)

We set a-u: = E&,Pu,{z'u}] and call a’u the u-homotope of Ov-

Note: If {a-uP] happens to be the Tts of a Jordan algebra

{@,P,zj or I:QI,P &), then the u-homotopes of the triple system

are exactly the u-homotopes of the algebra.

Since the u-homotope of a Jts is a Jordan algebra and thus

(in the natural way) a Tts, we can iterate the process of

forming u-homotopes. By definition the v-homotope of the u-homotope
CELu
P(P(u)v), and sguaring x = P(X)P(u)v =

(10.3) (A0, =g yyve

of GLhas gquadratic map {Pulv(x} = P(x)P{u)P(v)P(u) =

x{E'P{u}v}. This shows
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10.5. There is an ocbvious (and rather important) generalization
of forming homotopes. To the Jordan triple system {{lu.vu; {we
neglect the squaring) corresponds the guadratic map given by
Pulxi = P(x)P(u), An interesting guestion arises now: Given
Tts {a-',P} , for which Ve Endll does Pv{x} = P(x)V define on CL
the structure of a Jts. As we have seen, this is the case for
v=r(u, uell.
We denote the triple system IUL,Pv}, where Pv{xl = P(x)V, by
(ﬂv and call it, of course, the V-homotope of Clrand V-isotope
in case that V is invertible. (It is, of course, convenient to
denote the P(u)-homotope as u-homotope as we did in 10.2.) The

corresponding trilinear composition in CL# is given by
Lylx,ylz = Pulx,2z)y = P(x,2)Vy = L(x,Vy)z.
Therafore CLv = {CE,PVJ is again a Jts, iff

i) L%, Vy)P(x)V = P(x)VL(y,Vx)
ii) L(P(x)Vy.Vy) = L(x,VP(y)Vx)
ii1) P(x)VP(y)VP(x)V = P(P(x)Vy)V

It is easy to see, that whenever P(Vx) = VBP(x)V holds for all
xfrO& , then these egquations hold. For in this case iii) holds,
using the fundamental formula and also ii) holds using (J.T.2).
That under the given assumptions i) holds is seen from the follow-
ing chain of egualities Pix]?{ylvszh = P(x)VP(y,2)Vx = P(x)P(Vy,Vz)x

= P(x)L(Vy,x)Vz = L(x,Vy)P(x)Vz. We have proved

Theorem 2. If (Q,») is a Jordan triple system and Ve End(lL such

that P(Vvx) = VP(x)V for all = &(ﬂ-, then the V-homotope (resp. V-

isntaEe'] av = IQ,PV} ,Pv{x} = P{x)V, :i_._s_ aﬂain a Jordan Eriple system.




As an application of this concept we shall loock at the following
situation. Let (Ol,P) be a Jordan triple system and ue(l such
that P(u) is surjective. The same argument as used in the proof
of theorem 9.3 shows that P(u) is bijective. More precisely, there
exists ve (b such that P(ulv = u and B(WP(v) = P(V)P(u) = Id.
This gives

Pul.’v} = Id and Puﬁx]v = P(x)P(u)v = P(x)u = xm'u}

which shows that v is the unit element in the Jordan algebra GLh,
(see 9.7, and 9.8.) Since P(u)P(v) = Id we observe

P(x)y = P(x)P(u)P(v)y = Pu[x]PEv}y which allows the following
interpretation.

Lemma 1. If the Jts ((,P) contains an element u for which P(u)

is surjective, then II:L,P} is the P(v)-isotope E.f. the unital Jordan

algebra {a-u,Pu,v} (considered as Jts.)

Note: Since P(u)P{v) = P(v)P(u) we obtain Pu{P[vJ ¥) =

FIV)P{x)P(v)P(u) = P{v]Fu{x}P{v}, this shows that we can apply theorem

2 to show that [ULLLL is a Jts. Note, however, P(v) need not have
(v)

the form Pu{y] for any vy.
10.4. Let Eﬁr,P} +( QL +2') be Jordan triple systems over & , A linear

map ¢ : Q. — (1 is called a homomorphism, 1if $(P(x)y) = P'(¢(x))d(y).

Note: If {E},P,e} or E:},?,z} are Jordan algebras then clearly any
algebra homomorphism is a Jts-homomorphism, but the converse is not
truz (compare the definitions). For example x + -x is a Jts
homomorphism, but (in general) not an algebra homomorphism.

By Aut[jl- we denote the group of automorphisms of UL
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D: O = (Ol is a derivation, if

LD:P(X)] = P(Dx,x) for all x & CL . (IM:E»\&GL)

(For Jordan algebras one also requires D(xz) = xoDx or De = 0.).
It is immediately checked, that for derivations D, D' of Gl/,

DD' - D'D is again a derivation. Hence ’%( CL) , the module of all
derivations of O], , is a sub—(Lie)—algebra of (EndC'L)-. The

defining identity for derivations implies for DES’ (linearize and

apply to y)
D{_xyz_} e {nyz_‘r = Lnyz} - {xyDz& r O
LD, L(x,y)—_l = L(Dx,y) + L(x,Dy).

A submoduleg of 0l is a Jt-subsystem, if P(E)LcE. &is
an ideal, if p(:ﬁ-)OL ¥ . P(m)ﬁ—cﬁ— ; ZL(D/UL%S C'\@ . As usual
0¥ is an ideal, iff it is the kernel of some homomorphism, and

the quotient @ = m/g (&£ideal) together with the induced map

1-7’,1_3(;_:)37 = P(x)y,is a JTts. The usual homomorphism and iso-
morphism theorems hold.

10.5. Of particular interest in the theory of Jordan triple
systems (and in Jordan algebras) are the inner ideals, which are

submodulesﬁof@l/such that P(ﬁ-)@],c: £— T [ P(b)UL <

for any b€ ﬁ— + (An inner ideal in a Jordan algebra EF is the same

as an inner ideal in the corresponding Jts (}F,P) )

Clearly the intersection of inner ideals inOL is an inner ideal.

If S is any subset of CLwe denote by (S) the inner ideal generated
by S, or equivalently, the intersection of all inner ideals contain-

ing S.
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Lemma 2. i) The inner ideal generated by a E(lfig

<a> = da + ?{a}ﬂ]/
i1) p<ax) < p(a)L .

Proof. Obviously da + P{a}ﬁ, is contained in any inner ideal
containing a. We have to prove ii) which in particular shows
that ¢a + Pl]a]{l ig itself an inner ideal. Using (10.1l) and the
fundamental formula we derive
Plaa + P(a)Bx = P(a)a’x + P(a,P(a)b)ax +Pf(a)b)x

= p(a)[o?1a + an(b,a) + B(b)e(a) | xep(a)(l ,
this completes the proof.
A particular case of the above egquation is of importance. Take

2 = 1 and replace b - - b. Using P(a)L(b,a) = L(a,b)P(a) we obtain

(10.4) P(a - P(a)b) = Pla)EB(b,a)

"

B{a,b)P(a)

where Bla,b): = Id - L{a,h) + pP{a)P(b).

since P{a]m-‘-‘: <a> , part 1i) of the above lemma showa that
P[a}(}l is an inner ideal, for every a & GL . We call P{a}{lﬁ the

principal inner ideal generated by a.

Lemma 3. E;ﬁi_aﬂ inner ideal Eaand W.U}E-Endmrx end Cl

such that P(Vb) = VE(b)U for all be % then Va‘éi_s_ an inner ideal,

in particular P(x}k@ is an inner ideal for all xe@/ .

Proof. Let b‘f:ﬁ' -
p(vb)A = ve)uOle veb)Ole v since Pb)G =i .

{This lemma, too, implies that PI[::}GL- iz an inner ideal,)

An element ut‘:a is called trivial ({(or an absolute zero division),

if P{u) = 0. In this case P(uIlCH, = 0 and <u> = &u,




100

Consequently

Lemma 4. If uéa- is trivial, then %u is an inner ideal.

We state some more properties, which will be needed.

Lemma 5. i) The sum of an inner ideal and an ideal is an inner ideal,

ii) The image of an inner ideal under a surjective homo-

mﬂEEhism is an inner ideal.

iji) If £: Oi — GL' _:I:E_ a homomorphism, then the complete

[
inverse image £ l{ ;.‘f-'} of an inner ideal in '.’JL 1S an mnef
'L‘E’dl |'1| OL M

The Erocf is left as an exercise.

Let && be an inner ideal of Ol and veEnd Ol with P(Vx) = VP(x)V then

trivially for be#& , Pu(b) O = pyvlie Pyl < &

which shows that & is an inner ideal in the V-homotope G’V' IfV
is invertible, then obviously the converse is true. In general,
if Olev is a V-homotope and % an inner ideal in Q,V.beﬁ’- ¢ then
p(vb)OL = ve(p)vOlL = Wv(h}olrc Vb, henceVe& is an inner ideal
inOL. We proved:

Lemma 6. i) E%E an inner ideal in Oir, then it is an inner

—— — —

ideal ﬂ every homctoEf._t.

ii) C?L and ikts isotopes have the same inner ideals

iii) Eﬁ-i_s an inner ideal in the V-homotope ﬁfv. then

v.‘é?_:ﬁ an inner ideal i_nq,

We define Ku: kernel P(u) and

Ry

kernel V, if P(Vx) = VP(x)V.

Lemma 7. 1) KV is an ideal in &-'v

ii) I_f,ﬁr is an inner ideal without trivial elements # 0

then K, is an ideal in the Jordan algebra Ck], for every

— D= — —




bed .

iii) 1If %€ ¢ then I{b is an ideal in O"b for every béaf .

Proof. i) We have to show (see 10.4)
a) pyOrSx, 5 B poxlex 0 {QUvirjic &
Since PU{:{} = P(x)V, a) is trivial; so is b),since
v?vmv:OLf = VP(K,)VQL =P(VK,) = 0. The same argument applies
to e): VR(OLk)VOL = (v, vk 0L = 0
ii) and iii):To show that K, is an ideal in O, , we have

to show moreover (see 9.6.) a) Kb{Lb}C K, and b) LbiUlJKbCKh-

We first show b). Using the homotopy formula we get

p){Uor y =[plemx = o.

(2,b)

Finally take xdEKb, then P(b)x = P(b)P(x)b.

Assume %€ ¢. Then EP{b}xm'b} = P{b}{_xbx} = L(b,x)P(b)x =0

shows x“'b% Eb (for b&ﬁf}l. This proves iii). In the other case

(2,b),

we consider P(P(b)x = P(b)P(x)P(b)P(x)P(R) = P(P(b)x)P(x)P(b) = 0.

Sinca P[b}xfz'h}gkﬁ- and-f— ig without trivial elements # 0 we conclude

{2,b)

P(b)x = 0, consequently x{z’b}fﬁh.

Lemma 8. There is a 1 - 1 correspondence between the inner ideals of

o is

XK\.F and the inner ideals of C}, contained in v(L.

Oy

Proof. K, is an ideal ir&uﬂfV and therefore [Ev = /Ky is (in a
natural way) aJts.

Let i be an inner ideal in rj.v, then &‘3— is an inner ideal in v by
lemma 5 iii). Then v¥ is an inner ideal inUL'[lema 6iii) which is

contained in vOL . 1f conversely We U@y ig an inner ideal,
4K

W =v¥ , thenf' = %/_,,..J’ is an inner ideal in (k. fThis is
K
v
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clear since VP(b'}V(],= P(V’};:;')ﬁ,C.‘_\?£zJ for b' ¢ ‘£', equivalently
p,(b")0L S &' (mod Ky). Furthermore it is clear that the
indicated correspondence (Vo& <> %:) is 1 - 1.

There is a nice characterization of Jordan triple systems without

(nontrivial) inner ideals.

Theorem 3. (OL;P) is the isotope of a Jordan division algebra,

iffCLi_s not trivial and has no proper inner ideals.

Proof. If} is a division algebra,let %—C?}f, &# 0 be an inner
ideal. Since b # 0 is invertible we have } = p(b)%rc ﬂ' if

be s~ , b # 0. Any isotope }V has the same inner ideals as

fi[: (lemma 6.2).

Conversely, since P(x)q, is an inner ideal in@, we have P(x)m/ =OL
o el = 0. el =0 Ehes 48 8 trivle) el abd
$x an inner ideal. If x # 0, then Gy= ®x and P(OL)Q/ = 0 which
contradicts our assumption that Ol/is non-trivial. Consequently,
for every x # 0 in O]/, P(x)  is invertible. But then for any
fixed u € (L, u # 0, P(x)P(u) is invertible for all x # 0. This
shows that GLu is a Jordan division algebra. The rest follows
from lemma 1.

10.6. An inner ideal & of Ol is called mimimal, if %# 0 and

for any quadratic ideal C# 0 with EC% , we have g-= f(T.

Let %be a mimimal inner ideal of (b . 1If & contains a trivial
element u # 0 then du is a non zero inner ideal contained in \4@ 5
hence & = du, by the minimality of & . Therefore we assume from
now on that a\édoes not contain trivial elements # 0, i.e.,

pb) 0L # 0 for all 0 # be¥ . But for bel>, p)(l =¥ (by
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definition of inner ideals) and P{bl&r' is an inner ideal

(lemma 1 or 3). By the minimality of £ we get

(10.5) )L = £ for all b& &, b # 0.

If be &  then by lemma 3, Pl‘,b!&f— is an inner ideal contained in
& . Thus we have either P(b)d = 0 or I;’{b} L =¥. Assume
P{b}ﬁ@- =0 for some b # 0, b&ﬁ- . If b' is an arbitrary element
in ¥, (10.5) implies b' = P(b)x for some x&(l . Then P(b")£ =
P(P(b)x) = PEb)P{x]P{b}#‘@ = 0, by the fundamental formula and

the assumption P{b};’@- = 0, So far we have proved

Lemma 9. Eﬂ# 0 is a minimal inner ideal EEQ" then we have

the possibilities

(1) ﬁ-= ¢u, where u is a trivial element -::_falf.

(11) P(b)U0L =% for all b€ % ,b # 0, but P(b) & = 0 for all be &,
{ITE) p(b) 0L =§:-ﬂ§ F{b)ﬁ =% for all bt'.-f‘t\f-r b # 0,

——

In case II and III, we observe, that for b # 0, h&uﬁ ¢+ the inner
ideal Pl:b}OL is minimal {alsu,nf- has no trivial slements). An

immediate application of lemma 7, lemma 8 and theorem 3 is

Corollary. A minimal inner idealuk':‘gg_ @,._1._5_ of type II or III, iff
Qb

for every 0 # béﬁ the Jordan algebra X is a division

b

algebra.
In the cases II and 1III, we have seen, that for any b&:@ ;
there exists an element xtE-C'L such that b = P(b)x, We define:

An element u E"GL is regular (or von Neumann regular), if uEPtu]GL— .

i.ae,, 1 = Plu)x for some xX. A pair :u,v;eClXC-L is called a

— regqular pair, if P(u)v = u and P(v)u = v.
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Lemma 10. If :-;EGL— is regular, then there exists y‘t‘:OL such

that (x,y) is a regular pair, i.e., Pi{x)y = x, Plylx = y.

Proof. Assume x = P(x)u. We set y: = P(u)x and obtain

P(x)P(u)x = P(x)P(u)P(x)u

1}
1

P(P(x)u)u P(x)u = x, and

Plx)y
P(y)x

i
1
I
1]

P(P(u)x)x = P(u)P(x)P(u)x P(u)P(x)y Plu)x y, thus

(%,vy) is a regular pair.

We continue the study of minimal inner ideals. Letﬁ bhe minimal

of type II or III, £= P(b}ﬂu ;s b #£ 0. What we said before, t:r:—ﬁ'
is regular and ther is d€ O such that (b,d) is a regqular pair;
P(b)d = b, P(d)b = d. We set f\c.h = p(ayQ . fa' is an inner ideal.
Since P(d)P(b)P(d)a = P(P(d)b)a = P(d)a, and P(b)P(d)P(b)a =
P(P(b)d)a = P(b)a, we observe, that P(d) :I’; P and

P(): V - & are 1 - 1, since P(b)P(d) |y = Id|, and P(@)B(B) |y =
Id |{=}..
of W F resp.kﬁ' " thus'& is minimal, since‘z;- is minimal. Moreover

. ©Obviously P(b), P(d) respects the inner ideal structure

(10.6) L= p) V" = p(b)2 ()b ana £= p)V = pB)R(AIE .

By lemma 6 we have, that & is also an inner ideal in the homotope
Q«d. We claim, it is also minimal in Old' Otherwise there is

an inner idealtaf ULﬂ, "CC@L « Then, again by lemma &,
PEd}JC'C.r"E}‘ is an inner ideal inaf. butﬂs is minimal and

B (d) :‘ﬁ - E‘" one-to-one. It still might be the case, that kﬁ-}-
contains a trivial element in 4 Assmﬂeég= $u, P(u)P(d) = 0.
But then b = ou and P(b) = P(b)P(d)P(b) = o P(u)P(d)B(b) = 0, which
is a contradiction. Therefore

(z?= Pdfb'}GL and JZ?= Pd{b'}u"f- for all b'&£ . b" ¥ 0. (Using

10.6 and obvious arguments used to prove lemma 9.)
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We proved

Lemma 11. ;_f_f- is a minimal inner ideal of C],. which contains no

trivial element # 0, thenﬁ is minimal of type III in OL- or in

|

homotope OL 3

Note: 1) 1£ £ is of type III, P{hl-f =& , for all bed ,

b # 0. Consider [n'@,l‘-‘} ag a Jtks. (P restrieted to a"f:'r}*}. Then
every P(b), b # 0, is invertible and Qf’is the isotope of a Jordan
division algebra. (see theorem 3 and lemma 1).

2) For Jordan algebras there is a complete classification
of the minimal inner ideals (see Jacobson: Lectures on guadratic
Jordan algebras}. This is due to the additional multiplicative
structure. We wish to outline some of the additional properties
in this case. Assume of is a minimal inner ideal of type IT or
III in a Jordan algebra } + Since béx- is regular we have
P(b)a = b for some a-i':g « Then by (Q.F.4) we get I:-2 = [_F{b}a_ e
p(b)p(a)blc P(b)Jl € T . This shows that ¥-is actually a sub-
algebra. Ifok is of type III, then nﬁis a Jordan division algebra
which has a unit element e, and then L piailll; 2% = u: In the
other case (& of type II) we get P(b%)L = pb)p)R = Pb)e= 0,
since bzr;ﬁ- B.nd\v’s-has no trivial elements # 0 we get ;‘,—i—z = 0.
Take b # 0 in‘i‘é’:and d-ﬁ"ﬂL such that (b,d) is a regular pair.

aJ & P{d}UL is minimal of type II or III. If it is of type 1ILI,

C
then as above there is an idempotent ¢ = cz, c#0 in'\) such that
L]
"'ul = E{c}&/ . 0Otherwise, as we have just seen %2 = 0, in particular
-::‘l2 = 0. (d=2P2(dlb=>4 €~’8]. We set £f: = bod and show f2 = £,

P{f)b = b, P(f)d = d. We apply (sea(9.,12))

P(f) = P(eod) = P(b)P(d) + P(d)P(b) + L(b)P(d)L(b) - B(b,d) to
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l,b,d and cbtain the stated results (We may think of T as being
imbedded ln'¥ ) (the details are left as an exercise). We proved
also the feocllowing important result: If:% contains a minimal
inner ideal of type Il or III then?f contains an idempotent

# 0. A result like this does not hold in general for Jordan
triple system. For example, consider a (fin. dim.,) vector
space over -E\} equipped with a negative definite bilinear form o,
V together with P(x)y = o(x,y)x has no idempotents, since

P(ele = e is (in this case) eguivalent with o(e,e) = 1, which
is not possible,

10.7. We want to make some further remarks on the regularity
in Jordan triple systems.

Lemma 12. (McCoy) If P(a)b - a is regular for some beUl then

a is regular,.

Proof. Let P(a)b - a = P(P(a)b - a)u. Using (1l0.4) we obtain
Flalb - a = P(a)B(k,a)u, equivalently a = P[aj[h - B{h,aJQJ P
which shows that a is regqular.

Lemma 13. I1f(] is a Tts and &-an ideal of 0, then() is regular,

iEF g: and %’ag-j are reqgular.

Proof. 1t is obvious that a homomorphic image of a regular
triple system is regular, hence ﬂ%éh is regular if‘ﬂ-is. £

GL is regular an bﬁ%hﬂ ; then by lemma 10 we can find y&fﬂb such
that b = P(b)y and y = P(y)b, the second eguation shows yeéxi and
then b is regular inhﬁ « -IF cunverselyngfand ﬁ%ﬁ_are regular and
ac UL , then there is EfFGHki such that P(a)u-a =0, i.e.,

Plaju - a t'i;, hence regular. Consequently a is regular by
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McCoy's lemma.
Now the usual techniques using a homomorphism theorem apply to
prove

Lemma 14. The sum of two regular ideals gj;a/ig regular.

The proof is left as an exercise.

Theorem 4. Any Jordan triple systenlOLhas a unigque maximal

reqular ideal’y-. (m7{~ has no regular ideal # 0.

Proof. Since the property of an ideal to be regular is defined
in terms of its elements, the set of all regular ideals of(ﬂ-is

inductively ordered and consequently has a maximal element J-,

by Zorn's lemma. By lemma 14 T“is unique, it contains all

regular ideals of CL . IfR = b@,ﬁ- is regular thende 18

regular by lemma 13 and therefore @iC?jh, lege 7 8 =10,

XI. Some connections between Jordan triple systems, Lie triple

systems and Lie algebras.

11.1. There is a very strong relation between Jordan triple
systems and Lie triple systems (resp. Lie algebras). The material

presented in chapter VI will be needed throughout this chapter.

Let (O\r,P) be a Jordan triple system over%. Then we have
(among others) the equations
(11.1) L(x,y)P(x) = P(x)L(y,x) = P(P(x)y,x)
(11.2) L(x,y)P(x,u) + L(u,y)P(x) = P(x,u)L(y,x) + P(xX)L(y,u) =
P(P(x,u)y,x) + P(P(x)y,u)
(11.3) L(P(x)y,u) + L(P(x)u,y) = L(x,P(y,u)x)
((11.2) is the linearization of (11.1) and (11.3) the

linearization of (J.T.2). (11.3) is equivalent to
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McCoy's lemma,
Now the usual techniques using a homomorphism theorem apply to
prove

Lemma 14. The sum of two regular ideals gj;u;ig_regular.

The proof is left as an exercise.

Theorem 4. Any Jordan triple system&rhas a unique maximal

%

reqular ideal*wh. has no regular ideal # 0.

Proof. Since the property of an ideal to be regqular is defined

in terms of its elements, the set of all regular ideals ofﬂl is
inductively ordered and conseguently has a maximal element ﬂ\_ '

by Zorn's lemma. By lemma 14 This unique, it contains all

regular ideals of Q. 1s 5 = ”5,; is regular thendr is

regular by lemma 13 and therefore #?CT?%, feey B = 0.

XI. GSome connections between Jordan triple systems, Lie triple

systems and Lie algebras.

11.1l. There is a very strong relation batween Jordan triple
systems and Lie triple systems (resp. Lie algebras). The material

presented in chapter VI will be needed throughout this chapter.

Let (UV,P) be a Jordan triple system nver%. Then we have
(among others) the equations
(11.1) L(x,y)P(x) = P(x)L{y,x) = P(P(x)y,x)
(11.2) L{x,y}P(x,u) # Li{u,y)P(x) = P(x,u)Liy,x) + P(x)L(y.,u) =
P(P(x,u)y,x) + P(P(x)y,u)
(11.3) L(P(x)v,u) + L(P(x)u,y) = L(x,P(y,u)x)
((11.2) is the linearization of (11.1l) and (11.3) the

linearization of (T.7.2). (11.3) is egquivalent to
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L{F{x]yjuzk + L['g[x}u] yzj‘ = {-x{_y:-:u} z!r .
Considering this as an operation on u we tcet

Liz,y)P(x}) + P[(P(x)y,2) = P(x,2)L(y,x).
Replacing P(P(x)y,2z) in this egquation by the corresponding
expression obtained from the right hand side eguation of (11.2)
we obtain
(11.4) L{z,y)P(x) + P(x)L(y,z) = P( {zyz} $X)
Femark: In the case that{L has no 2 and 3 torsion, all esquations
infﬁrare consequences of (11.4).
We recall: D is a derivation of (), if
LD,P(:-:}] = D(Dx,x); &Hll is the Lie algebra of derivations of (jL-.
Setting D(x,y): = L(x,y) - L(y,x)
We observe immediately from (11.4)

Lemma 1. The mappings D(x,y) .x,y € UL , are derivations E;:UL.

The feollowing result, although almost trivial, is very important.

Theorem 1. If {GL,P} is a Jordan triple system, then[],tﬂgether

with [xyzj : = D(x,y)z = {xyz}{ - | yxz} is a Lie triple system.

Froof. (;xf] = 0 is obvious. Also the Jacobi identity

—————

[xyz] + [yzx] +[zxy] = 0 is immediately verified from the definition
and using {uvw} = anu} . In order to prove the Lie triple identity
(6.1iii) which is eguivalent to (6.3iii) (operator form) we use

[D,L(x,9)] = Lbx,y) + Lix,0y) for D €V ((J) (see 10.4) and lemma 1.
We obtain

L D{x,y},D(u,vf[ -[:D{x,y},LEu,v] - L(v,u£j
T = L(D(x,y)u,v) + L(u,D(x,y}v) - L(D(x,yv,u) -
Liv,D{x%,¥y)u)
= D(D(x,v)u,v) + D{u,D(x,y)}Vv),
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which corresponds to (6.31ii).

Corollary 1. If VEiEndOL such that P(Vx) = VP(x)V for all x,

then(lftogether with [;yz] = {3Vyz} - {nyz} is a Lie triple system.

Proof. We apply the theorem to the V-homotope Ckv (see Theorem

10.2) .

-

Corollary 2. If jE& AutOL ’ j2 = Id, then(]f together with

[xyz] = {xj(y)zﬁv - {yj(x)zg is a Lie triple system.

Proof. P(j(x)) = jP(x)].

Corollary 3. Lf_O'Li.g adts, then F: = O],GB OL={(xl,x2), xié(ﬂ/}'

together with [(xl,sz(yl,yz)(zl,zz)] : = ({x1yzzl& —.{ylxzzl},

hx,¥12,8 'Lylezz&)

is a Lie triple system.

Proof. Fis, as a direct sum of Jts, together with
{xyz& = ({xiyizlﬁ ; ixzyzzzk ) a Jts(x = (xy,x,) etc). The
exchange map j:t¥ > ﬁl ’ j(xl,xz) = (xz,xl) clearly is in Autf?

and j2 = Id. Then apply corollary 2.

Starting with any:TtsCﬂ,and V such that P(Vx) = VP(x)V, we can
construct lots of Lie algebras, according to theorem 6.1. Beforeb
discussing these constructions we have to introduce the s1:.ructi‘i{:{:?a“*‘(d
of a Jts.

11.2. Now we consider the following generalization of (10.5).

Let %f: =end () o End(]z(the ordinary direct sum of associative
algebras, i.e., componentwise multiplication). 4?_ the associated

Lie algebra (the product is given by [(A,B),(A',B')] = ([A,A{],[E,Bi])).

We define
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T[G’i}: = "f'{_ EU,V!E{ ; OP(x) - B(x)V P(Ux,x) and

VEBElx) - P(x)U

P(Vx,x) for all :{E{ﬂ«_‘[,
Obviously

(11.5) i) E: = (14, - t@€¥(Oh: 11) ,meltll) for ain

D& "&{ULI iii) (Lix,y), - L{y,x}}t’r;’f{ﬂh (follows from (11.4)).

One more definition:
l({x,y): = (L(x,y), - L(y,x)) and (OL} denotes the submodule
in JL{GLJ spanned by all 1(x,y), X,y el .

Lemma 2. T{afl is a subalgebra of .'E’_ and lﬁ(ﬂlﬂ an ideal in
L

LRAP

proof. ¥ ((l) is a submodule off . 1f (U, v €3 (B,

then using the definition we compute:

UU'P(x) = UP(U'x,x) + UP(x)V!

T et ————— “:;""""--h__\_____:_]i__ A
pruu'x.ki + P(U'X,U%) + BP(U'%,3)V + B(UX,X)V' + P(x)VV"

(the defining relaticns of }k{UL} can be linearized!)
Interchanging (U,V) ,(U',V') and substracting gives
L, u]e(x)
J_V:V'] P(x)
This shows .
[wow e v] = (o], v el (., e sl el

(U,v)e '5_ (L]) implies

P{[U,U':Ix,x} + B(x) [v,v*] ; similarly

p({v,vix,x) + p(ofuv,0] .

UP(x,ylz = Plx,y)Ve = P(Ux,y)z + B(x,Uy)z,
which 1s, considered as action on y
(11.86) [U,L{x,z}] = L(Uux,z) + L(x,Vz), similarly

| ViL(x,2)) = L(Vx,2) + L(x,Uz)
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hyz IR

Since 1(u,v) = (L(u,v), = L(v,u)) (which is in 0((}), see (11.5))
we get [jU,V},l{u,vi] {[H,L{u,vi], - Lv,L{v,ui] )

[L{UL‘I,U} + Lfu,Vv), = L{VV.HJ = L("-":UU]J

1(ou,v) + 1l(u,Vv), which shows that

ﬁjﬂlj is gn ideal. This completes the proof. A particular case
of (11.8) is

(11.8) [Liu,v] .L{x,y!] = L(L{u,v)%,y) - Lix,L(v,u)y).

We call T[UI/J the structure algebra l::fOL , and the ideal Lﬁ.iUL}

generated by the l(x,y) is called the inner structure algebra.

KHIGL} has a canonical involutorial automorphism

o: (0L =T ), v, v (v,0).

(This is clearly the restriction of the corresponding automorphism
inE{ ). The derivation algebra {iﬁﬂﬁ may be identified via

D +—>»{D,D) with the fixed point set of 8, i.e.,

~ 0y ?{x,ax =x b= 1.0 seo)

Lemma 3. WFEULJ is a subalgebra of the derivation algebra of

_ —_—

.y
the Lts 0a(l.
Proof. Let x = (X,,%,), ¥ = (yys¥,5)e 2 = (2,,2,) etc.

S({x,ylz: = [xyz] = [lixl,yzl - liyl,xzf] (zy,2,)
(see Corollary 3; 1l(u,v) = (L(u,v), = L(v,u)).). i.e.,
(11.9) Six,y) = 1ixq.,y,) = Lly;.x,).
Using (11.7) we derive for {U.V!E:EH{GLi
[tu,v} .Sfx.y!] = 1(Ux;,y,) + 1{:-:1,!.'}'21 - 1(Uy;.x,) = 1(y;,Vx,)

= s( (0, V) x,y) + s(x,(y,Vy), by (11.9) and

(O, V)z = {Uzl,vzz}. This is the defining identity for deriwvations

in Lie triple systems,
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A )
This lemma allows us to apply theorem 6.1 for the Lts Ule Gl ,
[_xyzj = 5(x;y)z and a su{:algebracg_ between'lg and W-{G,J ., (Note:
L%{(;'Ez} is spanned by all S(x,y), bv (11.9).)
Translating the construction performed in Ch. VI to this particular
case, using (l11.9) and other obvious definitions we get the

following Lie algebra:

“Zatfg..ml =fgm[1mﬁv

with product given by the rules
i) the given Lie product inq ; i.e.,fg is subalgebra c-fx .
(11.10)ii) [xlﬁii,ylmi'fz—_l- S(x,¥) = 1{xy,y,) = Llyy.xy)

'

114)  [W,v, xe%,] = Ux6Vx,.

We proved:
Theorem 2. If U(, is a Jts and %1.5_ a subalgebra in aﬁ {GL-)
containing ﬁ{ UL} , then

L (0 =G ele bl

with product given in (11.10) i

a Lie algebra.

For convenience we shall assume from now on mat(g,is invariant
under &: (U,v) =+ (v,W).
We collect some properties of o'f{%,UL]. As usual we identify
E}J, U]r p ﬁwith its canonical images inolza. a ++(0,a,0}), ete.
The multiplication rules (11.10) give the following
010,07 -[ﬁi. ti_] =0

i) [ww,a] =va, (Wmp] =%

iidi) La,l;-] = 1l(a,b), which implies in particular

— [La,l;l,c] = L(a,b)e =Ja.hi:§
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Extending 8 toet it -fif:bviauﬁ
(11.11) w) Q:Gﬂaﬂl; - EGEhG;. is an involutorial
automorphism of Jif{(g,ﬂm ,
vi) j:GEaBE +~ GO - a® - 5 is an involutorial automorphism
of £ (with (-1)-space 0o ‘5Lif ¥& ¢, see theorem 6.1)
vii) 1% B = (14,-10E G , then o 2}3(%)”%&
(adE) ™~ = adE. -
If %= %, then ':f-.‘a,UL - Cﬂ: are the eigenspaces of adE belonging to

the eigenvalues 0, +1, -1, respectively.

y

The "biggest" algebra, obtained from theorem 2 is c}t{ X-EGLJ .QH ’
chserve E:Ej_{UL} . by (11.5), the smallest algebra isf{ﬁ{m},mh
E is not neccessarily in iﬁ ; but in the most important examples

it is in Lﬁ,, as we shall see later.

viii) f{‘ﬁ,ﬂ,} is an ideal inf[%,&], by lemma 2, and is

the standard inmbedding af? =6LE 0{.-

The Lie algehraaf(fﬂ ,G'L] is called the KOECHER-TITS-algebra of

tlg.ﬁh.

11.3. It is clear that we are going to apply the results
obtained in chapter VI, therefore we assume for the rest of this
chapter

&9,
Due to the indicated construction many properties of ¥= [n,,m (E":L,-
(and then properties ofof{‘f’a,@: , which is the standard imbedding
ﬂfﬁ} can be expressed in terms of OL Our first concern is

getting some informations about the ideal structure of .7.
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We recall: a submodule Ul of : is a Lie triple ideal of .;t P

iff |_ Ll??;[ = U, Using (11.9) in our case this is eguivalent

to

{(11.12) Ll{ul,yz} - l{yl,uz}] {zl,zz}éu- for all u = (ul,uzj.;: 'IJI- ,
y = [yl,yzi , 2= (zl,zzi . Different selections of ¥ir3;
(for example v, =2, = 0 or ¥: = 33 S 0) show

Lemma 4. Wa¥- UL-Elﬁr is a Lt ideal, iff

{00y < Uy, WA WA =W, (13 = 2,20 1 #9)

where wl' 'LLE are the projections ﬂUL into 01 , Ol respectively.

A submodule i',O of OL is'ﬁ -invariant, if {G’La *'-O}Cd? A .‘Ftam.is

calledtf—irreducible {or an irreducible "ﬁ -module) if there is no

‘r'i -invariant submodule in UL other than 0 andfﬂ/.

For a submodule Fo of @/ we define

R = p () AQ :{UHQGL} .
Lemma 4 then says that ULC¥ is an ideal, iff Wi are -invariant
and G, < Wy W, Uy £ iulb ie an-idsal; ifs Lo = 0
and | QO] . (p(Q)lec ¥ follows from ’g_-‘ﬂﬂlﬂL}CLOsince ked).,
This shows

Corollary. Q< 0L if a Jt ideal, iff

Lemma 5. Igﬁj;s_ Etﬁ,—inva.riant submodule ﬁUL, then £ is

f} -invariant and Pc -

Proof. Using (11.4) we obtain for[l‘j-im.rariant &

L(z,y)P(x)&EC Plhayx) X6 + P(x)L(y,2) & (O = &,
which shows that £ isﬁ -invariant. In order to ﬁhowa?g < ¥

it suffices to show P{x}P':Yl}-Z;Ckf- for all x,y&GL.
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We apply (11.4) to y and consider the result as cperation on z.
We find

2P(x)P(y) = L(x,yIL(X,y) = LI(P(X)y.¥).
since {UA%Ic% this shows P(x)P(Y) L.

Lemma 5 and lemma 4 together show

Corollary 1: If ¥is an ‘g,-invariant submodule of Cl, then
L & &, £ e &

are Lt-ideals in (e a/

Corollary 2: If the Lts (lel is simple, then ULi_sE -irreducible.

Next we assume E = (Id, -Id}étg and W an ideal uf'?: =(lo 8‘;,
Let u = (u,u)eW | y = (0,y), 2 = (2,00 € Ole Gi, then by
(11.12) fu,yzyeW |, similarly fu,yzhe W for all y,zell .
If E= Il(z,y), then Id = iL(z,y) and by what we just said

(i}

p = Iduy = E{_zyul*ré w ., similarly u, el Toein W is
split, or U= Ulflﬂ ULZ' assume [} is (5, -irreducible then ULI" I/Lz
are either 0 or (]| (since they are ﬁi-invariant]. IE UL]_ =0,

U, = then (see lemma 4) 2(0h W, =2 )L = 0. But ir
{;L?ﬁ 0, our assumption E& (IS implies {ﬂLU'l-CLE- # 0. Therefore
LLl = () implies Ul/2 = 0 aniof course 'm'z =) implies L11 = 0.
This shows U= 0 or Ul = 015-&!01( . We proved

Lemma 6. If G ¥ 0 is {‘5 -irreducible and Ef:"f& . then

i, I‘-I"“"
Ul @ OV is 2 simple Lie triple system.

Using the fact that the Kaecher—Tits—algebracf{l%,UL-II together
with the inveolution J : H@adbl> - H@adb (see (11l.1llvi),

s
J = ~=j) is the standamd imbedding of ‘?": O], @l and using theorem E.Z)
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we get that {*’3'(:{‘15’,01},3-) is a simple pair, iff? is simple.

Moreover we know, if \f is simple and any ideal inc‘f{‘f’:}' ,ﬁl] is
{

J -invariant (see 6.4.) thencf{(g,ar} is simple.

Theorem 3, If the Jordan triple system []..}_-z;% -irreducible and

if EE% , then the Koecher-Tits-algebra . ( “5,&/] is a simple

Lie algebra.

Proof. Using lemma &€ and the above remarks we must still show
that any ideal inff splits. Let ﬁ be an ideal in:f’ and

b b &
X = H®a®b in & ; then ath = [E [E,H-]] & . Which already

completes the proof.

We still have to investigate relations between simplicity and
‘c'i -irreducibility of Ul .

Eznae any ideal nf(}Lis in particular -invariant, we sese if
C}u is l"é—:i.1’:3:121:‘11.1-'.':i1:.'-li= and JL'UE-G,GL}# 0 then Ub is simple. If
conversely Cl is simple an&ég an -invariant submodule, then
by lemma 5 we get that - 2 E and &% + & are ideals il
Assuming 0 ?‘ﬁ #GL we conclude -}";n % = () and Ui, =l£-$ g (as

direct sum of triple systems). Thus we proved

Theorem 4. A simple JtsU], is either ﬁ-irr&ducible or decomposes

into the direct sum of two 'fé-invariant and (\‘j irreducible
subsystems U= Lo & .

Remark: 1) If UL is finite dimensional over a field of characteristic

zero we shall see later that under the given assumptions the

trace form o(x,y) = trL(x,y) is non degenerate cnm . Since

{&GLZ(]LL{ ={' 1-_‘, ;7; E}‘Jlf 0, =Z.' and ‘z are totally isotropic subspaces
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which implies dim#& = dim % .
2) An example in which a simple Jts is not irreducible is the

following:

O=fx=(

y O

%
J: X,y all 1xn matrices over a field F}

together with P(X)Y = XYX.

Exercise. Let( = ‘%9 ¥ as in theorem 4. Consider the
subalgebras gi' -,%sz of o& ( ?,OL)

8

1(L,Z)0L ®
gt = (L .,0e 2o

and prove: i) {z‘:= rfl ] ‘;fl,

3
2

A3

44) I£ E@%’ then Oti is simple.
11.4. We are gocing to apply the results about the radical in
Lie triple systems (see 6.5. ) to O,e a We give a short review
of these results. If\‘lL is a Lts with composition S(x,y)z =
['-xyz] and U.an. fdsal of F , then i(Weo W, i(W) = s(¢, 1),
is an ideal in the standard imbeddingaf(i) . For ideals

ﬂl, L'Lz of \? , the "product"
W+ W, =i lpW, + W, U0,

is an ideal of 7 . Certain powers of an ideal v(,Ci are defined

by

'UL<0> =rUl , ‘l}L<k+l> o - ;L<k>* UL«ck) 3 Ulfk> tlt .UL<k>:l g

Ul, is L-solvable, if U],<k> = 0 for some k. Under appropriate

finiteness condition we proved Rad f(?) = i([m(¥) )@ ’(}Q(?) ’
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where 'ZQ_.{\'-}'} iz the mawimal L-solwvabhle ideal in ‘? (or L-radical).
For finite dimensional ¥ over a field of char. 0 L-solvability
and (ordinary) solvability is the same.

Now let ?: O'Lm GT, da Jts. X = {xl,xzj, y = [yl.yzi etc.

S(x,y) = 1(xy,¥,) = lly;/8y), (see (11.9)). 1f#® is an ideal
nfﬁb, then W=f(0ﬂ}‘z’ is an ideal in?{cnrnllary to lemma 4).

By definition s(¥%, W) = 1V, @) + 1(€,0). 1et L, 4 te
ideals :i.nmv 2 .UL= Lo "ﬁ, W = Qe A then a simple computation

shows
T

WM =0o e Ao A', where
Dol = A0 +10k0} +{08K" -
Since 'U'L* 'UL' is ‘a Lt-ideal again the corollary to lemma 4 shows

that -U:’G ‘Q' is a Jt ideal in OL. These considerations lead us

(in a natural way) to define for an ideal r‘O = U"l/

({_Om:o:p =,_O‘ Ao-:k+1>=;‘_0<k>c AQ‘:]” ,

and call f-o L-solvable, 1f f(ﬂ{k} = 0 for some k.
- Fag W%
Lemma 7. a) (e )K= Kg K>

b) t@e ‘é’ is L-solvable, iff/-Oi_s L-solvable.

Proof: a) by induction, b) immediate consequence of a).

Lemma §. J:_fr!o, .LG' are L-solvable ideals ﬂOl . than _({j+ Qe

1'._5 L-solvable.

Proof. This follows from lemma 7 and the fact that
{.{Ca-@} + ( AQ'® M) is L-solvable :I.n\.;E {lemma &. 6. iy

Assume the appropriate finiteness conditions then there is a unigue




maximal L-solvable ideal in Ol, s, dencted by @fﬂb} ; the L-radical
ot Of/ ‘

_ ) L
Theorem 5. ‘R{Olm@ul -’&{UL}&:B?{GM

.
Proof. Since W((L) is L-solvable, so is k((L)e X (0L) in 7,
y Nt o
by lemma 7. Then E{{@.}e@_{ﬂut‘:'&tﬁ[mﬁw . Conversely, if
A

El’ ’322 are the projections of %[5‘] into &-resp.m./ then our
first observation is El = '3«22, since the radical is invariant
under all automorphisms, in particular under the exchange
automorphism {xl,xzj + {xz,xlj. Then 3(?1 is an ideal of Olq
by lemma 4. Since ?2, k> clearly is contained in the projection

uf%?}{k} to , We obtain that ﬁ'v.’ = ‘R ) is L-solvable,

Consequently R A P Ele R == &(mf}ﬂi R (o) .
T
Corollary 1. naﬂat’cé’_,ﬂf} = 10, %)) + 1R he®(l)re Bl).

CallingOlL-sami—simple, if EQtCL} = () we have

Corocllary 2. &f{ L% ,(ﬂaj is semi-simple, iff m/i_s L-semi-simple.

Besides L-solvability we have the notion of (ordinary) solvability.

If"-o is an ideal inorwe set
Q) ), QD L R 49 40 :k}} _

I.D’ is solvable, if ;LO{H = D for some k. I:EUI, .Loﬁ ‘-O, clearly
| LHI"LWJ {@ﬂ-’:}lﬂj E]L(LDQ{G} and by induction

W* = 0% e ™) which shows, thatll is soivable iz is
solvable. We apply theorem 6.9 and obtain

Thaeorem 6. a) EUL'}.E. a finite dimensional Jts over F of char,

0, then an ideal ) in(l is solvable, iff ) is L-solvable.

() = raall




[
ro
(©]

(Radgb denotes the maximal solvable ideal of{i-, see 3.2)
11.5. In Lie theory the Killing form of a Lie algebra is an
important tool. we assume(h is a finite dimensional Jts over
a field F. Using theorem 6.11 and (6.7,) we compute the
Killing form A of the Koecher-Tits-algebra df(‘ﬁ, L) .

We already know (ch. VI), if X = H®aéb G‘“%ﬂ, then

y(X,X) = y\(H,H) + )(a®b,a®b), and

(1%:13) ) = Aﬁﬂiﬁﬂ + trH

~ ~ -~

A(a®b,a®b) = 2trR(a®b,a®b), where

S(x,y)z = Exyz] = R(z,y)x (in 0 e 5’]/).
since [ayz] = ({x¥,2)) = 4¥1%2 5+ {3912, = {v,%,2,0 )
-L{zlryz) ——Ptyiftl\

= (X, ,X,)
12
”P&%Hyﬂ 27 :

) 2FY_l

we obtain
(11.14) trR(z,y) = tr L(zl,yz) -+ L(zz,yl)
This leads us to consider-

glab): = 142 tr[;(a,b) + L(b,a) ,a,b & GL.J

then (11.14) implies )

(11.15) g(z,y) 1/2 tr[‘_R(z,y} 5 R(Y:Z)_J

= 0(27,¥,) + o(z,,¥q)

This, together with theorem 6.11 and the results in 11.4. show

Theorem 7. a) N is non degenerate, iff ¢ is non degenerate.

If Char F = 0, then
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P
b) SZ{k?,{lJ is semi-simple, iff o is non degenerate.
c}{ﬂ is semi-siEElE, iff o is non degenerate.

This result, of course, makes it interesting to have a closer
look at the bilinear form o onCL’. ola,b): = 1/2 traceLL{a,b} -

L[hfal]. Qur first observation is, taking traces in (11.8):

at{;yzj sa) = a{z,iyxu} )
i.e., o is associative. Since the left hand side of this equation
is symmetric in x and z, we also get
oz, {yxuf ) = v(x,4yzuf)
(compare with chapter 1. )
Now assume o is non degenrate.

&
We denote by A the adjoint of A€=End(n.relative to o, and

—

{xy*]z = g(z,y)x. (Ch. hue. )
(11.153) shows

Lix,y) = Lly,x),
hence, olx,¥) = tr Lix,y).

L
Since the maps Xy gensrate end Ob , we have in particular
*

i Then by the associativity of o,

1d = :":,'uiv
& -
a(x,y) = tr Lix,y)Id = S tr xyu;fv, =)o (fxyu;t,vy)
= U{E{Bivix} J'Y}--
Since ¢ is non &Eg3nerat3] this implies x = E]L{ui,vi}x for

all x, consequently Id =ELEui,vi}. We proved

Lemma 9. If o 55 non degenerate, then E = (Id, - Idlé?%; %

We next consider the map T: End ()} = End(nr, defined by

T[RY*} = L{x,y). Then L(x,y}* = L(y,%) shows T{h}* = T[ﬁ*],
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and in terms of the map T, we get

“Lj -{a@, - 1@, AEEnaGL}.
We still have to determine ;k.{H,H'}, H,H't&-ﬁ . As usual we

compute this expression at first for the generators nf"é

A(xv]s [uv])
A H_x,y],u:l,v] (associativity of 1)

Alix,y) ;1 (u,v))

I

= Mhxyul ,;; (11.11iv)
= 4o({xyuf,v) ((11.13),(11.15)).
IFH = (T(A), - T(A) "), H' = (T(8),T(B)), A = Exy ', B = Suv ,
then this eguation shows
A(H,H') = 4 trace T(A)B.
This, together with (11.13),(11.15), gives the Killing form on
. I£ X = (T(A), - T(A) )easbh, X' = (T(A'), - T(A') ")ea'en',
then hi
ALY, XYY = § k¥ T:A}fl 4+ 20(a,b') + 2g(a',b).
11.6. MNext we wish to determine the derivations afhz'{ﬁ UL_'I
and.:;({:ﬁ {L\l} {-b} (We assume E & d ) We can
do this simultanecusly by 5&1:1:11‘19’03 —‘5 or TI:(R/‘} and looking
at derivations
Do (), 00 — 27 0,0 i.e.,
p((x,v)) = [ox,¥] + [x,0¢] .
We set D(E): = 5@99‘5-
Since 'Zt{fﬂ,f}l-} ig an ideal inaf{ ﬂh{[}l} ,GL} the leftmultiplications
ad¥ of E{ KE{C'],} ,01-} are derivations ofc.?f'{ﬂ;' ,'fﬂ/}, by the Jacobi
identity. Therefore D':=D + ad(p® - ::.:r} is a derivation. We

obtain D' (E) =//_[i_!JEE} + LPa = f-?.r E_] = SEPQ‘-?. - p& - ‘i =

N AT



—
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o' (E),a] + [E,0'a ]
Sya2 + (p'a}; - (D'a),

Consequently D'a = D' {[E,a]!

where 5 = ESI,S } and D' l.’x}l,D' [K}z are the components of
p'{x) in DI r&sgectively. Comparing the corresponding
components on both sides of this equation we get

S,a =0, (D'a), = 0 and then p'ac O, similarly

e

S,5 =0 (D'b), = 0, and D'be 0.

If we denote by U the restriction of D' to U'L and by V the map

ﬁe;ined by D'I; = E, then these results show

D'(E) =0, D {aﬁﬂ} = Uamﬁ: This immediately implies
D'1(x,y) = D' ([xsy]) = [Ux,y]+ [ %,y |

e ?) = L(ux,y) + 1(x,Vy). G RER
And finally B'[T,aﬂgj o U-rlaw?;h - (_n* (1) ,a0b | + [T,an’;]

implies (comparing terms) T W | Tl | ey | Cg

<
p'r = [(wW,v,r].
But then (ll1l.16) shows {(U,V) & :f{a-} and we proved

o' = aad, wed (0.

Since D' = D + ad(p® - g) we cbtain that a derivation

D: ;’f{{H,CL ) —’*;\P{EL{GL} ,CL: is of the form adX,X EE{ dL{GLj ,UL) )
And conversely these maps are derivations afo%{ﬂ ,UL-} -_}QEJ{{LF’ ,mrl .
Theorem 8. UL b‘ln-ﬂﬂxtﬁ“{ﬂl} By =LT vy 0y

ol = 1 ( X% 2, ¥, 1))
Proof. We just proved the flrat equality and morecver

& TN
ALY = ada{_o. By the Jacobi identity the map X + adX is a
homomorphism of Lie algebras. We show, that in our case it is

an iscmorphism. Assume adX = 0, X E’iﬁtiﬁ}; leeay LH.¥]= ]
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for all Yf {ﬂ )y in particular L}{,Ej 0 which implies
x&;ﬂ} . GSince we have also LK aﬁb] = 0 we end up with X = 0.
This completes the proof.

If we assume that the bilinear form o on G.L:
g(x,y) = 1/2 tr[L{:n:,y} 4 L(y,xﬂ is non degenerate, then by
Theorem 7, we know that the Killing form A onmlf[lﬁ,ﬂi/} is
non degenerate, and E & Lﬁ , {lemma 9). Using theorem 3.3 we
get that any derivation of ;Z:’{‘fj,iﬂf} iz inner, i.e., is of the
form adxX, X é-u(\ftkfj,ﬂl,j. From theorem 8 we then derive easily
(some details left as ecercise),

Corollary 1. If ¢ is non degenerate 9_1:1_01: then

‘1515’»1 =T .

This corollary in turn has strong implications for the

derivations of OL . If D E"’e't ur:l ; then (D,D} =3 BL {fL} + by

{11.5). The above corollary yields

(D,D) = £ 1(u,v), componentwise:
(u,wv)

0 =%2L{u,v), D == EL(v,u), Then

D= 1/2(D + D) = X 1;2[L:u,w - Liv,w)| = 1/2D(u,v).
{u,v)

By lemma 1, the maps D(u,v) are derivations, this proves

o
Corollary 2. If ¢ is non degenerate, then "‘J{UL} = D[ﬁ,ﬂ;}.

Exercise: Use a trace argument to show o(Dx,v) + ¢(x,Dy) = 0

for D& O '{Ul.'l -

11.7. It is guite natural to determine the automorphisms of the
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LtsT¥=(R$(i.which are induced by mappings on OL. By this we
mean agtomorphisms of the form = (a,BM(P(aeg) = aaegg. We
proceed more generally and consider linear maps a,B:(Ri+ CL of
Jordan triple systens(l,GU: Then by (11.9) the map ??= (a,B)

is a homomorphism of the corresponding Lts ¥' = d}e(i} and
¥ =Q0e (f,, iff

(afxyvy2,§ - Q{YIKZZl& ' B{?2Y122& & 8{y2x122} )

= ( anlsyzazlﬁ - {aylsxzazlg ; {szaylszzg- {Byzaxlszzg)
This is easily to be seen equivalent to

(11.317) oP' (x%,2)

P(ox,0z)B

I

{
BP'(x,2) P(Bx,Bz)a for all x,z e{Clz

where P', resp. P denotes the quadratic map on Q.', resp.{jL.

(11.7) has an immediate application to isotopes. Let V& Gl(OLJ
such that P(Vx) = VP (x)V, Olv the V-isotope of OV. Taking

& = Oys P'(x) = P(x)V, a = 1I4,8= V, then (11.7) reduces to
P'(x,z2) = P(x,2)V and P(Vx,Vz) = VP(x,z)V, these relations
are fulfilled by definition of OLV or assumption on V, respective-
ly. We proved |

Theorem 9. Eifl’ii a Jts and veGl((l) such that P(Vx) = VP(x)V,

OLV the V-isotope of OL1 then the Lie triple systems OL@ Q. and

CWV$ CLV are isomorphic.

Since isomorphic Lts have isomorphic standard imbeddings (see 6.3.)

we get

Corollary. QZD( %(OLV) ’ OLV)::‘J 'ig( %(Ol ). ,OL) .
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Exercise. Apply the corollary to the u-isotope E%h; where u is an
invertible element in the unital Jordan algebra'g .
The fundamental formula and (11.7) might serveifor the following
o i £h mativatiow
definitions.
tet (OL,P) be a Jts (over arbitrary 3). wWe define T((L): =
{EIU,Uui%? ¢ P{Ux) = UP(x)V and P(Vx) = VP(x)U for all x &fi.ﬁ
Exercise: F[GL} is a multiplicative submonocid of End (L x end (] °P.
FIGL] is called the structure monoid of UL. Clearly

i) (Id,1d) & F{ﬂL}: ii) {P{xl,P{x!Jé-P{CL} for all x&-ﬂb (fundamental

formula).

iii) wverdl),aer + (au,ane .

iv) E¢;¢*1}&:r{ﬂl} for all ¢éﬂutup ;

We apply standard technigues (linearize the defining identities in
"direction" of y, apply to 2 and consider the result as operation

on y),., to obtain

il

(11.18) L(Ux,z)U UL(x,Vz)

L(Vx,z)V = VL(x,Uz) for all (u,v)e r(lV),x,z< 0 .
Note: if 1/2€¢ then (11.18) can serve as a definition for F{GL}.
Hext we define a group H{ﬂL}-
utQ: = | wwme ez ; v tye ril
Exercise: H{ﬂl} is a subgroup of Gl{ﬁb}*ﬂliall- (The product is
componentwise multiplication.).

A(0l) is called the structure group offlr. The following result gives

a nice characterization of the structure group.

lIn & more systematical approach these definitions should occur
elseyhere. But in order to have different concepts come up in a

natural way we preferred to introduce the structure group in this
context.
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Theorem 10, Ea is a Jts over ¢, 1/2€ ¢, then (U,V)E Gl(a)xsl(cl/)

is in the structure group 9_@@  iff (U,V) is an automorphism of the

Lie triple system\-}(=@e a;

Proof. (u,V)€ H(OL)«> (u,vHyel"(OL)«> P(Ux) = UP(x)V L

and P(V 1x) = V1P (x)U «>UP(x) = P(Ux)V and VP (x) = P(Vx)U <=>
UP(x%,z) = P(Ux,Uz)V, VP(x,z) = P(Vx,Vz)U (1/2&d). Now compare
with (11.17).

Remark: In connection with Lie triple systems the assumption 1/2 &é
always comes in since we did not make an attempt to define
"quadratic Lie triple systems".

Looking at the standard imbedding x( (5,01,) of G},GB OT/ (and
therefore back to the assumption 1/2 € &) and using the fact that an
automorphism ¢ of OLe{J’f, induces an automorphism

h¢: Teaeg - ¢T¢_lﬂ)¢(a9};) (6.3.) We have the following application
of theorem 10.

Corollary. If (u,V)& H(U],) , then

~ - . —~
: T®a®b > (U,V)T(U l,V l)&)Ua&?Vb is an automorphism of

Mg, v
rf(%r()“‘l{) -
G
Exercise: For aé:’-olrwe define

A : TOx8Y ~ T + l(a,y)@(x - T-a - P(a)y)®y

prove: 1) A €Aut f(l‘s,,m—) for all acQ |

2) ﬂaﬁb = ﬂa+1:;
3 B higy ™ Mg,y © TOF w,vyeu(() (for  see (11.11v))
4 Aip.wla Nga My,vy £or w,wnend).

Note: A, = exp(ade) = Id - ad@)+ 1/2 (ada) 2; (ada) > = o.

(see N. Jacobson: Lie algebras, p. g ) J
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XII. Examples

12.1. As a first example we shall determine the Koecher-Tits salgebra
of a speclal Jordan algebra. We assume 1/2 € 4. Let (1 be a uniral
subalgebra nf‘t'+. where & i an associative algebhra, Let e be the unit
element of . we may assume that t is generared b}rcir. Then & is also
unit element of A .

The Jordan triple structure af 0 is given by P(x)y = xvx, resp.
L{x,y)z = xyvz + zyx. We dendte x°y = xy + vx, [x,¥] = xy - ;J; and get
brivially wy = 3 %oy + 2[x,y]. Thus i€ FL(x,,v,) = 0 then TL(x,,y,)e =

[

* ®jo¥y = 0 and 0 = HL(x

ASSUmMe mMOTreQvVer

B-l' _l
¥E =3 Elxgay,lz = 5z nlx,y,]. We shall

Ea,(l] M t:enter-t_ =10,

and then Z[x ] = 0. Consequently I x = 0. These considerations

171 174
show that p(L(x,y)): = xy defines a mapping o: L(Uh,th) = CL + [(},G1.

It is obvious from the definition

o (L(x,v))z + zp(L{y,x)) = L(x,y)z

g(Mx + %o (V) = (U, V) +x, (U,?Jt&:‘:‘i .
Next we define a map w: {I(Gi} - :'t“-z by

a(U) *
wl(U,V) + x + ;1: -

y - (V)

Theorem L. w is an injective homomorphlsm of Lle algebras.




(12.1)

Proof. Exercise.

Due to the theorem we have

u+ E[vi,wi] x
U, V,, W

W () = , ¥
v -+ Dfvy,w ] x y €0k

We shall obtaln more information on m('x{m]} for speclal choleces of (b,

Let & = F be a Feld, £ = p(e0)

the algebra of n¥ n matrices over
Fand (L=x" Assume char F.4'n.
., =
We denote by DJ. (n,F) the subalgebra of ut" of elements of trace

Zero.

':i?_ (n,F) = EﬁE-{' y trace A=10} .,

SRR R | 1 40V 5 T » OF TN

Proof. Let Eij denore the matrix with 1 at the Iintersection aof the i-th
row and j-th column. An easy verification shows [EL:L’Eij] = Eij (1 # 1),

and [E E,, = Ell (1 > 1), which implies that the linear genera-

1P ) 7 By

tors E.. (i # i) and Eﬂ - Ell (L » 1) of .m{n.F) are in [@,CLI. Since

ij
trace [A,B] = 0 we also have {ul,ﬂl]-: '}t {(n,F).

Theorem 2. If (- vC'+. L= F{n,n} and char F,i"tt. then f(ﬁ) s

‘!Li (2n,F).

. aud A B H'.\
Proof, By (12.1)w (-L (L)< I (2n,F). If convarsely ( )é b (2n,F)
C D

B
AB,C,0 €A, then trace A = - trace D. We set
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¢t =3 a+D,

and pet

a=R'+0¢", D=

where 0" € W(n,7) = [(,], by Leuma 1.

A B B' + '
(c D .

is in mfff{}l”-

3':%{;1-:1}

- B + ('

Again (12.1) shows that

B
- B' #.C'

. o
Exercise! Char 'F,I/n""? ['[:11 B 1A Centerds = 0.

As another application of Theorem 1 we look at £ = F

= tael, ab=ay. 16T 15 the se

then n"

(n,n) and

t of skewsymmetric matrices

is linearly generated by the matrices Eij ji (11 £ 44 n).

Since [E ;E +E ] B - B ii’j‘we get ["-’.-‘.l'I-.:! 15 Thus

i1 34 1j bR
4";.513 ). Ck]. Lee
N E
g§:1=
(-E 0

where E 18 the n * n unit matrix and

Y in,sy = asl | s

)

A.S--A.}

the set of S-skewsymmetric matrices. An easy computation shows



C

U+ v A
- ABuelh | ove 3,00

E. A
T (2a,5) = ( ) , Ae Gl | Ted

B U4V
The last equality follows from A = Ol & [(,(v]. We proved

Theorem 3. If "«'.: = F{“'M. "1- = {A: Ar‘ = A} and char F*‘ n, then
iy 2 Toas.

12.2. let & be the Jts defined by a non degenerate symmetric bilinear

form 4
[xyz] = ply,z)x = ulx,z)y + uix,y)z
*
Let (xv )z = ulz,¥)x; then
* * +
Lix,v) = xy = yx + (trace xy )Id.

Since L{y,x) = L[x,y}* we may identify L{x,v) with (L(x,v),L{v,x)) resp.

- i A
K with L) ,{1). Thea ‘13 =Y ® F-1d , if char F*n. where ¥ is the

set of skewsymmetric linear mappings (relative tok).

We choose a basis 8ys *tty A ofﬂ . Let M= fu{ai:a })) and o =

b
{e:l, cee En'}l, if % = Ry 8- Then u(x,y) = lttﬂg . Define
o1 0
T = 0
M

.
and [ = _=':H: an easy computal lon shows that




o & }-lin'r'i. T) (for def., see 12.1.)

iff

#*

= n
% ac F, 2 EFn and
u 0 a = {
= MD = -DM,
- D

The map

* | "W
F (uv - vwvu + u(u,v)Id & x & y)

*
= (u,v) 0 ..3
*
- 0 plu,v) =
] - %* =R
;< - *3 WY =

obviously 12 1 = 1 and onto ) {n+2, T). It is left as an exerclse to

verify that it is a Lie algebra homomorphism.

Theorem 4. If [.1 ie the Jts of dimension n defined by a non degenerate
. o
bilinearform , then e;i'_'(a-} ¥ f}(n+2. ).

12.3. For deeper tesults concemmning the determination of the Koecher-
Tits algebra for the (=1)-eigenspace a,_ of an involutorial automorphism
of a Jordan algebra (1 we refer to the author's paper in Manuscripta

Math. 3 (1970), 115-132. Without proof (and further comments) we men=-

tion the following result.

Theorem 5. If a‘ iz a flnite dimensional central simple Jordan algebra

of degree s over F, char I’,»r 8 and C]'L-"Z the Peirce-1/2-space relative to
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an idempotent (¥ unit element) then ﬁzjfﬂliﬁz} is isomorphic to the

quotient of the structure algebra [L(b),L(03)] @ L((1) of (L moduloe

its center.

Remark, If ‘:1« ig central simple, finite dimensional exceptiensl over F

of char 0 then ‘w nfh is of type ET and —f(&uzi of type EE'
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XIII. Identities and thea radical in Jordan triple systems.

13.1. Let ¢ be a commutative ring containing 1 and (0,P) a
Jordan triple system over &, that is,ﬂb.is a unital ¢-module,

P:ﬂL — gndll a gquadratic map such that

(13.1) Lix,y)P(x) = P(x)Liy,x) = P(P(xX)Y,x)
(13.2) L{P(x)y,y) = Lix,B(y)x)
(13.3) P(P(x)y) = B(x)P(y)P(x)

hold .i.nm/and all scalarextensions nva « We use the following

notations: P(x,y) = P(x +y) = P(x) = P(y), Lix,ylz = {xyz} = P(x,2)y.

For the convenience of the reader we restate the linearizations of

these formulas and some formulas which we already proved in chapter

®I. &ll of these formulas will be needed in the sequel, The

linearizations are

(13.4) L{x,y)P(x,u) + L{u,y)P(x) = P(x,u)L(y,.x} + P(x)L(y,u) =
F(P{x,u)y,x) + P(R(x)y,a) .

(13.5) L(P(x)y,u) + L(P(x)u,y) = L(X,P(y.,u)x) .

(13.6) L(P(x,u)y,y) = L(x,P(y)u) + L{u,P(y)x).

(13.7) P(P(x)y.,P(x,u)y) = P(x)P(y)P(x,u) + P(x,u)P(y)P(x) .

(13.8) P(P(x,u)y) + P(P(x)y.P(uly) = P(x)P(yv)P(u) + P(u)P(y)P(x) +
P(x,u)P(y)P(x,u).

And the formulas from chapter XI are

(13.9) L{z,y)P(x) + P(P(x)y,z) = P(x,z)L(y,x)

(13.10) Liz,y1P(x) + P(X)Lly,z) = P({zyx} ,x)

(23.11) [LOx,¥),L(u,v)] = L{{xyu} ,v) = L(u, {yxv})

= L(x, qvuy ) - L({ quvxk ,y).
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(The last equality follows from the fact that the left hand side
of (13.11) is skewsymmetric in the pairs (x,y),(u,v).) We shall
need some more identities. We apply (13.6) to a and consider

the result as operation on 4 to ocbtain

(13.12) La,y)L(x,y) - P(x,a)P(y) = L(a,P(y)x).

The identity which is in a certain sense dual to (13.12) is
obtained from (13.10) by the same technigue; &Per appropriate
change of notation we get

(13.13) L(y,x)L{y.,a) - B{y)EB(x,a) = L(B(y)x,a).

Since (13.10) is linear in two variables we also derive

(13.14) P(x)L(y,2z) + P(z,P(x)y) = L(x,y)P(x,2),

which is the "dual" of (13.9).

If F is a formula in L's and PF's, we call the formula F# which is
obtained from F by replaecing L(x,y) by L(y,x) and reversing the
order of the L's and P's the dual of F. Inspecting the formulas
(13.1) - (13.14) we cbserve that to any of these formulas its
dual is among (13.1) - (13.14). As a conseguence of this obssrva-
tion we have the fellowing result:

Duality Principle. If F is any identity derived from (13.1) -

(13.14) then its dual Pt is also an identity.

Procof. We define l(x,y): = (Lix,y).Liy.x)),p(x) = {P(x).,P(x)).
Then 1t is easily checked that in the assocciative algebra %?

= EndULG{End{HIDP the following set S of identities holds:

Lix,y)plx) = p(x)Ll(y,x) p(P(x)y,x)
L(PIxX)y,y) = L(x,P(y)x)

plxiplylp(x) = p(P(x)y)

1{z,y)pl(x) + p(P(x)y.2) plx,z)1l({y,x)
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l(z,y)p(x) + p(x)1(y,z) = p({zyxy,x)
[l(x,y),l(u,vﬂ = 1( {xyu} ,v) =~ 1(u, Lyxv})

=: A%, dlvuyﬁ) - 1 fruvxs 'Y)
l1(a,y)l(x,y) - p(x,a)p(y) = 1(a,P(y)x)
l(y,x)1(y,a) - p(y)p(x,a) = 1(P(y)x,a)

p(x)1(y,z) + p(P(x)y,2) = 1(x,y)p(x,2)

for all X,¥,a,4,v,2 EG/ .

(p(x,y) is the linearization of p(x)).

Inﬂt_we have a canonical involution #: (A,B) —>(B,A). Obviously
l(x,y)# = 1(y,x) and p(x)# = p(xX). Furthermore it is immediately
seen that the set S is invariant under this involution. Conse-
quently, to any identity derived from elements in S the dual
formula is an identity, too. Taking the projection

T :QS*Jv Endﬂb onto the first component we get the desired result.
13.2. We recall that for fixed ue(ll we get a quadratic Jordan
algebra C"u = (JL,Pu,(z’u)) by setting Pu(x) = P(x)P(u) and
X(Z,u) = P(x)u (see 10.2.). Let Etu be the unital Jordan algebra
obtained from CLh by adjoining a unit element.

Since the notion of quasi-invertibility has proved very useful in

the theory of associative algebras (chapter II) it is reasonable.

to try the same concept in Jordan algebras or Jordan triple

systems. An element x in a Jordan algebrai} is called quasi invertible,

with quasi inverse y, if 1 - x is invertible in the unital Jordan
A

algebra}? and has inverse 1 + y. Let(lrbe a Jordan triple system

over'ﬁ. We shall study the notion of quasi invertibility in the

homotopes Ovu. Our first result is a translation of the inverse
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theorem (theorem 9.2) in Jordan algebras. We recall:

S {},U,E} is a unital guadratic Jordan alaebra, then aEf

is invertible with inverse b, if one of the following

{equivalent) conditions hold:

i) U(a)b = a and Ula}b? = e

ii) wu(a) is invertible

iii) U(a) is surjective

iv) e is in the image of U(a).

In either case b is uniguely determined by b

u(a) la.

We define

B(x,y): = Id = L(x,y) + P(x)P(y)

(see (10.4)) and are ready to prove

Theorem 1. I-Etar be a Jordan triple system, Xx,u eﬂl . The

following statements are sgquivalent:

i) x is guasi invertible in OLu (with guasi inwverse y),

1i) theres exists y&@v such that Bix,u)ly = x = P(x)u and

B(x,u)P(y)u = P(x)u ,

1ii) B(x,u) is invertible,

iv) B(x,u) is surjective,

vl 2x - P(x)u is in the image of B(x,u).

In either case y 1s uniquely determined by

{13.15)

Proof.

1

y = Blx,u) = (x = P(x)u).

Using the definition of d,u and the formula for Pu (see

thm. 9.1.) we firstly observe

Eu[l—x]l = 1 - 2% + P(x)u

Pu{l - X}z = B{x,u)z for all x,u,zemf.




In particular we note

Blxu) = Pyl = %) g

Using these relations we translate the inverse conditions:

Eu{ 1 -%)(1+y)=1-xis equivalent to

l - 2x + P(X)u + B(x,uly = 1 - x, or

(a) B{x,uy = x - P(x)u.

Eu{l - x) (1 + y”alm) =1 is egquivalent to

1 - 2x + P(x)u + 2B(x,u)y + B{x,w)P(y)u = 1.

(a) together with this equation is eguivalent to (a) and
B(x,u)P(y)u = P(x)u. This shows i)++ ii). Since Eu{l - %) 18
invertible and map&aintu {]r (and also its inverse maps &r :i.nt-::i&' )
its restriection B(x,u) tnfl is invertible, then B(x,u) is surjective
and in particular 2x - P{x)u is in the image of B(x,u}. But this
last condition is immediately seen to be equivalent to

113image Eu{l - %), which in turn give the invertibility of

1l - x in abu. The last statement in our theorem can be read off
from iii) and ii). ([}

Remark. In a unital Jordan algebra taﬁ,u,e} the conditions

U{a)b = a and U(a)b> = e imply

[

aoh Ula,e)b = Ufa,Utalbzib = Uiu,bziuta}b

V{a,bzia = EU{a}bz = 2e. (Vix,y)z = U(x,2)y)

The translation of this to the situation considered above yields:

If x is guasi invertible in {ﬂfu with guasi inverse y, then

2{x - y) = {xuy& :

If x is guasi invertible in Clu with guasi inverse y then we set
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Yy = :g(x,u)
Using this neotation, (13.15) becomes
(13.15") q(x,u) = B(x,w) t(x ~ P(x)u).

We shall proceed along the lines presented in chapter II, although

the proof won't be that sasy.
Theorem 2. (Symmetry Principls)

a) B(x,u) is invertible, iff B(u,x) is invertible,

b) g(x,u) exists, iff g(u,x) exists.

In this case qg(x,u} = x + P(x)qgiu,x).
Note: In particular qix,weex + pix)(}, .

Procof. The fundamantal formula
Pu{Pul:l - %} (1l - 2})) = Puil - x}?utl - szu{l - =)

restricted t:.‘-ﬁz shows

{13.16) B(x,u)B(z,u)B(x,u) = B(2x - P(x)u + B(x,u)z,u).

Since the fundamental formula in 6L’u can be derived by using
{3.1) - (3.14) the Duality Principle applies to give

(13.16') B(u,x)B(u,z)B{u,x) = B(u,2x - P(x)u + B(x,u)z).

If B(x,u}) is invertible then there exists z'Eaf such that

2x = P(x)u + B(x,u)z' = 0 and since B{u,0) = Id we get
B{u,x)Blu,z")B({u,x) = Id from (13.16'), which shows that B{u,x)
is invertible. This proves part a). Part b) is an application

of a) and theorem 1. For the last statement it is sufficient

to show
[:*) B(x,u)g(x,u) = B(x,u)x + B(x,u)P(x)g(u,x},

since B(x,u) is invertible, Using (13.1) and the defimtion of
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B(x,u) we get B(x,u)P(x) = P(x) = Lix,u)P(x) + P(x)P(u)P(x) =
P(x)B(u,x), and using this and (13.15'), (*) is equivalent to
x - Pi{x)u = Blx,u)x + Pix){(u - P{u)x).

But this iz a trivial identity, by definition of B(x,u).(L(x,u)x =

2P (%) u) .

We note particular cases of (13.16) and (13.16') (z = 0):
(13.17) B(x,u)% = B(2x - P(x)u,u)

(13.17") B(u, %)% = B(u,2x - P(x)u)

We recall, the structure monoid r(0) of (L is defined by

r () =4 v,V Endl x (Enda(h)°P; 2(Ux) = UB(x)V,B(VX) = VR(x)U
for all x&d.-_'] .

(see 11.7.) 1If (u,v)& r (k) then

L{Ux,z)U0 = UOL(x,Vz): L(Vx,Z)V = VL(x,Uz) for all x,=z &Olr :

And Furthermore

]

UB(x,Vu) U = OL(x,Vu) + UP(x)P{Vu)

U - L(Ux,u) + P(Ux)P(u)U = B(Ux,u)ll.

I

By a similar computation we get for (u,v)& (O

(13.18) UB(x,Vu) = B(Ux,u)U; VB(x,Uu) = B(Vx,u)V.

Theorem 3. (Shifting Principle)

Let {U,VJéF{ﬁL’JI then q(x,Vu) exists, 1ff g(Ux,u) exists.

In this case Ug(x,Vu) = g(Ux,u).

Proof. Assume g(x,Vu) exists. Then by theorem 1
Ux = UP(x)Vu = UB(x,Vu)g(x,Vu) and
UB(x,Vu)P(g(x,Vu))Vua = UP(x)Vu.

Using the definition of [‘i:f}ir} and (13.18) we then get
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Ux - P(UxX)u = B(Ux,u)Ug(x,Vu) and

B(Ux,u)P(Ug(x,Vu))u = P(Ux)u. This already shows that g (Ux,u)
exists and equals Ug(x,Vu), by theorem 1. Conversely, assume
gq(Ux,u) exists, then by the Symmetry Principle g(u,Ux) exists and
then g(Vu,x) exists (by what we just proved) and again by
symmetry g(x,Vu) exists. We already know that (P(x),P(x)) € F(a,)
and shall show below that (B(x,y).,B(y,x))é& T(CL), therefore we
have

Corollary. a) q(x,P(y)u) exists, iff q(P(y)x,u) exists,

b) g(x,B(a,b)u) exists, iff g(B(b,a)x,u) exists.

for all x,y,a,b,u el .
In order to prove (B(x,y),B(y,x))& I, we cannot avoid some
i have ) ;
computations, since we don't qiot yet) nice formula proving
principles at hand.
To show that (B(x,y),B(y,x)M}P(GL) we have to prove

(13.19) P(B(x,y)z) = B(x,y)P(2)B(y,x).

Proof: Using the definition of B(x,y) (resp. B(y,X)) we compute
B(x,y)P(2)B(y,x) = [P(z) - L(x,y)P(2) + P(x)P(y)P(2)1B(y,x)
= P(z) - L(x,y)P(z) + P(x)P(y)P(z) - P(2)L(y,x) + L(x,y)P(z)L(y,x)
- P(x)P(y)P(2)L(y,x) + P(2)P(y)P(x) - L(x,y)P(2)P(y)P(x) +
P(x)P(y)P(z)P(y)P(x)
and
P(B(x,y)z)= P(z) - P(L(x,y)z,2z) + P(P(x)P(y)z,z) -
- P(P(x)P(y)z,L(x,y)z) + P(L(x,y)z) + P(P(x)P(y)2)
Using the fundamental formula and (13.10) we see that we are done,

if we can prove
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(13.20) P(x)P(y)P(z) + P(2)P(y)P(x) + L(x,v)P(z)Liy.,x) =
P(lxyz}) + 2(P(x)P(y)z,z)
and

(13.21) P(P(x)P(y)z,L(x,y)z) = P(x)P(yv)P(z)Lly,x) + Lix,v)P(z)B(yv)P(x).

Proof of (13.20):

Comparing (13.20) with (13.8) we observe that we have to prove

Lix,v)P(z)Liy,x) = P{x,2)P(y)P(x,2) + P(P(x)P(y)z,z) — P(P(x)y.P(2)y) »

Using (13.9),(13.13) and (13.2) we get
L{x,y)P(2z)Lly,x) = P(2,x)L{y,2)L(y,x) - P(Plz)y,x)Liy,x)

(9)
= P(z,x)P(y)P(z,x) + Plz,x)L(P(y)z.x) - P(P(z2)y,x)L(y,x)

{13)
= P(z,x)P(y)P(z,x) + P(P(x)P(y)z,z) + Liz,P(y)z)P(x)

{9)
- P(F(x)y,Plz)y) = L(P(2)y,y)P(x)

= P(z2,x)P(y)P(z,x) + P(P(x)P(y)z,z) - P(P(X)Y.,B(2)Y).
(3)

which is the desired formula.

Proof of (13.21):

We have to use (13.9) and its dual (13.14), (13.1) and (13.2).

We start with a linearized form of the fundamental formula.

(*) P(Pi=)y,Pix,2)y) = P(x)P(y)P(x,z) + P(x,z)P(y)P(x).

Linearizing again yields

P(P(x)u,P(x,2)y) + P(P(x)y,P(x,2)u) = P(X)P(y,u)P(x,z) + P(x,2)P(y,u)P(x).
In this formula we replace u by Ply)2, together with (13.1) and

(13.2) we obtain

P(P(x)P(W)z,Lix,y)z) = B{xIP(yiLlz,y)P(x,2) + P(x,2)L(y,z)P(y)P(x)

- P(R(x)y {xy(B(ziy)} ) == :A
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For the first term of A we use (13.9) and for the second term we
use (13.14) to transform A into
A=P(R)P(y)P(2)L(y,x) + P(X)P(y)P(P(z)y,x) + Li(x,¥)P(2)B(y)P(x)
+ P(P(2)y,x)P(Y)P(x) - P(B(x)y,|xy(P(2)y)})

= P(x)P(y)P(z)L(y,x) + Lix,y)P(z)P(y)P(x),

since all other terms have sum zero; this can be seen by replacing
z by P{z)y in (*).
This completes the proof of (132.19). hu$.i£¢ qugmﬂ“if“ Tt Hfl

For the proof of the next theorem we need two more identities.
We already proved (see (10.4)).
{13.22) P(x = P(x)u) = P(x)B{u,x) = Blx,u)P(x)
The other formula is
(13.23) P(B{x,u)z,P{x)u = %) = B{x,u}[L[z,u}P[x] - P{x,zi]

= tpr;x]LI:u,z] - P[x,zaﬁtu,x}»

Proof. Using the definition of B(x,u) and expanding we obtain
P(B(x,u)z,P(x)u - x) = P(P(x)u,z) - P:?r:x}u,{xuz§j + P(P(x)u,P(x)P(un)z)

- P{x,z) + P({xuzj,x) - P(P(x)P(uw)z,x) = :A

For the first term of A we use (13.14), for the second and third term
a linearized form of the fundamental formula, for the fifth term
(13.10) and for the last term (13.1) to transform A into
A= Lix,ulP(x,2) - P(=x)L{u,z) - P(R)P(U)PI(x,2) — P(x,2)P{u)P(x)
+ P{x)P(u,P(u)z)P(x) - P(x.,2z) + L(z,u)P(x) + P(x)L(u,z)
- L{x,P(u)z)P(x)
=-hMQMPmmJ+(LMm}-PhnﬂPml+EWﬂPdemm -mehﬂ%Pm]
- (e, w{Liz,wrix) - Plx2)] , by (13.12).

The otheér eguality follows from the Duality Principle,
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Theorem 4. (Addition formula)

If x is quasi invertible in OLﬁ, then

Il

a) B(x,u)B(g(x,u),z) B(x,u + 2)

B(z + u,x)

b) B(z,q(x,u))B(u,x)
for all z GiCL.
Proof. Let x be quasi invertible in Gbu and y = g(x,u). Thus
B(x,u)y = x - P(x)u, by theorem 1. Then B(x,u)P(y)B(u,x) =
P(B(x,u)y) = P(x - P(x)u) = P(x)B(u,x) = B(x,u)P(x) by (13.19) and
(13.22). According to theorem 1 and the Symmetry Principle, B(u,x)

is invertible, thus

(13.24) B(x,u)P(y) = P(x) and P(y)B(u,x) P(x).

B(x,u) Id - Liy,2) + P(y)P(2)]

Il

Now B(x,u)B(y,z)

B(x,u) - B(x,u)L(y,z) + P(x)P(z), by (13.24).
While B(x,u + z) = Id - L(x,u) - L(x,2) + P(x)P(u) + P(x)P(u,z) + P(x)P(z).
This shows, that all we have to prove is
B(x,u)L(y,z) = L(x,2) - P(x)P(u,z).

From a linearization of (13.19) and (13.23) we derive

B(x,u)P(y,a)B(u,x) P(B(x,u)y,B(x,u)a)

I

P(x - P(x)u,B(x,u)a)

]

[P(x,a) - P(x)L(u,aﬂ B(u,x)

And again, since B(u,x) is invertible, we get

B(x,u)P(y,a) = P(x,a) - P(x)L(u,a) »

Applying this formula to z and taking the result as operation on a

we get the desired result. Since the proof we gave for the identity
a) does not allow us to apply the Duality Principle to conclude b), we

must give a direct proof of b). This is left as an exercise (see

below) .
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Exercisea:
1) B(x,u)[L(z,P{u)x) - L{z,u)] = [L(x,P(u)z) - L(z,u)]B(x,u)

for all %,Z.,u EG/ . (Hint: Multiply the right hand side identity
of (13.23) by P(u), use (13.22), (13.1), replace P(x)P(u) =
B{x,u) + L{x,u) = Id and use (13.12)}.)
2) TI£ v = g(x,u), then

LiB{u,x)z,y) = - L{g,P(x)2) + Liz,x) (Hint: wuse 1})

3) Prove part b) of theorem 4.

Corollary 1., If x is guasi invertible in m/u,z ECL » then

gi{x,u + 2) exists, iff glg(x,u),z) exists. In either case

dix,u + 2] = gqlg(x,u),2).
Proof. The first part of the corollary is an immediate conseguence
of the addition formula in connection with theorem 1. Using (13.15)
we derive
Q(x,u + 2) = Blx,u + 2) " T[x - P(x) (u + 2)]

= B(g(x,u) z) " Bk, u) " x - B(x) (u + 2)], by thm. 4

= Bla(x,u),2) " Tlglx,u) - Blx,u) TP(x)z], by (13.5)

= B(q(x,u) ,z) Flglx,u) - P(a(x,u))z], by (13.24)

= dlg(x,u),z).

Corollary 2. The set RCﬂL Hm; defined by

R: = LL{x,yj e xa—, x = gly,n) for some u &€ GL is an equivalence
relation.

Proof. (x,x)€ R since x = q(x,0). If (y,x)&R, say v = g(x,u)

then % = g(x,0) = g(x,u - u) =gy, - u), by ecorollary 1. Thus (x,y)e R.

In order to show the transitivity of R we use corollary 1 again.
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Assume (x,Y¥),{y,z2)€ R, by definition of R,x = gq(y,u) and

gliz,w) for some u,w E—ﬂ; - Then

1

Y

x = gly,u) = g(gl(z,w),u) = gz, + u), in particular (x,z)& R.

13.3 Of course, results like the foregoing should have some
strong applications. That this is the case will be seen very soon
when we introduce the radical (Jacobson radical) for Jordan
triple systems. Let again@z be a Jordan triple system over ¢

We define xé&- to be properly guasi invertible, (p.q.i.)
if x is guasi invertible in all Jordan algebras O’u' uéﬁl’ « In
other words:
® is p.g.i.++ g{x,u) exists for all ueﬂ» +—+ B(x,u) is invertible

for all uém/ A

We define
Radﬁb s ={x&‘a- ;, X 1is p_q_i.}
Theorem 5: raa(l is an ideal -:u_f_a,.

precof: We have to show:
a) Radov is a submodule
b) e(rad)0l € raa O
o) {0 (rRaaOh} & raa OV
a) 2(l)raall € raa OV
(see 10.4.)

proof of a): Clearly Bfax,u) = B(x,au), ce? which already shows
chat sxe Radll if xeRadll and 2¢d. Lot uy zemad(l; then by

the Symmetry Principle and corollary 1 of thm. 4 we conclude

u -+ zéRadaf . In order to prove the other properties we firstly
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cbsarve, that the Shifting Principle has as an immediate conseguence

the following result

terma 1. If (u,v)€ I(0b), then U(raall)< raal}’

Since (P(z),P(2)) and (Bla,b),B(b,a))e I'((V) for all z,a,b €Ul
(fundamental formula and (13.19)) we have P[ﬂ,} Radll € raa (b (tnis
is @) and B(a,b)x = x - {abx} + p(a)p(b)xe Rad} 1f x ¢ Rraal .
By what we already proved we conclude

{0 radQ} < raa (L , this is o).
The addition formula allows us also to conclude that for l,;*'
xE Radmf the guasi inverse g(x,u) in any a’u is in Raﬁcll . Now
let x& Radal/ and yeaf' . Then x is g.i. in ay and the guasi-
inverse g(x,y} is in Rada'. By (13.15%) Bix,v)g(x,y) = x - P(x)y
and consaguently P(x)y€ radll since B[x,y}RadQ,C Rad{il «» This
completes the proof. Eu—l

Radﬂl is called the Jacobson radical ofa/ 5

We shall show that Radm' has all the properties one generally
reguires from a nice radieal.

Theorem 6. a) Rad Eﬁ’/’ =0

Radll,
b) Ifef is an ideal of(, such that Rad {ﬂff#1 = 0,
then Rad(l C & .

Proof. a) Let ( = mjﬂadlﬁ\f x€Rad () and uell . Then
there exists v &€ () such that B(x,u)v + 2x - P(x)u = 0, by thm,
1,V. Then B(x,u)v + 2x - P(x)u =: aeRad0l and B(a,z) is invert-
ibhle for all zf@ . By {13.15}! B(a,u) = B(x,u)B(v,u)B(x,u).
Thus B(x,u) is invertible and x€ Rad(V .

b) Let ¢: Ob = (' be a surjective homomorphism of
Jts's, then by thm. 1, ii) ¢(Raa(l o Rad ('. In particular

%.1} See alss s vTemark -lﬁ.:“_ow;uﬂ e Eammllv"pqﬁupﬂz .
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we have w(Rad(})C Rad Ia’@g ) = 0 for the natural map
n:G-L > mf_g . Conseguently n(rad ) = 0, that is Radﬂl.«‘:‘-ﬁ' :
Theorem 7. IfJf is an ideal of b, then

Rad ¥ = LAraall .

Proof. 1f x& £ARrad0l , then theorem 1 ii) implies xe Rad '@

since the gquasi inverse of an element nfg is in-“é’-. For the
conversse we shall firstly establish

(13.25) B(x,yiB( - x,¥y) = B(x,P(y)x) = B(P(x)y,y) for all x,y =10 A
Proof: Expand the left hand side and use the fundamental
formula, (13.1), (13.2) and (13.12). Now, if x €Rad& then again
by theorem 1 ii), x is g.i. in G}u for all ut&'x« , equivalently
B(x,u) is invertible for all u €& ., If yell , then P(y)x &®F
and B(x,P(v)%) is invertible, then B(x,y) is invertible, by
(13.25). Thus xeln radll .

13.4. The Jacocbson radical of a Jordan algebra }r is defined as
Radf, whare}?—' is considered as a Jordan triple system. The
connection of the radical of ﬂl and the radicals of the Jordan
algebras Obu is given in the next result. We recall, that OLu
viewed as a Jts is the P{u} - homotope nfcly (see Chapter 10).
More generally, if P(Vx) = VP (%)V for all =& GL » then P.(y) =
P(y)V defines the V-homotopa GLV = {{]V'PV} ol . GLU isg aTJTts.

Since (Py) (X) = P(x)VP(W)V = P(x)P(VWu) =

(a’?]u = a‘v;:.
Theorem 8. a) Rad OL‘J =ZL ::H':GL, Vxe‘:’Rada- }

rada @ <4xe@ , P:u}xeaad{},}

PVu (x) we have
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b) Rada(l= ﬂ{Rad b2 uell j’ i

Proof. a): x(:'RadClV “«*> X g.i. in (OLV) =0|/V
——— u o

gq(x,Vy) exists for all uea <+ (Shifting)g(Vx,u) exists for all

for all uc a >

ué(,ﬂr > VxeRada/ e

b): Clarly Rad OLC n{Rad G,u,ué GL} , since P (u) RadOLCRadOI/
for a1l uell . ret x€raa () for all u &€, then P(u)x€Rad(l and
thenlin particular B(P(u)x,x) = B(u,x)B(~ u,x) is invertible. Then
by symmetry B(x,u) is invertible, thus x & Rad alL.
Corollary 1. ueRad@L » 1ff Rad OLu =O'|/.

Proof. Immediate consequence of a) and (13.25).

Gy
Corollary 2. If @/v is Ehé V-isotope ofOL , then
7N ——

rad O, = raa

proof. If (U,v)<T(0l), then U(Radl}) < Raa(l , by 13.3, thus
Rad GL(C kad G,V. If V is invertible, thenGIf= (OLV) —17 by (/6.3),
v

which shows that Gl/is a homotope of @/v and then Rad C‘!/VC rad(} .

We call(}], semi simple, if rad Qb = o.

Corollary 3. EOLE semi simple and wel , then

Rad O]/u = kernel P(u).

A certain information what kind of elements we may expect in Rad (]
is given by our next (almost trivial) result.

Theorem 9. a) If x is a trivial element }__rla/, i.e., P(x) =0,

en xéRadUL "

b) f x is von Neumann regular and xe‘RadOI/, then

= 0.

»
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Proof. a) P(x) = 0 implies B(x,y)B(- x,y) = Id for all y éa ,
by (13.25). Thus x €Rad(l .

b) x = P(x)u and x g.i. in Ol’u implies g(x,u) = 0, by
(13.15'). Then 1 is the inverse of 1 - x in abu, this can only be
the case if x = 0.

Thus, ifUL is semi simple (Radﬁ\/= 0) thenc’r has no trivial elements
# 0, by a). We can also prove the converse, ifO]/ has d.c.c. on
inner ideals (see 10.6).

Theorem 10. _I_ga, has d.c.c on inner ideals,_ then a/ is semi simple,

iff (}ﬂl/ has no trivial elements # 0.

Proof. Leta« have d.c.c., then Rad(l contains a minimal inner ideal.
Then ;@= du where u is trivial, or the elements ofoﬁ- are regular,

by lemma 10.9. Since the only regular element in RadOL is 0, by
theorem 9b) this shows that Radar contains a trivial element # 0

if Rad@;# 0. Equivalently, ifar has no trivial elements, then

rad (L = o.

There is another proof of theorem 10 which is of some interest. Let
Rada # 0. Consider the set of inner ideals }lP(x)OL , 0 # xeRadGl-j "
Let P(u}m/ be a minimal element in this set, then either u is trivial
or P(u)OL # 0. For any aea( we have P(P(u)a)OL = P(u)P(a)P(u)OL C P(uﬁ,.
But if P(u)a # 0 then P(u)a (which is in Rad(jL) is not contained in

P (P (u) a)af , otherwise it would be regular, therefore

P(P(u)a)m( # P(u)O\r and consequently P(P(u)a)@r = 0 by the minimality
of P(u)a, . Thus P(u)Olf consists entirely of trivial elements.

13.5. We have to mention some facts concerning the powers of an element

in a quadratic Jordan algebra. Let (g,U,z} be a quadratic Jordan
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algebra. 'Then the given sguaring x -+ x? induces the bilinear

2= yz. The powers of

composition (X,y) +-xoy = (x + y}2 - x
an element KEJ are defined by

1

xt: = x, %% (is given) and x"12

s o= U(x)x™, nzl.

[If} i5 unital we set x° = e)

By an easy induction, using the fundamental formula and (Q.J.5)
wa get

(13.26) u(x™) = u(x)".

An application of this formula is

13.27 O ()P = g2t W

And also by induction on n resp. n + m one proves

n mn n__m n+m

(13.28) (x™™ = ™ and x"ox™ = 2x
Exercise: Prove (13.28),.
Also without proof we state the following results

(13.29) v(a",a™ =v@®* * ™ ana UE())U(g(a)) = U(fq) (2))

for all polynomials £,g&A®[A] (in the unital case for all
f,9€¢[A]), where, as usual V(x,ylz = U{x,z]yrv{xjy = XOV,

and also [v(a™) ,v(a™] = (v(a™) ,uta™ ] = 0. xt:-?f is nilpotent,
if ¥* = 0 for some n. Although this does not imply x" = 0 for
all man, we have for all k=zl: x2n+k = fon}xk = 0, by (13.27) and

2n

="' = 0. Since x = {xn}2 = 0} wa therefore have:if x = 0, then

x" = 0 for all man,

Lemma 2. a) Ita[ is nilpotent, iff U(x) is nilpotent.

b) if KE} is nilpotent, then V(x) 1is nilpotent.
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Proof. If %" = B, then 0 = U(x") = fo}n. Conversely, if

2m+1

u(x)™ = 0 then x = u(x)M% = 0.

b) is by induction on m: V(y) is nilpotent for all yE} such
m+l _

that ym = 9. This is clearly true for m = 1. Assume x a,
then {xd}m = x4m = 0, since 4m¥2(m + 1l). Thus V{x4] s nilpotent
by induction hypothesis. Now we use

via)? = 20(a) + v(a?) (see (9.8))
mma=x{ ﬂmemf]=mﬂ2mdﬂf}mmmemdmmam

nilpotent we conclude that V{xzjz is nilpotent, but this is the case,
iff v[xzi is nilpotent, then, by the same formula, putting a = x,

we get that ?{x]z, hence V(x), is nilpotent.

Now let {CE,P} be a Jordan triple system. The odd powers of x EgGL
are defined inductively

xl: =% = xn+2: = P{x}xn.

We denote by w (no0) the n-th power of x in the Jordan algebra OLu'

Our first observation is
(n,x) _ xzn-l

(13.30) % . nzl,
L . N 5 — T e = klga)
This is easily proved by induction. n = 1,2: x~ = % = % =
<28 _ playx = x93 = x2-2-l’ by definition of the squaring in GLx'
Then x{n+2,x} = P ijx‘n'x} = P{x}P{x}xznhl = xzn+3.
x

Using the fundamental formula (and trivial induction) we obtain

(13.31) 2(x™) = (0™ ™)™ = 2 (M) = ™ wmym Akl

Po(x
The next result is also proved by inductien,

m n+m-1
P %)

(13.32) a) L(x™,x™ = L(x™,x") = L(x
b) {x"xMEh = 25K,




153

Proof. We firstly prove the second egquality in a). The case

n=113is trivial, Letm=2m' - 1, n = 2n' + 1. Then
L™ 2 = Lix'™ 0 ¥y by (13.30)

= L(x® * R , by (13.29)

_ L{KZm' ¥ 2t = 1'x}

2 @R B &

X .
Since L(a,P(x)b) corresponds to V(a,b) in qwx and

L{a,x) to V(a) (in Gbx} , See {&.E ).
But the right hand side of a) is symmetric in m and n, thus
Lix", %™ = L, ™.
Applying a) to :I-Lk
{xmxnxkj = )Lxm'm_lxxk_& = ¥™=1,K%  (in C’Lx]

_ Exm+n+k -

and using (13.28) we get

Let #[x] denote the subsystem generated by x. The foregoing

2k+1

eguations show #[x] sx . And as a consequence of (13.32) we

= I
k2o
hawve

L{u,v) = Liv,u) for all u,vae ¢[x].
13.6 We wish to apply lemma 2 to the Jordan triple S}rstemﬂv . Since
the guadratic map of the Jordan algebra O’u is given by
Pu{xl = P(x)P(u) and left multiplication by Lu{x] = L(x,1) an
immediate application of lemma 2 is
Lemma 3. xe(l is nilpotent éﬂ&u’ iff P(x)P(u) is nilpotent.
In this case L(x,u) is nilpotent.

Since P(x)P(u) is nilpotent, iff P(u)P(x) is nilpotent, we have

Corcllary 1. x is nilpotent in CLH' iff u is nilpotent in CLx'

It is well known from elementary linear algebra, that for a nil-
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potent linear map N, Id - N is invertible. Since L(x,u) and
P(x)P(u) commute (by (13.1l)) we get as another application of
lemma 3 and theorem 1:

Corollary 2: a) If x is nilpotent in OLu' then B(x,u) is

invertible.

b) If x is nilpotent in Cnu, then x is q.i. in Clh'

And one more straightforward application is a shifting principle
for nilpotent elements. Let (U,V)Q-F(Ol) and x be nilpotent in
Cqu. This is the case, iff P(x)P(Vu) = P(x)VP(u)U is nilpotent.
And again, since AB is nilpotent iff BA is nilpotent we see that
X is nilpotent in G]/Vu’ iff UP(x)VP(u) = P(Ux)P(u)is nilpotent,
equivalently, iff Ux is nilpotent in Clu'

Corollary 3: If (U,V)E F(OL), then x is nilpotent in OLVu iff

Ux is nilpotent in Obh.
We define an element xcEOL to be properly nilpotent (p.n) if
X is nilpotent in every Jordan algebra Ol’u' u éOL. A subalgebra

(or an ideal}Jﬁ of(ﬁ»is called properly nil, if every element

onQ‘is properly nilpotent.
We note that all p.n. elements ofCL are in Radcl’, by Cor. 2.

Lemma 4. a) Subsystems and homomorphic images of p.n. Jts's are p.n.

b) If & is an ideal of (I, then(Ol is p.n., iff & and

g are p.n.
Proof. a) is obvious from the definition.
b) One direction follows from a). Let x,uﬁEGL , then
Z: = x(n'u)ét’g- for some n and z is nilpotent in ogz; then z is

also nilpotent in m/z. Thus P(z)P(z) is nilpotent, equivalently




P(z) is nilpotent. P(z) = [P{x)P(u) 1" shows that P(x)P(u) is
nilpotent, which means that x is nilpotent in GL’u-

A standard argument using an isomorphism theorem shows that finite
sumes of p.n. ideals are p.n. And since the .prt:lperty of an ideal
to be p.n. is defined elementwise, ZORN'S lemma applies to give

a maximal p.n. ideal afﬂ/ which is unigque by the foregoing remark.

We call this unigue maximal p.n. ideal N{@;} the p.n. = radical

of UT/. Clearly
NEOI"KN} = 0,

) 7
since N( Ci'fm} = %'?M . aﬁ-idaal affﬂ- ;, lemma 4 shows thal-.ef-is ﬂ“";‘w‘dﬁq '
PaTi., hencedﬁi: M.

Since by a previous remark all p.n. elements are in Rad(l we
have

N({ ) raa( .
Next we consider the module Z(m,] consisting of all finite sums
of trivial elements. Using P(P(x)z) = P(xR)P(z)P(x) and
P(B(z,b)z) = B(a,b)P(z)B(b,a) we firstly ober¥e that for a trivial
element 2z, Pix)z and Bla,b)z are alsoc trivial, which shows P(x)Z< 2
and B{a,b)2CZ for all x,a,b ‘E(;L , conseguently E‘{'ﬂ,«]z::z and

{_Ulil zjc_ 7. 1In order to show 2(z)(0bc Z, we set a = Ezi,zi trivial.

Then Pla) = -}il?{zi’zj} and we only have to show that for trivial
elements zi?:-:;, and x&ﬂl . Ptzl,zz}x is triwvial. But this ecan
be ssen from (13.20). These considerxrations show that z{ﬁl.} =
\:Ezl,zi trivial} is an ideal ufm’.

Without proof we mention the following result

Thecram 11. Z{ﬁl} is properly nil.




Thus we have the following chain of ideals

z(Wien@lyc raa(l .

Theorem 12. g@ has d.c.c. on inner ideals, then

rad U = H{Eﬁ,} ={x,x is p.n.} ={':-:EGL 'a’x is a nil algﬂhra& .

Proof. Let x¢ Rad(l and ueO). consider the descending chain of

i nner idEElS
P{K}P{u] oW [ { ] { }] a, L

This chain becomes stationary, say IP(x}P[u}]‘eﬂ, = [P.[x]P{u}?'bjﬂL A

(2€+1,u) [P(x)P(u) ]Ex = [P(x)P(u) ]2€+lv, for some v. Thus

(2€+1,u)

then X

(2651 ,1)

JP(u)v which means that x e rad(} is

(2€+1,u) = (0, by theorem 9.

ragular, this can only be the case if x
Since u is arbitrary we get that x is p.n. and rad (1 ={_x,x p.n.j.
. Since all p.n. elements are in RadGL we have equality and

‘i__:-r.,x p.n._"- is a p.n. ideal. The remaining egquality follows £rom
Cor. 1 to lemma 3.

13.7. We shall cali0l strongly semi prime, if ] has no trivial

elements, and an ideal % of mfis called strongly semi prime, if
m:—"zf is a strongly semi prime Jts. Equivalently, the ideal £ ol is
strongly semi prime, if E{a}&ﬁﬁ' implies a E\ﬁ' c
Example: 1) rRad O is strongly semi prime. Let p(a)l < raal}k + then
Fr'r, = Rad Gl,a, by thm. 8, and then aé& Radﬁlf ; by Cor. 1 of thm 8.

2) w((0) is strongly semi prime.
Since N{GKN} = 0 and 2N we ses that GL}N has no nontrivial trivial
elaments.

There is an interesting result concerning strongly semi prime ideals.




Theorem 13. E:Q is an ideal Em«and A’ a strongly semi prime
ideal giz- then &' is an ideal of (L .

Froof. We have to show:

a) P =KL, v) () Gel ana o) (WK 3 = &

ad a): Let cé“: ; B2€ G-.lr ; then P{c}aé%‘ and P{P{c}a}aﬁ =
P{c}?(a)?(c}%:-c P{CJJ@C '{r_’ , conseguently P(c)a < ﬂC“ by assumption
on £ .

ad b): Let hl: = Pla)c, cE—ﬂC‘, a{-ﬁb .

by: = P(b;)b, by:
show blfrﬂ(‘: it suffices to prove P{b31$c=¢ » because then bye A and
and b € A5 .

1
= P{bz}lb', b,h'& :é « In order to

since b,b' are arbitrary we get b,

P(by)%& = P(b,)P(b')P (b,y) %
= P(by) (P(5)P(a)P(e)) (B(a)P(B' )P ())(P(C)P(a)P (B)P(by)) &
l:P[bl}l?{h}P{a}P{e}P{P{ajb':m:'
Ce(kiemipla)e(e)l , since Pla)b'& & -
Using
P(b)P(alP(c) = P(ibacl) + B(P(b)a,P(c)a) = Fl(c)P(a)P(b) - P(b,c)P(a)P(b,c)
we chserve, that the right hand side applied to an element nf‘C’is
an element cf‘t again, thus P[b;{]@c‘: P{g }fc*c A~ , which we wanted to
prove,
ad c): The identity
P(laxc)l) = P(a)P(x)P(c) + Plc)P(x)P(a) + Pla,c)P(x)P(a,c) — P(P(a)x,P(c)x)
shows that in order to prove Pt[axc}hx-:{' ’ a.x&ﬂl , ce 5, it
suffices to show P{a,c}be’C . aell, be e v oeds (using
a) and b).) Instead of showing {abel€4 we show B(a,b)c€ A . Now

we proceed as in b).
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by: = Bla,ble, by: = P(by)b', bg: P(b,)b".

P(by)& = B(b,)P(b")P(b,) &

P{bllbe'lBia,h]PIc]Bib,a]E{b"]B{a,hlPIG}B{b,aJPEh']PEbli :’:—

c:'p(bllpua'Jsta,bm{cm{a{b,a}b'w.{‘

Cp(Z )P(sZL)B(a,b)P(c) ,

this is contained in'ﬂ' if we can show that L{a,b}P{c)fé-f-*-‘C' -
But this is clear from L{a,b)P(ec)e' = P({abel,c)ec' - P(e)L(b,a)e’.
(The first term at the right hand side is i.n'{:_ since [abc}-:':a@.'
and £ ideal in'ﬁ- and the second term is :Ln‘C' by B)).

Using the fact that chf,l is strongly semi prime we have as

an immediate application

13 () =:Z:—‘“| N{Gl-} for any idealc:é Gf[;ﬁ]r'.

XIV Regularity.

l4.1. In 10.7 we already made some remarks on the regularity of
Jks. We recall, }{Ea* {OL-iﬂ a Jts) is ragular ([ = wvon Neumann
regular), if x = P(x)u for some uim « Since we derived more
formulas and properties inm' we can expect more results.

Lemma 1. H:ﬁﬁ an ideal EEUL‘ andﬂta regular ideal EZ?- , then "t’

is an ideal of 0.

Proof. We have to show
a) pi<es Lo et ek ahaaciel.

We recall that.{f is already regular as a subsystem (see lemma 10.,13).
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b].: - B‘{a'b}ﬂ’ bz: o P{bl}blr b3: P{bzlhn'

P[bj,\lﬁ P{bEJPtb"JPtbz}éf"r

Ll

P[bl}PEb']E{a,b}P'[c]lB[b,a}P{b“]B{a,b}PEC}B{b,a}P{b'JP{bl} 2-:—

S P (by)P(b')B(a,b)P(c)B(B(b,a)b") A
C (L )P (&) Bla,b)P(e) S,

this is contained indS if we can show that Lfa,b}P{c}tﬂ‘-'C" ‘
But this is clear from L(a,b)P(clc' = P({abcl,cle' = Pl(c)L(b,a)c’.
(The first term at the right hand side is in'c since {abc]ezﬁéf’
and.{f ideal :i.n%i and the second term is inc_by b)).

Using the fact that N{a] is strongly semi prime we have as

an immediate application

LJ{-K}*} -'%"1 N{GL] for any idealx- aft}b.

ALV Regularity.

14,1, In 10.7 we already made some remarks on the regularity of
Jks. We recall, x € Uv l‘ﬂi/is a Jts) is regular ( = von Neumann
regular), if x = P(x)u for some u{:ar .+ Since we derived more
formulas and properties in'ﬂr we can expect more results,

Lemma 1. Ekéli_s an ideal EGL' and FCFE regular ideal l_nﬂ , then A

is an ideal ﬂol‘-

Proof. We have to show
a s , b 2l ek ahaatiel.

We recall thatﬂt is already regular as a subsystem (see lemma 10.13).
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Let c EE y X, WE oy . Since { is regular we have c',c" in £

guch that ¢ = Plc)e', ¢! = P(c' )", thus ¢ = B(c)P(c')c".

Then P(c)(l = P{c}P{c'}P{c}ﬁbC P{t:}Pi.’c'}:ﬁcg{:' , 8ince

Y. is ideal in (] and £ ideal in & . This is a).

ad ¢): {xyc} = Lix,y)P(clc! = P{{:-:yc‘},a}c‘ - P{c}{yﬁcc's . by

(13.10). The right hand side is contained in P2(¥,L)C+ p($) e £,

by a) and assumption.

ad b): P(xu)e

P(x)P(c)P(c')c"

P({xcc'{)e" + P(P(x)o,P(c")c)c" = P(c')P(c)P(x)c" =
P(x,c'")P(e)P(x,0")c"

1=
and the right hand side is in 4/, by a) and b).

In 10.7. we proved the existence of a unique maximal regqular ideal

T ) of any Jts UI{.
Corollary. J\{‘gl = z:.""l T{ﬂy} for any idealf of Uf/

Proof. -‘ﬁqx'{{jlv} is regular in GL and then regular as a subsystem
by lemma 10.13. Thus 'g*‘ﬂl Oy ‘G- (). Canverselyd{{xi is
an ideal ng']f ; by the above lemma, and therefore fﬁ:é?}‘: g-IGIP].

14.2. The next result shows how useful it can be to know whether

a given Jordan algebra is unital.

Theoram 1, Let lﬂ, be a strongly semi prime Jordan triple system

and xe(0l . Then x is regular, iff the Jordan algebra x"#!cernel P (x)

is unital.
Proof. We note that kernel P(x) is an ideal in O/x by lemma 10.7.

We seat {jlx = The quadratic map and squaring in

</
il kernel P(x)~
UL . are given by
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P (W7 = PTWIP(x)V and &° = PU%.

If E"x is unital with unit element e, then eov = Ple,v)x =
2v (see (9.7)) for all vel asd EK{E} = Id, o This implies
v - {exvy + B(e)P(x)v = 0, equivalently B(e,x\L x{: kernel P(x),
resp. P(x)B(e,x) = P(x - P(x)e) = 0, by (13.22). m/is strongly
semi prime and therefore we have x = P(x)e; i.e., % is regular,
Conversely, 1f x = P(x)c for some ¢ € O , then P(x) = P(x)P(c)B(x),
equivalently P_(c) = Id on ﬁ’x and therefore “-"x is unital, by
thegorem 9,3,

The best result we know of concerning the existence of a

unit element is the following

Theorem 2, A semi simple Jordan algebra with dcc on inner ideals

has a unit element.

We shall not prove this result, although there exist fairly simple
proofs of it.

We recall that semi simple and d.c.c¢. is equivalent to strongly
semi prime and decc, by theorem 13.10. We shall show that these

properties carry over from (b to Jj .

Lemma 2. EGLi_s strongly semi prime and has dec, then all Jordan

algebras E},x,x F:m/ , are strongly semi prime and have dcc (on

inner ideals).

Proof. First of all, kernel ?(x), x€ (b , 15 an ideal in Ulfx

and {CT],-X,FKJ is well defined. WNext, letzbe an inner ideal of

E:":x, bel , ze GL, then by definition P(b)P(x)z = b' mod kernel P(x),
conseguently P(P(xX)b)z = P(x)b'es P[x'.iq\f- . This shows that P[x};@

iz an inner ideal of Ol/.
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Now, if Qgi:' alaas Eﬁk? .+« is a descending chain of inner ideals,
then P(x) aﬁl"? cas 2P () Z.:-k'} .+« is a descending chain of inner
ideals which becomes stationary by assumption. Let P(x) aﬁ}n =
Px) in+j.j2ﬂ, and u € an. Then P(x)u€ P(x) :@-n and for any

j20 there is an element ujérlgrﬂj such that P(x)u = P[x]uj.

This implies u = Ej, conseguently E{h = £E¥+j' Since RaaﬁL =0

we get kernel P(x) = Radldbx_frcm theorem 13.8. Then ULkaernel B (%)
is semi simple and has no trivial elements # 0.

A combination of theorem 2 and lemma 2 is the next result

Corollary: Ef.@’ii semi simple and has dcc on inner ideals, then

UI»xf

all Jordan algebras , X # 0, are unital.

kernel P(x)
And combining this result with theorem 1, we end up with

Theorem 3. Let m- be a Jordan triple system with dcc on inner

ideals. The following properties are eqguivalent,

a)l ﬁiv' is semi simple,

b) (l is strongly semi prime,

o) Uy is von Neumann regular.

14.3. As an application of the addition theorem we proved that
R= l({x,v)e beﬁb; » = g(y,u) for some ue bl
ig an equivalence relation. Clearly

Q= {x,v)e Ux0 ; pell = 2}
is also an eguivalence relation.
Lemma 3. RCQ

Proof. Let (x,y)€ R. Then x = g(y,u) and
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P(x)B(u,y) = P(y), by (13.24). Since B(u,y) is invertible

p(y)l , thus (x,9)e Q.

this implies P(’x)O'L* = P(x)B(u,y)@
Now assume 1/2 € ¢, then (x,y)€ R implies y - x = {xuy} for

some u éC]/. Assume R = Q, then 2x - x = P(x)w', since (x,Zx)'é 0.
Consequently, G!f is regular.

Theorem 4. Let & be a Jts over ¢ and 1/2 € ¢. Then R = Q, iff

Cl(_:!.__s_ regular.
Proof. We have only to prove that Q ¢R ifGI/ is regular. Assume

P(x)a' = P(y}(jl, and 0} regular. Then x = P(x)v for some v eUL

and the fundamental formula shows P (x) P(x)P(v)P(x), which means
that P(x)P(v) restricted to P(x)G]/ ='P(y)@, is the identity.

Since yé& P(y)O]/ we have P(x)P(v)y = y. Furthermore P(x)O]/ =
px)P(PO c pxpwvifle px)0 , thus ()0 = PP (W() .
This shows that P(x)OL is the Peirce - 1 - space of the

Jordan algebra @v relative to the idempotent x (in Gl’v)' The

p(p(x)P(v)y) b = ()P (v)P(x)0] shows

chain P(x)m/' - P(Y)OI/
that y is invertible in P(x)G‘/ . If a is the inverse and
w: = P(v)(x - a) then a verification shows B(x,w)y = x = P(X)w

and B(x,w)P(y)w = P(x)w. Thus (x,y)€ R.
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e XV. The Peirce Decoggosition

15.1. Let O ve a Jordan triple system. An element ¢ GOL is called
an idempotent, if ¢ = P(c)c; or, equivalently, if ¢ is an idempotent
in the Jordan algebra CRE‘

EEEE’ If ¢ 18 an idempotent, then =c is also an idempotent.

The fact that ¢ is an idempotent in the Jordan algebra OLE suggests the

study of the Peirce decomposition of CLE relative to c. If c = P(c)c

is an idempotent, then

(15.1) ' L(c,c)P(c) = P(c)L(cye) = 2 P(c) , by (13.1)
(15.2) 2 P(c)P(c) = L(c,e) - Llc,e)  , by (13.12)
(15.3) " P(ec)B(e,c) = B(cyc)P(c) = 0 , by (13.22).

—

Lemma 1. If ¢ is an idempotent of 0% , then E1 : = P(c)P(c); EO: = B(ec,c);

E = L(c,c) - 2P(c)P(c) are orthogonal projections and Id = El -+ 'E.l/,2 + Eo'

1/2

Proof. Id = E, + E

1 + Eo is obvious. We have to a?ow EiEj = GijEi'

1/2

Ei = P(c)P(c)P(c)P(c) = B(B(c)e)P(c) = P(c)P(c) = E,.

Ei « Ble,e)” = B(e,o) = E_, by (13.17).

E Eo = EOE = 0, by (15.3). Then from Id = ZEi we get immediately

1 |

2
E Eo = () and then El/2 E1/2'

EEyy2 = E4Byya = Bypofy = By

Since the E, are orthogonal projections, Id = in’ we have the direct sum

5

decomposition

) _ GL = & (]ri(c) 5 Olfi(c) - Eia' , 1=0, 1, 172 .




(15.4)

(15.5)

(15.6)

(15.7)

(15.8)
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This is the Peirce decomposition of OL relative c. Using (15}1), (15.2)

we derive easily

a) L(c,c)El = ElL(c,c) - 2 E1

b) L(c,c)E0 - EOL(c,c) =0
c) L(C’CJEI/Z - Elfz L(c,c) = E1/2
Since CLi = Eicb we therefore have

{ccxi}ﬂ.?ixi,xiéclv 1=0,1, 1/2 .

i »
If 1/2 € ¢ this equation characterizes completely the elements in CLi‘

But in general this is only true for i = 1/2.
OL1/2CC) = {xe@ ; f{cex) = x} .

we have (b, (c)C (xeO; {cex) = x} , by (15.5). 1If conversely

1/2
{cex} = x, then using (15.5) and the decomposition x = x  + X1 /5 + %y

i
The definition of Ei shows

X. & 40 we get x = {cex} = xl/Z #* 2x1, thus Xy f X = 0 and x € GLI/Z'

P(E,x) = EP(x)E; , 1=0, 1 (for all x el
and for 31/2 we shall prove
P(E) p%) = B ),P(OE] )y + EP(x) + P(OE; = P(Eyx,x), (for all o

Proof. Using the definition of E1/2, (13.20) and (13.21) we compute

P(E,,.x) = P({ccx} = 2 P(c)P(c)x) = P({cex}) + 4 P(P(c)P(ec)x) — 2 P((ccx},

1/2
P(c)P(e)x) = P(c)P(c)P(x) + P(X)P(c)P(c) + L(cyC)P(X)L(cyc) = E(R(C)B(C)x%,X)

- 2 P(c)P(c)P(x)L(c,e) - 2 L(e,e)P(x)P(c)P(c) + 4 P(c)P(c)P(x)P(c)P(c).




Theorem 1. (PEIRCE decomposition)

If ¢ 1g an idempotent of a »let E = P{c)?(c},En = E(c‘ﬂ}’Eljz = L{c,c)

- 2 P(e)P(e)s ThenOb=®@ b, O =2 ,1=0,1/2,1 and

a) r(ﬂihﬂic R, t=0,1,12

») (4,0, <0, ,1=0,1
o G,0,,0,<0,

d) f@il?}i@lﬂ}cﬂbm La0, 1
@) {meﬁt Qieh, 1=-0,1

1/2™¢L

while all othear compositions are zero.

Prooft If 4+ = 0, 1, then by (15.7):
nai:aj - pe,00e,Q - EiP(ﬂr)EiEja- (4 =0, 1/2, 1)

which shows

pQPA, <0, . 2@ =0 , 20, =0
p@)0,cA, . 2O0 =0 . 20, =0
tfue® . then
By, (W)E; = L, cIP(WP(e)B(c), since EP(WE, = 0
= P(l{ceul,u)P(c)P(c) = P(u)Lle,e)P(c)P(c), by (13.9)

= 0, by (15.5) and (15.4a)., Similarly
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FlP(u}El . Then P{u)El - (El + 21!2 + Eﬂ]P{uJEl = Equu}El and

/2"

E,P(u) = E.P(u)E,. Thus (15.8) becomes (for u E@Uz}
P(u) = EJ.?E”“}Euz *+ E,P(WE_+E P(WE,.

From this equation we deduce immediately
(A0 yn € Rypy s ?{muzjml‘:a’o By O

So far we proved a) and b) (and part of the last statement). We shall

use (13.5), (13.6) twice: Ler a_ < (L, then

] 0O o
Lfaﬂ.c] = L{aﬂ.P(c}c} a L{F{nﬂ.n}n.c} = (1, since P{cjaﬂ = 0, {:nnn} = 0.
For xéa'li vE Glfa we then obtain

Lix,y) = L(P(e)P(c)x,y) = L(e{(P(e)x)ecyl}) = O, since L(y,c) = 0.

Similarly (using the dual formula) we obtain L{y,x) = 0. Thus
(a,q,0t = G, a,01 =o.

Replacing x = ¥ = ¢, u = uif-' lﬂri.v = vjf: Ulrj and applying this equation

to zké CL-k showa
(15.9) feeluyv,z )} = 20=440) {uyv,z )}, by (15.5)
In particular:
{cc{ulvlnau}} - {ulvlﬂza}
and {“{u:lvizlﬂ}] = {uivizln}

which already proves c¢) and d), using the characterization (15.6) of {'1’].!2‘




(15.10)
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Next we use a linearization of (15.8) and obtain for Xy [ O]'i'x1/26 01/1/2

P(Eyx; sy /) = By pP(xy3%y 0)Ey jp + By P(xsux) )5) + P(xy,% )0)E)

Applying this to 2y /9 € Obllz leads to
B(By 315317202170 = Byaf (BpaXy/9)200 + By P (Rps %y 9) 2 -

Since E,x = 0 this equation shows that the 1/2- and 1- component of

'{xozllzxuz} is zero, thus {OLOOLI/ZULUZ} < Q/o. Taking 1 = 1 the above

equation shows that {xlz]./le/Z} € @1/2 +O]/1. But (15.9) shows
{ch{xlzllzx.lfz}} Bl 2{x121/2x1/2}. This ;mplies that the 1/2-component of
{xlz]./le/Z} is zero, since u = U1 /9 + u, and 21.11/2 + 21.11 = 2u = {ccu} =

Y/ + 2u1 obviously give u1/2 = 0. This completes the proof of e). (The

last statement has been established in the course of the proof.)

Part a) of the last theorem shows in particular that the ai are
subsystems of OL
Some useful details concerning the Peirce decomposition are col-

lected in the next lemma.

Lemma 2. f c = P(c)c is an idempotent of 01,. O=28 q’i the Peirce

decomposition of O‘Lrelative ¢, then

a) p(c)( = OLI , kernel P(c) = 0L1/2 ® OLO
b) P(c): ab>a = P(c)a is an involutoric automorphism of Olfl,
c) P(x)a = Pc(x)a i xéa/ , ac& @1 )

O Lo =Led ,aed
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e) {ac{acz}} = {P(a)ecz} , a E{;:Ll' zC L'Ln aﬂluz -
£) (uve}l = {vuel , u,v€ ﬂ‘vln.

g) ({abz} = {ac(bczl} , a,b 0y, 2 eﬁhﬂ "‘m'”uz

h) {xya} = {x{acylel , a eﬁrl, xy OV . +Qx”2 .

Proof, Since P(e)} = B(P(e)e)l = E,P(e)0b (fundamental formula) we see
that _P{.:){l CGLI. But Ubl = P(c}P{n}ﬂL € P(c)(], thus we have equality.
Since P(ciP(c) = El is the identicy on G'Pl we clearly have E = g, a & 01'1
and P(x)a = P(x)P(c)P(c)a = Pc[x};. x & kernel P(c)<=> 0 = P(c)x, +
B(c)x) )y + P(S)x, = %y by (15.1) = (15.3), <> x, = 0> x () e O .
Part ¢) follows from (13.6) and (15.5) 2L(a,e) = L({{ccal,c) =

L(P(a.c)e,c) = L(c,P(c)a) + L(a,P(c)c). Applying 2P(a)P(c) = L(a,c)L(a,c) =
L{P(a)e,c) (see (13.12)) to =z éan *0"132 and ebsarving P(clz = 0,

glves Ll‘.'a.r-}zz = L{P(a)e,c)z: thia 18 o). Uslng (13.10) we get f):

[vuc)] = L{v,u)P(c)c = P({vuc},c)e = P(e)L(u,v)e

= 2{vuc} - {uvel, since {vucle (L.
g): f[abz) = P(a,z)P(c)b = L(a,c)L(z,e)b, by (13.12) and P(c)z = O,
h): [xya} = L(x,y)P(c)a = B(e,x)L(y,c)a, by (13.9) and P(c)y = O.

If £ is an ideal of &. then clearly Eﬁﬁ <% from the definition

of Ei (L =0, 1, 1/2). This implies immediately
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Lemma 3. Ifds is an tdeal of O}, then
E - Enlp e (Ealy,,) 8 (Lall)

Example. Let F be a field and Q, = F(m,n) (m < n) the Jts of all m X n

0
matrices over F (composition is P(x)y = xytx). The matrix ¢ = (ek ) »

0 0
where e is the kxk unit matrix, is an idempotent in F(m,n). It is
a 0
easily checked that 6‘;1 consists of all matrices of the form 5 U) 3
) 0 0

a€ F(k’k), OL is the space of matrices of the form ' s bDETF
o : 0 b

and

v O

0 u
@ 12 ™ {( s u & F(k’n—k), v & F(m_k’k).} :

It is eclear that L 1s (in a certain sense) maximal and the Peirce decom-

position relative to e has O]/l v F(‘“’“‘),G,m v F(m’n-m) and GL'O = 0.

15.2. The Peirce components 0]/1 are Jts (as subsystems ofm/); of

importance is a relation between Rad OLi and Rad 01« .

Theorem 2. If c is an idempotent ofOI/ and Ci{i(c) (1 =0, 1/2, 1) the

" Peirce components of 01/ relative c, then

Rado]/i(c) -0, @n RadQl .

Proof. 1 =0, 1: We recall that in this case (Ei,Ei)é [‘(@,) and the

shifting principle yields
(%) E; a(x%,Epn) = q(E;x, y)

(1f one of these expressions exists). If x & a,i(c)ﬁ Radq, , then
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q(Eix,y] = g(x,y) exista for all yéc'lv y In particular for all y € CLI.‘
Then (*) reads q(x,y) = Eiq{x,y} for all y Eq,i which shows that

q(x,¥)€ Glri and then x¢& hd{npi. If conversely x & Rad U"’i’ then
q{x,Eiy} exists for all yé€ A (Eﬂ,i - Eilffr} and again by (*), q(x,y) exists
for all yECL 1 1.e., & rad 0 .

1 =1/2: Let %¢ a A Radll s then q(x,u) exists for all u'-'-"af.

1/2
in particular for all ue a«m. Using the formula B(x,u)q(x.u) = x = P(x)u
we show that q{x.u}Em o Af x0€ v . We decompose g(x,u) =

1/2 172
4, + 9 + 91/2 into 1its Pelrce compements. From Thecrem 1 we saslly
derive B{x.u}qi LY {xuqi} - P{x}l’{u)qifﬂh. Since B(x,u)q(x,u) =
x = P(x)u ';&11"2 we therefore get B(x,u) (qa-l'qlﬁ = () and then 1, + q = }

(B(x,u) i3 invertible). This shows x € Rad % To prove the converse,

1/2*
we fivat obsarve U] = 0Ly ® (O, &0 and 20) e Q)0 r{ﬂf.laﬂbuz
+ Ptaﬂ]alflz +{m°{:‘1 1;}3’13":011!2, b}' Theorem 1. This shows that

Rad CLUEC Rad0l will follow from the following lemma.

Lemma 4. If 0 =U +4 " W subsystem and F(v) Well for a11 ved -

shen - kadll- craall,

Proof. z ¢« Rad mv#qu,uj axists for all ue Ub. Since P(v)u & e
(for ve0 . ME Lb we have in particular q(z,P(v)z) exists, or equi-
valently, B(z,v)B(z,-v) = B(z,P(v)z) is invertible. This implies B(z,v)
i{s invertible, or g(z,v) exists for all v E"O. For arbitrary x é{l 5
we decompose x = u + v, utu, v:‘o, and q(z,u) exists (by the choice
of z) and this is an element of Rad U again. We apply the foregoing to
conclude that q(q(z,u),v) exists. Then q(z,x) = q(z,uwv) = q(q(z,u),v)

exista, by the addition theorem. Thus z& Rad(l,
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Another immediate application of lemma & 1is

Corollarvy 1. Lg} is a Jordan algebra, = an involutoric automorphism

u_f“i. E@}-E++}_. whare L}E_{:u;; ux-sx},ﬂﬂkad?c-gen
nad‘&(.

Now, let A be an asgociative algebra over ¢ with unit element and
involution £ > E. The t-module A{m.n} of all m*n matrices over A

together with the composition P(x)y = xftx is a Jes, where Et denotes
the conjugate transposed of y. If R(A) denotes the Jacobson radical of

Ay then we have

Gorollary 2: Rad ATM™ . pea) @™

0 u

u 0
{m,n) "

of A into the Jordan algabra'a H(A

the induced Involutlen in A )} (o) * (mrbn) matrices over A. It is

{m,n)

Proof., The map u i—}( ) defines an imbedding (injective homomorphism into)

) of symmetric (relative to

well known (and very easy to verify) that A is isomorphic to the

e 0
Peirce-1/2-component of g' relative to the idempotent ¢ -( ) ¥

n 0
where e 1s the unit matrix in ﬁ(m,m}. A well known result for Jordan

algebras 1s

(m,n) _ (i, mrin)
Rad A HE&m‘i‘n) N R(A)

consequently

{min) " -
Rad ATV 3 Rad o) ) PRV ARE ﬁ'ﬂ'uz IN B R 1V 2R

2 R(A) (m,n)

(m+n,mén)
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Theorem 3.
2ad(l = Rad (G, @ Raa ﬁl«lﬂ ® andij‘lfu

Proof. Rad0l 1s an 1deal 1n(l and thé%.dmr- ﬂ(ﬂbif‘l Rad(l ), by

Lemma 3. Thecrem 2 gives the rvasult.

corollary, WV 1s semt simple, 1ff OLi (1 =0, 1, 1/2) is semi simple.

15,3, Of particular importance for the structure theory of Jte we

ghall presant later la the Peirce decompoasition of @.« relative to a
maximal idempotent. An idempotent ¢ € R 1s cailed maximal, 1f au{c} = 0,
(See the example in 15.1.)

Let ¢ be maximal, then
O -0 o0,

and hesides the Peirce rules in Theorem 1 and Lemma 2 we have
{15.11) ?{a”z]al - fﬂflmﬁvloluz} = {} (see Thaoram 1b)

This fact has rather strong implications.

Let 3 be an 1deal of OV, then 5 « W 94, by Temma 3. Teing
Theorem 1 and (15.11) we easily verifynz -uﬂw‘-@ ’ U r:ﬂq, .‘Qﬂmlni
m (L =0l o Q, s 1ef W, sy Vs somn gl tn 011. resp.q/jl,z and

1
o 0.0,,01c W a) mlﬂlltﬂ} = il

.2 v (G, ,0,,0cW o (WON, <=Q
o A, ARG, =W £) {mluam}c.d)
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An {deal L’i, in @l (as Jts) is in particular an ideal in the unital
Jordan algebra {lj.vl. Pﬂ. ¢) which is invariant under the invelution.
A particular case of d) 4s ﬁl 'I.D = {alcﬁﬂ = ﬂ » but this is
actually equivalent to d) using (15.10g). A special case of e) is

i -L‘Lm -if Llcﬂluz}c:ai] and agatn (15.10g) ehows (WA, (Y, ,,)1C W0,

172
Thus e) is equivalent to Ll'alfit:ﬁ « b) cen be omittad, because it

1/2°

is a consequence of e) and c) (using (15.10h)). Also g) can be omitted,

using (15.10g) and W =W, W, pcd + O o)

duce to {cﬂzuz“@}f: ﬁ' {or {cmuzli using 15.10 h) and £f). BSo far

a) and ¢) re-

we hawve proved

Lemma 5; o = Vet 4 an $deal 4n ﬂ,-ﬁi,l ﬁﬂlm E'W:&l,
Qed

v 22 &) Ul ts an tdea1 12 O

1
) &) 1e-am fdeal mULm

o (0, eQied, O, Ml | O Qi1cWh.

Next, let Ul be an ideal in GLJ.' Set-‘c: = {Gl.”zcm}- We first
show that for these submodules uh"'? condition c) of the above lemma is

fulfilled.
(e MOl ne 2@y, Wiee Qo) + (Be (G ol 1)

(by a ineartzation of (15.10e))c W , stnce U ta an 4dsal. ror ue W,

x.y:or

1/2 Ve get from (13.11)

(culeyx}} = {uyx) = {elucylx) + {ey{cux})

= {eyiucx}} , by (15.10h) and d)).
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The left hand side of chis equation {s in LL thus [Cauz {G[‘Hzc]fl,]}cu.

Secondly we have ro show thae LQ = {[:i,- e} ig an ideal in C{,

1/2 1/2°

Let x,y.zﬁﬂuz. ue Y. Then

P(x)(yeu]l = P(x)L(y,e)u + L{e,¥)P(x)u (P(x)u = n)
= P(leyx),x)u = [uvax] (a = {eyx))
- [ucﬁcx”fﬁg .

Also
{xy{zeu}} = {{xyz} cu} = {z{yxe}u} + {ze{xyu}} 18 1.11"'0, since [xyzle UL‘
{zau} = {uc{acz}} GJ-Q and {xyul = {i{ﬁcy}:}r:{mxlm‘g cl= {.‘Gﬁzﬂzc }

(by 2 tesult we already proved)C vp. And finally

1/2*

P({ycul)x = [P(y)P(c)P(u) + P(u)P(c)P(y) + P(y,u)P(c)P(y,u) - P(P(y)c,P(u)c)]x

= {y{yxulu] & ‘-O

we have proved

Theorem 4. Let 01. -Gl'l ¥ 611!2 be the Peirce decomposition of Ol relative
to a maximal idempotent and -L;L- an ideal of D]/l, then ‘f: -‘l?lv ] [@Hznll}

is an ideal in Olv

Corollary 1. I_fﬁl is simple, then Gfl (as Jts) is simple.

Note: We only proved this result for a maximal idempotent. The corres-
ponding result for arbltrary ldempotents has not bheen proved yet,
Since any P(c)-invariant ldeal of the Jordan algebra ('ll‘.l, Pc'.l is

an ideal in che triple system ﬂt’l we have
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corollary 2. 1f (| is simple, then ((,,P(c)) (as Jordan algebra) 1s a
simple pair.

We wish to prove a partial converse of corollary 1.

Lemma 6. Eﬂ« is semi simple, ('1 = C’tl afl”z, and 0,1 is simple, then

i:L is simple.

Proof, If ,z ia an ideal of GL. ug -.ULQ-‘-O {as above) than aither
bl =0 or LT.--:'.?.rl. 1f U -{}"Ll, then C}’uz - {auf‘kﬂﬂfﬂ and
Z =(l. 1£ Ul =0 then (c {H’lﬁ } = 0, by Lemma S5c). For ve

wé get P{u}al = 0, by (15.11). Also, uaing (13.8) we get

P,y = PCLeevD B ) = [B(IP(PW) + P(ME(IB(E) + B(v,)P(e)P(v,0)] {Jb,?z

= [}, since P{:}mlfﬂ = i, P{vic = ) and f:arlﬂv} = N,

This shows that v 1s a trivial element and therefore contained in

Rad (b = 0. Thus & = 0.

15.4, Lat &, dﬁia be idempotents. c¢ is orthogonal to d (denoted by

erd) if dell (o).
lemms 7. c4 d %= Pleld = {ced)l = 0

&> P(d)ec = {dde) = 0.

In either case L({e,d) = L(d,c) = 0.

Proof. If d &Glo(c}. then P(e)d = {[ced} = O, by Thm. 1. TIf conversely

P(c)d = feedl = 0 and d = d) + dl}'ﬂ ¥ dc! the Pelrce decomposition of d
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relative ¢, then P(c)d = 0 shows El = 0, hence d; = 0. Then 0 = {ced)
= lee(d, + dy))) ) = d)ypy by (15.5). Thus d=d & O (o). since
?(ao}{}l = 0 and L{mls{}o} = 0, by Theorem 1, we get in particular

for d € {}_(c), P(d)c = {ddc} = 0.

Using thls lemma it is easily sesn that for orthogonal idempotents
¢, d the sum ¢ * d 1s also an idempotent. Idempotents cl,....cr are
called orthogonal, if {:i_L,c:j (1 # §). 1f ¢, d, e are orthogonal idem-
potents then ¢ is orthogonal to d £ e. This implies that for orchogonal
idempotents Cys Cgi esen €, the sum c: = % <y (as well as [ £iCi0 =
1) 1is an idempotent of l:-‘-"l»". An idempotent is called primitive, if it

has no nontrivial decomposition as sum of orthogonal idempotencs.

Lemma B. Let ¢, d, e, f be idempotents 111(1.

£ TEeld d, thanB(e), BAZ), Pleyd) wre-crthagsnal, 2

i11) If ¢, d, e are orthogonal, then P(¢), P(c,d), P(d,e) are orthogo~

nal,

i14) 1If ¢, d, e, £ are orthogonal, then P(c,d), P(g,h) are orthogonal.

{v) el 'd, then ﬂl(c}c G ().

Proof., P(ec)P(d) = P(c)P(c)P(c)B(d)
= P(e)[P({ced}) + P(P(c)e,P(d)ec) - P(c,d)P(c)P(d,c) -

P(d)P(c)P(c)] (by (13.8))
= 0, since {ccd} = P(d)ec = P{c)d = 0.

Using (13.13) we get for arbitrary a © CL'

e—————————

*
) Linear maps A, B are orthogonal, if AR = BA = 0.
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P(c)P(d,a) = L(c,d)L(c,a) = L(P(c)d,a) = 0, also P(d,a)P(e) = 0, by the
dual formula. This completes 1) and shows already part of 1i). From a

linearization of (13.13) (resp. it=s dual)

BP(y,z)P(x,3) = L(y.x)L(z,a) + L(z,x)L(y,a) = L{P(y,z)x,a)
we obtain for arbitrary a € av

Plc,d)P(e,a) = 0, since L(c,e) - L(d,e) = 0, by Lemma 7 .

This completas 1)-111). Now let x = P(c)P(c)x € ﬁ‘fl{c). We show that
the 1/2- and l-component of % in the dacomposition relative to d are
zero. By definition of these components we have to show P(d)P(d)x = 0,
which is immediate, since P(d)P(ec) = 0, and [L(d,d)-2P(d)P(d)]x = 0.
It remains to show {ddx] = 00, But this is a consequence of L(d,d)P(c) =

P(c,d)L{d,e) = P(P(e)d,d) = 0O, by (13.9) and the orthogonality ralationsa.

15.5. Let ey == e, be a set of orthogonal idempotents in @f and
¢! = e, . ¢ is an idempotent of () . We econsider the Jordan algehra ﬂLc.

1
(252)
i

By Lerma 7 we have P{ci)::j = 0 for { 4 } and therefore ¢ a P(ei}c -

3 ?(ci}cj = P{ci}ci = cy- Thus cy is an {idempotent in Glc. Furthermore,

gince

l'l:ic.jck}==ﬂ Lf4di1or)dk

we have for 1 #

Fc{cj_}cj = ?fci}P{c)cj = ?{ci](g?fck?l + kEi. ?{':k'ckncj =10
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and g O cj = {r;ir;r:j} = E{cickcj} = 0., This shows that the c, are

grthogonal idempotents in the Jordan algebra G’:' This allows us ro
apply the well known results about the Pelrce decompositien in Jordan
algebras relative to a set of orthogonal idempotents. It is almost

trivial, but we have to notice it: c

i

The Peirca-j-spaces () = 0, 1/2, 1) al{ci} rel, e (of GL-c ) are
i

is {dempotent in 'Gl‘c and in m’c'
i

(by definition)

[11{1311 = Pfci‘,lF{ciill. iln(ci} - B{ci,ci}mr, O]'lr'z{ﬁi} = [L{ciicil' =
zrfeijrfcij]EL
We also have the Pelrce decomposition of CL relative ¢, and the decom-

position of "'lc relactive ci’ say[:l '£1 ] ‘fu L}Sm, where by

definition
L= p (e ) = 2e)p(e) OV
i";n = B{ci.c)cl and ‘gl” = [Lleyye) - iP{ci}P{c}]ar’

Fortunately, since P(ci]P(c} = P(ci}PfciL by Lemma 8, and L{ci,c} =
Lfci.ct}, we haver'fl = a’a{“ﬂ and we geed not distinguisgh these two
decompositions.

Now we define
B yi= Blg)R(e), By, = Byt = Pfci.tj}P{c) 144,141,140

‘EGO:- Ble,c) Eiﬂ = Eu!'.: = L(ci.c) - ?(ni.c}P(c}, 140

From the definition and Lemma 8 we get that the E:I.] form a set of ortho=

gonal projections and Id = L Eij'
o<i,i=<r




(15.13) E = E 1, 32r

(15.14)

(15.15)
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The last equation is seen from the following relaticns El = P(c)P(c) = I E“

o oo

E = E E
1/2 1<4 ol

The sum Id = T Eij of orthogonal projectlions induces a dacomposition of a“

[jl- = '&B mij,whereﬂfij:-Eija.

N=i,i=r

(15.13) clearly implies

alfc} - @ ﬁl«ij ,L'Tlfnfc:p -Clm, Oizm{.:} - Q;;

14d,9<r £

L
Hext we wish to relate this decomposition te the Peirce decomposition

relative to .., We claim

A
a) O"lf‘:i:’ -Cﬂ/ﬂ b) 0/1‘,2(:1} = Ek?iqfik
o O (e = k%ua'k} o U, =0 ,@n C’vmfuim

Y U"ij -G 1!2':“1)“&1.!2':“_1]'
1441, 1,140

The proof of 15,15 1s left as an exercise. Hint: show that the corres-

ponding projections are equal; for d) and e) compare (15.14) and (15.15h).

Theorem 5. If Cqs =ees © is a set of orthogonal idempotents in af.

c: =3 €y Eii = P{ni)P(c}. Eij = Eji = Ptci-cjjrfn} (1 # 1. 1,1 4 0),

B = Blc,c), B, = B, = L(cuc) = Plc,,c)P(c) (4 ¥ 0), then tha E

1]

are orthogonal projections of El with aum Id and
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0, - & Olij shere O, = ,,C)

Ozi=]<r

and the following composition rules hold: (1,),k,%2 distinet)

a) P{mii}a‘iic ,, 2) rﬂf”m”aﬂ} <0,
b) B, PG, C Ay by (Ol gy By ) €00y
o 2@, 0,0, D Q004 <00y,
d) fCliiCI.ijGL”}c Oy 1 {m{ja’jkaki}c a’ii
&) Oy Ol Oyt e Oy, © 1000y, <Oy,

0 (G001 <0V,

while all ather products are zero.

Note: The "product" of 3 elements is zero unless it can be written in

the form {xij?jkzki}' in which case it is an element in a-ﬂ.

Proof. If in P{ﬂ’ijﬂ’u or {ﬂrijmum,m} the indices k,i are both # 0,
then@rkic G'Ifl{n}. by (15.14). Since in this case ”dak?, -m-’u we
£an express ?[mﬁ}@rki = Pc(aij}cl'kﬂ and 2 (0} ij,t’lm}&ki = Pc{m'ij'
a’m}mki as corresponding compositions in the Jordan algebra Clrn. for
which the given composition rules are well known. Therefore we have to
establish the rules only i1f k or %1(or both) are zero. Since the proof
we have for these cases 1s a case by case checking we lsave 1t as an
exercise to find a nice proof for the remaining cases or a nice unified

proof of the theorem without refaring to Jordan algebras.
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15.6. Lat d/ be a seml simple Jordan triple system with d.c.c. and c

a maximal idempotent mﬂb ’

m, = L"lll:u} 2 aw”z{e) (see 15.3).

CL (jl (¢) 1ia a subalgebra ufa . 8ince P{:J|Q is invertihle the

Jt structure of a/ comes from an isotope of the algehra OV (Lemma 10.1).
Theraefore {:I'.-l as an algebra ig semi simple, slnce Cl.l as aJts 1is semi
gimple (Theoram 15.2), Also decc carries over from Ok to thl (easy exer—
cise). We know from Jordan theory that the Jordan algebra C‘.ﬂl ia the
finire direct sum of simple algnbraa}i. Every 31 has a unit element

ey« Ple) 4s an involution ofal,l (Lemma 15.2) and we have

01, 3 " %'ﬁi whara ;i = aci + E{c)}i.

The Efi have P(c) invariant unit element ey = ey N

are orthogonal idempotents in the Jts Oy. ¢ = F e and we have the Peirce

decomposition CI, = &1 {ﬂ,u @ Clio}' aii = &1_ From Theorem 5 we can
masily derive that 01’11 ® Ubiu 1s an ideal of ().

» P{c)ei. Then the ¢

Since {*L—'a y Pla) ]zi_} is a simple pair, the Jts Gl/ﬂ -ngi is simple,
¢ # O"’ai ig semi simple (since Ou is semi simple). Now we can
apply Lemma 15.6 to C],u &mfo_l (1dempotent ciJ to conclude that this is

a simple Jts. We proved

Theorem 6. If GL is a semi gimple Jrs with dee and maximal idempotent,

then oy is the (finite) direct sum of simple Jts with dee, and maximal

idempotent.
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WI. Alternative TriEI- sttnm

16.1 4 wunital ¢-module }Q together with a trilinear map -Ag x"@ « +r'0.

(%,¥,2) = <xyz> 1s called an altemative triple system, if for all
¥ ¥aZ, U,V € LO

(AT 1) CUPCUVES> + CUYHYZF> = <CUVXSYE> + <XVUY>Z>
(AT 2) <XY<XyZ>> = <<XYX>YZ>
(AT 3) CUVEKYAS> = €CUTHS YIS

Examples. 1) Any associative triple system (of the second kind) 1s an

alternative tripls system,

2) 1f o& i3 an alternative algebra with involution x~ X, then
ﬁ togather with <xyz> = (xy)z {s an alternative triple system.

3) Let { tbe a commutative associative ¢-algebra with invelu-
tion a + a, m a ft—mdule and ®: I o/ t a hermitian sesquilinear
form (that is, x~ $¥(y,x) is linear and ¥{x,y) = @¥(v,x)). Furthermore
let 4: TP:". + N be a dt’-ant:l.l:lnenr map such that jz = - Id, h‘é-@, and
x an alternating qt-bilinenrfnm ﬂnm such that t’f:'(x,:,r) + a(j(x).Y) = 0,

Then N together with
<xyz> = ’.P{}F.ﬁ)'x + alx,z)i(y)

{s an alternative triple system. (The verlification of this statement is

left as an exercise).

49 a First observation we note that the left hand side of (AT 1) is

symmettic in the pairs (x,v), (u,v), thus
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(l16.1) <<Xyu>vz> + <ud<yxuz> = <<uyx>yz> + <x<vuy>z>.
Settinc z = x in (AT 1) we observe that (in the presence of
(AT 1)) the equation (AT 3) is equivalent to
(16.2) <Xy<uvx>> = <x<vuy>x>,
A linearization of (AT 2) is
CXY<XUZ>> + <KUSKYZ>> = <<XyX>Uz> + <<XuUX>yz>.
And from (AT 1) and (16.1l) we get
-r:x}?ﬁxuﬂ}} = {xuix}m}} = {{XY}E}UZ} + {K'{YJ{H}Z:‘-
Comparing these two egquations we cbtain
(16.3) CCXUXSYE> = <X<yXU>z>,
Another linearization of (AT 2) is
<UY<XYZ>> + <XYy<uyz>> = <<uyx>yz> + <<Xyuryz>
Comparing this equation with (AT 1) (v = y) gives
(16. 4) CCXYUSYZP» = <x<yuy>z>
In particular (z = u) we get from this equation
(16.5) <XYy<uyur> = <x<yuy>ur,
by using (AT 3). Again (AT 1) shows
CRY<UYX>> + <CUY<XYX>ID = <<XYUSXY> + <U<YXy>X>.

This equation and (16.5) imply

(16.8) <HY<Uyx>> = <<Xyuryx>.
Exercise: Define xl g = 3y xn+2 : = qxxnxn (n>1 odd)
and show: <xkx£xm} = xk+£+m (k,L4,m odd)

16.2. Theorem 1. If A? is an alternative triple system over

Tr. then .*0+ = {FO s P}, where P is defined by P(x)y = <xyx>,

is a Jordan triple system.
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Proof: Lix,y)lz = P(x,z)y = <xyz> + <zyx>. We have to show

a) Lix,y)P(x)

P(x)L(y,x)

b) L(P(x)y.y) L(x,P(y)=x)
c) P(P(x)y) = P(x)B(y)IP(x)

ad a): Lix,y)P(x)=z

CHNYCHZN>> + <<HZAPYA>
= <X<ZXY>X> 4 <x<yxz>x>, by (l16.2) and (16.3)
= P(X)L(y.,x)z.

ad b): L(P(x)y,y)2 = <<XyX>yz> + <zy<xXyx>>
= <xu<yxXy>z> + <z<yxyrx>, by (16.3) and (1l6.5)
= L(x,P(y)x)z.

Next we observe that a particular case of (l16.2) is

P(y)P(x)u = <yx<uxy>>.

Then P(x)P(y)P({x)u = <x<yx<uxy>>x>
= <<x<uny>ASYRS> , by (16.3)
= <<XYXTUXZYX> by (16.3)
= CCAYASUCKYK>> + by (AT 3)

= P(P(x)y)u.
This is ¢) and the proof is complete.
Another important result relating alternative and Jordan triple
systems is the following:

Theorem 2. If ( 51/, P) is a Jordan triple system and c an

idempotent such that ﬁLﬂ(c} = 0. Then Ublfzic} together with

the map (x,y,z)><xyz>, defined by

<xyz> = {{xyclez}

is an alternative triple system such that

(16.7) Plx)y = <xyx>.
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Proof: Let x, ¥, U, Vv, Z Elbllec}. Then

P(x)y = P(x)L(c,c)y ¢ by (15.5)
= L(x,c)P(x,c)y, ;, by (13.4) and P(x)ec = 0
= {xclxycll = <xyx> , by definition.
Next we have to wverify (AT 1) - (AT 3).

By definition of the composition and by (a linearization of)
Eli,lﬂe}({xyc}éfli} we get
CRy<uvz>> + <uvexyz»>>
= [{{xyclel{{uvelez}} + {{uvelc{{nyclez}}
= {{{xyclc{uvecl}lez} = : A
Now let a € G‘ll{x,y c—l‘.il-lﬂ} then
laclcyx}} = {calcyxl}} , by (15.10)
= {eylcax}} + lelycalx} , by (13.11) and {eye} = 0.
Setting a = {uvc] and using {uve}l = {uvel the foregoing leads to
{{uvelelxycl}t = (cylecivuclxl] + [clyclvucllxl.
Replacing this expression in A gives (AT 1).
(AT 2):
<xy<xyz>> = [{xycleci{xyclczl}
= {P({xycl)cecz!} , by (15.1l0e)
On the other hand we have
<<xyx>yz> = {{P(x)yyclez} , by (16.7)
We are done if we can show

{P(x)y v cl.

P(ixych)e

Using (13.8) we get
P(x,c)P(y)P(x,clc

(P(ixyclle

(;ince B Gllfz}c = 0 and Plc)y o {see (15.11) )
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= [x P(y)x c} , Since {cex} = x
= {P(x)y vy c} » by (13.2) »
Since we already proved (AT 1) we know that (AT 3) is equivalent

to (l6.2). We shall prove (16.2). We set a: = {uve}. Then

<x<vuy>x> = P(x) {acy] . by (16.7)

P(x)L(y,c)a = B({eyx},x)a , by (13.10)and P(xVA =(

{{xyclax) = [{xyc}c{acx}} , by (15.10g)

[{xyclecl{{uvelex}]) = <xy<uvx>>.

This completes the proof.

16.3. Let AW be an alternative triple system. We denote
Llx,ylz = <xyz> = xlz,y)x = plx,2)y.

Furthermore we denote

F(x,y) = (A(x,),00y,%0)  Endg®¥x Enagd) = ¢ .
Let 1Y be the submodule of { generated by all F:x,y}:x,ym), and
ﬂl= £ E + r}ﬂc » wWhere E = [Idcﬂ .I'da'-U ). Clearly the cancnical
involution A = {Al,hzlt-"h-ﬁ = {nz,al‘; of the guadratic Jordan algebra
_\g maps'm. onto H‘l, moreover F(x,y) = F(y,x). Finally we define. an
action of 7‘»1 an |U3 by A+x = Alx if A = [Al,kz} . With these notations

we list a set of formulas which can be read off from (AT 1) - (16.6).
(16.8) As<xyp> =<(A-x)yz> + <x(A-y)z> - <xy(A-z)>
(16.9) AF(x,y) + F(x,y)A = F(Ax,y) + F(x,Ay)
(16.10) F(x,y)F({x.,y) = F(<xyx>,y)

(16.11) A~<xyx> = <(A'x)yx>
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(16.12) <xy(A+x)> = <x(Arv)x>

(16.13) F<xux>,y) = F(x,<yxu>)

(For this eguation we have to use (16.3) and (16.4))

(16.14) : F({<xyu>,y) = F(x,<yuy>)
(which is the "conjugate" of (16.13)).
(16.10) and (l6.9) show that M is closed under the squaring
A= 2% We wish to show that it is also closed under
{A,B) — ABA, and therefore is a subalgebra of the guadratic
Jordan algebra { .
A linearization of (16.11) is

Al{xyz> + hl<zyx? - q{hl X)yz> + <{A1 2) yx>

In operator form (A = (A, A,))

{16.15) z{alx,y} =2 hltfx,yl + [Alrrtx:Y)]-

We shall use this formula to prove

(16.16) AF (x,y)A = F(A+x,A-y)
(16.17) F{x,y)AF(x,y) = P(<xy(A+x)>,y) = F(x,<yx(A«y)>)
(16.18) ABF(X,y) + F(X,y)BA = F(A*B*X,y) + F(x,A+B-y)

Proof: A = {Al, Azl.

R(Asx,Ay) = AjR(Asx,y) + L(A-x,¥)A, - p(a’-x,y) by (16.8)

2
ﬁlf-t!d’} + ﬁl[ﬁl:rfxaﬂ] + Psl-q- Ex!Y}Al

(A, 2(x,¥) 1A, = AZe(x,y) - [AD,2(x,¥)], by (16.15)

+

Ali{x,y}ﬂl.
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Then by interchanging A, A and x and Y, we also get
£{§-y, Asx) = Azlty,x)Az.
These two equations clearly give (16.16). We apply (16.15)

twice to derive

2(x,y)L(Asx,y) + [R(X,y),r(2x,y)]

L (<xy(A=x)>,y)

ﬂ(x,y)AlZ(x,y) + R(x,y)[Alr(x.y)]

+

[2(x,y),r(Ax,y)].
The right hand side equals R(x,y)Alltx,y) i  1Iff
<xy (A<zyx>)> = <xy<(Az)yx>> + <xy<zy(Ax)>>
.= <<Xy2z2>Y(Ax)> = 0.
Using (16.8) for the first term, we see that this is equivalent to

<xy<z (Ey) X>> = <<xyz$y (Ax)>.

We have
<xy<z(ﬂy)x>> = <x<(§y)zy>x> , by (16.2)
= <XA<yzZy>X> » BY (16.31)
= <x<yzy> (Ax) > + DY (16.12)
= <<%YZ’Y(AX)> , by (16.4)

which is the desired result. Therefore
(a)  2(x,¥) A 2 (x,y) = 2(<xy(Ax)>,y).
In the next step we shall prove
(b) L(<xy(ax)>,y) = 2(x,<yx(Ay}>).
Using (16.12) and (16.13) gives |
8 (<xy (Ax)>,y) = L(<x(Ay)x>,y) = L(x,<yx(Ay)>).
Clearly (16.17) is a trivial consequence of (a) and (b).

Using (16.9) and a linearization of (1l6.1l6) we derive
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F(ABu,v) + F(u,A Bv)
= AF(Bu,v) + F(Bu,v)A - F(Bu,Av)
+ AF(u,Bv) + F(u,Bv)A - F(Au,Bv)
= ABF(u,v) + AF(u,v)B + BF(u,v)A + F(u,v)BA - BF(u,v)A - AF(u,v)B
= ABF(u,v) + F(u,v)BA .

We shall need another formula, which says that (A,K) is in the structure

monoid of the Jts ,LQ+. We claim

(16.19) <(Ax)y (Ax)> = A<x(Ay)x>.
Proof: A<x(Ay)x> = A<xy(AX)> , by (16.12)

<(Ax)y (A%)> + <x(Ay) (AX)> - <xy (Azx)>

<(Ax)y (Ax)>,

since <x (Ay) (Ax)> = <x(§2y)x> = qc(Azy)x) = <xy(A2x)> .

Note: As an application of (16.19) we get that 3{ = Rad LQ+ is an
ideal of Q . From (16.19) and Lemma 13.1 we get <¢{?@R >cm and then
<RQQ >R , since R 1s 1deal 1n A0, Furthermore, from (16.19) we
P M
then get for x, y< /&, ze i,
S<XZY>UKZY>> = <XZ Y <ZXU>Y>> E’K/:‘
since <zxu:»€aa implies <y<zxusys = P(u)<zxu> GR . Thus P(<xzys) rQ+C R

and then <xzy>€92, by (13.25). Thus <R >c< l& a

16.4. Now we are ready for the main result of this section. We define

on the direct sum

A&y =T ¢ 0

a quadratic operator P by

T (16.20) P(A® x)(B ®y) = ABA + F(x,A-y) ® <xyx> + A-Bex
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Thig is in particular,

i) P(A)B = ABA;P(X)y = <xyx>

(16,21) ii) P(A)x = P(X)A =10

iii) P(A,X)B = {ABx} = A+B-x;:;P(A,x)y = {(xvA} = F(x,A+vy).

Theorem 3, i) ER = Ele[*Q ) + P) is a Jordan triple system )

ii) E = (Id4,Id4) is an idempotent of Gl such that

Gy =L, Qe =N, Qo = o

1ii) <xyz> = {{xyE}Ez}

iv)  (QAM, =M ana M, oL is an ideal of (L .

Proof. We first observe that P restricted to 10 defines on M
the structure of a Jts and also P restricted to A4/ gives the
Jts ﬁ: . Also (AT 1) - (AT 3) remain valid under all extensions,
therefore we need not worry about scalar extensions. We have to
verify the axioms for a Jts.
F o L(A+x,B+y)P(A+x) = P(A+x)L(B+y,A+x).
By comparing degrees in elements of }ﬁ,ﬂnd ﬁ? respactively,
we see that this eguation is egquivalent to

1) L(aA,B)P(A) = P(A)L(B,A)

2) Lix,v)P(x) = P(x)L(v,x)

3) p(a)L(B,x) + P(A,x)L(B,A) L(x,B)P(A) + L(A,B)P(A,x)

4) P(A,x)L(B,x) + P(x)L(B,a) Lix,B)P(A,x) + L(A,B)P(x)
5) P(x)L(B,x) = L(x,B)P(x)

6) Lix,y)P(A,x) + L(A,y)P(x) = P(A,x)Lly.,%) + P(x)L(y.,A)

7) L{a,y)P(A,x) + Lix,y)P(A) = P(A,x)L(y,A) + P(A)L(y,x)
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Proof. Formula 1) applied to elements of N is valid, since

( M, p) is a Jts , P(A)B = ABA (see /0.3 . ). BApplied to
ywiﬁ? we get zero on both sides, by definition. The same argu-
ment applies to prove formula 2), by Theorem 1.
3) appliedlto cet .

A-([BAC + CAB]+x) = ACA-B-x + A(B(ACx)) ,

this equation clearly holds.

3) applied to yéiﬂj :

P(A)F(y,B*x) + P(A,x)B*A-y = L(A,B)F(x,A*y), equivalently

AF(ﬁ-x,y)A + F(x,iBﬁy} = AﬁF(x,iy) + F(x,iy}EA.

We use (16.16) for the first term on the left hand side and

(16.18) for the right hand side to see that this is a valid

equation.

4) applied to elements infyn.is zero on both sides (by defi-

nition) and applied to y¢ d? it is equivalent to

P(A,x)F(y,B*x) + P(x)B*A*y = L(x,B)F(x,A*y) + A*B P(x)y, or

A<(Bex)yx> + <x(BA*y)x> = <x(A-y)B+x)> + AB-<xyx>.

Using (16.11) this reduces to <x(BA-y)x> = <x(A-y) (B*x)>

which is valid by (16.12).

5) applied to Céght and ye;d? gives zero on both sides.

6) applied to Be W is

L(x,y)A*B+*x = P(A,x)F(y,B*x) + P(x)BAy, or

<xy(A'ﬁx)> + <(A§x)yx> <x(Biy)x> + A<(§x)yx>

<x(£y)(§x)> + A°<(§x)yx>

» by (16.12)
= <x(Ay) (Bx)> + <(ABx)yx> + <(Bx) (Ay)x> - <(Bx)y(Ax)>
» by (16.8).
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What remains is just a linearization of (16.12).
6) applied to z€ ‘\D:
F{x,ﬁi'z}xy)jl + Fl‘,<xzx>,i§r1 = F{x,ifyxzbj + F[x,iczxy}}.
= F(x,<(Ay)xz>) + F(x,<(Az)xy>), by a linearization of
{1l6.11),
and this identity clearly holds, by (16.13).
7) applied to BeM is
F(ABx,Ay) + F(x,ABAy) = F(x,ABAy) + AF(Bx,y)A,
which holds by (16.16).
7) applied to zé*Q gives on both sides zero,

Finally 8) holds, since by definition both sides are zero.

II. L(P(A+x) (B+y) ,B+y) = L(A+x,P(B+y) (A+x))
Using (16.20) and comparing the parts of egqual degree in elements
of /R and J , we have to show

1) L(P(A)B,B) = L(A,P(B)A)

2) .L|:<xyx>,y1 = L{x,<yxy>)

3) L(P(A)B,y) =-L(A,B-A.y)

4) L(A-Bx,B) = L(x,P(B)A)

5) L(F(x,Ay),B) + L(ABx,y) = L(A,Fly,Bx)) + L(x,BAy)

6) L(F(x,Ay),y) = L(A,<yxy>)

7) L(<xyx>,B) = L(x,F(y,Bx))

Proof: 1) applied to ce'-m holds since {'tm, fB) is a Jts.,;

applied to o, gives P(A)B(B*x) = A*P(B)A x, which holds,
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2) applied to zeﬁQ holds by Theorem 1, and applied to
A*:?n gives
F(<xyx>,ﬁ'y) = F(x{iv<yxy>) p
which holds by (16.11) and (16.13).

3) applied to elements in M is zero on both sides and
applied to x el s F(x,ABAy) = F(x,A-B-A-y), thus 3) holds.
For similar trivial reasons we get that 4) holds.

5) applied to ceM is

F(x,Ay)BC + CBF(x,Ay) + F(ABx,Cy)
= aF(Bx,y)C + CF(Bx,y)A + F(x,C+B+Ay)
Using (16.18) on the left hand side and a linearization of
(16.16) on the right hand side we get a trivial identity.
5) applied to z é"O is
<x(Ay) (Bz)> + <(A+Bx)yz> + <zy(ABx)>
= A<(Bx)yz> + <x(BAy)z> + <z (BAy)x>.
We use (16.8) for the first term on the right, then (16.12)
to see that this equation holds.
6) and 7) are verified in the same manner, we only have to use
(16.11) in both cases. |
IXIT, P (P (A+x) (B+y)) = P(A+x)P(B+y)P (A+x).
First we notice that in a quadratic triple system the funda-
mental formula will follow from a) L(x,y)P(x) = P(X)L(y,x),
b) L(P(x)y,y) = L(x,P(y)x) and c) P(P(x)y)y = P(X)P(y)P(X)y
(in all extensions).
Since a linearization of c¢) is

P(P(x)y)z + P(P(xX)y,P(x)z)y = P(x)P(y)P(x)z + P(x)P(y,2)P(X)y,
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and from a) and b) we get

P(P(x)y,P(x)z)y = {P(X)y v P(x)z} = (by b)L(x,P(y)x)P(%)z

(by a)P(x)L(P(y)x,x)z = (by b)P(x)L(y,P(X)y)z

1]

P(x)P(y,z)P(x)y.
We therefore have to prove

1 L P (P (A+x) (B+y)) (B+y) = P (A+x)P (B+y)P (A+x) (B+y) .

We expand both sides of this equation and compare terms of equal
degree. Using again that ( YU ,P) and Q7 are Jts we have to
show
1) P(F(x,Ay))B + F(<xyx>,ABAy) + F(ABx,<(Ay)xy>)
= AF (B<xyx>,y)A + F(x,A<y(ABx)y>) + F(x,AB<(Ay)xy>)
2) F(aBx,ABRy) + ABABF(x,Ay) + F(x,Ay)BaBA
= AF(BABx,y)A + F(x,ABABAy) + ABF(x,Ay)BA
3) F(<xyx>,<(Ay)xy>) = F(x,A<y<xyx>y>)
4) <(ABx)y(ABx)> + ABAB<xyx> + <x(Ay) (BABx)>
= <x(BABAy)x> + AB<x(Ay) (Bx)> + A<(BABx)yx>
5) <x(Ay) (B<xyx>)> + <<xyx>y(ABx)> + <(ABx)y<xyx>>
= <x<y(A§x)y>x> + A <(E<xyx>)yx> + <x(B<(Ey)xy>)x>.
Proof: Using (16.11) and (16.13) we get
F(x,AB<(Ay)xy>) = F(x,ABA<yxy>) = F(x,<(ABAy)xy>)
.= F (<xyx>,ABAy) ,
and (16.11), (16.14) and (16.16) imply
AF (B<xyx>,y)A = AF(<(Bx)yx>,y) = AF(Bx,<yxy>)A
= F(ABx,A<yxy>) = F(ABx,<(Ay)xy>).
Thus 1) reduces to

F(x,Ay)BF (x,Ay) = F(x,A<y(ABx)y>).
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But wea have

F(x,Ay)BF(x,Ay) = F(x,<(Ay)x(BAy>) by (16.17)
= F(x,<(Ay) (Bx) (Ay) >) by (16.12)
= P(x,A<y(ABx)y>) by (16.19)

This completes the proof of formula 1,
2): From (16.16) we get

ABF(x,Ay)BA = F(ABx,ABAy)
and (16.18) shows (ABae T )

ABABF (x,Ay) + F(x,Ay)BABA

*
Il

F(ABABx,Ay) + F(x,ABABAy)

AF(BABx,y)A + F(x,ABABAy) , by (16.16).

This proves formula 2).

)t Fx,Acy<xyx>y>)

= F(x,<(Ay) <xyx>y>) , by (16.11)
= F{x,cc[ﬁy]xybxy:] + by (16.5)
= F(<xyx>,<(Ay)xy>) , by (16.13).

4): (16.12) shows <x(Ay) (BABx)> = <x(BABAy)x> and (16.1l1) gives
Thus 4) reduces to

A< (BaBx)yx> = ABAB<xyx>.
<(ABx) vy (ABx)> = AB<x(Ay) (Bx)>
but this is an immediate conseguence of (16.19) and (16.12).
5): Using (16.2),(16.11) and (16.12) we get
<x[iy}[§<xyx>] = <x{iy}<{§xlyx>> = <x<yt§x][§y]>x>
= <x<y(ABx)y>x>.

Therefore 5) reduces to an sguation of the form

<xv(Au)> + <{Au)vx> = Ar<uvx> + <x(Av)u>
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(setting v = <yxy>, u = Bx and using (AT 2), (16.2), (16.11)
and (16.12.) Substituting A+<uvx> = <(Au)vx> + <u(Av)x> - <uv(ax)>
leads to a linearization of (16.12).

This completes the proof of the first part of Theorem 3.
The verification of the other parts is straightforward and is
left as an easy exercise.
16.5. Next we study the connections between the ideals of 4-0 (as
alternative triple system) and the Jordan triple ideals of the
standard embedding U, = Q[‘L‘O ).

Since Rile and *'3 are Peirce modules, we have for any ideal a?g
of . Ch ( & )

£ 2 (BANLy sfall

And clearly, since <xyz> = {{xyElEz}, x,v,2 to, Ul,: "ﬁﬂ'ﬂ is an

n

ideal of WL , and since P(A)B = ABA, the submodule Gtﬁm is an

ideal of ML such that AT < &AM .

Lemma l1l: The submodule ;§= "R EUI,,'T[C m—- ¥ ULC‘.T‘.?' is a Jordan

triple ideal of () (Q ), iff

1) W} is an ideal of I-O (as alternative triple system)

2) W is a ots ideal of M such that 37 = M , and
3) a) fﬂ. '-OC L‘L
p FU,D) + 7D , Wi T
Proof: 1f 4 is an ideal, then clearly 1) and 2) hold by the
foregoing remarks. But also {‘})I,E:AO} 2 TL-LO C.)‘L‘;n .LO and
peVW,AQ )+ FQ, ) = (UMW) + (MU AR ;
Conversely tet Yo = b8 a b have the properties 1) = 3). We have

to show

p((liGct , 26 )0lch , (A& 1K
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Comparing components in MW ana ‘O , these conditions are

equivalent to

1) P(h'l)ﬁ_(:'ﬂ, , 2) p(M,LQ et ,
3» ()M, o 0L, U0 e N,
5y (MM N, &) (MQW 1T,
n (QOMN 1<, sy pQ )yl |,
9) p(NL, ) )lcll, 100 p(WWcec U p
1) e, Ut <), 12) (MM Uy

13) (OMMre W, 14) QO 1c W

Since (n is an ideal in Nl we know that 1),3) and 5) hold.

By definition -

MAAQy + AMy = r¢cQ M- Wy + p("u,,ht.sO )

=r(d, Wy + (0,40 ) , since M-Wc W (Vlis ideal). Thus
3b) implies 2) and 6). 4) is a particular case of 6).

WAMNy =r(,N-Qyc 74 ,WN) , by 3a), thus 7) holds.

Ul being an ideal in 4/ implies 8) and 10). And {MI&y =M. R -&)
< MW (by 3a)C U (sincell is ideal). Finally

MmMWic .My W,

Corollary. If Ll is an ideal in the alternative triple system
S, thenIJ(W): =F(W,9) + F(Q , V) oW is an ideal in
Q).

Proof. We only have to show that TL: =F('WN ,ﬂ-o ) + (A , U

is an ideal in 'm, since by the choice of ’U[,and )?, the conditions

1) and 3) of the above Lemma are fulfilled and also |1 =1L .
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tet A€M , then 2(a) Il = AIFTH S DT FITA ) 1A
ar(U 0 )a + avcQ , WA c a5 Q) + Pl BV )
¢l . (We used (16.16) anda M. W<W,
1f A8, uell, then {ABF(u,v)} = ABF(u,v) + F(u,v)BA
= (by 16.18B)F(A*Bru,v) + F(u,A-B-w)€ (U}, 40 ). similarly
aer(v,m) ter( A, Wy, thus{MiMN3cW ., vsing (16.17) we
obtain
P(F(u,v)) T = Pru, vy Plu,v) = Freavdeu) >, v)
e (W, Q) sinilarly p(P(v,u) )M T and finally
(F(u,v) M E(a*,v)}CIL, by what we already proved ({IlMI jcil),

Theorem 4..‘-0 iz simple, iff D’L:‘U } has no other ideals than

0, hlc @ and CL . In this case (Il acts faithfully on ) a

Proof. Ifﬂ»has no other ideals, then LO is simple, by the
corollary. Conversely, let-@ be simple. We shall first show
that N acts faithfully on ) . Let A = {ﬁluhzl e M ana
A*x = A;x = 0 for all xE,‘O (1.e. A, = 0) then <(Asy)z> =10
for all x,y.,z -&LU , this follows from (l6.8). We consider

L"‘V : = {y-:,d} ¢ <xyz> = 0 for all x,zﬁ‘a} ‘<
Since for y¢ W we have <xyz> e W by definition and wuy:f;'fa;
all u,VE"‘Q by (AT 1) and also dyuv}t’:‘ﬂ for all u,vv:-.\O (again
by (AT 1), (interchange v and y)), we see that W is an ideal
and therefore Ul = 0 by simplicity of r‘O « Since i-yﬁ'.LL‘ we

obtain A,y =0, i.e. A, = 0, thus A = 0.

2

Now let ﬁ = Tﬁ Eu/ be an ideal of GL , then L = i or
-Ll=ﬂo .1 W= 0, then ﬁ, '1-0*-': W= 0 (by Lemma l) and thus
1"{, = 0, sinaa'm acts faithfully. In the second case Ll = *-r,T

and F( I‘-C' i ‘-& ) o= }Tf.*"— n - This completes the proof.
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16.6. Now letahe a simple and semi-simple Jordan triple system

and ¢ a maximal idempotent of Q.

A = C’Ll{c} e OU

1/2(e)-
Assume Qzlﬂtm # 0.

Lemma 2: Ci/l = {Gilx'E %lfzc}'

Proof: Verify that {ﬂ.lf,z Ol1/2% ® q" 12 P ideal in GL -
(The verification is left as an exercise.)
Since (l'ia simple, the alternative triple system Olle{CJ is

172" muz 1/2*
or, in other words, the projection F(x,vy)H—> L(x,y) is an 1iso-

simple and Tﬂ.: Fi a, ) operates faithfully on O}«

morphism (of Jordan triple systems). We identifym and

2( CLJ.;z' 0]/1;,2} via this isomorphism. Since <xyz> = {([xyclcz},
we have L(x,y) = L({xycl},c) (restricted to Ublg’.'i}'

L(x,y) = 4(y,x) = L{{yxel,c) = L(Ixyc}t,e) by (15.11). These con-

siderations and the above Lemma show

M = 5 CR-l.c}[ ﬂlez , Lla,c) = L(a,c).

Theorem 5: Let abe a simple and semi-simple Jordan triple system

and ¢ an idempotent of O} such that U] = Glltc] & Clllecj,

u”]_’;z # 0, then a/is isomorphic to the standard imbedding

Cl(i%i;z} of the alternative triple system 6L1;2 .

Proof. The above considerations show
v (;

(where, for this proof only, the L's denote the restriction of

the left multiplication in a-ta U'r Let a, b€ Ulfl,x.y,z

172
& Gl"lf?' Thae Jt-composition is given by
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P(L(a,c))L(b,e) = L(a,c)L(b,c)L(a,c) ,
P(L(a,c) ,x)y = L{{x{acyle},c) (&> Fix,L(@,c)y)),
P(L(a,c) ,x)L(b,c) = L{a,c)L{b,c)x = {ac{bex}} ’

Plx)y = <EYX>.

Using

{abx} = {{ac{bex}}

{xya}l = {x{acyle}
and (13.13) we can immediately verify that ¥ : a 8 x> L(a,c) & x
defines a homomorphism of Cl ento (1 ( Cn’lfz}’ {the verification
is left as an exercise). Since (b is simple andf#¥ 0 the kernel

ufif (which is an ideal) has to be zero.
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XVI1. Peirce Decomposition in Alternative Triple Systems.

17.1. We recall some facts about the Peirce decomposition in
alternative algebras. Let GL be an alternative algebra, i.e. a

E‘-—mudule together with multiplication (x,y)r?> xy satisfying

2 2
(17.1) x'y = x(xy) ;5  yx = (yx)x ; (xy)x = x(yx)
c&«ll iz an idempotent, if e? = g,
As in the case of associative algebras (see 2.5, ) we have

the Peirce decomposition of GL relative c
0 = 1‘:51'11 o Oy Gy e CLGG

where a’ij = Jl_xij c Ol s cxij = ixij' xijc = injl_]' Tha decom-

position of any element ¥ into its Peirce components 1is
¥ = ¢cxc + (cx - exe) + (xc - exe) + (x - cx - ¢cx + oxc)

Note: For the wverification of this statement we have to use

17.1.

The following multiplication rules are valid

(17.2) qfij Ul.jhc. (]'ik ! a’ij OLk.'i‘. =0 , j#k unless (i,j}=(k,%)
: 2 : -

Exercise: Prove (17.2).

17.2. Let M be an alternative triple system over @ + © is an

idempotent ian , if <cce> = ¢, In this case ¢ is an idempotent

of the alternative algebra .*foc ¢ (#%,¥y) P @ = <xcy>, and the

above results apply.
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If
K?ij: = {xijé:K? SOy o 5 = lxij,<xijcc> = jxij}
then

YD 0
N =Q el 0l e,
and we have the following composition rules
Id
< 'Qij 'ij 4Q x> < 0 i2
<5 Oy € > < Oy Lot ke
(17.3) 2 :
<@y Q4 Wi < Dy, L d
<.. A0 .. > . . _
4’13 1031 '@Jl < /03_3 i#7]
while all other compositions are zero.

Exercise: Prove (17.3).

Note: One also has a Peirce decomposition of ) relative to an

; N
orthogonal set Cqre=esCyp of idempotents inAy . (Idempotents

cyrc, are orthogonal, if ¢y E:f“?oo(cz).)

Set c: = Ecrr and
,LQ = {xe ) ,<c ex> = &, x,<xcc. > = 6., x}
i3 ‘ 'S i 10 A k ik

~ .
then & = @ 'd)ij and the composition rules (17.3) hold, for

all i,j(lii,jfp).

Exercise: An idempotent c ¢4 is an idempotent of the Jordan
triple system KL+, show: :
+ ) N+

D + | '
L5t e = W, e ;001.
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17.3. We shall restrict ourselves to the study of the Peirce

decomposition relative to a maximal idempotent. Clearly, the

idempotent ¢ is maximal, if _/-900 = 0. Let ¢ be maximal. Then
2 - a0 /) (
/‘Q B ’L"ll L “"10 9 'L')Ol
and we have the following composition rules _
N N ; _ ;
" N 78] ; =
@ <Ry On @ieoeyp 9y Qg 210520

(3) <‘001 @ll '@llb'C’OOl (10}«:[010 iOOl @ 11>C@01
(19:0) ) WPy Dyy Cyppe¥lyy @l By Qpmedds

(5) <@ll AOOl (O 01:»::/011 (12)4:‘001 Q 10 KO10>C.‘001.

(6) <&y Qi QO 10>, (13) <Ay Q 57 Qg1>cyy

(7) <{Q01 -C?Ol 2 01>C"001

while all other compositions are zero.

Furthermore, ZQ;I is an alternative algebra with unit element

¢ and involution a}>»a = <zac>, and the following formulas hold

for x,yér‘&‘ ,a,be :"gll,f,g,he "010 and u,v,w é'(O(}l:

(17.5) <xay> = (x-a)-y

(17.6) a-(bef) = (a+b)+£f,(u+a)eb = us(a+b)

<fgc> = <gfe>

{17.7) ' ar<fgc> <(a-£f)gc>

<fgb>-a <fg(b-a)>

<fga> = <f(a-1-g)c>

{‘ <cuv> = <cvu>
(17.8) } <buv’?+a =<bu(vea)>
4
£ as*<buv> = <(a*b)uv

i

\_ <auv> = <c(uea)w




—{17.9)

{17.10)
(17.11)
(17.12)
(17.13)
{17.14)

(17.15)
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cfua» = = <auf>

<fua>*h = <fu{a-b)> = <(a-fluk> = <f(u-alb>

u*u = 0, ar(u*v) = (u+a)+v = ur(vea) =

<fgh> <fge>+h

il

<uvw> = ur<cvw> + <cviurw)>

<ufv> = = <(usy) fo
<ufg> = u-r<fge>
<fuv> = <fuc>.vy
Proof. (AT 1) gives
{a) CCCEXYZ>> + <XY<CCZ>> = <<CoCX>YZ> + <X<coy>z>

= <<xyc>cz> + <CLyXerz>,

A linearization of (AT 3) shows

(B) CRY<CZECH> + <XY<CCR>> = <<XYZ>CC» + <<Xycrczi.

And from a linearization of (16.4) we get

(c) CLHCOIYE> + <<XYC3C2Z> = LXLYCOC>Z> + <MLCCY>Z>,
Taking x = xij.y = Yy pr% = zrs,then (a) implies
(d) qcc{xijyktzrn}} - {1+k-r}<xijyk£zrs>

From b) and c) we get

(e) <<x. >ce> = {E+r+j-ﬁ-k}¢xijyk£zrs>.

Ljykizrs

<uavs

Now (d) and (e) imply the composition rules (17.3) and then

{(17.4), {1} - (13). In particular the 10ij are subsystems,
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and r"-Dllj.:all a subalgebra of ﬂ?c with unit element c. We

consider a P> a = <ecac> in ‘d?ll'

First
i = <g<gacr o> = <gc<acer>> s by (1l6:2)
= a ,sumeaéﬁur
Then for arbitrary x, yé:‘ﬂ , a e/@n
{xEy} = <X<CAag>y> = <<Xcarcy> , by (16.4)

= (X-a)y.

This is (17.5). Using this formula we derive

a*h = {C'E] -E = (ca];} ’ by {1?15]
= <ga<chgr> = <c<bcarcr + by {(16.2)
= be+a.

Let x f:~‘-o 10 and z é-‘-O arbitrary, then <cxz>» = <<CcCCc>*Xz>

= <g<xce>c> = (0, by (l6.3) and x é*d}lﬂ. Also <xcz> = <x<coorz>
= <<xccrecz> = 0, by (16.4). Then for a Eidjll we get

<axz> = <<cacrxz> = <o<yca>z> = 0 and <xaz> = <x<cacra>

= <<xcarcz> = 0. Thus

N 7. ) e o =

(£) < K, 4,4 “01;}'011‘0"“-

We s+ill have to show

(g <abxj > = €axgb> = <xqy¥,58> = <Xg1¥g13> = <X51¥51%19”
= <X19¥10%01” T O¢ "ij""ijﬂ;’@ ij'a’bedp‘

The other cases are covered by (f) and Q 00 = 0. Using (16.16)

we obtain
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L = —J = =iq
Xijyik201> <<ccxij><ccyik>201> <cec<xy<ccz>>> 07 in

particular <abx01> = 0 and <xloy10201> = 0.
Again by (16.2) we get
<c< oy = = !
C axOIb o <cb<x01ac>> 0, since <xOlac>£ /-001 and

<cby01> = 0 (we just proved it.) Thus
R -
<ax01b>é? 10 @ 4001. Then <cc<ax01b>> 0 shows that <ax01b>
) = 4
- ’L“Ol‘ But by (e) we get <<ax,,b>cc> 2<ax,,b> ; thus

<ax01b> = 0. The same argument applies to <x01yloa>. We have

<c< >a> = - . :
c xolyloa c <ca<Y10x01c>> 0, since <ylox01c>€;,(701'
by (10). Again <cc(x01yloa>> = 0 shows that

/-) i ——
<x01y10a>éiﬂv'01. Again by e)<<x;,¥,,38>CC> = 2 <X,,¥,,a> and

consequently <x01y10a> = 0.

<X01Y013> = <x01y010ac>> = <<x01y010>ac>. Therefore consider

<x0fy010>==<<xolcc>y01c> = <x01c<cy01c>> = 0, since <cy01c> = 0.

(kernel P(c) = ﬁQ 01 ;) AQlo). Then we get <Xy1Y12>

Next <c<xoly01zlo>c> = <czlo<y01x01c>> = 0, thus <x

= 0.

01¥01%10”

& ﬁ?Ol o L”lo' From (e) we get <<xOlyOlzlo>cc> <x01Y01210>'

thus <x01yolzlo>€5a<j01. But then 0 = <cc<x(,¥,1%;5>>

= ; = <
<x01Y01210)' by (a). Finally <c<x10y10201>c> <czOl yloxloc>

= 0, since <yloxloc>€3gll (by (4)) and <c201 AD ll> = 0 (we
proved it before.) Consequently <x10y10201>:5$010 @ '4701 ; and

<<x >cc> = 0 (by (e)) implies <x10y10201>é:‘010. RHEE

10¥10%01

<ee<xyg¥y02Zg1>> = 2<X1¥10Zpp> s thus <x;4¥,,24,> = 0.

>
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We still have to prove (17.6) = (17.15). Since ﬁ?c is

alternative we get (from a linearization of the flexible law)

a*(b+*x) - (a*b)+*x = x*(a*b) - (x+a)-+b. Choosing x = £ & A0

10
N
or x = u¢€ &N 01 gives (17.6) since <fca> = <acu> = 0 (for all
a <N ,)), by (£) and (g).
(17.7) and (17.8): <c<fgc>c> = <cc<gfc>> , by (16.2)
= <gfc> o, by (4) (=(17.4,(4))).

A linearization of (AT 3) shows <ac<xyb>> + <ac<byx>> = <<acx>yb>
+ <<acb>yx> , from which follows the second equation in (17.7) and

the third equation in (17.8), since <4?11 !ﬁ‘loﬂg >

= <#O ﬂ? LO > = 0. Using a linearization of (16.3) we obtain
01 01 18

<<xyb>ca> + <<byx>ca> = <x<cby>a> + <b<cxy>a> and therefore

(again using < A?ll «Q 104? > = 0) <fgb>+a = <f<cbgra> = <fg(b-a)>,

by (16.2). Next, by a linearization of (AT 3) we get

<<bxy>ca> + <<bxa>cy> = <bx<yca>> + <bx<acy>>, which implies

<buv>+a = <bu(v+a)>. And <c<cuv>c> = <cv<ucc>> = <cvu>.

Now we have <fga> - (fgc}oa = 5.'<ng>

<(a-qg) fc>,

<f(a+g)c>.

]

<fga>

Similarly we prove the last equation of (17.8).

(17.9): Again a linearization of (16.3) shows
<<fua>cc> + <<auf>cc> = <f<cau>c> + <a<cfu>c>
=0 , by (f) and (qg).
Now the first part of (17.9) follows from (9) and (10). From

(16.4) we get <fua>*b + <(f-a)ub> = <f<cau>b> + <f<uac>b>.
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This implies (using (17.5), <"‘Oll} AL 11 {f: 5 o= 2 ""Cll .:U:’ 11 &)

= Q)
<fua>+b = <f(u-a)b>.
In particular <fucrsb = <fub>.

(17.6) implies

<fua>+b = (<fuc>+a)+b = <fuec>+(a+b)

= <fu(a*b)>.

The remaining identity follows from (AT 1) : <ac<fub>> + <fu<ach>>

= <<acf>ub> + <f<causb>.

(17.10) : <ugu> = <u<cocru> = <uc<ccour> = (.

<uav> (u*a) *v ¢ by (17.5).
The other identity again follows from (AT 1): <uc<acv>> +
CACLUcV>> = <<ygarcv> + <adcoucrvr.

Then asfusv) = - a*(veu) (since u*v = - wv+uj

= = [(yea)su = us(ve-a).

(17.11) follows from (c) page 2o n
(17.12) : <uc<CcVWE> + <ov<ucw >
= <<UCCIVWS> + <C<ouvIWI » by (AT 1).

But <e<cuv>w>» = 0 since <cuv> < 11°
(17.13): By (16.4)

cufvrco> + <<ucv:fe>

= <u<fverc> + <u<cvi>cr» = 0 ¢ by (17.9).
This proves (17.13) since <ufvs> e fﬂll , by (17.4).
i!qu} . <<uce>fg> + <<ucf>ge> = <uc<cfgr> + <uc<fgcr>.

by ( AT 3)

01
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Sinece <uce>* = u,<ecf ﬂ?b = 0 and <ucf> & ‘L[?Dﬂ = (0 we have

the desired result. Finally,

<fuv> = <gc<fuv> , by (13)

Lemma 1,

a) "0

A ;
b)) If Lb-ﬂl. LO 01 = 0 then A.J

is associative (of 2nd kind)

10

01 is associative.

Proof. a) For x,y.u,v,w & .@ 10 we have

cxy<uvwi>= <xyc>+(<uve>*w) , by (17.11)

(<xye>+*<uvec>)*w , by (17.86)

<<<<xycrcurveg>*w , by (17.7)
= f,<x}ru.‘*W) ' ﬂg&iﬂ [l?lll] .

The equation <xy<uvw>> = <x<vuy>w> now follows from (AT 1).

b) If x,y,u,v,wéf'{}al » then

<<fucrcv> , by (AT 1) and <ufec> = 0.

<uy<uvw>> = xe+<cy(u+<cvw>)> , by (17.12) and ;Oul‘ "O{.'rl = 0,

= x.<<cyurc<cvws>>  , by (17.8)
= <<xe<eyurrc<evw>>, by (17.6)

= <<XyUdVW>,
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Theorem 1. }O = ‘011 ® "Ool e (O 10 ( Loij as_above) is

an associative triple system (of 2nd kind), iff ‘ajll is asso-

ciative and the compositions (8) - (13) (in (17.4)) are zero.

Proof. If .LO_ is associative, then clearly /011 is associative.

Also, <co<x, > and

: Z__>> = <<CCX.
13Yk2 rs ¢ xl

§7¥kg%rs” = %33 0%rg

<xijykzzrs>cc> = <xijyk!.<.zrsc‘:>> = s<xijykﬂ.zrs>’ thus
<:'c:i.jykl?,zrs}“E"JO.‘LS'

Comparing this result with (8) - (13) completes one direction

of the proof.
From (AT 1) we see that

<xy<uvz>> = <<xyu>vz> , iff

<xy<uvz>> = <x<vuy>z> (for all x,y,u,v,z).

Therefore it is sufficient to show

>> =

* Y
(*) <xijyk£<ursquzmn <<xigyk£.urs>quzmn>' where x:i.j G/Olj

etc. We observe that by assumption </'~Qij L@ K /Loks>cltois,
while all other products vanish (the second indices of the first
two factors are equal and the first indices of the last two
factors).

From a linearizarion of (AT 3) we get

<xij 53 <“lr:squzrurf e <xJ'.j Yiy <zmnquurs >>

= i + <<x.. >
<{x13yk£urs>quzmn> : xljykﬂ,zmn quurs
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If J# Lors #qorp#mor k # r then by assumption the first
terms on both sides are zerc and we have associativity, and if
moreover p # r or k # m or n # g then the second terms on both
sides wvanish. Therefore it remains to show (*) for j = L&, 8 = g = n,
p=m=%k = r.

X ¥ W VikaPs™” = Xy 5¥4 %> ks Tks "
(AT 1) shows

XYk U%sVks%ks”” T YksVks *i3¥ki%ks”™”

. SR Yk M Ve Zks” T Mg Vi *i4Vks” *xs”"

If 1 k,again the second terms wanish, thus we may assume k

Il
(=5
®

> o= L4A%

-

We have to W LA, V.50, V. Z.. >
sho 1]Y1j is 'is"is

From a complete linearization of (16.5) we find for j # s

PR DU TR L 1
1]Y1]uls VisZis
< 5% = CH;- . X > >,
<uisvis xijyijzis Ys Yljxl]vis zis
Then (in this case) (AT 1) gives the desired result. Now the

Theorem follows from Lemma 1 and assumption.

17.4. MNext we are interested in the ideal structure of:AJ- Let
EI be an ideal of G? . From 17.1, it is clearly seen that the
Peirce components of element in Ul are inll'again i.e.

(direct sum of submodules).

Lemma 2. W = U"ll a Ut’lﬂ B o1 is an ideal in ‘Luo;
[ Pl =
iff 1) m’u "'GJ.:L Ir1’11 and Ty, = Wy,

; A '
2) Wy, W el “'011 'Ul'wc L'Lm

1 W - -
3) Wy Wyl o Wy, él{}ll‘ﬂu’l’n:n,
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1) <WyoK) 0 2 Uy, i2c ‘Oﬂlwnf":u’u
510 <@g Wgy o>« Wy o<W0y erclly,
A L] q L ] i
6) gy *Woy +'LOD1 gy € Vo
The proof is left as an exercise (one has to use the formulas

tl?r4 - 1?115}}4

Corollary 1l: If & is an invariant (i.e. ® =K ) ideal of the

alternative algebra 'I"Gll , then

;E:' : ='RER' LO].G ] !@Dl -E,' is an ldeal ::f-(o.

The proof of this application of Lemma 2 is also left as an exercise

{use the formulas to show that 3) = 6) of the Lemma are fulfilled.)

Corollary 2. Ef-{‘is simple, then LLC’ 11* X > %) is simple

(i.e. the alternative algebra "911 has no proper invariant ideal.) .

17.5, From now on let ﬁobe simple.

)
Theorem 2. a)A&/ is an associative triple system of second kind, iff

LQ 1 is associative and rLJ or rl-:}ol, or both, are zero.

1 10

b) If f.onlgﬁﬂ or :Lolu?fﬂ then 'LOI 1s assoclative.

)

Proof. If "'011 is associative and K}ID or ‘O is zero then all

01
3
compositions (8) - (13) in (17.4) are zerc and therefore Ly is asso-

'1
ciative by Theorem l. Conversely, assume & associative;then it is

easily checked that

- ¢ b |
“*"m L > @ Qm and <&

A 7y . :
11 & 01 01° E/-Jﬂl are ideals in

0
10 Y11
L: « This proves a).
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b) Using (17.7), (17.8) and Lemma 2 we derive easily that

Fa) Ia & -4 2] T . 4
<A 0y Dy + Ky &y, CQppe 0y, e &y, is an ideal of

) . Since & is simple and H1lﬂ or *?01 # 0 we get
3 —— \ 1 2 1
Vi1 =<0 © 100 440y Hg1 7 o> -

-
& Q)
But the last egquations in (17.7) and (17.8) show ct“lﬂ Vo™ qy®

e

i R
[ ] Llh E.- y i H! = i } . :}
Chpg “af”? W Ky '@uf? & Aoy & gy mhus &)
is (linearly) generated by the elements of the form <fgc:,f,g:§.ajlﬂ

. 1 ok
and <cuvr,u,ve Y oL" Let a.,b &-%rll. Then

1|

<(a*{b+£f))gc> ¢ by (17.7)
<H3-b1-f’§¢> ¥ hY {l?-ﬁ}

as*(b+<fgc>)

= (a+b) <fge> , again (17.7)
and a»(b*<cuv>) = a-<buy> = <(a+b)uv>
= (a+b)<cuv> s by (17.8).

This completes the proof.

Due to Theorem 2, the classification of simple alternative
triple systems (with maximal idempotent) reduces to the classi-

fication of the fellowing (distinect) types:

L. ﬁj is an asscciative triple system of second kind. The struc-
ture theory for ats (with dcc) has been presented in Chapter IV.
IT. QD = ﬂ?ll is a simple alternative (an not associative) algebra

with involution.

The classification of these algebras (and involutions) is known

and can be found (for example) in [133
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o 0. o .,

i) _
ITIT. & = 0 i i

01 and '(QJ.O‘ =i

17.6. Since the cases I and II are (essentially) known ,we shall

)
assume in this section LO is simple with maximal idempotent,

‘\701 and '(OJ.O # 0. Then io

lll is associative,but Q is not agso-

ciative. We also note that Rad ‘Q+ = 0 since it is an ideal

of 0 (see remark at the end of 16.3) and in the case/‘o= Rad LO %

there is no idempotent # 0 in."o ; by Theorem 13.9. Hence Koll"' and
+ n A F A

( wOl ® LOlO) are semi-simple, in particular /‘-001 (-] wl(} has no

trivial element. We shall use these remarks to prove

- A
Tﬂf g = AVOl -AC%I # 0.

Proof: If L = 0 then

,f‘ .f_-\ -—
a) <Ky 0,0,>=0 , by (17.10),
b) <4 10 W g1 40 57> = O , by (17.15),
) <o 4 ]_01{(:}01> =y » by (17.13).

N
: N
It ae Ky, u e ) o1 £9€ &, then «auf> (g+v) <auf>>

= <au<f<ua(v+g)>£f>>(by (16.19)) 0, since <uav> = 0 (by a)) and

<uag> = 0 by (17.4). Consequently

d) < 5011 ﬂDOIfQD10> =0 , by the above remarks.
Also
e) < ;‘jolo L'r:)Ol Loll> =0 , by (17.9)..

And finally <ufg> = <uc<fge>> (by (17.14)) = <<ucf>gc> + <f<cug>c>
- <fgu> (by (AT 1)) = 0, by (17.4) and 4). Thus
e, =
n < 01 % 10 ™10” =0
and all products (8) - (13) in (17.4) vanish. Thenr‘O is associative

(by Theorem 1) which contradicts our assumption.




Lemma 3. Loll is commutative.

Proof. We define

L: - (ac -"“‘?11 ; aell =83l =0

where LL= < ‘V}Ol c 'C[}l>' Since -Oll‘[b‘l( =1?L;e 0, by (17.14),

clearly K,#.gwll. Using (17.6) and (17.10) we derive for a,b6f<?1l

@]
and u,v(:.f(\y 01 g

as(be(u-v)) as((u+b) *v)

(a*b) * (u-v)

I
n

((usb) +a)+v = (u+(b-a)) v

]

(bea) » (u-v).

5
Thus’k,is an invariant ideal °f-”911 containing all commutators

asb - be+a. Since Q,# Aﬁll it has to be zero by corollary 2 in 17.3.

Consequently a*b = bera for all a,b (—LO 11°

Corollary. LJ 11 is either a field or direct sum of two isomorphic

fields.

Proof. KO is either simple or a direct sum of two antiisomorphic .

Ji):
( = isomorphic, since *6111 is commutative) ideals. The statement
follows from the fact that a simpel associative, commutative algebra

is a field.

We set

-'/} 1 . = . . . ﬂ
£ = ;. With asx = a*x, +a*X,q + xg;°a , &

. o
is a 4 -module. Define [f-:.Q,\éf)-*'L by
¢ (x,y) = a+b + <fgec> + <uve>

ifx=a+ f+u,y=>b + g+ v,a,b(':/c Erg e AOJ.O Juv € 'LOOl'
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Lemma 4. ¢ is a non degenerate sesquilinear form on 4(0 ’

Proof. m = ff?{y,x:l and fDId:'ECWE have @* @ (x,y)
= 2(x,a-y), by {17.7) ,(17.8) (observe o*u: = u*a),
Clearly is non degenerate iff

(u,v)¥>» <cuv> and (£f,g)r> <fgc> are non degenerate.
Assume <cuv> = 0 for all u ey . Then <v( £} )v> = 0 by (17.13)
and <vi-f‘-:"ﬂllva- = 0 by (17.12) and assumption. Conseguently v= 0
since @1;’2* has no trivial elements # 0. Similarly <fgc> = 0
for all qéiOlu implies (by (17.11)) that £ is a trivial element,

thug £ = 0.

Lemma 5. a) tto 10 is l-dimensiocnal over ft'

b) LO oy 18 a free A, -module.

Proof. We set Mn- Lcll} ,1‘@: kf}ﬂl' For feu.we define
Jf:*fﬁf.]—"ﬁo by
Jf{u) = <cuf>.
If £,9€ W then (AT 1) gives <uc<fgc>> + <fg<uce>> = <<ucf>gc>
+ <f<cug>c> and using <fgu> = <ucf> = 0 (by (17.4)) and (17.9)

we obtain

(17.186) JfJg[u:l = ~u=<fge>.

Case 1: £ is a field. Then b) is trivial. Assume aimW > 1. If

LPI\-L (£,g9) > <fgc> is non alternating, then there exist f1:f2

such that <fifi¢> ¥ 0 but {Elfzc> = 0. Then by (17.16) Jf}_ Jeg = 0

and Je 2 = a.Id (0# aif:'t ). This is a contradiction. If ‘f'{-L.L is
i
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alternating then there exist flrf such that -c:fificb = 0 but

{flfzc:» = 1. Again by (17.16) J =0,J Jf = -1d, and again

fi fl 2

we have a gcontradiction. Thus a) must hold.

Case 2: /(f is a direct sum of 2 isomorphic fields (involution is
the exchange involution):
t Fal & Fel ¥ '&2 :=e1-
Then ur M’l E'ULz where Ul,i = <e;C 'Ulr‘_,_. Since <(a+f)gc>
=3 -ln = -i' L'I =
<f(a-g)e> =(P(f,a*g) we have Q¢t'ULi. 'li} 0 and ((f,q)
= ‘f‘{fl,gz}el + ff?{fz,gllez.fi,giémi. Since 'F”fu is non degenerate

I

we can choose fl"fz such that LP{fl,fz}el = e, {then Lfffz.fl}eg = ezj.

We define £: = £, + £, and get (f,f) = c. Since (¢ defines a non

1 2
degenerate pairing LL KUL -'?'{,- Wwe can write
W, =7 0 f ;

'l;l-anfzﬂfl .

1
If fi'L # 0 then there are 9,19, = fz_L ' fl (resp.) such that

i - U
£, = lgcl,, tp(g,£,) = 0}

(¢(£,9) = 0. Then T3 =0, 3% =3 2%=-14, which is a contra-

g
diction. This completes the proof of a).
For b), let - Fel B FEl,Ez:*Bl, #l = -CO 01° Choose £ = ‘Olﬂ
such that <ffe> = ¢ (as in part a)). Set HQ: fﬂﬂl efu,}z, -'l‘UDi
= 2 = : oy k_ﬁ
< MO ce;>. Then ((u,v) lf‘ (ul,v21e1 + {uz,vl}ez.u,v & N "

For J, , defined as above, we get J,° = -Id, and

f

Jf{uj = -celuf} + {ezuf}.

By (17.9) and (AT 3) we get
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<e,uf> - <fue.> = - <fu<e.ce,>>
3 i i X

Il

- <<fuec,>ce.> = <<e.,uf>ce.>,
i i i i
i.e. <ejuf>€ M0 i

Moreover, if u = <uce, > Glﬂ?i, then

Jf(u) = <c<ucei>f> = <<ceic>uf> , by (16.3)
= <ejuf>, i#j.
Thus Jf: Jd;i"—9}d%, i#j, sz = - Id, and Jf is a 1-1 linear map of

LQ} onto .6ﬂJj. dd)i are vector spaces over F resp. F. Let (u,,a
€ I) be an F - basis of 4%9 i then the Jf(ua) are a basis of

.'L f‘ - = - 1 n 1 L[]
k-j and LA u_ + Jf(ua} a {: basis of*ﬂv . Since va e

o 1
=u, (v e, = Jf(ua) we get
X =%, + x, = z&aua + ZUQJf{ua)

zgavu.el i znava‘eZ
- z(Eael 3 nae2)'va.
This completes the proof.
N
So far we have ‘-0 is a free v(,'— module, A=lyoc o K- e-’fu? ’
1y i /
and on & we have a non degenerate hermitian form ¥ : £ xQ = &

such that

¥ (u,v)
V(C;CJ = Sy L‘[“(f:f) = <ffc> = YC, (Y=?’ Y .# 0)
(ke + & £,40) = 0.

Now we define a K:— antilinear map J:ﬂ?—iﬂ? by J(u) = Jf(u),116‘d7,

<cuv>, ¢¥(c,f) =0,

J(c) = £, J(f) = -”Tc. Then J% = - YId (since sz - YIde})-

Moreover, if we define a skew symmetric K:— bilinear form o(on‘io

by
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a(u,v)*f = u*v , u, v € L

alc,f) =1, aldc +L£,40) =0
then it is easily verified that

@(x,y) + X(J(x),y) = 0.
(Note: This equation can be used as definition of & ). Using-
(17.5) = (17.15) one verifies that the triple product in;@ is
given by

<Xyz> = X ¥Xy,z) + J(y)a(x,z).
Exercise: Prove this formula. (One has to verify it for 13 cases

according to (17.4).)

Lemma 6. EEHg}is of type III, then ﬁ? is a free A:— module with

hermitian sesquilinear 'C- form ¥ , skew symmetric /C’- bilinear

o o .
form and < - antilinear map J defined as above such that for all

)
X,y:2 € A
<xyz> = x @(y,z) + J(y)a(x,2).
(K:is a field or direct sum of two isomorphic fields). We still

S
need some information about 4.

17.6. Letﬁc be an alternative triple system, 2(x,y)z = <xyz>

= r(z,y)x = p(x,2)y. Letf? be the associative algebra generated
by all 2(x,y).,.r(x,y),p(x,y) in Endéﬁ:] ’ and%k,the subalgebra
generated by all 2(x,y).,r(x,y). The centroid z(!C’) of Q? is the
centralizer of ’; in End LO AL /‘0) = {ae Endl-o , XT =T A for

all*®= éﬁz}u The metacentroid C(LQ ) is the centralizer of 32 in

Endiﬂ -‘C(!4}) = {Be Endﬁo , Bp = pB for all DQJQ}. Clearly;bCTﬁ

and Z(&) )< (X ).
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Lemma 7. a) If <Q’~JU’}> =,Q then C(A?) is commutative.

b) IfX& is simple then z(4)) is a field.

Proof. a) If a)BéC(ﬂ?) then af<xyz> = a<xy(BZ)> = <(ax)y(gz)>
= Ba<xyz>.

b) #? simple<?bxq? is an irreducible ¥ - module. Then Z(Lp) is
a division ring, by Schur's lemmé; since it is commutative (by a))

‘it is a field.

N /
Theorem 3. LetX/ be simple. Then R acts either irreduciblx_L#Q_r_,(O

is the direct sum of two inequivalent irreducible v]&" modules
A D _ 4 D _ '
C“i q iéw > = <1V.Q,irﬁwi > = 0.

2

Proof. Similar to Thow X1,Y | Let dgl be a proper 43— submodule.
Set ‘LQ2 = <£3Q_ligf' >. Then .‘-02 is a X - submodule (follows from
A n
AT 1) and </‘G.L‘$2-{.’) >C L(fl. This show thatf\’-"l’\.{».?z and @l + ’%'2
- 7 T8 g 8| 8] .
are ideals of 4 and then 10= l""l o & 2,;(-.:1.-\;‘\;' 5= 0. The rest is

straightforward.

Corollary 1. C(4 ) is a field or a direct sum of two fields (each

containing Z(AS Y}

Corollary 2. ELO is simple and finite dimensional over F = z2(A ),

A = ) _
then C(4&/ ) is either I , a quadratic extension of F or t @& F .

Proof. Let F be the algebraic closure of F, & =/(O@Ff' ; then

Z(w) = F since Z(Zﬁ) is a finite extension of f; by Corollary 1,

C(]) =F or F ® F. In particular dim = (C(g)<2. since dimFC(‘f )

<dim & C( ) we get the desired result.
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Theorem 4. If ¢ is a maximal idempotent of .’ and C the center of

-w\ll(c)(as algebra),c+ = {a< C,0 = a} then the map

z > z(c)

]
is an isomorphism of C(;} ) onto C which maps 2(.Y ) onto ct.

Proof. 1If g¢ C( - ) then z(c) = g<eee> = <g(c)ee> = <cez (o) >.
S, Y
Thus ¢(c) ©.5 11° Also

Z(c)e+a = <z(c)ca> = ga = r<ace> = a-*zg(c),
(z(c)+*a)+*b = g(a*b) = ¢(c)+*(a*b), etc. Thus Z(c) - Center of 5}11.

If . Z(~~ ) then T(c) = <cg(c)c> = gec.

Conversely, if z ¢ C, then ?’z defined by,l{;(a) = z-a, ?'z(xlo)

_ . = W ) = b .+
= 2°X47 S z(yOl) = ¥Yy1°% is in C(«/ ) and y.z_. Z(\N ) if 2z & €.

)
z(c) = Z. Also for z,p ¢ C(-~' ) we have

Moreover “fz(c) =gz and ¥
(Ep)(c) = g(c)p(c).

17.7. We collect our previous results on the classification of

simple alternative triple systems.

Theorem 5. Let & be a simple alternative triple system with maximal

)
idempotent; then ( is either

1) a simple associative triple system of 2nd kind,

2) an.alternative algebra LJC with involution x +-> X such that

(-\\c, x> X) is a simple pair and the triple product is

given by <xyz> = (x°y) 2
.|
3) - 1is a free C - module, where C is the metacentroid of A‘,

which is either a field (with involution) or a direct sum

of two isomorphic fields (with exchange involution), and the

triple product is given by
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<xyz> = ¥ (y,z)x + a(x,2z)Jy ,

where ,° is a non degenerate hermitian sesquilinear fcrm of &\ in C,

a a skew symmetric C - bilinear form of-&'Lg ¢ = (x ¢ C,% = x}

and J a C - antilinear map oflO such that J° = - yId, 0 #y « C+,

4 (x,y) + a(Jdx,y) = 0.

Exercise: Show that an alternative triple system of type 3) is

simple.
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XVIII. Classification of Jordan Triple Systems

18.1. There are still many open questions concerning the classification
of simple Jts's with dcc on inner ideals. The crucial point is the ex-
istence or non existence of maximal idempotenté. For example V = R (the
reals) over R together with P(x)y = - xzy is simple but has no idem-
potents.

Under the assumption that GL is a finite dimensional Jts over an
algebraically closed field F, char F # 2 one can show that for a non
nilpotent element.x < CL the subtriple system generated by x contains an
idempotent; and if moreover CL is semi simple then CL contains a maximal
idempotent.

These results and the classification of finite dimensional simple
Jts's over an algebraically closed field of char # 2 are beautifully
presented in 0. Loos's notes '"Lectures on Jordan Triples'" (The Universi-
ty of British Columbia, 1971) and we won't waste more paper by copying
his exposition. But to show the reader what he can expect we outline
the conclusive results in Loos's notes. |

Let a be a finite dimensional simple Jts over F of char # 2; then
by Theorem 16.6 either Gl = Cii(c), in which case CL is a simple Jordan
algebra with involution x - % and the triple product is given by P(X)y =
_Q(x)}, (Q denotes the quadratic representation of the Jordan algebra ()
or Ll is isomorphic to the standard imbedding 3710 CLl/Z of the alter-
native triple system CLl/Z(C)’ where ¢ is a maximal idempotent.

Therefore the classification reduces to the classification of all

simple pairs (Lb,j) where GL is a Jordan algebra and j an involution in
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CL, or to the classification of all simple alternative triple systems
and the determinations of their standard imbeddings. Under the given
assumptions one derives from Theorem 17.5 together with the known
results on associative triple systems of the second kind and the re-

sults on Jordan algebras the following result

Theorem. A simple finite dimensional Jordan triple system over an alge-

braically closed field F of char. # 2 is isomorphic to one of the

following.

.
(1) Hermitian, skew hermitian or rectangular matrices over 4 - qt = F,

F® F or the quaternions over F, with P(x)y = x§tx. (y > y is induced

from the canonical involution on*t.)

(2) Symmetric or skewsymmetric matrices over F & F with P(x)y = x§tx.

(3) F* with P(x)y = 2(x,y)x - (x,sx)sy where (x,y) = I x and s is

171

a reflection in a subspace F of F.

(4) (F @ )™ with P(x)y = Z(K,;)x - (x,x)?, where (x,y) = Xxiyi.

bl .
(5) 1 x2 matrices over (L’,j) where C' is the Cayley algebra, j involu-

tion, or over (CJG C‘OP, exchange involution), with P(x)y = x(§tx).

(6) Lﬁ B(CF), the exceptional Jordan algebra with quadratic representation
<

0, the triple product is given by P(x)y = Q(x)j(y), ] an involution.

(7) \ej 3(L") ® %‘3‘3&*) with P(x)y = Q(x)j(y), where j is the exchange
L

involution.
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