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Abstract

In this paper we propose an approach to classifying a subclass of filiform Leibniz algebras. This subclass
arises from the naturally graded filiform Lie algebras. We reconcile and simplify the structure constants
of such a class. In the arbitrary fixed dimension case an effective algorithm to control the behavior of the
structure constants under adapted transformations of basis is presented. In one particular case, the precise
formulas for less than 10 dimensions are given. We provide a computer program in Maple that can be
used in computations as well.
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1. Introduction

It is well known that the natural gradation of nilpotent Lie and Leibniz algebras is very
helpful in investigating their structural properties. This technique is more effective
when the length of the natural gradation is sufficiently large. When it is maximal
the algebra is called filiform. For applications of this technique, see [6, 12] (for Lie
algebras) and [1] (for Leibniz algebras).

The present paper deals with the filiform Leibniz algebras whose natural gradation
is a filiform Lie algebra. Note that the case of algebras whose natural gradation is a
non-Lie filiform Leibniz algebra was considered in [1–3, 5].

Section 2 gathers together basic definitions, notation and conventions used in this
paper. Section 3 is devoted to the description of the class of non-Lie filiform Leibniz
algebras whose gradation is a filiform Lie algebra. It contains the main result of
the paper. Here we simplify the multiplication table and follow the behavior of
the structure constants under the adapted action. Section 4 deals with the detailed
description of one particular case. In this section we give precise formulas for changing
of the structure constants and a simple computer program in Maple.
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392 B. A. Omirov and I. S. Rakhimov [2]

2. Preliminaries

Let V be a vector space of dimension n over an algebraically closed field K
(charK = 0). Bilinear maps V × V → V form a vector space Hom(V ⊗ V, V ) of
dimension n3, which can be considered together with its natural structure of an affine
algebraic variety over K and denoted by Algn(K )∼= K n3

. An n-dimensional algebra L
over K can be considered as an element λ(L) of Algn(K ) via the bilinear mapping
λ : L ⊗ L→ L defining a binary algebraic operation on L : let {e1, e2, . . . , en} be a
basis of the algebra L . Then the multiplication table of L is represented by point (γ k

i j )

of this affine space as follows:

λ(ei , e j )=

n∑
k=1

γ k
i j ek .

Here γ k
i j are called structure constants of L . The linear reductive group GLn(K ) acts

on Algn(K ) by (g ∗ λ)(x, y)= g(λ(g−1(x), g−1(y))) (‘transport of structure’). Two
algebras λ1 and λ2 are isomorphic if and only if they belong to the same orbit under
this action. It is clear that the elements of the given orbit are algebras isomorphic to
each other.

Recall that an algebra L over a field F is called a Leibniz algebra if its composition
law [·, ·] satisfies the following so-called Leibniz identity:

[x, [y, z]] = [[x, y], z] − [[x, z], y]. (2.1)

Leibniz algebras were introduced by Loday [8, 9]. (For this reason, they have also
been called ‘Loday algebras’ [7].) A skew-symmetric Leibniz algebra is a Lie algebra.
In this case (2.1) is just the Jacobi identity.

Let L Bn(K ) be a subvariety of Algn(K ) consisting of all n-dimensional Leibniz
algebras over K . It is invariant under the above-mentioned action of GLn(K ). As a
subset of Algn(K ) the set L Bn(K ) is specified by the system of equations with respect
to the structure constants γ k

i j :

n∑
l=1

(γ l
jkγ

m
il − γ

l
ijγ

m
lk + γ

l
ikγ

m
lj )= 0.

In fact, theoretically, by solving the above system of equations we can get a complete
classification of Leibniz algebras in a given dimension n. But in practice this approach
is useless even for small values of n. Therefore one usually has to apply different
methods of investigation.

If L is a Leibniz algebra we may define

L1
= L , Lk+1

= [Lk, L], k ≥ 1.

The series
L1
⊇ L2

⊇ L3
⊇ · · ·
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[3] On Lie-like filiform Leibniz algebras 393

is called the descending central series of L . If the series terminates for some positive n,
then the Leibniz algebra L is said to be nilpotent. The termination number here
is called the nilindex of L . Below we present a gradation closely related to the
descending central series.

Given a nilpotent Leibniz algebra L with nilindex s, we put L i = L i/L i+1, 1≤ i ≤
s − 1, and gr L = L1 ⊕ L2 ⊕ · · · ⊕ Ls−1. Since [L i , L j ] ⊆ L i+ j the algebra gr L is
graded. gr L is called the naturally graded Leibniz algebra.

Let us introduce the class of nilpotent Leibniz algebras, which is main object of the
paper. In the case of Lie algebras, such algebras have the maximal nilindex.

DEFINITION 2.1. A Leibniz algebra L is said to be filiform if dim L i
= n − i , where

n = dim L and 2≤ i ≤ n.

Clearly a filiform Leibniz algebra is nilpotent.
Let Leibn denote the class of all n-dimensional filiform Leibniz algebras.

DEFINITION 2.2. If a Leibniz algebra G is isomorphic to a filiform naturally graded
algebra gr L , then G is said to be naturally graded filiform Leibniz algebra.

Later on all algebras are supposed to be over the field of complex numbers C and
the omitted products of basis vectors are supposed to be zero.

The following theorem summarizes the results of [1, 12].

THEOREM 2.3. Any complex (n + 1)-dimensional naturally graded filiform Leibniz
algebra is isomorphic to one of the following pairwise nonisomorphic algebras:

N G F1 =

{
[e0, e0] = e2,

[ei , e0] = ei+1, 1≤ i ≤ n − 1,

N G F2 =

{
[e0, e0] = e2,

[ei , e0] = ei+1, 2≤ i ≤ n − 1,

N G F3 =

{
[ei , e0] = −[e0, ei ] = ei+1, 1≤ i ≤ n − 1,

[ei , en−i ] = −[en−i , ei ] = α(−1)i+1en, 1≤ i ≤ n − 1.

α ∈ {0, 1} for odd n and α = 0 for even n.

It is clear that neither N G F1 nor N G F2 is a Lie algebra.
The above theorem means that the natural gradation of a Leibniz algebra is in one

of the classes N G Fi for i = 1, 2, 3.
The following result of [1] describes the class of complex filiform Leibniz algebras

whose natural gradation is one of N G Fi for i = 1, 2.

THEOREM 2.4. Any (n + 1)-dimensional complex non-Lie filiform Leibniz algebra,
whose naturally graded algebra is not a Lie algebra, belongs to one of the following
two classes:
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394 B. A. Omirov and I. S. Rakhimov [4]

FLeibn+1 =



[e0, e0] = e2,

[ei , e0] = ei+1, 1≤ i ≤ n − 1,

[e0, e1] = α3e3 + α4e4 + · · · + αn−1en−1 + θen,

[e j , e1] = α3e j+2 + α4e j+3 + · · · + αn+1− j en, 1≤ j ≤ n − 2,
α3, α4, . . . , αn, θ ∈ C;

SLeibn+1 =



[e0, e0] = e2,

[ei , e0] = ei+1, 2≤ i ≤ n − 1,

[e0, e1] = β3e3 + β4e4 + · · · + βnen,

[e1, e1] = γ en,

[e j , e1] = β3e j+2 + β4e j+3 + · · · + βn+1− j en, 2≤ j ≤ n − 2,
β3, β4, . . . , βn, γ ∈ C.

Isomorphism criteria, classifications and invariants of FLeibn+1 and SLeibn+1 were
investigated in [2, 3, 5, 10, 11].

3. Main result

This section is devoted to the filiform Leibniz algebras whose natural gradation
is an algebra from N G F3. This class is denoted by T Leibn+1. Here we clarify
the multiplication table of algebras from T Leibn+1 and investigate the behavior of
structure constants under a change of basis.

PROPOSITION 3.1.

T Leibn+1 =



[ei , e0] = ei+1, 1≤ i ≤ n − 1,

[e0, ei ] = −ei+1, 2≤ i ≤ n − 1,

[e0, e0] = b0,0en,

[e0, e1] = −e2 + b0,1en,

[e1, e1] = b1,1en,

[ei , e j ] = a1
i, j ei+ j+1

+ · · · + an−(i+ j+1)
i, j en−1 + bi, j en, 1≤ i < j ≤ n − 1,

[ei , e j ] = −[e j , ei ], 1≤ i < j ≤ n − 1,

[ei , en−i ] = −[en−i , ei ] = (−1)i bi,n−i en, 1≤ i ≤ n − 1,
(3.1)

where ak
i, j , bi, j ∈ C and bi,n−i = b whenever 1≤ i ≤ n − 1, b ∈ {0, 1} for odd n and

b = 0 for even n.

PROOF. Let L ∈ T Leibn+1 and {e0, e1, . . . , en} be a basis of L . Then it is clear that
[ei , e j ] ∈ 〈ei+ j+1, . . . , en〉 for any i, j 6= 0. Then

[ei , e0] = ei+1 + (∗)ei+2 + · · · + (∗)en, 1≤ i ≤ n − 1.
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[5] On Lie-like filiform Leibniz algebras 395

Putting e′1 = e1, e′0 = e0, e′i+1 := [e
′

i , e′0], we can assume that [ei , e0] = ei+1, 1≤ i ≤
n − 1.

Now consider

[e0, ei ] = −ei+1 + α
i+2
0,i ei+2 + α

i+3
0,i ei+3 + · · · + α

n
0,i en, 1≤ i ≤ n − 1.

We get

[ei , e0] + [e0, ei ] = α
i+2
0,i ei+2 + α

i+3
0,i ei+3 + · · · + α

n
0,i en, 1≤ i ≤ n − 1. (3.2)

Note that from the Leibniz identity it follows that [x, y] + [y, x] ∈ <(L), for any
x, y ∈ L , where <(L) is the right annihilator of L . Therefore, if we multiply the
both sides of (3.2) from the left-hand side (n − i − 2) times by e0 we obtain αi+2

0,i = 0.
Substituting and repeating, we get

αi+k
0,i = 0, 2≤ k ≤ n − 1− i.

Applying the above to [ei , ei ], 0≤ i ≤ [n/2], we get [ei , ei ] = α
n
i,i en .

The chain of equalities

[e0, ei ] = [e0, [ei−1, e0]] = [[e0, ei−1], e0] − [[e0, e0], ei−1]

= [−ei + α
n
0,i−1en, e0] = −[ei , e0] = −ei+1

leads to [ei , e0] = −[e0, ei ] = ei+1 for 2≤ i ≤ n − 1, that is, [e0, x] = −[x, e0] for
any x ∈ L2. We claim that

[ei , e j ] = −[e j , ei ], 1≤ i < j ≤ n. (3.3)

The induction argument by i for any j and the chain of equalities

[ei , e j+1] = [ei , [e j , e0]] = [[ei , e j ], e0] − [[ei , e0], e j ] (since [ei , e j ] ∈ L2)

= −[e0, [ei , e j ]] + [[e0, ei ] − α
n
0,i en, e j ] = −[e0, [ei , e j ]] + [[e0, ei ], e j ]

= −[[e0, ei ], e j ] + [[e0, e j ], ei ] + [[e0, ei ], e j ]

= −[e j+1, ei ], 1≤ j ≤ n − 1,

show (3.3).
The above observations lead to the required multiplication table of L ∈

T Leibn+1. 2

Note that filiform Lie algebras are in T Leib.
Bearing in mind Theorem 2.4 and all the foregoing, we conclude that the set of

all n-dimensional filiform Leibniz algebras can be represented as a disjoint union of
FLeibn, SLeibn and T Leibn .

Let L ∈ T Leibn+1. Then it is easy to see that the subspace spanned by {en} is an
ideal of L and the quotient algebra L/〈en〉 is an n-dimensional filiform Lie algebra.
Therefore, later on in this case the structure constants ak

i, j will be considered to be
satisfying the Leibniz identity. Moreover, n-dimensional filiform Lie algebras have
been classified (see [4]). In order to make use of the existing classification of n-
dimensional filiform Lie algebras (n ≤ 11) from [4] we consider the structure constants
ak

i, j in (3.1) to be fixed constants.
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LEMMA 3.2. Let L ∈ T Leibn+1. Then

n−(i+ j+k+1)∑
s=1

as
j,kbi, j+k+s =

n−(i+ j+k+1)∑
s=1

(as
i, j bi+ j+s,k − as

i,kbi+k+s, j ). (3.4)

PROOF. The Leibniz identity for ei , e j and ek gives the required relations between the
structure constants

[ei , [e j , ek]] =

[
ei ,

n−( j+k+1)∑
s=1

as
j,ke j+k+s + b j,ken

]

=

n−(i+ j+k+1)∑
s=1

as
j,k

(n−(i+ j+k+s+1)∑
t=1

at
i, j+k+sei+ j+k+s+t + bi, j+k+sen

)
,

[[ei , e j ], ek] =

[n−(i+ j+1)∑
s=1

as
i, j ei+ j+s + bi, j en, ek

]

=

n−(i+ j+k+1)∑
s=1

as
i, j

(n−(i+ j+k+s+1)∑
t=1

at
i+ j+s,kei+ j+k+s+t + bi+ j+s,ken

)
,

[[ei , ek], e j ] =

[n−(i+k+1)∑
s=1

as
i,kei+k+s + bi,ken, e j

]

=

n−(i+ j+k+1)∑
s=1

as
i,k

(n−(i+ j+k+s+1)∑
t=1

at
i+k+s, j ei+ j+k+s+t + bi+k+s, j en

)
,

leading to (3.4). 2

Here are several remarks regarding (3.4).

(1) It is symmetric with respect to i, j, k (since ak
s,t =−ak

t,s and bs,t =−bt,s for any
s and t , except for (s, t)= (0, 0), (1, 1), (0, 1), (1, 0)).

(2) In the case where (i, j, k)= (0, j, k) we get

n−( j+k+1)∑
s=1

as
j,kb0, j+k+s =

n−( j+k+1)∑
s=1

(as
0, j b j+s,k − as

0,kbk+s, j ),

where j 6= 0, k 6= 0.
(3) Since as

0,t = 0 as s 6= 1 and a1
0,t =−1, we get

a1
j,kb0, j+k+1 + a2

j,kb0, j+k+2 + · · · + an−( j+k+1)
j,k b0,n−1 =−b j+1,k + bk+1, j .

(4) Since b0,t = 0 as t = 2, . . . , n − 2 and b0,n−1 =−1, we get that

an−( j+k+1)
j,k = b j+1,k − bk+1, j ,

for k = j + 1, j + 2, . . . , n − j − 2 and j = 1, 2, . . . , [(n − 3)/2].
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[7] On Lie-like filiform Leibniz algebras 397

LEMMA 3.3. Let L ∈ T Leibn+1. Then

[ei , e j+k] =

k∑
s=0

(−1)k−s
(

k

s

)
[ei+k−s, e j ]R

s
e0
, (3.5)

where 1≤ i, j, k ≤ n and y Rx = [y, x] is the right multiplication operator on L.

PROOF. The proof will proceed by induction on k. Let k = 1. Then [ei , e j+1] =

[ei , [e j , e0]] = −[ei+1, e j ] + [[ei , e j ], e0], that is, (3.5) holds for k = 1. Then the
following chain of equalities leads to the claim:

[ei , e j+k+1] = [ei , [e j+k, e0]] = [[ei , e j+k], e0] − [[ei , e0], e j+k]

=

k∑
s=0

(−1)k−s
(

k

s

)
[ei+k−s, e j ]R

s+1
e0

−

k∑
s=0

(−1)k−s
(

k

s

)
[ei+k+1−s, e j ]R

s
e0

= −

k+1∑
s=1

(−1)k−s
(

k

s − 1

)
[ei+k+1−s, e j ]R

s
e0

−

k∑
s=0

(−1)k−s
(

k

s

)
[ei+k+1−s, e j ]R

s
e0

=

k∑
s=1

(−1)k+1−s
((

k

s − 1

)
+

(
k

s

))
[ei+k+1−s, e j ]R

s
e0

+ [ei+k+1, e j ]R
k+1
e0
− (−1)k[ei+1+k, ek]

=

k+1∑
s=0

(−1)k+1−s
(

k + 1
s

)
[ei+k+1−s, e j ]R

s
e0
. 2

Let L ∈ T Leibn+1.

DEFINITION 3.4. A basis {e0, e1, . . . , en} of L is said to be adapted if its
multiplication table with respect to {e0, e1, . . . , en} has the form of T Leibn+1.

DEFINITION 3.5. Let {e0, e1, . . . , en} be an adapted basis of L . Then a
nonsingular linear transformation f : L→ L is said to be adapted if the basis
{ f (e0), f (e1), . . . , f (en)} is adapted.

To simplify notation, let

a = (b0,0, b0,1, b1,1, a1
i, j , . . . , an−(i+ j+1)

i, j , bi, j )

stand for the algebra in T Leibn+1, with the structure constants b0,0, b0,1, b1,1, a1
i, j , . . . ,

an−(i+ j+1)
i, j , bi, j .

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S000497270900001X
Downloaded from https://www.cambridge.org/core. Access paid by the UC Irvine Libraries, on 28 Sep 2017 at 21:05:01, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S000497270900001X
https://www.cambridge.org/core


398 B. A. Omirov and I. S. Rakhimov [8]

Let a′ = (b′0,0, b′0,1, b′1,1, a1 ′
i, j , . . . , an−(i+ j+1) ′

i, j , b′i, j ). Consider an adapted
transformation f . Let

f (e0) = A0e0 + A1e1 + · · · + Anen,

f (e1) = B0e0 + B1e1 + · · · + Bnen,

where A0 B1 − A1 B0 6= 0 and let f (a)= a′.

LEMMA 3.4. For b′0,0, b′0,1 and b′1,1 the following hold:

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

An−1
0 B1

, B0 = 0,

b′1,1 =
B1b1,1

An−1
0

, b′0,1 =
A0b0,1 + 2A1b1,1

An−1
0

.

PROOF. By using multiplication on a we get

f (ei )= [ f (ei−1), f (e0)] = Ai−2
0 (A0 B1 − A1 B0)ei +

∑
s≥i+1

(∗)es, 2≤ i ≤ n.

(3.6)
Consider

[ f (e2), f (e1)] = a1 ′
i, j f (e4)+ · · · + a(n−4) ′

i, j f (en−1)+ b′i, j f (en);

equating the corresponding coefficients, we get B0(A0 B1 − A1 B0)= 0, which implies
B0 = 0.

The product [ f (e0), f (e0)] = b′0,0 f (en) leads to

A2
0a0,0 + A0 A1a0,1 + A2

1a1,1 = a′0,0 An−1
0 B1.

Then we get

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

An−1
0 B1

.

Similarly,

b′1,1 =
B1b1,1

An−1
0

.

Now consider the equality

b′0,1 f (en)= [ f (e1), f (e0)] + [ f (e0), f (e1)].

Then b′0,1 An−1
0 B1 = A0 B1b0,1 + 2A1 B1b1,1. This implies that

b′0,1 =
A0b0,1 + 2A1b1,1

An−1
0

. 2
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[9] On Lie-like filiform Leibniz algebras 399

DEFINITION 3.6. The following adapted transformations of L are said to be
elementary:

τ(a, b, c) =


τ(e0)= ae0 + be1,

τ (e1)= ce1, ac 6= 0,

τ (ei+1)= [τ(ei ), τ (e0)], 1≤ i ≤ n − 1,

σ (a, k) =


σ(e0)= e0 + aek, 2≤ k ≤ n,

σ (e1)= e1,

σ (ei+1)= [σ(ei ), σ (e0)], 1≤ i ≤ n − 1,

ϕ(c, k) =


ϕ(e0)= e0,

ϕ(e1)= e1 + cek, 2≤ k ≤ n,

ϕ(ei+1)= [ϕ(ei ), ϕ(e0)], 1≤ i ≤ n − 1,

where a, b, c ∈ C; we refer to these as transformations of the first, second, and third
type, respectively.

PROPOSITION 3.7. Let f be an adapted transformation of L. Then it can be
represented as the composition

f = ϕ(Bn, n) ◦ · · · ◦ ϕ(B2, 2) ◦ σ(An, n) ◦ · · · ◦ σ(A2, 2) ◦ τ(A0, A1, B1).

PROOF. The proof is straightforward. 2

4. The isomorphism criteria for truncated filiform Leibniz algebras

In this section we consider a subclass of T Leibn+1. Let L be an algebra from
T Leibn+1 such that the quotient algebra L/〈en〉 is isomorphic to an n-dimensional
algebra from N G F3. This kind of algebra we call truncated. Then it is easy to see that
the multiplication table of L has the form:

[ei , e0] = ei+1, 1≤ i ≤ n − 1,

[e0, ei ] = −ei+1, 2≤ i ≤ n − 1,

[e0, e0] = b0,0en,

[e0, e1] = −e2 + b0,1en,

[e1, e1] = b1,1en,

[ei , e j ] = −[e j , ei ] = bi, j en, 1≤ i ≤ n − 1, 1≤ j ≤ n − i,

[ei , en−i ] = −[en−i , ei ] = (−1)i bi,n−i en, 1≤ i ≤ n − 1,

where bi,n−i = b for 1≤ i ≤ n − 1, and b ∈ {0, 1} for odd n and b = 0 for even n.
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One of the reasons for considering the truncated case is to give a complete
classification in this particular case and thus to show how the isomorphism criterion
works in low-dimensional cases. Since in this case coefficients ak

i, j = 0, where
1≤ i < j ≤ n − 1 and 1≤ k ≤ n − (i + j + 1), the multiplication table of L has a
simple form. Therefore the action of changing basis can easily be managed.

We now investigate the behavior of the coefficients bi, j under adapted basis
changing. From Lemma 3.4 we conclude that the elementary transformation of the
second and third types does not change the structure constants b0,0, b0,1 and b1,1.

Consider

τ(a, b, c)=


τ(e0)= ae0 + be1,

τ (e1)= ce1, ac 6= 0,

τ (ei+1)= [τ(ei ), τ (e0)], 1≤ i ≤ n − 1.

We get

τ(ei )= [τ(ei−1), τ (e0)] = ai−1cei + ai−2bcbi−1,1en,

2≤ i ≤ n − 1, τ (en)= an−1cen.

The chain of equalities

an−1cb′i, j en = b′i, jτ(en)= [τ(ei ), τ (e j )]

= [ai−1cei + ai−2bcbi−1,1en, a j−1ce j + a j−2bcb j−1,1en]

= ai+ j−2c2
[ei , e j ] = ai+ j−2c2bi, j en,

yields
b′i, j = ai+ j−1−ncbi, j . (4.1)

Now consider

σ(a, k)=


σ(e0)= e0 + aek, 2≤ k ≤ n − 1,

σ (e1)= e1,

σ (ei+1)= [σ(ei ), σ (e0)], 1≤ i ≤ n − 1.

Using induction it is easy to see that

σ(ei )= ei + abi−1,ken, 2≤ i ≤ n − 1, σ (en)= en.

Then [σ(ei ), σ (e j )] = [ei , e j ]. So b′i, j = bi, j , that is the elementary
transformations of second type do not affect bi, j .

LEMMA 4.1.

bi+t,t = (−1)s0bi+t−s0,t+s0 =

{
0, i = 2s0,

(−1)s0bi+t−s0,t+s0, i = 2s0 + 1.

PROOF. Since ak
i, j = 0, due to (4) we get bi+1, j =−bi, j+1, b j+2, j = b j, j+2 = 0. A

sequential application of this completes the proof. 2
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In Lemma 4.1, letting t = 1 and i = 2k, we get b2k+1,1 = 0, and so b1,2k+1 = 0.
Consider the third type of transformation:

ϕ(ck, k)=


ϕ(e0)= e0,

ϕ(e1)= e1 + ckek, 2≤ k ≤ n,

ϕ(ei+1)= [ϕ(ei ), ϕ(e0)], 1≤ i ≤ n − 1.

Then ϕ(ei )= ei + ckek+i−1, 2≤ i ≤ n + 1− k, and ϕ(ei )= ei , n + 2− k ≤ i ≤ n.
Now the chain of equalities

b′i, j en = b′i, jϕ(en)= [ϕ(ei ), ϕ(e j )] = [ei + ckek+i−1, e j + ckek+ j−1]

= [ei , e j ] + ck[ek+i−1, e j ] + ck[ei , ek+ j−1] + c2
k [ek+i−1, ek+ j−1]

yields

b′i, j = bi, j , k + i + j − 1≥ n + 1,
b′i, j = bi, j + ck(bk+i−1, j + bi,k+ j−1), k + i + j − 1≤ n,

n + 1≤ 2k + i + j − 2,
b′i, j = bi, j + ck(bk+i−1, j + bi,k+ j−1)+ c2

k bk+i−1,k+ j−1, 2k + i + j − 2≤ n.

Note that Lemma 4.1 implies the equalities

bk+i−1, j = (−1)k−1bi,k+ j−1.

As a result, for b′i, j one has the following form:

b′i, j = bi, j , n + 2− (i + j)≤ k,

b′i, j = bi, j + ck(1+ (−1)k−1)bi, j+k−1,[
n + 1− (i + j)

2

]
+ 1≤ k ≤ n + 1− (i + j),

b′i, j = bi, j + ck(1+ (−1)k−1)bi, j+k−1

+ c2
k(−1)k−1bi, j+2k−2, k ≤

[
n − (i + j)

2

]
+ 1.

Applying sequentially the third type transformations ϕ(ck, k) for k = 2, 3, . . . , n, we
get the iteration

bk
i, j = bk−1

i, j + ck(1+ (−1)k−1)bk−1
i, j+k−1 + (−1)k−1c2

k bk−1
i, j+2k−2, (4.2)

where the bk−1
s,t are supposed to be zero at s + t ≥ n + 1 and b1

i, j = bi, j .

Moreover, due to b1,2t+1 = 0 and bi, j = (−1)i−1b1,i+ j−1 (see Lemma 4.1), we can
suppose, without loss of generality, that n is even and the iteration can be reduced to

bk
1,2i = bk−1

1,2i + ck(1+ (−1)k−1)bk−1
1,2i+k−1 + (−1)k−1c2

k bk−1
1,2i+2(k−1),

k ≥ 2, i = 1, . . . , n/2, (4.3)
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where the bk−1
1,t are supposed to be zero at t ≥ n and b1

1,2i = b1,2i .

Here is a computer program in Maple which performs the above iterative algorithm.
Calling Sequence:
Iterate(Structure constants, Sequence, Dimension)
Parameters:
Structure constants — initial structure constants.
Sequence — sequence of elementary transformations.
Dimension — The dimension of the given algebra −1.

SC := Vector(n, symbol = b);
ϕ := Vector(n, symbol = B);
for i from 1 to n do

if type(i, odd) then Bi := 0 fi;
if i > n − 2 then SCi := 0 fi;

od;
Iterate := proc(SC, ϕ, n)

local i ;
for i to trunc(n/2) do

if 2i + k − 1≤ n then
SC2i := SC2i + Bk((−1)k−1

+ 1)SC2i+k−1;
if 2i + 2k − 2≤ n then

SC2i := SC2i + B2
k (−1)k−1SC2i+2k−2;

fi;
fi;

od;
end proc;
for k from 2 to n do Iterate(SC, ϕ, n) od;
print(SC);

4.1. Isomorphism criteria In this section, as an application of Sections 3 and 4, we
give isomorphism criteria for the truncated filiform Leibniz algebras for some low-
dimensional cases. Here those structure constants bi, j that are zero will be omitted.

(1) Two truncated filiform Leibniz algebras a = (b0,0, b0,1, b1,1, b1,2) and a′ =
(b′0,0, b′0,1, b′1,1, b′1,2) from T Leib5 are isomorphic if and only if there exist
A0, A1, B1 ∈ C such that A0 B1 6= 0 and the following equalities hold:

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

A3
0 B1

, b′1,1 =
B1b1,1

A3
0

,

b′0,1 =
A0b0,1 + 2A1b1,1

A3
0

, b′1,2 =
B1

A2
0

b1,2.

(2) Two truncated filiform Leibniz algebras a = (b0,0, b0,1, b1,1, b1,2) and a′ =
(b′0,0, b′0,1, b′1,1, b′1,2) from T Leib6 are isomorphic if and only if there exist
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A0, A1, B1 ∈ C such that A0 B1 6= 0 and the following equalities hold:

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

A4
0 B1

, b′1,1 =
B1b1,1

A4
0

,

b′0,1 =
A0b0,1 + 2A1b1,1

A4
0

, b′1,2 =
B1

A3
0

b1,2.

(3) Two truncated filiform Leibniz algebras a = (b0,0, b0,1, b1,1, b1,2, b1,4) and
a′ = (b′0,0, b′0,1, b′1,1, b′1,2, b′1,4) from T Leib7 are isomorphic if and only if there exist
A0, A1, B1 ∈ C such that A0 B1 6= 0 and the following equalities hold:

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

A5
0 B1

, b′1,1 =
B1b1,1

A5
0

,

b′0,1 =
A0b0,1 + 2A1b1,1

A5
0

, b′1,2 =
B1

A4
0

(b1,2 − (B
2
2 − 2B3))b1,4, b′1,4 =

B1

A4
0

b1,4.

(4) Two truncated filiform Leibniz algebras a = (b0,0, b0,1, b1,1, b1,2, b1,4) and
a′ = (b′0,0, b′0,1, b′1,1, b′1,2, b′1,4) from T Leib8 are isomorphic if and only if there exist
A0, A1, B1 ∈ C such that A0 B1 6= 0 and the following equalities hold:

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

A6
0 B1

, b′1,1 =
B1b1,1

A6
0

,

b′0,1 =
A0b0,1 + 2A1b1,1

A6
0

, b′1,2 =
B1

A5
0

(b1,2 − (B
2
2 − 2B3))b1,4, b′1,4 =

B1

A5
0

b1,4.

(5) Two truncated filiform Leibniz algebras a = (b0,0, b0,1, b1,1, b1,2, b1,4, b1,6)

and a′ = (b′0,0, b′0,1, b′1,1, b′1,2, b′1,4, b′1,6) from T Leib9 are isomorphic if and only if
there exist A0, A1, B1 ∈ C such that A0 B1 6= 0 and the following equalities hold:

b′0,0 =
A2

0b0,0 + A0 A1b0,1 + A2
1b1,1

A7
0 B1

, b′1,1 =
B1b1,1

A7
0

,

b′0,1 =
A0b0,1 + 2A1b1,1

A7
0

,

b′1,2 =
B1

A6
0

(b1,2 − (B
2
2 − 2B3)b1,4 + (B

2
3 − 2B2

2 B3 + 2B5)b1,6),

b′1,4 =
B1

A6
0

(b1,4 − (B
2
2 − 2B3))b1,6, b′1,6 =

B1

A6
0

b1,6.
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