(7) F assoc. trple systen $u \in F$ define $a b=\langle a u b\rangle$

- Then ($F, a b$) is an assoantive algelia (of second kind)

$$
\text { Proof } \quad(a b) c=\langle\langle a u b\rangle u c\rangle=\langle a u\langle b a c\rangle\rangle=a(b c)
$$

- Supprea $\langle a n u\rangle=a=\begin{gathered}\text { 〈ana } \\ \text { for all } a \in F \text {. Ther }\end{gathered}$

$$
u a=\langle u n a\rangle=a \quad \text { and } \quad a u=\langle a n u\rangle=a
$$

So u is a unt of ($F, a b$)
Finally $(a b)^{\#}=\langle u\langle a u b\rangle u\rangle \#$ <ua $=\langle u b u\rangle a u=\langle u b\langle u a u\rangle\rangle$

$$
=\langle u\langle\langle u z y\rangle v\rangle \quad\langle x y z\rangle u v=\langle x y\langle z u v\rangle\rangle
$$

(necall that $\langle x y\langle z u v\rangle\rangle=\langle\langle x y z\rangle u v\rangle=\langle x\langle u z y\rangle v\rangle$)

$$
\begin{aligned}
&\left.(a b)^{\#}=\left\langle b^{\#} a u\right\rangle=\left\langle u b a^{*}\right\rangle\right\rangle \\
& b^{\# \#}=\langle\langle u b u\rangle u\langle u a u\rangle\rangle=\langle u b\langle u u\langle u a u\rangle\rangle\rangle \\
&\langle\langle x y z\rangle u\rangle=\langle x y\langle z u v\rangle\rangle=\langle x\langle u z y\rangle v\rangle \\
&=\left\langle u b\left\langle u n a^{\#}\right\rangle\right\rangle=\left\langle u b a^{\#}\right\rangle=(a b)^{\#}
\end{aligned}
$$

$\left(a_{a} b\right)$
(8) L L a Lie algeha $\frac{\text { unth } 1 / \text { pact) }}{\text { mosluct }}$ denotett $[a, b]$. Defure a trppe product $[a b c]=[[a, b], c]$. Show $(L,[a b c])$ is a Lie triple system.

Proof The axions of a hie trople sysfern ane
(i) $[a a b]=0$
(ii) $[a b c]+[b c a]+[c a b]=0$
(iii) $[\operatorname{de}[a b c]]=\left[[d e a]^{b} b\right]+[a[\operatorname{deb}] c]+[a b[\operatorname{dec}]]$

The axcoms of a he algelra are

$$
\left(L^{\prime}\right) \quad[a, a]=0
$$

$$
\left(u^{\prime}\right)[[a, b], c]+[[b, c], a]+[[c, a], b]=0
$$

$\left(\right.$ II $\left.^{\prime \prime}\right)[c,[a, b]]=[a,[c, b]]+[[c, a], b] \longleftarrow$ KEY POINT
proof of (i) $[a a b]=[[a, a], b]=[0, b]=0 \quad$ by $\left(i^{\prime}\right)$
proof of (u)

$$
\begin{aligned}
& {[a b c]+[b c a]+[c a b] } \\
= & {[[a, b], c]+[[b, c], a]+[[c, a], b]=0 \text { by }\left(\ddot{u}^{\prime}\right) }
\end{aligned}
$$

Proof of (eu)

$$
\begin{aligned}
& {[d e[a b c]]=[\underbrace{[d, e]}_{x},[\underbrace{[a, b]}_{y}, c]]} \\
& {[y,[x, z]]+[[x, y], z]} \\
& =\underbrace{[\underbrace{[a, b]}_{y}, \underbrace{[[d, e], c]}_{x}]}_{[a b[d e c]]}+[\underbrace{[[d, e],[a, b]], c]} \\
& \text { (on the night track) } \\
& -[c,[[d, e],[a, b]]]=-[[\underbrace{c,[d, e]}],[a, b]]\} \\
& {\left[x,\left[\begin{array}{ll}
y & z
\end{array}\right]\right] \text { ? }} \\
& -[\left[d_{1} e\right],[\underbrace{c,[a, b]}]]= \\
& =\left[c_{,}[d, e]\right]=[[c, d], e]+[d,[c, e]] \\
& {[\underbrace{c,[a, b]}]=[[c, a], b]+[a,[c, b]]} \\
& -[[[c, d], e]+[d,[c, e]],[a, b]] \\
& -[[d, e],[[c, a], b]+[a,[c, b]]]\}
\end{aligned}
$$

No GoulD gobackto?

This proves (iii)
BULLSEYE!

$$
\begin{aligned}
& \text { then } \\
& -[c,[[d, e],[a, b]]]=-[c,[[[d, e], a], b]]=[c,[a,[[d, e], b]]] \\
& =+\underset{\text { BUWSYE! }}{[[\operatorname{dea}] b]+\underbrace{\left[a,\left[\sum^{[d, e], b]}\right], c\right]}_{[\text {deb }]}]} \\
& \text { on the uglttrack }[a[\text { deb }] C]
\end{aligned}
$$

