

Req 3/3 PM

Request Date: 03-MAR-2015
Expiration Date: 10-MAR-2015

ILL Number:

Annex

Printed Date: 03-MAR-2015

TGQ or OCLC #:

ILL Number: 6812122

TGQ or OCLC #: 6812116

Call Number: UCSB:Main Library:Annex
QA1 .A45;UCSB:Main Library:Annex
QA1 .A45

ID: UI1

Format: Article Printed

ISBN/ISSN: 0741-9937

Ext. No:

Title: Algebras, groups and geometries

Article Author: Andrade, Raul R

v.14 (1997)

Article Title: Derivations in some Bernstein algebras
of order \$2\$

Volume/Issue: 14(1)

Part Pub. Date: 1997

Pages: 31-40

Publisher: Hadronic Press/Nonantum, Mass.

Pub. Place: Nonantum, Mass.

Borrower: UCI Langson Library

Address: University of California - Irvine
Document Access & Delivery, Langson
Library
P.O Box 19557
Irvine, CA. 92623-9557,
U.S.A.

Email: libill@uci.edu

Patron Name: RUSSO, BERNARD (Faculty [])

Service Type: Copy non returnable

Patron e-mail: brusso@UCI.EDU

Max Cost: USD50

Service Level: Normal - Full Search

Payment Type: IFM

Delivery Method: Electronic Mail

Copyright Info: CCG

Request Notes: OCLC #: [10240449, 679040811]

Need By:

Verification Source: MELVYL-UCLinks-AMS:MathSciNet

Requester Symbol:

Supplier Reference:

Return To: Interlibrary Loan

Local request number:

UCSB Davidson Library
525 UCEN Road //
Santa Barbara, CA,
93106-9010

Owned By: UCSB Library

$G = G_A \oplus G_M$ is the Grassmann algebra) is (-1,1) algebra. Similarly as in [8] we have

Corollary. *A (-1,1) superalgebra $B = A \oplus M$ is solvable iff its even component A is solvable.*

Remark. An example of Shestakov ([7], Example 3) shows that in Z_2 -graded (-1,1) algebras solvability does not imply nilpotency: $B = A \oplus M$, $B^{(2)} = 0$ (in particular $A^{(2)} = 0$), but B is not nilpotent.

Acknowledgement. The author would like to express his gratitude to Professor Ivan P. Shestakov for raising the problem and support.

References

- [1] Bahturin Yu., Giambruno A., Riley D.M., 'Group-graded algebras with polynomial identity', *Israel J. Math.*, submitted.
- [2] Bergman G. M., Isaacs I.M., 'Rings with fixed-point-free group actions', *Proc. London Math. Soc.* **27**, (1973), 69-87.
- [3] Hentzel I.R., 'Nil semi-simple (-1,1) rings', *J. Algebra*, **22**, (1972), 442-450.
- [4] Roomeldi R.E., 'Solvability of (-1,1) nil rings', *Algebra i Logika*, **128**, (1973), 478-489.
- [5] Roomeldi R.E., 'Centers of the free (-1,1) algebra', *Sibirsk. Math. Zhurnal*, **18**, (1977), 861-876.
- [6] Shestakov I.P., 'Prime alternative superalgebras of arbitrary characteristics', *Algebra i Logika* (to appear).
- [7] Shestakov I.P., 'Superalgebras and counterexamples', *Sibirsk. Math. Zhurnal*, **32**, (1991), no. 6, 187-196.
- [8] Smirnov O.N., 'Solvability of alternative Z_2 -graded algebras and alternative superalgebras', *Siberian Math. Zhurnal*, **32**, (1991), 158-163.

DERIVATIONS IN SOME BERNSTEIN ALGEBRAS OF ORDER 2

Raul Andrade-Alicia Labra*

Departamento de Matematicas
Facultad de Ciencias
Universidad de Chile
Casilla 653, Santiago, Chile
and

Ivo Basso

Departamento de Ciencias Básicas
Universidad del Bío-Bío
Campus Chillán,
Casilla 447, Chillán, Chile

Received October 28, 1996

Abstract

The structure of the exceptional and power-associative Bernstein algebras of order 2 have recently been being elucidated. In this paper we show that these two subsets of the Bernstein algebras of order 2 are distinct. We find necessary and sufficient conditions for a linear transformation to be a derivation for both of these classes of Bernstein algebras of order 2. Moreover, we prove some results related to both derivations and Peirce transformations.

*Research partially supported by Fondecyt 1930843-94 and D.T.I. E-3276/9433, Universidad de Chile.

A.M.S. (1991) Subject classification: 17 A 30, 17 D 92.

1 Introduction.

Let A be a commutative not necessarily associative algebra over an infinite field K with $\text{char}(K) \neq 2$. If $w : A \rightarrow K$ is a nonzero algebra homomorphism, then the pair (A, w) is called a *baric algebra* and w its *weight homomorphism*. If the baric algebra (A, w) satisfies the identity $x^{[n+2]} = (w(x)x)^{[n+1]}$, it is called a *Bernstein algebra of order n* , where n is the minimum integer for which the identity holds and $x^{[1]} = x, \dots, x^{[k+1]} = x^{[k]}x^{[k]}, k \geq 1$ are the plenary powers of x (see [8] and [10] for references).

In a Bernstein algebra of order 2 an element of the form $x^{[3]} = w(x)^{-4}x^{[2]}$ with $w(x) \neq 0$ is an idempotent element. In the general case, not even the set of idempotent elements $I_p(A)$ of A is known. In [10] Ouattara characterizes the set of generalized idempotents of a Bernstein algebra of order n , that is, the elements of A such that $e = e^{[k+1]}$ for some $k \geq 2$. In [5] the authors characterize the set of idempotents of a Bernstein algebra of order 2 in some particular cases. In the general case they prove that the set $I = \{(e + u + u^2)^2 \mid u \in U\}$ is contained in the set $I_p(A)$.

Let $e \neq 0$ be an idempotent element and $L_e : \text{Ker}(w) \rightarrow \text{Ker}(w)$ the linear operator defined by $L_e(x) = ex$ for all $x \in \text{Ker}(w)$. L_e satisfies $L_e^2(2L_e - I) = 0$. If we write $\text{Ker}(w) = N$, we have a Peirce decomposition $A = Ke \oplus N = Ke \oplus U \oplus V_2$, where $U = \text{Ker}(2L_e - I)$ and $V_2 = \text{Ker}(L_e^2)$. Moreover, the subspaces U and V_2 satisfy the relation $U^2 \subseteq V_2$ (see [8] and [10] for details).

In the following let A be a Bernstein algebra of order 2.

We say that A is *exceptional* if $U^2 = \{0\}$. It is known that $U^2 = \{0\}$ is independent of the choice of the idempotent element.

It is also known [11] that in these algebras we have, for every $x \in \text{Ker}(w)$

$$e(ex) = 2e(e(ex)). \quad (1)$$

Hence,

$$e(ex) \in U. \quad (2)$$

Relation (1) implies that for every $x \in \text{Ker}(w)$ we have

$$x - 4e(ex) \in V_2. \quad (3)$$

Moreover, for every $u \in U, v \in V_2$ we have

$$u(ev) + e(uv) \in U. \quad (4)$$

Further information about exceptional Bernstein algebras of order 2 can be found in [11].

We say that the algebra A is called a *power-associative algebra* if for all $x \in A$ the subalgebra generated by x is associative.

If $A = Ke \oplus U \oplus V_2$ is the Peirce decomposition of a power-associative Bernstein algebra of order 2, then $eV_2 = \{0\}$, $UV_2 \subseteq U$, $V_2^2 \subseteq V_2$, $V_2^2 \neq \{0\}$ and for every $u, u' \in U, v, v' \in V_2$ we have:

$$u^3 = 0, v^4 = (v^2)^2 = 0, \quad (5)$$

$$u(vv') = (uv)v' + (uv')v, \quad (6)$$

$$v(uu') = (vu)u' + (vu')u. \quad (7)$$

(see [7] for details).

It is known that in Bernstein algebras of order 2, $\dim(U)$ and $\dim(V_2)$ are invariants of A , that is, these dimensions remain unchanged if e is replaced by another idempotent element and the pair $(1 + \dim(U), \dim(V_2))$ is an invariant of A , called *the type of A* .

If A has type $(1+r, t)$ then $\dim(U^2) \leq \frac{1}{2}r(r+1)$, but also $\dim(U^2) \leq t$ because $U^2 \subseteq V_2$. Thus $\dim(U^2) \leq \min\{t, \frac{1}{2}r(r+1)\}$.

Let us consider the following two subsets of the Bernstein algebras of order 2:

$$B_{EX} = \{(A, w) \mid A \text{ is exceptional}\}$$

and

$$B_P = \{(A, w) | A \text{ is power-associative}\}.$$

First, we observe that $B_{EX} \neq B_P$, as the following examples show.

Example 1. Let $A = Ke \oplus \langle u \rangle \oplus \langle v_1, \dots, v_n \rangle$ be a commutative algebra with multiplication given by $e^2 = e$, $eu = ue = \frac{1}{2}u$, $ev_1 = v_1e = v_2$, $v_1^2 = v_2$, all other products being zero. Then A is a Bernstein algebra of order 2 of type $(1+1, n)$. It is exceptional but not power-associative, since by taking $a = e + v_1$, we have $(a^2)^2 = e \neq a^4 = e + v_2$.

Example 2. Let $A = Ke \oplus \langle u_1, u_2 \rangle \oplus \langle v_1, \dots, v_n \rangle$ be a commutative algebra with multiplication given by $e^2 = e$, $eu_i = u_i e = \frac{1}{2}u_i$, $(i = 1, 2)$, $u_1^2 = v_2$, $v_1^2 = v_2$, $u_1 v_1 = u_2$, all other products being zero. Then the elements of A satisfy the identity $(x^2)^2 = w(x)x^3$ that characterizes a power-associative Bernstein algebra of order 2 with $v^3 = 0 \forall v \in V_2$ (see [2], Theorem 2.3). Thus A is an element of B_P , but $A \notin B_{EX}$.

Remark 1. We can observe that even in the case $U = \{0\}$, there do exist exceptional Bernstein algebras of order 2 which are not power-associative. For example, the algebra $A = Ke \oplus \langle v_1, \dots, v_n \rangle$ with multiplication table: $e^2 = e$, $ev_1 = v_1e = v_2$, $v_1^2 = v_2$, all other products being zero is an element of B_{EX} and $A \notin B_P$ since $((e+v_1)^2)^2 = e \neq (e+v_1)^4 = e + v_2$.

2 Derivations

The derivation algebras associated to various non-necessarily associative algebras are well known (e.g. the gametic algebra, the zigotic algebra, Bernstein algebra of order 1, etc). Some interpretations of derivations in genetic algebras are also known (see [6]).

In the following, let $A = Ke \oplus U \oplus V_2$ be a Bernstein algebra of order 2.

A derivation D on A is a linear mapping of A into A such that $D(xy) = D(x)y + xD(y) \quad \forall x, y \in A$ (see [1], [3], [6] and [9] for information on derivations in Bernstein algebras of order 1).

The set $\text{Der}_K(A)$ of derivations of A is a subspace of the vector space $\text{End}_K(A)$ of the linear transformations of A over K . Moreover, $\text{Der}_K(A)$ is a subalgebra of the Lie algebra $\text{End}_K(A)$ and it is called the derivation algebra of the non-associative algebra A .

In this section we give necessary and sufficient conditions for a linear transformation of A to be a derivation for both exceptional Bernstein algebras of order 2 and power-associative Bernstein algebras of order 2.

Recall the sets

$$B_{EX} = \{(A, w) | A \text{ is exceptional}\},$$

and

$$B_P = \{(A, w) | A \text{ is power-associative}\}.$$

Theorem 1 Suppose that A is an element of B_{EX} . Then, each derivation D on A defines a triple (\bar{u}, f, g) , and this triple in fact determines D , where $\bar{u} \in U$, $f \in \text{End}_K(U)$, $g \in \text{End}_K(V_2)$ and for every $u \in U$, $v, v' \in V_2$ we have

- (i) $4f(e(ex)) + g(x - 4e(ex)) = f(u)v + ug(v) + 4\bar{u}(ex) + 4e(\bar{u}x)$ for every $x = uv \in UV_2$,
- (ii) $4f(e(ey)) + g(y - 4e(ey)) = g(v)v' + vg(v') + 4\bar{u}(ey) + 4e(\bar{u}y) - 4v'[\bar{u}(ev) + e(\bar{u}v)] - 4v[\bar{u}(ev') + e(\bar{u}v')]$ for every $y = vv' \in V_2^2$,
- (iii) $g(ev) = eg(v) + v\bar{u} - 4e(e(v\bar{u}))$ for every $v \in V_2$.

Moreover, D is defined by $D(e) = \bar{u}$, $D(u) = f(u)$ for every $u \in U$ and $D(v) = -4[e(v\bar{u}) + (ev)\bar{u}] + g(v)$ for every $v \in V_2$.

Proof: Let D be a derivation on A , then $D(e^2) = 2eD(e)$ and $D(e) \in U$. Let $u \in U$. Then $D(u) = \lambda e + u_1 + v \in A$. Using the definition of $U, U^2 = \{0\}$ and $D \in \text{Der}_K(A)$ we prove that $D(u) = u_1 \in U$. Moreover, since D is a derivation on A , $u_1 = f_D(u)$ where $f_D \in \text{End}_K(U)$. In a similar way, using the fact that for every $v \in V_2$, $e(ev) = 0$, we have

$$e[eD(v)] + e[vD(e)] + [ev]D(e) = 0 \quad (8)$$

Let $D(v) = \beta e + u + v_1$. By using (8) and (4) we can prove that $D(v) = -4[e(vD(e)) + (ev)D(e)] + v_1$. Since $D \in \text{Der}_K(A)$, $v_1 = g_D(v)$ where $g_D \in \text{End}_K(V_2)$. Thus we can prove that $D(v) = -4[e(vD(e)) + (ev)D(e)] + g_D(v)$, for every $v \in V_2$. Using the fact that $D \in \text{Der}_K(A)$, along with the definitions of $D(u)$, and $D(v) \forall u \in U, v \in V_2$, relations (2) and (3), we can prove that $4f_D(e(ex)) + g_D(x - 4e(ex)) = f_D(u)v + ug_D(v) + 4\bar{u}(ex) + 4e(\bar{u}x) \quad \forall x = uv \in UV_2$. Since $D \in \text{Der}_K(A)$ the definitions of $D(u)$, and $D(v) \forall u \in U, v \in V_2$ and relations (2) and (3) imply that $4f_D(e(ey)) + g_D(y - 4e(ey)) = g_D(v)v' + vg_D(v') + 4\bar{u}(ey) + 4e(\bar{u}y) - 4v'[\bar{u}(ev) + e(\bar{u}v)] - 4v[\bar{u}(ev') + e(\bar{u}v')] \quad \forall y = vv' \in V_2^2$. Finally, using (8) and the fact that $ev \in V$ we can prove that $g_D(ev) = eg_D(v) + vD(e) - 4[e(e(vD(e)))] \quad \forall v \in V_2$.

Therefore, the triple $(D(e), f_D, g_D)$ satisfies the conditions (i), (ii) and (iii) of the Theorem.

Conversely, the linear mapping $D : A \rightarrow A$ defined by $D(e) = \bar{u}$, $D(u) = f(u) \quad \forall u \in U$, $D(v) = -4[e(v\bar{u}) + (ev)\bar{u}] + g(v) \quad \forall v \in V_2$ with f and g satisfying the conditions (i), (ii) and (iii) is a derivation on A . Using the definition of D together with (i), we can prove that $D(uv) = ug(v) + vf(u)$ for every $u \in U, v \in V_2$. Similarly, using (ii) we obtain $D(vv') = vD(v') + v'D(v)$ for every $v, v' \in V_2$. Finally, since $ev \in V_2$ for every $v \in V_2$, relation (iii) implies that $D(ev) = eD(v) + vD(e)$ for every $v \in V_2$.

Theorem 2 Suppose that A is an element of B_P . Then, each derivation D of A defines triple (\bar{u}, f, g) , and this triple in fact determines D , where $\bar{u} \in U$, $f \in \text{End}_K(U)$, $g \in \text{End}_K(V_2)$ and for every $u, u' \in U, v, v' \in V_2$ we have

- (a) $f(uv) = f(u)v + ug(v)$,
- (b) $g(uu') = uf(u') + u'f(u)$,
- (c) $g(vv') = vg(v') + v'g(v)$.

Moreover, D is defined by $D(e) = \bar{u}$, $D(u) = f(u) + 2\bar{u}u$ for every $u \in U$ and $D(v) = -2\bar{u}v + g(v)$ for every $v \in V_2$.

Proof: Let D be a derivation on A . Then $D(e^2) = 2eD(e)$ and $D(e) \in U$. Let $u \in U$. Then $D(u) = \lambda e + u_1 + v$ with $\lambda \in K, u_1 \in U$ and $v \in V_2$. Using the fact that $D \in \text{Der}_K(A)$ and the definition of U we can prove that $D(u) = f_D(u) + 2D(e)u$ with $f_D \in \text{End}_K(U)$. In a similar way, using $eV_2 = \{0\}$ and $D \in \text{Der}_K(A)$ we can prove that $D(v) = -2D(e)v + g_D(v)$ for all $v \in V_2$, with $g_D \in \text{End}_K(V_2)$. By using the definition of $D(u)$ and $D(v)$ for every $u \in U, v \in V_2$, the fact that $D(e) \in U$ and relation (c) we have that $f_D(uv) = f_D(u)v + uf_D(v)$ for every $u \in U, v \in V_2$. Similarly, by using the definition of $D(u)$ for all $u \in U$, $U^2 \subseteq V_2$ and Jacobi's identity in U , we can prove that relation (b) holds in A . Finally, using $V_2^2 \subseteq V_2$, the definition of $D(v)$ for all $v \in V_2$ and (b) we have relation (c) of the Theorem. So, the triple $(D(e), f_D, g_D)$ satisfies the conditions of the Theorem.

Conversely, let (\bar{u}, f, g) be a triple satisfying relations (a), (b) and (c), then $D(e) = \bar{u}$, $D(u) = f(u) + 2D(e)u$ for every $u \in U$ and $D(v) = -2D(e)v + g(v)$ for every $v \in V_2$ defines a derivation on A .

Corollary 1 Suppose that A is an element of $B_{EX} \cup B_P$. Then the map $\varphi : \text{Der}_K(A) \rightarrow U \times \text{End}_K(U) \times \text{End}_K(V_2)$ defined by $\varphi(D) = (D(e), f_D, g_D)$ for each $D \in \text{Der}_K(A)$ is a monomorphism of vector spaces. If A is finite dimensional then $\dim(\text{Der}_K(A)) \leq r + r^2 + t^2$ where $r = \dim(U)$, $t = \dim(V_2)$.

Corollary 2 Suppose that A is an element of B_{EX} . Then the maps $f : \text{Der}_K(A) \rightarrow \text{End}_K(U)$ defined by $f(D) = f_D$ and $g : \text{Der}_K(A) \rightarrow \text{End}_K(V_2)$ defined by $g(D) = g_D$ are Lie algebra homomorphisms.

Corollary 3 Let $A = Ke \oplus V_2$. Then $\text{Der}_K(A) \simeq \{D \in \text{Der}_K(V_2) / D(ev) = eD(v), \forall v \in V_2\}$. Moreover, if A is an element of B_P then $\text{Der}_K(A) \simeq \text{Der}_K(V_2)$.

Remark 2. There exist non isomorphic Bernstein algebras of order 2 with isomorphic derivation algebras. In fact, let us consider the following

non isomorphic Bernstein algebras of order 2: $A_{17} = Ke \oplus \langle v_1, v_2, v_3 \rangle$ with multiplication table given by $e^2 = e$, $ev_3 = v_3e = v_1$, $v_1v_3 = v_3v_1 = v_2$, $v_3^2 = v_1$, all other products being zero and $A_{18} = Ke \oplus \langle v_1, v_2, v_3 \rangle$ with multiplication given by $e^2 = e$, $ev_3 = v_3e = v_1$, $v_1v_3 = v_3v_1 = v_1$, $v_3^2 = v_2$, all other products being zero (see [8]). Then for every derivation D of A_i , $i = 17, 18$ we have $D(e) = 0$, $D(v_1) = D(v_2) = 0$ and $D(v_3) = \alpha v_2$ with $\alpha \in K$. Therefore $Der_K(A) \simeq K^*$.

3 Peirce transformations

Let A be an element of B_P and s be an element of U . We denote $e_s = e + s + s^2 \in Ip(A)$ and $K_{e_s} \oplus U_s \oplus V_{2s}$ the Peirce decomposition of A relative to e_s , where $U_s = \{u_s = u + 2su/u \in U\}$ and $V_{2s} = \{v_s = -2sv + v/v \in V_2\}$ are subspaces of A (see [4] and [7] for details).

For every $s \in U$ let us consider the map $\varphi_s : A \rightarrow A$ defined by $\varphi_s = I - 4L_e L_s + 4L_s L_e + 4(L_s L_e)^2$, where $I = id_A$ and L_x is the multiplication by x .

For every $s \in U$ the map φ_s is an automorphism of vector spaces, called a *Peirce transformation* of A . Moreover $\varphi_s(e + u + v) = e_s + u_s + v_s$ for every $u \in U, v \in V_2$.

We remark that the transformation φ_s is not an algebra homomorphism, but this is so in the following case:

Proposition 1 Suppose that A is an element of B_P . Then the following conditions are equivalent:

- (i) $A \in B_{EX}$.
- (ii) For every $s \in U$, $\varphi_s - I$ is a derivation on A .

Proof: (i) \Rightarrow (ii). Let $D = \varphi_s - I$ with $s \in U$, then D is a linear mapping. Since A is exceptional, using the definition of φ_s we have that $D(e) = s$, $D(u) = 0$ and $D(v) = -2sv$ for every $u \in U, v \in V_2$. Moreover, $UV_2 \subseteq U$ and $U^2 = \{0\}$ imply that $D(uv) = uD(v) + vD(u)$ for every $u \in U, v \in V_2$. Since $V^2 \subseteq V_2$, we have that $v_1v_2 \in V_2$ for every $v_1, v_2 \in V_2$. Then,

relation (6) implies that $D(v_1v_2) = -2s(v_1v_2) = -2(sv_1)v_2 - 2(sv_2)v_1 = v_2D(v_1) + v_1D(v_2)$. Finally, it is clear that $D(uu') = uD(u') + u'D(u)$ for every $u, u' \in U$. Therefore $D \in Der_K(A)$.

(ii) \Rightarrow (i). Suppose $\varphi_s - I \in Der_K(A)$, for every $s \in U$. Then Theorem 2. implies that $(\varphi_s - I)(e) \in U$. On the other hand, $\varphi_s(e) = e + s + s^2$. Therefore, $(\varphi_s - I)(e) = s + s^2 \in U$. So $s^2 = 0$ for every $s \in U$ and $U^2 = \{0\}$.

Proposition 2 Suppose $A \in B_P$, D a derivation on A and $I + D$ a Peirce transformation of A . Then $I + D$ is an automorphism of A .

Proof: Let $I + D = \varphi_s$ with $s \in U$ then $\varphi_s - I = D$ and by Proposition 1. φ_s is an algebra automorphism of A .

Remark 3. The converse to Proposition 2. is false. For example, let A be the commutative algebra with basis $\{e, u, v_1, v_2\}$ and multiplication table given by $e^2 = e$, $eu = ue = \frac{1}{2}u$, $u^2 = v_1$, $v_2^2 = v_1$, all other products being zero. Then A is a baric algebra satisfying the identity $(x^2)^2 = w(x)x^3$ that characterizes a power-associative Bernstein algebra of order 2 with $v^3 = 0 \forall v \in V_2$, (see [2], Theorem 2.3). Thus, $A \in B_P$. If we define $d : A \rightarrow A$ by $d(v_2) = v_1$ and all other products being zero, then d is a derivation on A . Moreover $\sigma = I + d$ is an automorphism of A , but $\sigma \neq \varphi_x$ for all $x \in A$, because $\sigma(e) = e$ and $\varphi_{\lambda u}(e) = e + \lambda u + \lambda^2 v_1$, for every $\lambda \in K$.

Corollary 4 Let $A \in B_{EX} \cap B_P$, then $\{\varphi_s - I \mid s \in U\}$ is the trivial Lie subalgebra of $Der_K(A)$.

Proof: Since $U^2 = \{0\}$ we have that $\varphi_s \circ \varphi_{s'} = \varphi_{s+s'}$, for every $s, s' \in U$. Therefore $[\varphi_{s'} - I, \varphi_s - I] = 0$, for every $s, s' \in U$, as desired.

References

- [1] M.T. Alcalde, C. Burgueño, A. Labra, A. Micali, Sur les algèbres de Bernstein. *Proc. of London Math. Soc.* (3) 58 (1989) 51-68.

- [2] R. Andrade, A. Catalán, A. Labra, The identity $(x^2)^2 = w(x)x^3$ in baric algebras. *Non-Associative Algebra and Its Applications*, S. González, Ed., Kluwer Academic Publ. (1994) 12-16.
- [3] S. González, Inner derivations in a Bernstein algebra, *Linear Alg. and App.* 170 (1992) 206-210.
- [4] S. González, C. Martinez, P. Vicente, Power-associative and Jordan 2nd-order Bernstein algebras. *Nova Journal of Algebra and Geometry*. Vol 2, (4)(1994) 367-381.
- [5] S. González, C. Martinez and P. Vicente, *Idempotent elements in a 2nd-order Bernstein algebra*, Comm. in Algebra. N°22 (2) (1994) 595-610.
- [6] Ph. Holgate, The interpretation of derivations in genetic algebras. *Linear Alg. and App.* 85 (1987) 75-79.
- [7] A. Labra, C. Mallol, A. Suazo, A characterization of power-associative Bernstein algebras of order 2. *Nova Journal of Algebra and Geometry*. Vol 3. (1994) 83-96.
- [8] C. Mallol, M. Ouattara, A. Micali, Sur les algèbres de Bernstein IV, *Linear Alg. and App.* 158 (1991) 1-26.
- [9] C. Martinez, Inner derivations in Jordan-Bernstein algebras, *Hadronic Mechanics and Nonpotencial Interactions*, H.C, Myung. Ed., Nova Science Publ. New York, (1992) 217-228.
- [10] M. Ouattara, Sur les algèbres de Bernstein d'Ordre 2, *Linear Alg. and App.* 144 (1991) 29-38.
- [11] P. Vicente, Idempotentes en algèbres de Bernstein de orden 2. Tesis de Doctorado, Universidad de Oviedo, Spain (1992).

EXTENSIONS PONDÉRÉES D'ALGÈBRES

Cristián Mallol

Universidad de la Frontera
Casilla 54-D
Temuco, Chile
cmallol@werken.ufro.cl

Received November 24, 1996

Abstract

Nous construisons des plongements "canoniques", par adjonction d'un élément, d'une algèbre quelconque dans des algèbres pondérées. Nous donnons une description des extensions possibles.

*Subventionné par Fondecyt 1950778 et Didufro 9516