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G = G4 @ G is the Grassmann algebra) is (-1,1) algebra. Similarly as
in [8] we have

Corollary. A (-1,1) superalgebra B = A @ M is solvable iff ils even
component A is solvable. ,
Remark. An example of Shestakov ([7], Example 3) shows that in Z,-
graded (-1,1) algebras solvability does not imply nilpotency: B = A &
M, B® =0 (in particular A® = 0), but B is not nilpotent.
Acknowledgement. The author would like to express his gratitude to
Professor Ivan P.Shestakov for raising the problem and support.
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DERIVATIONS IN SOME BERNSTEIN ALGEBRAS OF
ORDER 2
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Abstract

The structure of the exceptional and power-associative Bernstein al-
gebras of order 2 have recently being elucidated. In this paper we show
that these two subsets of the Bernstein algebras of order 2 are distinct.
We find necessary and sufficient conditions for a linear transformation to
be a derivation for both of these classes of Bernstein algebras of order 2.
Moreover, we prove some results related to both derivations and Peirce
transformations.
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1 Introduction.

Let A be a commutative not necessarily associative algebra over an
infinite field K with char(K) # 2. If w: A — K is a nonzero alge-
bra homomorphism, then the pair (A,w) is called a baric algebra and
w its weight homomorphism. If the baric algebra (A,w) satisfies the
identity z!"*2 = (w(z)z)l**Y, it is called a Bernstein algebra of order
n, where n is the minimum integer for which the identity holds and
) = z ... g+l = gk > 1 are the plenary powers of z (see [8]
and [10] for references).

In a Bernstein algebra of order 2 an element of the form 2Bl =
w(z)~*z! with w(z) # 0 is an idempotent element. In the general case,
not even the set of idempotent elements I,(A) of A is known. In [10]
Ouattara characterizes the set of generalized idempotents of a Bernstein
algebra of order n, that is, the elements of A such that e = el*+1 for
some k > 2. In [5] the authors characterize the set of idempotents of a
Bernstein algebra of order 2 in some particular cases. In the general case
they prove that the set I = {(e+u+u?*)? / u € U} is contained in the
set I,(A).

Let € # 0 be an idempotent element and L. : Ker(w) — Ker(w) the
linear operator defined by Le(z) = ez for all z € Ker(w). L. satisfies
L}(2L.—1) = 0. If we write Ker(w) = N, we have a Peirce decomposition
A=Ke®N = KedU®V,, where U = Ker(2L.—I) and Vo = Ker(L2).
Moreover, the subspaces U and V; satisfy the relation U? C V; (see [§]
and [10] for details).

In the following let A be a Bernstein algebra of order 2.

We say that A is ezceptional if U? = {0}. It is known that U? = {0}
is independent of the choice of the idempotent element.
It is also known[11] that in these algebras we have, for every z €
Ker(w)
e(ez) = 2e(e(ex)). (1)

Hence,
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e(ex) € U. (2)
Relation (1) implies that for every z € Ker(w) we have
T — 4e(ex) € V,. (3)
Moreover, for every u € U, v € V, we have
u(ev) + e(uv) € U. (4)

Further information about exceptional Bernstein algebras of order 2
can be found in [11].

We say that the algebra A is called a power-associative algebra if for
all z € A the subalgebra generated by z is associative.

If A= Ke®U®YV; is the Peirce decomposition of a power-associative
Bernstein algebra of order 2, then eV, = {0}, UV, C U, Vi C VW,
V2 # {0} and for every u, v’ € U, v, v’ € V, we have:

W =0, v =(v?)? =0, (5)
u(vv') = (uv)v' + (wv')v, (6)
v(uu') = (vu)u' + (vu')u (7

(see [7] for details).

It is known that in Bernstein algebras of order 2, dim(U) and dim(V3)
are invariants of A, that is, these dimensions remain inchanged if e is re-
placed by another idempotent element and the pair (1+dim(U), dim(V;))
is an invariant of A, called the type of A.

If A has type (14r,t) then dim(U?) < 1r(r+1), but also dim(U?) < ¢
because U? C V;. Thus dim(U?) < min{t, ir(r + 1)}.

Let us consider the following two subsets of the Bernstein algebras of
order 2:
Bex = {(A,w)|A is ezceptional}




and
Bp = {(A,w)|A is power — associative}.

First, we observe that Bpy # Bp, as the following examples show.

Example 1.- Let A= Ke® < u > ® < vy, -+, > be a commutative
algebra with multiplication given by e? = e, eu = ue = 1u, ev; = vie =
vy, v? = vy, all other products being zero. Then A is a Bernstein algebra
of order 2 of type (1 +1,n). It is exceptional but not power- associative,

since by taking a = e 4+ vy, we have (%)’ =e# a* = e+ v;.

Example 2.- Let A = Ke® < uy,u3 > ® < v1,--+,vn > be a commuta-
tive algebra with multiplication given by €? = e, eu; = u;e = Juy, (i=
1,2), u? = vy, v? = v;, wv; = Uy, all other products being zero. Then
the elements of A satisfy the identity (22)? = w(x)z® that charaterizes a
power-associative Bernstein algebra of order 2 with v® = 0 Vv € V; (see

[2], Theorem 2.3). Thus A is an element of Bp, but A € Bgx.

Remark 1. We can observe that even in the case U = {0}, there do exist
exceptional Bernstein algebras of order 2 which are not power-associative.
For example, the algebra A = Ke® < vy,---,v, > with multiplication
table: e? = e, ev; = vie = vy, v} = vy, all other products being zero is
an element of Bgx and A € Bp since ((e+v1)?)2 = e # (e+v1)* = e+v,.

2 Derivations

The derivation algebras associated to various non-necessarily associa-
tive algebras are well known (e.g. the gametic algebra, the zigotic algebra,
Bernstein algebra of order 1, etc). Some interpretations of derivations in

genetic algebras are also known (see [6]).

In the following, let A = Ke® U & V2 be a Bernstein algebra of order
2.

A derivation D on A is a linear mapping of A into A such that
D(zy) = D(z)y + zD(y) Vz,y € A (see (1], [3], [6] and [9] for infor-
mation on derivations in Bernstein algebras of order 1).
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The set Derg(A) of derivations of A is a subspace of the vector space
Endg (A) of the linear transformations of A over K. Moreover, Derg(A)
is a subalgebra of the Lie algebra Endx(A) and it is called the derivation
algebra of the non-associative algebra A.

In this section we give necessary and sufficient conditions for a linear

transformation of A to be a derivation for both exceptional Bernstein

algebras of order 2 and power-associative Bernstein algebras of order 2.
Recall the sets

Bex = {(A,w)|A is exceptional},

and
Bp = {(A,w)|A is power — associative}.

Theorem 1 Suppose that A is an element of Bgx. Then, each derivation
D on A defines a triple (4, f,g), and this triple in fact determines D,
wherew € U, f € Endy(U), g € Endi(V,) and for everyu € U, v, v' € V,

we have

(i) 4f(e(ex)) + g(z — 4e(ex)) = f(u)v + ug(v) + 4u(ex) + 4e(uz) for
every z = uv € UV,

(it) 4f(e(ey)) + gy — 4e(ey)) = g(v)v' + vg(v') + 4u(ey) + 4e(uy) —
4v'[@(ev) + e(@v)] — 4v[u(ev’) + e(Tv')] for every y = v’ € V2,

(iii) g(ev) = eg(v) + v@ — de(e(v)) for every v € V.

Moreover, D is defined by D(e) = u, D(u) = f(u) for every u € U and
D(v) = —4[e(vu) + (ev)™] + g(v) for every v € V,.

Proof: Let D be a derivation on A, then D(e?) =2eD(e) and D(e) € U.
Let w € U. Then D(u) = Xe + u; + v € A. Using the definition of
U,U? = {0} and D € Derg(A) we prove that D(u) = u, € U. Moreover,
since D is a derivation on A,u; = fp(u) where fp € Endg(U). In a
similar way, using the fact that for every v € V,, e(ev) = 0, we have
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eleD(v)] + e[vD(e)] + [ev]D(e) = 0 (8)

Let D(v) = fe + u + v;. By using (8) and (4) we can prove that D(v) =
—4[e(vD(e))+(ev)D(e)]+v;. Since D € Derg(A), vy = gp(v) where gp €
Endg (Vz). Thus we can prove that D(v) = —4[e(vD(e)) + (ev)D(e)] +
ap(v), for every v € V,. Using the fact that D € Derg(A), along with
the definitions of D(u),and D(v) Yu € U, v € V, relations (2) and (3),
we can prove that 4fp(e(ex)) + gp(z — 4e(ex)) = fp(u)v + ugp(v) +
4u(ezx) + 4e(ur) Vz = uv € UV,. Since D € Derg(A) the definitions
of D(u), andD(v) Vu € U, v € V, and relations (2) and (3) imply that
4fp(e(ey)) + gp(y — de(ey)) = gp(v)v' + vgp(v') + 4u(ey) + 4e(uy) -
4v'[u(ev) + e(uv)] — 4v[u(ev’) + e(wv’)] Vy = vv’ € V2. Finally, using (8)
and the fact that ev € V we can prove that gp(ev) = egp(v) + vD(e) —
4le(e(vD(e)))] Vv € Vs.
Therefore, the triple (D(e), fp,gp) satisfies the conditions (i), (ii) and
(iii) of the Theorem.

Conversely, the linear mapping D : A — A defined by D(e) =
°, D(u) = f(u) Yu € U, D(v) = —4[e(va) + (ev)u] + g(v) Yv € V;
with f and g satisfying the conditions (i), (ii) and (iii) is a derivation
on A. Using the definition of D together with (i), we can prove that
D(uwv) = ug(v) + vf(u) for every u € U, v € V,. Similarly, using (ii)
we obtain D(vv') = vD(v') + v'D(v) for every v,v' € V,. Finally, since
ev € V, for every v € V,, relation (iii) implies that D(ev) = eD(v)+vD(e)
for every v € V,.

Theorem 2 Suppose that A is an element of Bp. Then, each derivation
D of A defines triple (u, f,g), , and this triple in fact determines D,
where u € U, f € Endx(U), g € Endg(V,) and for every u, u' €
U, v, v' € V, we have

(a) f(uwv) = f(u)v+ ug(v),
(b) g(uw') = uf(w') +u'f(u),
(c) g(vv') = vg(v') +v'g(v).
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Moreover, D is defined by D(e) =4, D(u) = f(uw) +2uu for everyu € U
and D(v) = —2uv + g(v) for every v € V,.

Proof: Let D be a derivation on A. Then D(e?) = 2eD(e) and D(e) € U.
Let u € U. Then D(u) = Ae 4+ u; + v with A € K,u; € U and v € Vs.
Using the fact that D € Derg(A) and the definition of U we can prove
that D(u) = fp(u)+2D(e)u with fp € Endg(U). In a similar way, using
eV, = {0} and D € Derg(A) we can prove that D(v) = —2D(e)v+gp(v)
for all v € V3, with gp € Endg(V3). By using the definition of D(u) and
D(v) for every u € U, v € V;, the fact that D(e) € U and relation
(c) we have that fp(uv) = fp(u)v + ufp(v) for every u € U, v € Vj.
Similarly, by using de definition of D(u) for all u € U, U? C V, and
Jacobi’s identity in U, we can prove that relation (b) holds in A. Finally,
using V2 C V,, the definition of D(v) for all v € V; and (b) we have
relation (c) of the Theorem. So, the triple (D(e), fp,gp) satisfies the
conditions of the Theorem.

Conversely, let (u, f,g) be a triple satisfying relations (a), (b) and
(c), then D(e) = uw, D(u) = f(u) + 2D(e)u for every u € U and
D(v) = —2D(e)v + g(v) for every v € V, defines a derivation on A.

Corollary 1 Suppose that A is an element of Bgx U Bp. Then the
map ¢ : Derg(A) — U x Endg(U) x Endg(V,) defined by o(D) =
(D(e), fp,gp) for each D € Derg(A) is a monomorphism of vector
spaces. If A is finite dimensional then dim (Derx(A)) < r + r? + 12
where r = dim(U), t = dim(V3).

Corollary 2 Suppose that A is an element of Bgx. Then the maps
f : Derg(A) — Endg(U) defined by f(D) = fp and g : Derg(A) —
Endy (V,) defined by g(D) = gp are Lie algebra homomorphisms.

Corollary 3 Let A = Ke®V,. Then Derk(A) ~ {D € Derx(V;)/D(ev) =
eD(v), Yv € V;}. Moreover, if A is an element of Bp then Deryg(A) ~
Dery(V3).

Remark 2. There exist non isomorphic Bernstein algebras of order 2
with isomorphic derivation algebras. In fact, let us consider the following
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non isomorphic Bernstein algebras of order 2: A;7 = Ke® < vy, v2,v3 >
with multiplication table given by e? = e, evz = vze = v} VU3 = V3V =
vy, V2 = vy, all other products being zero and A;g = Ke® < vy,v2,v3 >
with multiplication given by e? = e, evs = vze = v1, VU3 = V3V =
v1, vZ = vy, all other products being zero (see [8]). Then for every
derivation D of A;, i = 17,18 we have D(e) =0, D(v;) = D(vy) =0
and D(vs3) = av, with « € K. Therefore Derg(A) >~ K*.

3 Peirce transformations

Let A be an element of Bp and s be an element of U. We denote
es = e+s+s? € Ip(A) and K., ® U, ® V,, the Peirce decomposition
of A relative to e,, where U, = {u, = u + 2su/u € U} and ‘/‘25 = {v, =
—2sv + v/v € V,} are subspaces of A (see [4] and [7] for details).

For every s € U let us consider the map ¢,: A — A deﬁnec% b.y s =
I—4L,L,+4L,L,+4(L,L,)? where I = id, and L, is the multiplication
by z.

’ For every s € U the map ¢, is an automorphism of vector spaces,
called a Peirce transformation of A. Moreover g (e +u+v) = e, +u, +v,
for every u € U,v € V,.

We remark that the transformation ¢, is not an algebra homomor-

phism, but this is so in the following case:

Proposition 1 Suppose that A is an element of Bp. Then the following
conditions are equivalent:

(i) A€ Bgpx.
(i1) For every s € U, v, — I is a derivation on A.

Proof: (i) = (i1). Let D = @,—1 with s € U, then D is a linear mapping.
Since A is exceptional, using the definition of ¢, we have that D(e) =
s, D(u) = 0 and D(v) = —2sv for every u € U,v € V,. Moreover, UV, C
U and U? = {0} imply that D(uv) = uD(v)+vD(u) for every u € U,v €
Va. Since V2 C V,, we have that vyv; € V; for every vy,v; € V5. Then,
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relation (6) implies that D(v,v;) = —25s(vv,) = —2(sv;y)vy — 2(sv2)vy =
vaD(v1) + vy D(v,). Finally, it is clear that D(uv') = uD(u')+ v D(u) for
every u,u’ € U. Therefore D € Derg(A).

(17) = (4). Suppose ¢, — I € Dery(A), for every s € U. Then Theorem
2. implies that (¢, — I)(e) € U. On the other hand, ¢,(e) = e + s + s2.
Therefore, (¢, — I)(e) = s + % € U. So s* = 0 for every s € U and
U? = {0}.

Proposition 2 Suppose A € Bp, D a derivation on A and I + D q
Peirce transformation of A. Then I + D is an automorphism of A.

Proof: Let I + D = ¢, with s € U then ¢, — I = D and by Proposition
1. ¢, is an algebra automorphism of A.

Remark 3. The converse to Proposition 2. is false. For example, let A
be the commutative algebra with basis {e,u,v;,v;} and multiplication
table given by €* = e, eu = ue = lu, u? = v;, v = vy, all other
products being zero. Then A is a baric algebra satisfying the identity
(z%)? = w(z)z? that charaterizes a power-associative Bernstein algebra
of order 2 with v* = 0 Yv € V,, (see [2], Theorem 2.3). Thus, A € Bp.
If we define d: A — A by d(v;) = v; and all other products being zero,
then d is a derivation on A. Moreover o = I + d is an automorphism of
A,but o # ¢, forall z € A, because o(e) = e and py,(e) = e+ Au+ vy,
for every A € K.

Corollary 4 Let A€ BgxNBp, then{ ¢,—1 | s€U } is the trivial
Lie subalgebra of Dery(A).

Proof: Since U? = {0} we have that ¢, 09, = @, for every s,s' € U
Therefore [py — 1,0, — I] =0, for every s, s’ € U, as desired.
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Abstract

Nous construisons des plongements "canoniques",
par adjonction d’un élément, d’une algébre quelconque
dans des algebres pondérées. Nous donnons une de-
scription des extensions possibles.

*Subventionné par Fondecyt 1950778 et Didufro 9516
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