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ABSTRACT 

Now ktudions le lien entre les transformations de Peirce (transport d’kcriture) 
et les automorphismes (transport de structure) d’une algkbre de Bernstein d’ordre 
1. Nous finissons par quelques reflexions sur l’orthogonalitk et sur la “non” 
orthogonalitk en dimension 6. 

1. INTRODUCTION 

Soit K un corps. Une algkbre de Bernstein d’ordre n est la donnbe de 
(A, w) oti A est une K-algkbre et w : A + K une pond&ration non nulle telle 
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que ‘~a: E A on .:z[n+2] = ~(x)2nxln+‘l, oh XI21 = 22 et x[~+ll = (xPl)2. 
Dans ces algebres l’ensemble des idempotents est Ip(A) = {&+ll 1 W(X) 
= 1). Le choix de e E Ip(A) permet la decomposition de Peirce A = Ke 
@ Kerw; si car K # 2, Kerw = U @ V avec U = {u E A 1 eu = ;u} 
et V = {w E A ] L:(w) = 0). C er aines t proprietes verifiees par une 
decomposition ne sont pas forcement retrouvees si on change d’idempotent, 
ainsi, par exemple la notion d’orthogonalite (cf. [2]). 

Les transformations de Peirce (cf. [5]) servent a decrire le passage entre 
deux decompositions et, classiquement, on appelle invariant de structure 
les proprietees stables sous l’action de ces applications. 

La determination du groupe AutK(A) reste un probleme ouvert pour 
n > 1 (cf. [l]). P our n = 0, on sait qu’il est isomorphe au groupe affine 
K”>aGL,(K) (cf. [7] et [8]). 

2. PRBLIMINAIRES 

Soient K un corps, car K # 2,3, A une K-algebre de Bernstein d’ordre 
1, e E Ip(A) et Ke @ U @ V la decomposition de A par rapport a 
l’idempotent e. 

Par la suite, nous aurons besoin des resultats suivants bien connus (cf. 

[I, 4, 91): 

PROPOSITION 2.1. 

(1) UV C U, U2 s V, V2 C U et UV2 = (0). 
(2) x2(xy) = 0 Vx,y E Kerw. 
(3) s(w) + u(w) = 0 VS,U E u, 21 E v. 
(4) (w)” = UV = 0 VU E u, v E v. 
(5) s(u~) + I + t(su) = 0 t/s, U, t E U (identite’ de Jacobi). 

Ces identitb et relations seront constamment utilisees dans les reduc- 
tions des Bgalites, sans en faire mention. Le lecteur fera bien de les avoir 
a tote. 

REMARQUE 2.2. La proposition 2.1 permet d’etablir que II>(A) = {e 
+ s + s2 1 s E U}. On note e, = e + s + s2; il est clair que l’application 
U -+ Ip(A), s + es, est bijective. Si Ke, 69 U, @ V, est la decomposition 
de Peirce relative a e,, on a U, = (21, = u + 2s~. 1 u E U} et V, = {wS 
=v-2(s+s2)v~zlEV}. 

Les transformations de Peirce associees a l’idempotent e, sont les appli- 



BERNSTEIN ALGEBRAS 181 

cations cps : A + A, definies par ‘ps(Xe + u + u) = Xe, + u, + ‘us, X E K (cf. 
[5]). Elles sont lineaires et bijectives. Pour simplifier l’ecriture on notera 
cps(z) = z, [on a, done, (zr + Y/)~ = zs + y, et 5, = 0 ++ 3: = 01. Enfin, 
on note P, l’ensemble des transformations de Peirce qui emergent de la 
decomposition determike par e,, i.e., P, = {~p~,~ 1 u, E Us}. 

On en convient que ea = e, Va = U, VO = V et PO = P. 
Le dictionnaire de passage d’une ecriture & l’autre est: 

PROPOSITION 2.3. 

(1) e = e, - s, + sp. 
(2) u = (u+2s%), -2(su),. 
(3) 2) = 2[(s + s2)7J], + ‘U,. De plus, Vu, t E U, (ut)$ = u,t,. 

DEMONSTRATION. Montrons (2): soient u, s E U. On au = us--2~24 
or, (su)~ = su- 2(s+ s2)(su) = su - 2s(su) = su + s2u (identite de Jacobi) 
et comme (s2u) s = s2u on obtient su = (su)~ - (s2u), d’oh le resultat. 
Quant 8. la derniere affirmation, comme car K # 2 il suffit de voir que 
(I& = u;. w 

RAPPEL 2.3. L’algebre A est orthogonale s’il existe un idempotent 
e telle que U 3 = (0) (cf. [2]); si ceci est un invariant de structure (i.e. 
si U,” = (0) Ifs E U) on dit que A est totalement-orthogonale (ceci est 
equivalent a: U3 = (U”)” = {0}, cf. [3]). De meme, si aucun idempotent 
ne verifie cette propriete on dira que l’algebre est jamais-orthogonale. 

3. AUTOMORPHISMES ET TRANSFORMATIONS DE PEIRCE 

Soit cp E AutK(A); comme cp(e) E Ip(A) il existe s E U tel que cp(e) 
e,. 11 s’ensuit que p(U) = U, et p(V) = V,. Ceci veut dire que cp se 

icompose de faGon unique par ‘p = (ps o j, j : A -+ A lineaire bijective 
telle que j(e) = e. 

De faGon g&kale, pour tout s E U, soit F, l’ensemble defini par F, 
={j=(pt,locpItEU, cp E Auk(A), de,) = (e,)ts ). 

Par convention, on pose FO = F. 11 est immediat que F n P = {Id}. 
Les transformations de Peirce ne sont pas en general multiplicatives, ni 

les ensembles P, stables par composition d’applications. Les resultats qui 
suivent precisent le lien entre ces situations et le sort relativement analogue 
des ensembles P et F. 
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THI?OR~ME 3.1. Les conditions suivantes sont e’quivalentes: (1) P g 
AutK(A); (2) U2 5 Ann(V) et v(vU) = (0) ‘dv E V. 

DEMONSTRATION. (1) =+- (2): Soient s E U et v E V. De cp,(sv) 
= cp,(s)cp,(v) on obtient sv + 2(sv)s = (s + 2s2)[v - 2(s + s2)v] d’oti, 
comme car K # 2, s2v = 0; si u E U, de (s + U)~V = 0 on obtient (su)v = 0. 
Ceci prouve que U2 C Ann(V). Fort de ce resultat, le reste vient facilement 
de l’egalite (ps(v2) = (Pan. L a reciproque se fait sans problemes. ??

TH~OR~ME 3.2. Les conditions suivantes sont e’quivalentes: 

(1) v's E u, P, = P 
(2) us = U(UV) = u2v = (0). 

(3) v’s, t E u, cps O $3 = vs+t~ 
(4) V's, t E U il existe u E U tel que cps 0 (ps = cpU. 

DEMONSTRATION. (1) =+ (2): S oient s, t E U; t, E U,. Par hypothese 
il existe u E U tel que qt, = (pU. 

On a: 

e, + t, + ta = vt, (es) = cpu(es) = h(e + s + s”) 
= e + u + u2 + s + 2s~ + s2 - 2(u + u2)s2. 

Mais, par la proposition 2.3: 

e + 21 + u2 + s + 2su + s2 - 2(u + u2)s2 = e, + (u - 2s2u + 2su2), + uz 

done 

e, + t, + tz = e, + (u - 2s2u + 2.97~~)~ + uf 

d’oti 

t = u - 2s2u + 2su2 et t2 = u2. (4 

En multipliant par s la premiere identite de (a), on obtient st = su d’oh 
s2t = s2u. Ainsi t = u - 2s2t + 2st2, test-a-dire 

u = t + 2s2t - 2st2. (b) 

D’autre part, en appliquant la proposition 2.3 

‘Pt, (s) = ‘Pt, (3s - 24 
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= ss + 2t,s, - 2s; + 4(t, + tf)s$ (c) 
pzL(s) = s +2su = s +2st 

= (s - 2s2t), - 2(s2 - st), (d) 

En comparant les termes de U, dans l’egalite (c) = (d), il en resulte 
2(ts + t:,s; = -(A)& or 2(ts + tz)sf = 2(t + 2st + t2 - 2(s + s2)t2)s2 
= 2(t + t2)s2 et (s2t)S = s2t, done - s2t = 2(t + t2)s2 c’est-a-dire 

3s2t + 2s2t2 = 0 (e) 

Mais s et t jouent un role symetrique (en prenant cps, a la place de pt,) 
done de (e) on obtient 3st2 + 2s2t2 = 0 d’oti 

s2t = st2. ( f 1 

Comme s et t sont arbitraires en changeant s par 2s dans (f) il en resulte 
s2t = st2 = 0 done s2t2 = 0. Ceci montre que U3 = (U2)2 = (0). 11 en 
decoule aussi, par (b), que u = t. Soit v E V; on a: 

‘Pt(&) = cpt(w - 2(s + s2)w) = 2, - 2(t + t2)w - 2(s + s2)w - 4(sw)t (g) 

et, en tenant compte de que U3 = {0}, 

$3, (us) = vs - 2(ts + tf,vs 
= w - 2(s + s2)v - 2(t + 2ts + P)[v - 2(s + s2)w] 

= v - 2(s+ s2)w - 2tv +4t(sv) - 4(ts)v. (h) 

De (9) = (h) obtient 4(ts)w - 2t2v - 8t(sv) = 0 done t(sw) = 0 et 
2(ts)v = t2w. La premiere identite montre que U(UV) = (0) et la seconde, 
s et t &ant quelconques (on prend s = t, par exemple), que U2V = (0). 

Que (2) + (3) s’obtient sans difficult4 an calculant (cps o (pt)(e), (cps o 
cpt)(u) et (cps opt)(w) avec 2~ E U et v E V. 

Montrons (3) + (2): soient ‘u. E U et w E V. De (cps opt)(u) = P~+~(‘~L) 
on a u+ 2su + 2tu - 4(s + s2)(tu) = u + 2(s + t)u ce qui donne 

s(h) + SytU) = 0 (*). 

Si on prend s = t, il en decoule que s2u = 0 done U3 = (U2)2 = (0). De ce 
fait, (*) devient s*(k) = 0, d’oti (U2)2 = (0). Pour finir, de (cps opt)(v) = 
(P~+~(v), on a v - 2(s + s2)v - 2(t + t2)v - 4[(t + t2)w]s = w - 2(s + t + s2 + 
2st + t2)v d’oh (tw)s = (st)w = 0 [ car (tv)sEV et (st)w E U]. Ceci prouve 
que U(UV) = U2V = (0). 
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Quant a (2) + (l), il suffit de montrer que V’s, t E U, pt, = pt. Ceci est 
obtenu sans difficult6 en appliquant pt, et vt sur e, u et V, en tenant compte 
que sous les conditions de l’hypothese, (s2), = s2, (su),su et (SW), = SV. 

Que (3) =+- (4) est immediat. Montrons (4) 3 (3): si cps 09~ = cpu alors 
vk(cpt(e)) = cpu( ) t e en raine que 21 = s + t - 2(s + s2)t2 et u2 = (s + t)2; 
de meme, de cpdcpt(t)) = v%(t), on en deduit que (s + s2)t2 = [(s + s2)t2]t 
done que (s + s2)t2 = 0 d’oti u = s + t. ??

Le theoreme 3.2 nous dit que sous ces conditions l’algebre admet un 
unique ensemble de Peirce, isomorphe au groupe (U, +) par l’application 
s -+ (ps. Mais P n’est pas forcement sous-groupe de AutK(A). Cependant, 

COROLLAIRE 3.3. 

(1) Si A ve’rifie les conditions du the’ortime 3.2 elle est totalement orthog- 
onale. 

(2) Si A est nucle’aire totalement orthogonale, elle satisfait les conditions 
des the’orkmes 3.1 et 3.2. 

DEMONSTRATION. (1): On a U3 = (0) et (V”)” C U2V = (0). 
L’affirmation (2) est aussi immediate. 

On finit ce paragraphe en considerant que A est une algebre vkifiant 
les theoremes 3.1 et 3.2, c’est-a-dire, P est un sous-groupe de Autx(A). 

THI~OR~ME 3.4 

(1) Pour tout s E U, F, est un sous-gwupe de AutK(A), image isomor- 
phique de F par action de int cps. 

(2) P est invariant et AutK(A)/P N F. 
(3) AutK(A) t es asomorphe au produit semi-direct U x F. 

DEMONSTRATION Remarquons d’abord que si f E F et cpS E P, alors 
f 0 cpS = ‘of 0 f done 

cps of = f OcPf-‘(s) (*) : 

il suffit d’appliquer f o cpS et ‘pfcS) 0 f sur e, u E U et v E V. 
Montrons (1): on a F, C AutK(A) car P, = P C AutK(A). De ce fait, 

si g E F, est tel que g(e) = eu alors il existe f E F tel que g = cpu 0 f. Or, 
par definition, g(e,) = e,, c’est-a-dire (cpzl 0 f)(e,) = e, d’oti u = s - f(s). 
Ainsi, g = ‘~~-f(~) of = ~,-~(~)ocpf(-~)of et, par (*), 9 = psof 0~~. Ceci 
veut dire que F, est l’image de F par l’automorphisme interieur associe 8. 
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cps. Enfin, que F est un sous-groupe Aut.y (A) decoule sans problkmes en 
utilisant (*). 

Quant a (2), soit $J E AutK(A); on sait que 1c, = qt 0 g, avec g E F et 
yt E P. On a: $0 cps 0 q-l = (Pt O g O CPS O 9-l O ‘P-t = ‘Pt 0 ‘pCJ(s) 0 ‘P-t = 
ifs(S) ce qui montre que P est invariant. Puis, si cp = pt 0 f et $ = vt 0 g 
alors (po$-l = ‘pvofog-l avec u = s- (fog-‘)(t). Ainsi, si ‘po7+!~-~ E P 
alors f 0 g-l E P et done f = g car F n P = {Id}. C’est-a-dire, les classes 
d’equivalences Mod(P) sont de la forme Pf, done la restriction a F de la 
projection canonique AutK(A) + AutK (A)/P est bijective, ce qui montre 
l’isomorphisme AutK(A)/P ry F. 

En ce qui concerne (3), comme f o cps = ‘pfcs) of, Vf E F et cps E P, 
l’application AutK(A) + U>aF, defmie par cp --i (s,f), oti cp = (ps of, 
etablit l’isomorphisme demande, le produit dans UN F &ant don& par 

(%f)(h!J) = (S+f(t)?f Oil). ??

COROLLAIRE 3.5. Les uJl%mations suivantes sont e’quivalentes: 

(1) POUT tout f E F, fu = Id. 
(2) Pour tout f E F, fIp(A) = Id. 
(3) Pour tout s E U, F, = F. 
(4) F est un sow-groupe invariant. 

Dans ces conditions, AutK(A)/F 2 P. 

4. COMPLEMENTS SUR L’ORTHOGONALITE 

Soient A une algebre de Bernstein d’ordre 1 et Ke@U@V sa decomposition 
de Peirce par rapport a l’idempotent e. 

PROPOSITION 4.1. Les afirmations suivantes sont e’quivalentes: 

(1) I1 existe une de’composition orthogonale de A. 
(2) II existe s E U tel que u, w, t E U, on a u(wt) = -2(su)(wt). 

DEMONSTRATION. 11 existe s E U, U,” = {0} w u,(w,t,) = 0 w 
us(wt)s = 0 (Proposition 2.3), w (u + 2su)[wt - 2(s + s2)(wt)] = 0 H 
u(wt) = -2(su)(wt) (Proposition 2.1). La suite d’equivalences &ant faite 
kL,w,t E u. ??

REMARQUE 4.2. Dans [2] 1 es auteurs montrent que toute algebre de 
Bernstein d’ordre 1 de dimension 5 5 est totalement orthogonale et ils 



186 C. BURGUEI?O AND C. MALLOL 

exhibent un exemple d’une algebre Ab parametrisee de dimension 6, Ab = 
Ke CB U CB V telle que U3 # (0). Les produits non nuls dans U @ V &ant: 
I&T = 211, 211zL3 = ‘u2, U1212 = -it&z, ?hi = (b2/4)Wr + b212, U3211 = 212, U3W2 = 

(b/4)u2. Ces algebres sont nucleaires (i.e. V = U2) et U(UV) = (0); les 
conditions du theoreme 3.1 sont verifiees, mais pas celles du theoreme 3.2 
car U3 # (0). Nous avons ici un exemple ou P n’est pas un groupe mais 
il est contenu dans AutK(A). De ce fait, U,” # (0) t/s E U; il s’agit done 
d’algbbres jamais-orthogonales. Par ailleurs, de la methode utilisee par les 
auteurs decoule que celles-ci sont toutes les algebres jamais-orthogonales 
en dimension 6. Cette famille peut se reduire & deux cas: A0 et Al. En 
effet, si b # 0, il suffit de changer 2~2 par (l/b)r~, 2~3 par (l/b)ug et 212 par 
(llbb2. 

Nous remercions les commentaires et conseils du Referee; ils nous ont 
e’te’ plus qu ‘zLtiles. 
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