NORTH-HOLLAND

Morphismes de Peirce et Orthogonalité Dans
les Algébres de Bernstein*

C. Burgueno

Departamento de Matemdticas y Estadistica
Facultad de Ingeneria

Universidad de la Frontera

Casilla 54-D

Temuco, Chile

and

C. Mallol

Département de Mathématiques et Informatique Appliquées
Université de Montpellier 11T
BP 5043 34032, Cedex 1, France

Submitted by Richard A. Brualdi

ABSTRACT

Nous étudions le lien entre les transformations de Peirce (transport d’écriture)
et les automorphismes (transport de structure) d’une algébre de Bernstein d’ordre
1. Nous finissons par quelques réflexions sur l'orthogonalité et sur la “non”
orthogonalité en dimension 6.

1. INTRODUCTION

Soit K un corps. Une algébre de Bernstein d’ordre n est la donnée de
(A,w) ou A est une K-algébre et w : A — K une ponderation non nulle telle
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que Yz € A on a: 2" = u(z)2 2Pt ot 2l = 22 et b+l = (g2,
Dans ces algebres 'ensemble des idempotents est Ip(A4) = {z[**1 | w(z)
= 1}. Le choix de e € Ip(A) permet la décomposition de Peirce A = Ke
@ Kerw; si carK # 2, Kerw = U @ V avec U = {u € A | eu = 1u}
et V= {v e A]| L?v) = 0}. Certaines propriétés vérifiées par une
décomposition ne sont pas forcément retrouvées si on change d’idempotent,
ainsi, par exemple la notion d’orthogonalité (cf. [2]).

Les transformations de Peirce (cf. [5]) servent & décrire le passage entre
deux décompositions et, classiquement, on appelle invariant de structure
les propriétées stables sous ’action de ces applications.

La détermination du groupe Autg(A) reste un probléeme ouvert pour
n > 1 (cf. [1]). Pour n = 0, on sait qu’il est isomorphe au groupe affine
K"xGL,(K) (cf. [7] et [8]).

2. PRELIMINAIRES

Soient K un corps, car K # 2,3, A une K-algébre de Bernstein d’ordre
1, e € Ip(A) et Ke @ U & V la décomposition de A par rapport a
I'idempotent e.

Par la suite, nous aurons besoin des résultats suivants bien connus (cf.
[1, 4, 9]):

ProPoSITION 2.1.

(1) UVCUU?CV, VECUet UV?={0}.

(2) z%(zy) =0 Vz,y € Kerw.

(3) s(uv) +u(sv) =0Vs,uclU, veV

4) (w)i=v??=0VYuel, veV

(5) s(ut) + u(ts) +t(su) =0 Vs,u,t € U (identité de Jacobi).

Ces identités et relations seront constamment utilisées dans les réduc-

tions des égalités, sans en faire mention. Le lecteur fera bien de les avoir
a coté.

REMARQUE 2.2. La proposition 2.1 permet d’établir que Ip(A) = {e
+5+4s%| s € U}. On note e; = e + s + s?%; il est clair que I’application
U — Ip(A),s — e, est bijective. Si Ke, @ U, @ V; est la décomposition
de Peirce relative & e;, on a Uy = {us = u+2su | u € U} et V, = {v,
=v-2(s+s*)v|veV}

Les transformations de Peirce associées a I'idempotent e, sont les appli-
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cations ¢, : A — A, définies par g (Ae +u+v) = Aes +us +vs, A € K (cf.
[5]). Elles sont linéaires et bijectives. Pour simplifier I'écriture on notera
@s(r) = x5 [on a, donc, (z + y)s = T5 + ys et , = 0 & = = 0]. Enfin,
on note P, l'ensemble des transformations de Peirce qui émergent de la
décomposition déterminée par e, i.e., Py = {@y,, | us € Us}.

On en convient que eg = e, Uy =U,Vy =V et Py = P.
Le dictionnaire de passage d’une écriture a Pautre est:

PRrROPOSITION 2.3.

(1) e = e, — 85 + 52
(2) u=(u+2su)s — 2(su)s.
(3) v =2[(s + 8%)v]s +vs. De plus, Vu,t € U, (ut)s = usts.

DEMONSTRATION. Montrons (2):  soient u,s € U. Onau = us;—2su,
or, (su)s = su~2(s+s%)(su) = su—~2s(su) = su+ su (identité de Jacobi)
et comme (s2u); = s%u on obtient su = (su), — (s?u); d’ou le résultat.
Quant & la derniére affirmation, comme car K # 2 il suffit de voir que
(u?)s = ul. [

RAPPEL 2.3. L’algébre A est orthogonale §'il existe un idempotent
e telle que U® = {0} (cf. [2]); si ceci est un invariant de structure (i.e.
si U3 = {0} Vs € U) on dit que A est totalement-orthogonale (ceci est
équivalent a: U® = (U?)% = {0}, cf. [3]). De méme, si aucun idempotent
ne vérifie cette propriété on dira que I'algebre est jamais-orthogonale.

3. AUTOMORPHISMES ET TRANSFORMATIONS DE PEIRCE

Soit ¢ € Autg(A); comme @(e) € Ip(A) il existe s € U tel que p(e)
= e5. Il s’ensuit que w(U) = Us et p(V) = V,. Ceci veut dire que ¢ se
décompose de fagon unique par ¢ = @ o0 f, f : A — A linéaire bijective
telle que f(e) =e.

De fagon générale, pour tout s € U, soit F; 'ensemble défini par F,
—{f=wilop|teU, pe Autk(A),ple) = (e)r.}.

Par convention, on pose Fy = F. 1l est immédiat que F'n P = {Id}.

Les transformations de Peirce ne sont pas en général multiplicatives, ni
les ensembles P, stables par composition d’applications. Les résultats qui
suivent précisent le lien entre ces situations et le sort relativement analogue
des ensembles P et F.
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THEOREME 3.1. Les conditions suivantes sont équivalentes: (1) P C
Autg(A4); (2) U? C Ann(V) et v(vU) = {0} Vv € V.

DEMONSTRATION. (1) = (2): Soient s € U et v € V. De y,(sv)
= ps(s)ps(v) on obtient sv + 2(sv)s = (s + 2s%)[v — 2(s + s?)v] d’oiy,
comme car K # 2,s%v = 0; siu € U, de (s+u)?v = 0 on obtient (su)v = 0.
Ceci prouve que U2 C Ann(V). Fort de ce résultat, le reste vient facilement
de D'égalite ©s(v?) = @,(v)2. La réciproque se fait sans problémes. [}

THEOREME 3.2. Les conditions suivantes sont équivalentes:

(1)\7’seUP P
(2) U*=UWV)=UV ={0}.
(3) Vs, tEU Ps 0Py = Pyiy.
(4) Vs, t € U il existe u € U tel que @5 0 @0, = ©y.

DEMONSTRATION. (1) = (2): Soient s,t € U; t, € U,. Par hypothése
il existe u € U tel que @y, = .
On a:

es+ts +t2 = ¢ (e5) = pu(es) = pule+ s+ s?)
= e+ u+u’+s+2su+s?-2u+u?)s

Mais, par la proposition 2.3:

e+ u+u?+s42su+s?—2u+u?)s® = e, + (u—252u + 2su?), + u?

donc
2 2 2 2
es +ts + 15 =es + (u— 2s“u + 2s5u°), + us
d’on
t=u—2s%u+2su? et t?=102 (a)

En multipliant par s la premiére identité de (a), on obtient st = su d’olt
8%t = s?u. Ainsi t = u — 252t + 2st2, cest-a-dire

u =t + 2s% — 2st?. (b)

D’autre part, en appliquant la proposition 2.3

1. (8) = @1, (ss — 253)
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= 544 255, — 252 + 4t + t2)s2; (c)
puls) = s+ 2su=s+2st
= (5 —25%t), — 2(s® — st)s (d)

En comparant les termes de U dans 1'égalite (c) = (d), il en résulte
2t, + t2)s2 = —(s%t)s; or 2(ts +t2)s2 = 2(t + 2st + 12 — 2(s + s2)t?)s?
= 2(t + t%)s? et (s%t), = s, donc — st = 2(t + t2)s? c’est-d-dire

382t +25%2 = 0 (e)

Mais s et t jouent un rdle symétrique (en prénant w;, a la place de ¢, )
donc de (e) on obtient 3st? + 2s%*t2 = 0 d’ou

§%t = st. (f)

Comme s et t sont arbitraires en changeant s par 2s dans (f) il en résulte
s%t = st? = 0 donc s?t? = 0. Ceci montre que U® = (U?)2 = {0}. Il en
découle aussi, par (b), que u =¢. Soit ve V; on a:

@i (vs) = @e(v — 2(s + %)) = v — 2(t + t2)v — 2(s + s%)v — 4(sv)t  (g)
et, en tenant compte de que U® = {0},

er,(vs) = vs —2(ts + tf)vs
= v—2(s+ 8% —2(t + 2ts + tH)[v — 2(s + s*)v]
= v—2(s+ 8%)v — 2tv + 4t(sv) — 4(ts)v. (h)

De (g) = (h) obtient 4(ts)v — 2t%v — 8t(sv) = 0 donc t(sv) = 0 et
2(ts)v = t?v. La premiére identité montre que U(UV) = {0} et la seconde,
s et ¢ étant quelconques (on prend s = ¢, par exemple), que U%V = {0}.

Que (2) = (3) s'obtient sans difficulté an calculant (i, o ¢;)(e), (vs ©
w)(u) et (psop)(v) avecu e Uetve V.

Montrons (3) = (2): soient u ¢ Uet v € V. De (ps0@)(u) = @s+¢(w)
on a u + 2su + 2tu — 4(s + s2)(tu) = u + 2(s + t)u ce qui donne

s(tu) + s%(tu) = 0 (x).

Si on prend s = t, il en découle que s?u = 0 donc U3 = (U?)% = {0}. De ce
fait, () devient s2(tu) = 0, d’ott (U?)2 = {0}. Pour finir, de (5 o) (v) =
spt(v),onav—2(s+ v -2+t -4t +t2)v|]s=v—-2(s+t+ s+
2st + t2)v d’ou (tv)s = (st)v = 0 [car (tv)se V et (st)v € U]. Ceci prouve
que U(UV) = U?V = {0}.
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Quant a (2) = (1), il suffit de montrer que Vs,t € U, ¢;, = ;. Ceci est
obtenu sans difficulté en appliquant ¢, et @; sur e, u et v, en tenant compte
que sous les conditions de ’hypothése, (s?); = s2, (su)ssu et (sv); = sv.

Que (3) = (4) est immédiat. Montrons (4) = (3): si ;0@ = ¢, alors
@s(pi(e)) = pu(e) entraine que u = s+t — 2(s + s2)t2 et u? = (s + t)%
de méme, de @, (p:(t)) = pu(t), on en déduit que (s + s%)t? = [(s + s2)t2]t
donc que (s + s2)t2 =0 d’olt u = s + ¢t. |

Le théoréme 3.2 nous dit que sous ces conditions P'algébre admet un
unique ensemble de Peirce, isomorphe au groupe (U, +) par I'application
s — 5. Mais P n’est pas forcément sous-groupe de Autg(A). Cependant,

COROLLAIRE 3.3.

(1) Si A vérifie les conditions du théoréme 3.2 elle est totalement orthog-
onale.

(2) Si A est nucléaire totalement orthogonale, elle satisfait les conditions
des théorémes 3.1 et 3.2,

DEMONSTRATION. (1): On a U3 = {0} et (U%)2 C U?V = {0}.
L’affirmation (2) est aussi immédiate.

On finit ce paragraphe en considérant que A est une algebre vérifiant
les théorgmes 3.1 et 3.2, c’est-a-dire, P est un sous-groupe de Autg(A).

THEOREME 3.4

(1) Pour tout s € U, Fy est un sous-groupe de Autg (A), image isomor-
phique de F' par action de int ¢,.

(2) P est invariant et Autg(A)/P ~ F.

(3) Autg(A) est isomorphe au produit semi-direct UxF.

DEMONSTRATION Remarquons d’abord que si f € F et @, € P, alors
fows =wgssyof donc

psof=fopr (¥):

il suffit d’appliquer fows et g o fsure,ucUetve V.

Montrons (1): on a Fy C Autg(A) car P, = P C Autg(A). De ce fait,
si g € F, est tel que g(e) = e, alors il existe f € F tel que g = ¢, o f. Or,
par définition, g(e;) = es, c’est-a-dire (py, o f)(es) = e; Aot u = s — f(3).
Ainsi, g = Ps—f(s) of = ‘ps—f(s)ogpf(—s)of et, par (*)a 9= ‘psofo(p—s- Ceci
veut dire que F; est 'image de F' par 'automorphisme interieur associé a
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vs. Enfin, que F' est un sous-groupe Autg(A) découle sans problémes en
utilisant ().

Quant & (2), soit ¢ € Autx(A); on sait que ¥ = pr0g, avec g € F et
pr€P. Ona:gpopop™ =pogop,097 0p 1 = 0@y 00t =
©g(s) ce qui montre que P est invariant. Puis,sip =p,ofet v =gs0g
alors poyp™! =g, o0fog lavecu = s—(fog!)(t). Ainsi,si poyp~l € P
alors fog™! € P et donc f = g car FN P = {Id}. C’est-a-dire, les classes
d’équivalences Mod(P) sont de la forme Pf, donc la restriction a F de la
projection canonique Autg (A) — Autg(A)/P est bijective, ce qui montre
'isomorphisme Autg(A)/P ~ F.

En ce qui concerne (3), comme fo g, = ps 0 f, Vfe Fetyp, €P,
Papplication Autg(4) — UxF, définie par ¢ — (s,f), ol ¢ = g0 f,
établit I'isomorphisme demandé, le produit dans UxF étant donné par

(s, /)t.g) = (s + f(£), fog). m
COROLLAIRE 3.5. Les affirmations suivantes sont €quivalentes:

(1) Pour tout f € F, fu = Id.

(2) Pour tout f € F, fipa) = Id.
(3) Pour tout se U, Fy=F.

(4) F est un sous-groupe invariant.

Dans ces conditions, Autg(A)/F ~ P.

4. COMPLEMENTS SUR L ORTHOGONALITE

Soient A une algebre de Bernstein d’ordre 1 et Ke®U @V sa décomposition
de Peirce par rapport a I'idempotent e.

PROPOSITION 4.1. Les affirmations suivantes sont équivalentes:

(1) Il existe une décomposition orthogonale de A.
(2) Il existe s € U tel que u, w, t € U, on a u(wt) = —2(su)(wt).

DEMONSTRATION. Il existe s € U, U2 = {0} & u,(wsts) =0 &
us(wt)s = 0 (Proposition 2.3), & (u + 2su){wt — 2(s + s?)(wt)] = 0 &
u(wt) = —2(su){wt) (Proposition 2.1). La suite d’équivalences étant faite
Vu,w,t € U. |

REMARQUE 4.2. Dans [2] les auteurs montrent que toute algébre de
Bernstein d’ordre 1 de dimension < 5 est totalement orthogonale et ils
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exhibent un exemple d’une algébre A, paramétrisée de dimension 6, Ay =
Ke®U @V telle que U3 # {0}. Les produits non nuls dans U @ V étant:
uf = v1, uruz = va, WV = —Jug, u3 = (b2/4)vy + bua, ugvy = ug, uzvy =
(b/4)ua. Ces algebres sont nucléaires (ie. V = U?) et U{UV) = {0}; les
conditions du théoreme 3.1 sont vérifiées, mais pas celles du théoréme 3.2
car U3 # {0}. Nous avons ici un exemple ol P n’est pas un groupe mais
il est contenu dans Autg(A). De ce fait, U? # {0} Vs € U; il s’agit donc
d’algebres jamais-orthogonales. Par ailleurs, de la méthode utilisée par les
auteurs découle que celles-ci sont toutes les algébres jamais-orthogonales
en dimension 6. Cette famille peut se réduire a4 deux cas: Ag et A;. En
effet, si b # 0, il suffit de changer us par (1/b)ug, ug par (1/b)us et vy par
(l/b)vz.

Nous remercions les commentaires et conseils du Referee; ils nous ont
été plus qu’utiles.
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