
LOW DIMENSIONAL BERNSTEIN-JORDAN ALGEBRAS

TERESA CORTES AND FERNANDO MONTANER

0. Introduction

Bernstein algebras were introduced by Holgate [5] as an algebraic formulation of
the problem of classifying the stationary evolution operators in genetics (see [7]).
Since then, many authors have contributed to the study of these algebras, and there
is a fairly extensive bibliography on the subject. Known results include classification
theorems for some types of Bernstein algebras (for instance, Bernstein algebras of
dimension less than or equal to four, see [10, 8, 2]) as well as some other structural
results (see for instance [1, 5, 9, 4]).

In [3], the authors suggested an approach to the study of the structure of Bernstein
algebras through two main ideas: direct products and the related concepts of
decomposability and indecomposability, and the reduction of the general problem to
the study of Bernstein-Jordan algebras. The procedure depended on getting what was
called a reduced Bernstein algebra (which is, in particular, a Jordan algebra), and on
the description of the indecomposable factors of the algebra so obtained. In this paper
we use these ideas to classify Bernstein-Jordan algebras of low dimension. Thus, in
Section 3 we describe reduced Bernstein algebras of dimension less than or equal to
5 through their indecomposable factors. We use this information in Section 4 to
recover all Bernstein-Jordan algebras of dimension less than or equal to 5 by gluing
together reduced algebras and the trivial ideal that, when factored out, creates
reduced algebras. After a Section 1 of preliminaries, where we collect several known
facts about Bernstein algebras which will be used later, we devote Section 2 to proving
some technical lemmas which will ease the computations of Section 3.

1. Preliminaries

Throughout this paper O will denote an infinite field of characteristic not two.
A finite dimensional commutative algebra A over the field Q> together with a

homomorphism of algebras (weight homomorphism) co: A -> <I> is called a Bernstein
algebra if every xeA satisfies (JC2)2 = CO(JC)2JC2.

Next we recall some known results that can be found in [10].
For any Bernstein algebra A, the weight homomorphism is uniquely determined.
Each Bernstein algebra possesses at least one idempotent, and to each idempotent

eeA is associated a Peirce decomposition A = <be+Ue+ Ve, where

Ue = {xeA\ lex = x} and Ve~{xeA\ex = 0},

and Ker co = Ue + Ue. The Peirce subspaces multiply according to
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The set of idempotent elements of A is given by 1(̂ 4) = {e + a + a2\ae Ue}, where
e is any given idempotent of A. For two idempotents e and /= e + cr + a2, we have the
following relations between the corresponding Peirce spaces Uf = {u + 2au\ueUe}
and Vf = {v — 2v((j + a2) \ v e Ve}. This shows that the numbers dim Ue and dim Ve do
not depend on the idempotent e. The pair (dim Ue+ 1, dim Ve) is called the type of A.

Also we have the following identities which hold in any Bernstein algebra:

(1) (xy)(zt) + (xz)(yt) + (xt)(yz) = 0 for any x, y, z, teKerco,
(2) u1(u2v) + u2(u1v) = 0,
(3) u3 = 0, and its linearization ux{ui u3) + u2(u3 ut) + uz{u± u2) = 0,
(4) u\uv) = 0, for any u, ult u2, u3e Ue, and any ue Ve.

If we have that the algebra A is in fact a Jordan algebra, we also know that V2 = 0
for any idempotent e and as a consequence [1]:

(5) (uVi) v2 + (uv2) v1 = 0 for any u e Ue and auy vlt v2 e Ve.

In this case, the Peirce subspaces with respect to idempotents e, / , related by
/ = e + a + cr2 with ae Ue, satisfy

Uf = {u + 2au\ueUe} and Vf = {v-2av\veVe}.

Finally we recall the concepts on which will be based the study we shall carry out
in the following sections; they can be found in [3].

Let (A^co^tej be a family of Bernstein algebras. We consider in flie/^i the set

X(6/(v4(,a)t) = {(xjeflie/^l^ifo) = w;(*;) f o r a11 ' J e / } .

It is possible to define a weight homomorphism on XieI(At, cot) by setting
&>((*<)) — ^(X) which clearly is independent of the index /. Then it is straightforward
to prove that ( xieI(At, co^, co) is a Bernstein algebra which is the direct product of the
family under consideration.

A Bernstein algebra is called decomposable if it is isomorphic to the direct product
of at least two Bernstein algebras none of them isomorphic to the ground field.
Otherwise, it is called indecomposable. Any finite-dimensional Bernstein algebra is a
direct product of indecomposable Bernstein algebras. On the other hand it is known
[3, Lemma 2.3] that a Bernstein algebra is decomposable if and only if Keico is a
direct sum of two nonzero ideals of the algebra.

In any Bernstein algebra A the intersection of all the subspaces Ue, with e e 1(̂ 4),
is an ideal of A denoted by U0(A). For any eel(A) it is readily shown that
Uo(A) = {ueUe\uUe = 0}. A Bernstein algebra A for which U0(A) = 0 is called
reduced. A reduced algebra is always a Jordan algebra. Reduced algebras are easily
obtained because for any algebra A, the quotient algebra A/U0(A) turns out to be
reduced.

2. Technical lemmas

In this section we prove some facts which will allow us to simplify the description
of Bernstein-Jordan algebras. The central result Lemma 2.2 imposes restrictions on
the dimension of a Bernstein algebra for which some strings of products do not
quickly reach zero. In particular, for low dimensional algebras this forces
orthogonality of the subspaces Ue and Ve of the Peirce decomposition attached to the
idempotent e.
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Define the subspaces H] = Ue Ve, H
k = Hk~xVe for k ^ 2. We first show that the

least index k for which H * = 0 does not depend on the choice of the idempotent e.

LEMMA 2.1. Let A be a Bernstein algebra which is a Jordan algebra and let
e,fel(A) be related byf=e + a + a2 with ae Ue. Then H) £ Hk + Hka + Hka2 and
in particular, Hk = 0 if and only if H) = 0.

Proof. We will carry out an induction on k.
The subspace H) = UfVf is generated as a vector space by the products u'v' with

u'eUf and u'e Vf. Put u' = u + 2au with UEUe and v' = v — lav with ve Ve. We have

u'v' = uv + 2(au) v - 2{av) U - A{au) (av) = uv + 2(uv) a + 2{uv) a2 e H] + H] a + H\ a2,

since (ou)ve U2
e Ve £ V\ = 0, -{av)u = {uv)a by (2), and -2{<JU)(av) = (uv)a2

by (1).
Now if the result holds up to the exponent k, then

Hk+1 = H* Vf £ (Hk + Hka + Hka2)(Ve+ Vea).

Performing the products we obtain the following:

Hk
eVe = Hk+\ (Hka)Ve^U2

eVe^V2
e=0,

(Hk
e a

2) Ve = (Hk Ve) a2 = Hk+1 a2 by (5),

Hk(Vea) = a(VeH
k) = Hk+1a by (2),

(Hka2)(Vea) E ({aVe)a
2)Hk = 0 by (2) and (4).

In the next result we show that the characteristic number k so attached to the
algebra A provides a lower bound for the dimension of the subspaces Ue.

LEMMA 2.2. Let Abe a reduced Bernstein algebra. IfHk # Ofor some idempotent
e and some k = 1 or 2 (mod 4), then dim Ue ^ 2*+1.

Proof. Fix an idempotent e in A and consider elements u,zeUe and vlt..., vp e Ve.
We shall make use of the following properties of the expression

(a) We have h(u, vlt..., vp) z = (— l)p h(z, vp,..., vx) u. Indeed, for p = 1 this is just
(2) and by induction:

h(u, Vlt ..., Vp) Z = /l((.. .((MUi) V2) ...) Vp_x,Vp) Z

= -h(z, vp) ((.. .((uvj v2)...) vp_x) = -(zvp)h(u, v13..., yp_i)
= -(-\y-1h(zvp,vp_1,...,v1)u = (-\)ph(z,vp,...,v1)u.

(b) We have h(u,v1,...,vp) = (-\fi«anh(u,vna),...,vn(p)) for any permutation
neSp, since H\ £ Ue, and any t, so we can apply (5) successively. In particular,
h(u, vx, ...,vp)vi = Q, for any 1 ^ i ^p.

(c) From (a) and (b) we obtain h(u,vx, ...,vp)z = (-\)p(p+l)l2h(z,vx,...,vp)u, so
that in particular when k = 1 or 2 (mod4) this makes h(u,vx, ...,vk)u = 0.
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Now, since we have Hk ^ 0, we can take elements ueUe, v1,...,vkeVe such that
h(u,v1,...,vlc)^0. Since A is reduced there exists some zeUe such that
h(u,vx, ...,vk)z ^ 0 and so h{z,vx, ...,vk)u ^ 0 by the former considerations. We set

for 1 ̂  ix < ... < it ^ k. Next we show that these are linearly independent elements
in Ue. Assume that there exists ko,no,X{ t, nt ...<(eO for 1 ̂  il < ... < it ^ k, such
that x '

V L t ut t +y\Mi i zi i = 0.

Successively multiplying this expression by vx, ...,vk and applying (b) we obtain

Aoh(u,vlt ...,vk)+fioh(z,vlt ...,vk) = 0.

Next multiplying this expression by u we get, using (c), noh{z,vv ...,vk)u = 0,
which implies that /J.O = 0 and A0/i(w, vx, ...,vk) = 0, hence /l0 = 0.

We give a partial order to the set of indexes {i1...it\l ^ i1 < ... < it ^ k) setting
/, ... /( ^ i1... it if either / < / or t = I and the inequality holds in the lexicographical
order. Now suppose that ix... im is the least index for which either A( . . . ( m ^ 0 or
/ V . i m # 0 . Multiplying the expression £ Kl...it\...it + Ydl

iil...<t
zil...i~= ° b y

vh, ...v)k_m, where {iv ..., ij U {j\,... J f c _ J = {1, ...,k} and applying (b) we obtain

Next multiplying this expression by u we get by (c) //t , h{z,vx, ...,vk)u = 0,
which implies jut t = 0 and L t h(u, v,,..., vk) = 0, hence L t = 0, thus giving

r rl\---lm li--'lm K l K/ l l - - l l m a °

a contradiction and proving that the elements u{ ( , z ( ( are linearly independent.
Since there are 2k+1 of them, the result holds.

Finally we include here two more results which will be used in the next section
when we study reduced algebras.

LEMMA 2.3. Let A be a reduced indecomposable Bernstein algebra. If for some
idempotent e of A we have Ue^0 and Ue Ve = 0, then U\ = Ve.

Proof. Set Ve = U] + S a direct sum of vector spaces. Then clearly S and Ue+Ul
are ideals of A and their sum composes Kerco. Since A is indecomposable, that means
that S = 0 or Ue = 0.

LEMMA 2.4. Let Ax, A% be two Bernstein algebras. Then, AxxA2 is reduced if and
only if Ax and A2 are reduced.

3. Low dimensional reduced Bernstein algebras

In what follows O will be an algebraically closed field of characteristic not 2.
This section is devoted to the classification of reduced algebras of dimension less

than or equal to 5. Following the approach of [3] we start with a description of
indecomposable reduced algebras.

Bernstein algebras of dimension less than or equal to 4 which satisfy these
conditions are easily obtained from the known classifications [10, 2] together with [3].
These algebras are

Ao = <&e, A2 = <&(e, u, v) with u2 = v,

Al = <J>(e,v), A3 = O<(?, M15 u2, v)

rcuuccu.

2. Technical lemmas

In this section we prove some facts which will allow us to simplify the description
of Bernstein-Jordan algebras. The central result Lemma 2.2 imposes restrictions on
the dimension of a Bernstein algebra for which some strings of products do not
quickly reach zero. In particular, for low dimensional algebras this forces
orthogonality of the subspaces Ue and Ve of the Peirce decomposition attached to the
idempotent e.
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where e is an idempotent and u, ux, u2e Ue, ve Ve, and all other products are equal to
zero.

With respect to 5-dimensional algebras, note first that if UeVe # 0, by Lemma
2.2 we have d i m £ / e ^ 4 . Hence C/g = Kera> and U\ — 0, contradicting the
indecomposability of A. Thus UeVe = 0 and since A is reduced and indecomposable,
Lemma 2.3 implies that Ue = 0 or U\ = Ve. Now we consider separately each of the
possible types of a 5-dimensional algebra.

Type (1, 4): the only possibility is A = Oe+ Ve with V\ = 0, which is clearly
decomposable.

Type (2,3): in any Peirce decomposition we have dim Ue = 1, hence dim U\ < 1,
and since dim Ve = 3, we cannot have U2 = Ve. Thus there are no indecomposable
reduced algebras of this type.

Type (3,2): write A = Oe+ Ue+ Ve. Since U\ = Fe, there exists some ue Ue with
«2 # 0. Pick u1} an element satisfying these conditions and put v1 = u\ and
Ue = <X><uls w2). We consider two cases.

Case 1: {w2, w2,} are linearly dependent so that u\ = Xvl with Ae<X> and
Ve=U2

e = <I><ylsy2> with u2 = u^^
If A = 0, this algebra is obviously reduced. Now let us show that it is also

indecomposable. First notice that any non-zero ideal / of A contained in Kerco has
nonzero intersection with Ve. Indeed, I = If\Ue + I(]Ve, hence if 10 Ve = 0, then
/ n Ue # 0. But if 0 * (xui+piizel, then 0 ^ (tx^+^u^^ = a ^ + ^ e / . On the other
hand, if Kerco = /j + 4 is a direct sum of such ideals, since Ue = /x n Ue + I2 n t/e,
either /x or /2 contains an element of the form awx +^w2 with a =̂= 0. Thus it contains
the elements {OLU^^U^U^ = <xv2 and {OLU^^U^U^ = av1+fiv2 and hence is contains
Ke. Since we have just shown that any of these ideals intersects Ve nontrivially,
/x 0 I2 # 0. We shall denote this algebra by £4.

If I # 0, since O is algebraically closed we can first multiply by suitable scalars to
obtain u\ = u\ = v1 and u1u2 = v2. Then the elements z1 = ux + u2, z2 = ux — u2,
w1 = 2(v1 + v2), w2 = 2(v1 — v2) satisfy z\ = wl5 z\ = vv2, 2^2 = 0, which gives the
following decomposition of Kerw as a direct sum of ideals of A:

Kercu = O<zx, wx> + <D<z2, w2>.

Thus y4 is decomposable.

2: {u\, M2} are linearly independent so that u\ = v2 and «x M2 = avx + bv2, with
a, be®.

If a = 0, setting zx = ux — bu2, z2 = u2, vvx = vx — b2v2, w2 = v2, we obtain that A is
decomposable as in the last part of Case 1. The same argument applies to the case
b = 0. Hence we can assume that a # 0 ^ b. On the other hand, imposing
(«! + aw2) {ux+fiu2) = 0, we obtain that a and /? should be the solutions of the equation
ax2 + x + b = 0. If this equation had two different solutions, we would get two linearly
independent elements in Ue having zero product and this would imply, as before, the
decomposability of A. Thus 4ab = 1 and taking zx = ult z2 = u2 — 2aux, wx = vx,
w2 = (l/4a)y2 — avx, we obtain the multiplication table of i?4.
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Type (4, 1): write A = <&e+ Ue+ Ve with Ve — <Du. The product in Ue can be
described by a bilinear form F: Ue x Ue -> <D given by F(u, u') = X if uu' = Xv. As A is
reduced, it follows that F is nondegenerate and we can find a basis {ux, u2, u3, t/J of
Ue such that w2 = v, w,«; = 0 for i ^j since O is algebraically closed. Reciprocally, this
implies that A is reduced. On the other hand, it is also indecomposable. For if / is a
nonzero ideal of A contained in Kerco, it is easily seen that In Ve^0, hence Ve £ /.
We shall denote this algebra by AA.

Type (5, 0): the only possibility is A = <S>e+ Ue, with U\ = 0, which is obviously
decomposable.

We summarize the previous discussion in the following.

PROPOSITION 3.1. A Bernstein algebra of dimension less than or equal to 5 over an
algebraically closed field of characteristic not 2 is reduced and indecomposable if and
only if it is isomorphic to one of the following: Ao, Ax, A2, A3, A4, Bv

From Lemma 2.4 we know that all the reduced Bernstein algebras of dimension
less than or equal to 5 can be obtained as direct products of the algebras listed in
Proposition 3.1. So we get the following theorem.

THEOREM 3.2. A Bernstein algebra of dimension less than or equal to 5 over an
algebraically closed field of characteristic not 2 is reduced if and only if it is isomorphic
to one of the following:

(i) Ao of dimension 1,
(ii) Ax of dimension 2,

(iii) A2, Ax x Ax of dimension 3,
(iv) Az, A1 x A2, A1 x Al x Ax of dimension 4,
(v) A4, Bt, Ax x A3, A2 x A2, AxxAxx A2, A1xA1xAlx Ax of dimension 5.

4. Low dimensional Bernstein-Jordan algebras

In this section we prove our main result, constructing all Bernstein-Jordan
algebras of dimension less than or equal to 5 over an algebraically closed field of
characteristic not 2. Bernstein algebras of dimension less than 5 over any infinite field
of characteristic not 2 have already been classified in [10, 2]. Thus, to get all
Bernstein-Jordan algebras of these dimensions we only have to look at those
classifications. The algebras that appear with the additional hypothesis of the field
being algebraically closed are the following:

of dimension 1: Ao,

of dimension 2: Av Cx = <S>(e, u) with w2 = 0,

of dimension 3: Cx x C\, Ax x Ax, Cx x Ax, A2,

of dimension 4: CxxCxx Cx, Ax x Ax x Ax, CxxAxx Ax, Ax x A2,

CxxCxx Ax, Cx x A2, A3, C3 = (e,ux, u2, v} with uxv — u2.

With respect to 5-dimensional algebras the procedure we shall use is based on the
description of reduced algebras given in Section 3. Let A be a Bernstein-Jordan
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algebra of dimension 5 over <!>. The algebra A/U0(A) is reduced, hence it is one of the
algebras listed in Theorem 3.2. Therefore, to obtain the original algebra A it is
enough to solve the extension problem associated to the short exact sequence

U0(A) >A-^A/UQ{A)-

Here we know the multiplication in A/U0(A) and the multiplication in U0(A),
which is trivial. Now, to get the multiplication in A we first take any idempotent in
A/U0(A). Any of its preimages e in A is an idempotent of A, by [3, (3.7)]. Moreover,
U0(A) c ue by [3, (3.4)]. Then if A = <De + Ue + Ve is the Peirce decomposition of A
with respect to e, we have A/U0(A) = <£(<? + U0(A)) + UJU0(A) + (Ve+ U0(A))/U0(A),
the Peirce decomposition of A/U0(A) with respect to e+ U0(A). Notice also that if «15

u2e Ue, ve Ve, and n&Jn(u2) = n(v), then uxU2 — ve U0(A) n Ve = 0, hence uxu2 = v.
On the other hand, if we want A to be a Jordan algebra, we have to impose K2 = 0,
and (uv) v = 0, for any u e Ue, and any v e Ve. So, we have only to determine the
products uv with ueUe,ve Ve. Since all reduced algebras appearing in Theorem 3.2
satisfy Ue Ve = 0, the algebra A must satisfy Ue Ve c U0(A). We shall next use these
considerations to solve the extension problem for each of the algebras in Theorem 3.2.

If A/U0(A) = AQ, then A = AQ+U0(A) = <De+ Ue, with U\ = 0, hence A is

If A/U0(A) = Ax, then A = A1-h U0(A) = O<e,«15 «2, w3, u>, where the only possibly
nonzero products in Kerca are the utv. Since the homomorphism Rv:Ue->Ue

given by Rv(u) = uv satisfies Rl = 0, its minimal polynomial has to be x or JC2. In the
first case A satisfies (Kerca)2 = 0 and hence it is isomorphic to C1xC1xC1xAx. In
the second case, we can find a basis {ult u2, u3} of Ue such that ux v = u2, u2 v = u3 v = 0.
This makes the algebra isomorphic to C1 x C3.

If A/U0(A) = A2, then A = A2 + U0(A) = ^><e, ult u2, u3, v} with u\ = v and all
other products in Ue equal to zero. Now utv = utu\ = — 2M1(M(M1) = 0, by (3). Hence
A is isomorphic to C1xC1xA2.

If A/U0(A) - A1xAl, then A - A1xA1 + U0(A) = <^{e,ul,u2,vl,v2), where the
only possibly nonzero products in Kerco are the utvr If Ue Ve = 0, then A is the
algebra C1xClxAlx Av Next if dim UeVe= 1, put Ue Ve = Q>z2 and Ue = <J)<zl5 z2).
Notice first that z2 v{ = Xx z2, hence from (z2 u() vt = 0, it follows that z2 vi = 0, for i =
1,2. Thus, zx vt = a< z2, with, for example, OLX ^ 0. Set w^ = OL^V^ and w2 = OLX V2 — a2 vx.
This gives z2 w( = 0, ix wx = z2 and ix w2 = 0 and so ̂  is the algebra Ax x C3. Finally,
we consider the case Ue Ve= Ue. The expression ((uwj w2) w3 for M e Ue, wt e Ke is skew-
symmetric in the wt by (5). Since Ve has dimension 2 this implies that ((Ue Ve) Ve) Ve = 0,
which contradicts Ue Ve = Ue.

If A/U0(A) = Az, then A = ^43+ U0(A) = ^)<e, «l5 w2, M3, y> with w^a = v and all
other products in Ue equal to zero. Now uxv = ux{uxu2) = — \u2u\ = 0, and similarly
u2v = 0. Next, «3f = M3(M1M2) = — ui(u2ud~u2(u3ui) — 0- Hence C/e Ve = 0 and 4̂ is
isomorphic to Cx x A3.

If A/U0(A) = y4x xA2, then y4 = ^ ^ ^ a + f / , , ^ ) = O<e, M15 M2, y15 u2> with M2 = U!
and all other products in Ue equal to zero. Now ux vx = u\ = 0, and «2 vx =
u2u\ = — 2M1(M2 M^ = 0. Next u{ v2 = a( M2 e U0(A). We have 0 = («2 y2) 2̂ = a2 W2> hence
M2y2 = 0. In case ax = 0, we get the algebra CxxAxx A2. Otherwise we can assume
that OLX = 1. We next show that this algebra is indecomposable. Suppose that
Ker co = Ix +12 is a direct sum of ideals of A. Since Ue= Ue n Ix + Ue n /2, one of these
ideals, say 715 contains an element of the form aux+fiu2 with a # 0. Hence
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<xv1 = (<xux+f}u2)ux and txu2 = (<xux+/3u2)v2 are in Iv Hence, (^{u^u^Vj} is
contained in Iv On the other hand Ve = Ve n Ix + Ve n /2, so one of these ideals must
contain an element of the form yvx + Sv2 with 3 # 0. If that ideal is Ix then Ix = Ker cw
and /2 = 0. If on the contrary yvx + Sv2eI2, then Su2 = (yvx + Sv2)ux€l2, hence
/x n /2 # 0, giving a contradiction. We shall denote this algebra by Z)4.

If A/U0(A) = A1xAxxAx, then /i = Ax xAx xAx + U0(A) = O<e, w,^,^,^),
where the only possibly nonzero products in Ker co are uvt. From (MU() y( = 0, we
obtain as before Ue Ve = 0, so that (Kerco)2 = 0 and A is isomorphic to

Finally we summarize all the preceding discussion in the following main theorem
of this paper. Notice that any two of the algebras listed below are nonisomorphic.
This follows from [3, Theorem 2.6] and the fact that the indecomposable algebras
which appear are obviously nonisomorphic to each other.

THEOREM 4.1. Any Bernstein-Jordan algebra of dimension less than or equal to 5
over an algebraically closed field of characteristic not 2 is isomorphic to exactly one of
the following algebras:

of dimension 1: Ao,

of dimension 2: Cx, Ax,

of dimension 3: Cx x Cx, Cx x Av Ax x Ax, A2,

of dimension 4: CxxCxxCx, CxxCxx Ax, CxxAxx Av A1xAlx Ax,

Cx x A2, yij X A2, C3, Aa.

of dimension 5: ClxCxxC1x Cx, CxxCxxCxx Ax, CxxCxxAlx Ax,

C ^ x X j i x X f i 2 ) **-x X A i X - / U o , w j X V - ' Q , 1--1 X JIQ) **X ^ 3 3

Ax x A3, A2 X A2, D4, x>4, /44.

As a final remark, it can be pointed out that the methods used here also provide
a way of facing the problem of classification of all Bernstein-Jordan algebras.
However, as shown in [3], when the dimension rises, there appear infinite families of
indecomposable reduced Bernstein-Jordan algebras of the same dimension. This
suggests that the structure of indecomposable reduced algebras may be rather
intricate, and shows the difficulties of a direct approach to the classification of these
algebras. Therefore, unless new techniques for handling indecomposable reduced
algebras are introduced, the general classification problem will remain intractable.
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