LOW DIMENSIONAL BERNSTEIN-JORDAN ALGEBRAS
TERESA CORTES an0 FERNANDO MONTANER

0. Introduction

Bernstein algebras were introduced by Holgate [5] as an algebraic formulation of
the problem of classifying the stationary evolution operators in genetics (see [7]).
Since then, many authors have contributed to the study of these algebras, and there
is a fairly extensive bibliography on the subject. Known results include classification
theorems for some types of Bernstein algebras (for instance, Bernstein algebras of
dimension less than or equal to four, see [10, 8, 2]) as well as some other structural
results (see for instance [1, §, 9, 4)).

In [3], the authors suggested an approach to the study of the structure of Bernstein
algebras through two main ideas: direct products and the related concepts of
decomposability and indecomposability, and the reduction of the general problem to
the study of Bernstein—Jordan algebras. The procedure depended on getting what was
called a reduced Bernstein algebra (which is, in particular, a Jordan algebra), and on
the description of the indecomposable factors of the algebra so obtained. In this paper
we use these ideas to classify Bernstein—Jordan algebras of low dimension. Thus, in
Section 3 we describe reduced Bernstein algebras of dimension less than or equal to
5 through their indecomposable factors. We use this information in Section 4 to
recover all Bernstein—Jordan algebras of dimension less than or equal to 5 by gluing
together reduced algebras and the trivial ideal that, when factored out, creates
reduced algebras. After a Section 1 of preliminaries, where we collect several known
facts about Bernstein algebras which will be used later, we devote Section 2 to proving
some technical lemmas which will ease the computations of Section 3.

1. Preliminaries

Throughout this paper ® will denote an infinite field of characteristic not two.

A finite dimensional commutative algebra A over the field ® together with a
homomorphism of algebras (weight homomorphism) w: 4 — @ is called a Bernstein
algebra if every x e A satisfies (x%)? = w(x)*x?.

Next we recall some known results that can be found in [10].

For any Bernstein algebra A4, the weight homomorphism is uniquely determined.

Each Bernstein algebra possesses at least one idempotent, and to each idempotent
ec A is associated a Peirce decomposition 4 = ®e+ U,+ V,, where

U,={xeA|2ex=x} and V,={xeAd|ex =0}
and Kerw = U,+ U,. The Peirce subspaces multiply according to
uv,cu, VicU, UlcV, UV:=0.
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The set of idempotent elements of 4 is given by I(4) = {e+0o+0*|oe U,}, where
e is any given idempotent of 4. For two idempotents e and f = e + o + %, we have the
following relations between the corresponding Peirce spaces U, = {u+20u|ue U}
and V, = {v—2v(o +0*)|ve V,}. This shows that the numbers dim U, and dim ¥, do
not depend on the idempotent e. The pair (dim U,+ 1, dim V) is called the type of 4.

Also we have the following identities which hold in any Bernstein algebra:

1) )@+ (x2)(y)+(xt)(yz) =0 for any x, y, z, teKerw,
(2) uy(uyv) +uy(u,v) =0,

(3) ¥* =0, and its linearization u, (u, 2,) + 1y (uy u,) + uz(u, u,) = 0,
@) w*(uw) =0, for any u, u,, u,, u;e U,, and any ve V,,

If we have that the algebra A isin fact a Jordan algebra, we also know that V2 =0
for any idempotent e and as a consequence [1]:

(5) (uv,)v,+(uvy)v, =0 for any ue U, and auy v,, v,eV,.

In this case, the Peirce subspaces with respect to idempotents e, f, related by
f=e+a+0o® with ge U, satisfy

U,={u+20ulueU,} and V,={v—20vlveV}.

Finally we recall the concepts on which will be based the study we shall carry out
in the following sections; they can be found in [3].

Let (4,,,);c,; be a family of Bernstein algebras. We consider in [ [,., 4, the set
X (A4 0) = {(xt)GHtelAl |@(x) = w(x,) for all i, je I}.

It is possible to define a weight homomorphism on X, ,(4,, ®,) by setting
w((x,) = w,(x,) which clearly is independent of the index i. Then it is straightforward
to prove that ( X, ,(4,, w,), @) is a Bernstein algebra which is the direct product of the
family under consideration.

A Bernstein algebra is called decomposable if it is isomorphic to the direct product
of at least two Bernstein algebras none of them isomorphic to the ground field.
Otherwise, it is called indecomposable. Any finite-dimensional Bernstein algebra is a
direct product of indecomposable Bernstein algebras. On the other hand it is known
[3, Lemma 2.3] that a Bernstein algebra is decomposable if and only if Kerw is a
direct sum of two nonzero ideals of the algebra.

In any Bernstein algebra A the intersection of all the subspaces U,, with eeI(4),
is an ideal of A denoted by Uy(A4). For any eel(A4) it is readily shown that
UyA) ={ueU,|uU,=0}. A Bernstein algebra A for which Uy (4) =0 is called
reduced. A reduced algebra is always a Jordan algebra. Reduced algebras are easily
obtained because for any algebra 4, the quotient algebra 4/Uy(A4) turns out to be
reduced.

2. Technical lemmas

In this section we prove some facts which will allow us to simplify the description
of Bernstein—Jordan algebras. The central result Lemma 2.2 imposes restrictions on
the dimension of a Bernstein algebra for which some strings of products do not
quickly reach zero. In particular, for low dimensional algebras this forces
orthogonality of the subspaces U, and V, of the Peirce decomposition attached to the
idempotent e.
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Define the subspaces H! = U, V,, H* = H* 'V, for k > 2. We first show that the

e’ e

least index k for which H* = 0 does not depend on the choice of the idempotent e.

LEmMMA 2.1. Let A be a Bernstein algebra which is a Jordan algebra and let
e, fel(A) be related by f = e+0+0* with e U,. Then Hx < H*+ H*6+ H* 6® and
in particular, H; = 0 if and only if H} = 0.

Proof. We will carry out an induction on k.
The subspace H; = U, V, is generated as a vector space by the products «'v” with
W eU, and v'e V,. Put &' = u+20u with ue U, and v’ = v—20v with ve V,. We have

'V = uv+2(ou) v—2(ov) u—4(ou) (6v) = ww+2(wv)o +2(wv)ste H:+ Hlo+ Hl o?,

since (ow)veUV,cV:=0, —(ov)u= (w)o by (2), and —2(ou)(ov) = (w)o?
by (1).
Now if the result holds up to the exponent k, then

HE' = HEV, < (HE+HE o+ HE 0D (V,+V,0).
Performing the products we obtain the following:
H:V,=H™, (H:0)V,SUV,< V=0,
(Hio")V,=(H;V)o*=H{"a* by(5),
H{(V,0)=0(V.H;)=H{"0 by (2),
(H¥o)(V,0) = (H*V)o* = H!"'a® by (1),
(H;0*)(V,0) = (6V)o®)H; =0  by(2)and (4).

In the next result we show that the characteristic number k so attached to the
algebra A provides a lower bound for the dimension of the subspaces U,.

LeEMMA 2.2. Let A be a reduced Bernstein algebra. If HY # 0 for some idempotent
e and some k = 1 or 2 (mod 4), then dim U, > 2**1.

eV

e

Proof. Fix anidempotent e in 4 and consider elements u, ze U, and v,, ..., v
We shall make use of the following properties of the expression

h(u, vy, ...,0,) = (... () vy) ..) v,
(a) We have h(u,v,, ...,v,)z = (—1)? h(z,v,, ...,v,) u. Indeed, for p = 1 this is just
(2) and by induction:
h(u, vy, ...,v,)z = h((...((ww)v,) .. ) v, ;,0,) z
=—h(z,v,) ((...((ww)v,) .. ) v, ) = —(zv,) h(u,v,, ..., V,_,)

=—(=D"N(zv,,v0,_y,...,0) u = (= 1)?h(z,v,,...,v)) u

b4

(b) We have h(u,v,,...,v,) = (= 1) h(u,v,,,, ..., Vy,) for any permutation
neS,, since H, < U,, and any ¢, so we can apply (5) successively. In particular,
h(u,v,,...,v,)v, =0, for any 1 <i<p.

(c) From (a) and (b) we obtain h(u,v,,...,v,)z = (= 1)*"*V2h(z,0,,...,v, ) u, sO
that in particular when k£ = 1 or 2 (mod 4) this makes A(u,v,,...,v,)u = 0.
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Now, since we have H¥ 3 0, we can take elements ue U,, v,, ...,v, € V, such that
h(u,v,,...,v,) #0. Since 4 is reduced there exists some zeU, such that
h(u,vy,...,v,)z # 0 and so A(z,v,, ...,v,)u # 0 by the former considerations. We set

Up=u, zg=12, U, =hwo,....v), z ., =hzv,...v)

for 1 <i; < ... <i, < k. Next we show that these are linearly independent elements
in U,. Assume that there exists Ag, g, A ... #4, ..., €P for 1 <i, < ... <i, <k, such

that
Z}-zl...i,ui,“.i,"'Z/‘tl...ilztl...tt =0.
Successively multiplying this expression by v,,...,v, and applying (b) we obtain
Ach(u,vy, ..., 0 )+ uh(z, vy, ...,0,) = 0.

Next multiplying this expression by u we get, using (c), y,h(z,v,,...,0,)u =0,
which implies that g, = 0 and 4, A(u,v,, ...,v,) = 0, hence 4, = 0.

We give a partial order to the set of indexes {i, ... {,|1 < i, < ... <i, < k} setting
iy...i, < i ...0 if either t < / or ¢t = [ and the inequality holds in the lexicographical
order. Now suppose that i, ... i, is the least index for which either 4, , # 0 or
Mi,...i, #0. Multiplying the expression Y} A, ., #  + 2t . %, .., =0 by
U0y, Where {iy, . i, Uy - Jiemt = {1, ..., k} and applying (b) we obtain

At,...t,,,h(ua U n Uty (2,00, 0,) = 0.

Next multiplying this expression by « we get by (c) u, .., h(z,v,,...,v)u=0,
which implies p, , =0and 4, , h(u,v,,...,v,) =0, hence 4, , =0, thus giving
a contradiction and proving that the elements u; _,z, ., are linearly independent.
Since there are 2**! of them, the result holds.

Finally we include here two more results which will be used in the next section
when we study reduced algebras.

LEMMA 2.3. Let A be a reduced indecomposable Bernstein algebra. If for some
idempotent e of A we have U, # 0 and U, V, =0, then U = V,.

Proof. Set ¥, = U?+ S adirect sum of vector spaces. Then clearly Sand U,+ U?
are ideals of 4 and their sum composes Ker w. Since 4 is indecomposable, that means
that S=0or U, =0.

LEMMA 2.4. Let A,, A, be two Bernstein algebras. Then, A, x A, is reduced if and
only if A, and A, are reduced.

3. Low dimensional reduced Bernstein algebras

In what follows @ will be an algebraically closed field of characteristic not 2.

This section is devoted to the classification of reduced algebras of dimension less
than or equal to 5. Following the approach of [3] we start with a description of
indecomposable reduced algebras.

Bernstein algebras of dimension less than or equal to 4 which satisfy these
conditions are easily obtained from the known classifications [10, 2] together with [3].
These algebras are

Ay = De, A, = ©{e,u,v) withu? =,
A, = De,v), A, =De,u,u,,vy withuw,u,=vo,

rcaucca.
2. Technical lemmas

In this section we prove some facts which will allow us to simplify the description
of Bernstein—Jordan algebras. The central result Lemma 2.2 imposes restrictions on
the dimension of a Bernstein algebra for which some strings of products do not
quickly reach zero. In particular, for low dimensional algebras this forces
orthogonality of the subspaces U, and V, of the Peirce decomposition attached to the
idempotent e.
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where e is an idempotent and u, u,, u,€ U,, ve V,, and all other products are equal to
zero.

With respect to 5-dimensional algebras, note first that if U,V, # 0, by Lemma
22 we have dimU,>4. Hence U,=Kerw and U?=0, contradicting the
indecomposability of 4. Thus U,¥, = 0 and since A4 is reduced and indecomposable,
Lemma 2.3 implies that U, = 0 or U? = ¥,. Now we consider separately each of the
possible types of a 5-dimensional algebra.

Type (1, 4): the only possibility is 4 = ®e+ ¥V, with V2 =0, which is clearly
decomposable.

Type (2,3): in any Peirce decomposition we have dim U, = 1, hence dim U2 < 1,
and since dim ¥, = 3, we cannot have U? = V,. Thus there are no indecomposable
reduced algebras of this type.

Type (3,2): write A = ®e+ U,+ V,. Since U? = V,, there exists some ue U, with
u®#0. Pick u,, an element satisfying these conditions and put v, =} and
U, = ®<u,,u,). We consider two cases.

Case 1: {u?,ul} are linearly dependent so that u}=Av, with le® and
V,=U? = ®v,,v,) with v, = u, u,.

If A =0, this algebra is obviously reduced. Now let us show that it is also
indecomposable. First notice that any non-zero ideal I of 4 contained in Kerw has
nonzero intersection with V,. Indeed, I=InU,+INV,, hence if InV, =0, then
INU, #0.Butif 0 # au, + fu, I, then 0 # (au, + fu,) u, = av, + fv, € I. On the other
hand, if Kerew = I, +1, is a direct sum of such ideals, since U, =I,nU,+,nU,,
either I, or J, contains an element of the form ou, + fu, with a # 0. Thus it contains
the elements (o, + fu,) u, = ow, and (o, + pu,) u, = awv, + fv, and hence is contains
V,. Since we have just shown that any of these ideals intersects V, nontrivially,
I, n I, # 0. We shall denote this algebra by B,.

If 1 # 0, since @ is algebraically closed we can first multiply by suitable scalars to
obtain u!=u?=v, and u,u, =v,. Then the elements z, = u, +u,, z, = u,—u,,
w, = 2(v, +v,), w, = 2(v,—v,) satisfy z2=w,, zt=w,, z,z,=0, which gives the
following decomposition of Kerw as a direct sum of ideals of A:

Kerw = ©{z,,w,) + 0Lz, w,).

Thus A is decomposable.

Case 2: {u},ul} are linearly independent so that u% = v, and u, u, = av, + bv,, with
a, bed.

If a = 0, setting z, = u, —bu,, z, = u,, w, = v, —b*,, w, = v,, we obtain that 4 is
decomposable as in the last part of Case 1. The same argument applies to the case
b=0. Hence we can assume that a#0#b. On the other hand, imposing
(uy +au,) (4, + Pu,) = 0, we obtain that a and f should be the solutions of the equation
ax®+ x+b = 0. If this equation had two different solutions, we would get two linearly
independent elements in U, having zero product and this would imply, as before, the
decomposability of 4. Thus 4ab =1 and taking z, = u,, z, = u,—2au,, w, =v,,
w, = (1/4a)v,—av,, we obtain the multiplication table of B,.
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Type (4, 1): write 4 = ®e+ U,+V, with V, = ®v. The product in U, can be
described by a bilinear form F: U, x U, - ® given by Flu,u’) = Aif uu’ = Av. As A is
reduced, it follows that F is nondegenerate and we can find a basis {u,, u,, uy, u,} of
U, such that 4} = v, u,u, = 0 for i # j since ® is algebraically closed. Reciprocally, this
implies that 4 is reduced. On the other hand, it is also indecomposable. For if Iis a
nonzero ideal of 4 contained in Kerw, it is easily seen that I'n ¥, # 0, hence V, = I.
We shall denote this algebra by 4,.

Type (5, 0): the only possibility is 4 = ®e+ U,, with U2 = 0, which is obviously
decomposable.

We summarize the previous discussion in the following.

PROPOSITION 3.1. A Bernstein algebra of dimension less than or equal to S over an
algebraically closed field of characteristic not 2 is reduced and indecomposable if and
only if it is isomorphic to one of the following: A,, A,, A,, A,, A,, B,.

From Lemma 2.4 we know that all the reduced Bernstein algebras of dimension
less than or equal to 5 can be obtained as direct products of the algebras listed in
Proposition 3.1. So we get the following theorem.

THEOREM 3.2. A Bernstein algebra of dimension less than or equal to 5 over an
algebraically closed field of characteristic not 2 is reduced if and only if it is isomorphic
to one of the following:

(i) A, of dimension 1,
(ii) A, of dimension 2,
(ili) A,, A, x A, of dimension 3,
(iv) A4g, A, x A,, A, x A; X A, of dimension 4,
(v) Ay, By, Ay x Ay, Ayx Ay, Ay x Ay x Ay, A x A, x A, X A, of dimension 5.

4. Low dimensional Bernstein—Jordan algebras

In this section we prove our main result, constructing all Bernstein—Jordan
algebras of dimension less than or equal to 5 over an algebraically closed field of
characteristic not 2. Bernstein algebras of dimension less than 5 over any infinite field
of characteristic not 2 have already been classified in [10, 2]. Thus, to get all
Bernstein—Jordan algebras of these dimensions we only have to look at those
classifications. The algebras that appear with the additional hypothesis of the field
being algebraically closed are the following:

of dimension 1: 4,,
of dimension 2: 4,, C, = ®{e, u) with u* =0,
of dimension 3: C,xC,, A, x 4,, C;xA,, 4,,
of dimension 4: C; xC; xCy, A; xA; xA,, C;x A, x A, A, x A,,
C,xC,x A, C,x Ay, Ay, Cy = e, uy, uy, v) with u, v = u,.

With respect to 5S-dimensional algebras the procedure we shall use is based on the
description of reduced algebras given in Section 3. Let 4 be a Bernstein—Jordan
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algebra of dimension S over ®. The algebra A/U,(A) is reduced, hence it is one of the
algebras listed in Theorem 3.2. Therefore, to obtain the original algebra A it is
enough to solve the extension problem associated to the short exact sequence

Uy(A) — A2 4/ U(A).

Here we know the multiplication in 4/U,(A4) and the multiplication in Uy(A4),
which is trivial. Now, to get the multiplication in 4 we first take any idempotent in
A/Uy(A). Any of its preimages e in 4 is an idempotent of A, by [3, (3.7)]. Moreover,
Uy(4) = U, by [3, (3.4)]. Then if 4 = ®e+ U,+V, is the Peirce decomposition of 4
with respect to e, we have A/ U (A4) = ®(e+ Uy(A4))+ U,/ U(A)+(V,+ Uy(A))/ Uy (A),
the Peirce decomposition of 4/U,(A4) with respect to e + Uy(A4). Notice also that if u,,
u,eU,, veV,, and n(u,)n(u,) = n(v), then u, u,—ve Uy(4) NV, =0, hence u, u, = v.
On the other hand, if we want A4 to be a Jordan algebra, we have to impose V2 = 0,
and (w)v =0, for any ueU,, and any veV,. So, we have only to determine the
products uv with ue U,, ve V,. Since all reduced algebras appearing in Theorem 3.2
satisfy U, V, = 0, the algebra 4 must satisfy U, V, = Uy(A4). We shall next use these
considerations to solve the extension problem for each of the algebras in Theorem 3.2.

If A/U(A)=A,, then A =A,+Uy(A4)=@e+U, with U2=0, hence 4 is
C,xC, xC,xC,.

IfA/U(A) = A,,then 4 = A, + U,(A4) = ®{e,u,, u,, uy, vy, where the only possibly
nonzero products in Kerw are the u,». Since the homomorphism R,:U,—- U,
given by R (u) = uv satisfies R = 0, its minimal polynomial has to be x or x%. In the
first case A satisfies (Ker w)? = 0 and hence it is isomorphic to C;, x C; x C; X 4,. In
the second case, we can find a basis {u,, u,, u;} of U, such that u, v = u,, u,v = u;v =0.
This makes the algebra isomorphic to C, x C;.

If A/U(A4) = A,, then 4 = A,+ Uy(A) = ®e, u,, u,, u,, vy with 12 =v and all
other products in U, equal to zero. Now u,v = u, 1} = —2u,(u,u,) = 0, by (3). Hence
A is isomorphic to C, x C, x 4,.

If A/U\(A4) = A, x A,, then A = A, x A, + Uy(4) = ®{e,u,, u,,v,,v,, where the
only possibly nonzero products in Kerw are the w,v,. If U,V, =0, then 4 is the
algebra C; x C; x 4, x A;. Next if dim U, ¥, = 1, put U, V, = ®z, and U, = ®{z,,z,).
Notice first that z,v, = 4, z,, hence from (z,v,)v, = 0, it follows that z,v, = 0, for i =
1,2. Thus, z, v, = &, z,, with, for example, &, # 0. Set w, = a7v,, and w, = &1, v,— o, v;.
This gives z,w, =0, z, w, = z, and z, w, = 0 and so 4 s the algebra 4, x C,. Finally,
we consider the case U, V, = U,. The expression ((uw,) w,) w, for ue U,, w e V, is skew-
symmetric in the w, by (5). Since ¥, has dimension 2 this implies that (U, V) V,) ¥V, = 0,
which contradicts U, V, = U,.

If A/Uy(A) = A4, then 4 = A,+ Uy(A) = e, u;,u,, uy,v) with u, u, = v and all
other products in U, equal to zero. Now u, v = u,(u, 4,) = —3u,u? = 0, and similarly
u,v = 0. Next, u,v = uy(u, u,) = — 1, (4 43) — uy(u,u,) = 0. Hence U, ¥V, =0 and 4 is
isomorphic to C, x A4,.

If A/Uy(A) = A, X A,, then A = A, X A, + Uy(4) = ©e,u,, u,,v,,0,» with u? = v,
and all other products in U, equal to zero. Now wu,v, =4} =0, and u,v, =
uyuy = —2u,(u,u,) = 0. Next u,v, = a,u,e Uy(A4). We have 0 = (u,v,) v, = aZu,, hence
u,v, = 0. In case a, = 0, we get the algebra C, x 4, x 4,. Otherwise we can assume
that o, = 1. We next show that this algebra is indecomposable. Suppose that
Kerw = I, + 1, is a direct sum of ideals of 4. Since U, = U, n I, + U, n I, one of these
ideals, say I,, contains an element of the form aw,+pfu, with o # 0. Hence
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ow, = (ou, +Pu)u;, and ow, = (au, +pu,)v, are in I,. Hence, ®{u,,u,v,) is
contained in /;. On the other hand V, = V,n I, + ¥, n I,, so one of these ideals must
contain an element of the form yv, + dv, with é # 0. If that ideal is 7, then [, = Kerw
and 1, =0. If on the contrary yv,+dv,€l,, then du, = (yv, +dv,)u, €l,, hence
I, n1, #0, giving a contradiction. We shall denote this algebra by D,.

If A/Uy(A)=A;xA;xA4,, then A=A, xA,xA,+UyA4) = Oe,u,v,,0,,0,,
where the only possibly nonzero products in Kerw are wv,. From (uv,)v, =0, we
obtain as before U, V, = 0, so that (Kerw)® = 0 and A4 is isomorphic to

C,xA,xA, xA,.

Finally we summarize all the preceding discussion in the following main theorem
of this paper. Notice that any two of the algebras listed below are nonisomorphic.
This follows from [3, Theorem 2.6] and the fact that the indecomposable algebras
which appear are obviously nonisomorphic to each other.

THEOREM 4.1. Any Bernstein—Jordan algebra of dimension less than or equal to 5
over an algebraically closed field of characteristic not 2 is isomorphic to exactly one of
the following algebras:

of dimension 1: A,

of dimension 2: C,, A,,

of dimension 3: C,xC,, C,x A,, A, x A,, A4,,

of dimension 4:'C,x C; x C}, C; x C; x A;, C; x A; x A,, A, x A, x A,,
C,x Ay, A, x Ay, Cy, Ay

of dimension 5: C,xC; x C; xC,, C;xC;xC;x A, C,xC,x A, x A,
CixA; xA,xA;,, Ay xA; x A, x A, C, xC; x A4,,
Ci,xA; XAy A;x A, x Ay, C,xCyy C, x Ay, Ay x Cy,
A, x Ay, A,x A,, D,, B,, A,.

As a final remark, it can be pointed out that the methods used here also provide
a way of facing the problem of classification of all Bernstein—Jordan algebras.
However, as shown in [3], when the dimension rises, there appear infinite families of
indecomposable reduced Bernstein—Jordan algebras of the same dimension. This
suggests that the structure of indecomposable reduced algebras may be rather
intricate, and shows the difficulties of a direct approach to the classification of these
algebras. Therefore, unless new techniques for handling indecomposable reduced
algebras are introduced, the general classification problem will remain intractable.
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