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1. Introduction

There are several motivating influences behind this paper. Most of the breeding
structures studied by algebraists have led to genetic algebras of Schafer's type [11].
It seems a worthwhile next step to seek those systems where although the algebra is
not necessarily of Schafer's type it contains an important subalgebra which is, or an
ideal with respect to which the difference algebra is of Schafer's type. An example
of the former possibility arises in sex linkage [9].

It will be recalled that genetic algebras are commutative but not associative (see
[4] for an introductory account) and that among the types of powers of an element x,
particular importance attaches to the principal powers x" and the plenary powers
xM, defined by

" n~ix, x[n] = x[ n-1 ]x [ n-1 ] , xl = x[1] = x.

If x represents the distribution of genetic types in a first generation, then x" and
xw represent the distribution in the n-th generations formed by repeated backcrossing
to the original, and by repeated panmictic breeding, respectively. The class of train
algebras defined by Etherington [4; §4] is specified by a condition on the sequence
of principal powers, and the genetic algebras of Schafer are defined by a condition
on the associative algebra generated by the multiplication matrices Rx. It would seem
more natural to a population geneticist to define classes of algebras in terms of
conditions on the sequence of plenary powers.

The opportunity to pursue simultaneously both directions indicated above is
presented by a recent revival of interest of some work of Bernstein [1, 2, 3] published
half a century ago. The classical Hardy-Weinberg law [7] for single locus, autosomal,
non-selective populations not only specifies the genotype proportions which are
stationary under panmictic breeding, but asserts that whatever the proportions may
be initially, the stationary distribution is attained after only a single generation of
mating. Bernstein sought to determine and classify all quadratic transformations
which could represent non-selective systems of inheritance in which a stationary
distribution was attained in a single generation. He gave a complete description of the
possibilities in three dimensions [1, 3] and found some special results in four and more
dimensions [2]. The problem was taken up by Lyubich [10] who obtained a canonical
form for evolutionary laws satisfying the " principle of stationarity ", and then investi-
gated the consequences of imposing a further condition, namely that the system
should have elementary gene structure.

In this paper I use genetic algebras to study Bernstein's conditions. (Although
Lyubich uses these methods in a later part of [10] he does not do so in his develop-
ment of Bernstein's work.) The general theory is developed in §2. In §3, which is not
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essential for §4, Bernstein's own classification of his results is algebraicized, and in the
following section an alternative classification based on the results of §2 is introduced.

2. General properties of Bernstein algebras

Bernstein studied a quadratic evolutionary operator V, mapping the set of
^-dimensional vectors x = (xu ...,xn) where X; > 0, Z# , = 1, into itself, and
satisfying his stationarity condition xV2 = xV. If V is extended naturally to all
^-dimensional vectors of positive numbers with £ xt = P(x), then the stationarity
condition becomes

2 \ (1)

while the quadratic nature of the transformation implies

P(xV) = fi2(x). (2)

A product of two such vectors can be defined by setting

xy=U(x+y)V-xV-yV}, (3)

and it can be extended by bilinearity to all vectors x, y of complex numbers. A
simple computation using (1) and (3) shows that p(xy) = /?(*) fi(y). Thus x -+ p(x)
is a homomorphism of the algebra defined by (3) into its base field, which charac-
terises it as a baric algebra [4; §3]. In the terminology of §1, the operator V maps
an element into its square.

Definition 1. A commutative algebra 93 over the complex numbers will be called
a Bernstein algebra if (i) it is a baric algebra and (ii) if every element x whose baric
value (i(x) is non-zero satisfies the plenary train equation x[3] — /?2(x);c[2] = 0.

Such an algebra must have at least one idempotent, the square of any element of
unit baric value. Let e be an idempotent chosen once and for all, and (£ the sub-
algebra of its scalar multiples. Let 3 denote the nil ideal of 93, containing all the
elements with baric value zero. In general, a lower case letter, possibly with a sub-
script, will denote an element belonging to a subspace or subalgebra denoted by the
corresponding capital. Thus z e 3 , and by the definition it satisfies

(e+0z)[3]-(e+0z)[2] = O. (4)

If coefficients of powers of 9 are equated to zero, the following identities are obtained:

z ^ = 0, (5)

z\ze) = 0, (6)

4(ze)2 + 2z2e-z2 = 0, (7)

2(ze)e-ze = 0. (8)

From (5) it can be seen that elements of baric value zero also satisfy the equation in
Definition 1. The fully linearised forms of these, which may be obtained by replacing
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z by £ 0t z{ and equating homogeneous terms to zero, are

(zt z2)(z3 z4) + (zt z3)(z2 z4) + (zt z4)(z2 z3) = 0, (9)

(z, z2)(z3 e) + (zx z3)(z2 e) + (z2 z3)(Zi e) = 0, (10)

4(z1e)(z2e) + 2(z1z2)e-z1z2 = 0. (11)

Noteworthy intermediate forms are

z 1
2 z 2

2 = - 2 ( z 1 z 2 ) 2 (12)

zl
2(z2e)=-2(ziz2)(zie). (13)

An immediate consequence of these identities is

PROPOSITION 1. 3 2 is an ideal in 93.

Proof. 3 2 is an ideal in 3 , so it remains to show that 3 2 e c 3 2 - Now (11) may
be written

(*i *2) e = \zv z2 - 2(zx e)(z2 e). (14)

Since 3 is an ideal in SB, the second term on the right as well as the first belongs to
3 2 , which establishes the proposition.

COROLLARY. A Bernstein algebra in which 3 3 = 0 is a special train algebra.

(It will be recalled that a special train algebra is a baric algebra in which the nil ideal
is nilpotent, and every power of it is an ideal.)

Let U denote the subspace spanned by the elements u = ze, 93 the subspace
spanned by all products v = u-t Uj, and 2C the subspace complementary to the union
of <E, U and 93.

The result of substituting u = ze in (8) is

ue = \u. (15)

The substitution of wls u2 for zl5 z2 in (14) with v = ux u2, taken in conjunction with
(15), leads to

ve = %ux u2 — 2(ul e){u2 e)

= 0. (16)

The contrast between (15) and (16) permits the following conclusion.

PROPOSITION 2. The subspaces U and 93 have no non-zero elements in common.

The space underlying 93 may therefore, as a vector space, be decomposed into the
direct sum (£ ® U 0 93 © 933. Equations (15) and (16) may now be exploited in
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conjunction with identities (5)-(ll). Some results are as follows:

zuz2,z3 Equation Result

vlt v2, u

uu u2, v

ux, uz, u2

(10)

v2

u,v

w2

w, u

W, V

(yt v2) u = 0

(vul)u2 + (vu2)u1 =

(uiu2)u3 + (u2u3)u

(yi vi)e = ivi vz

(uv) e = \uv

0

1 + ("3 " l ) " 2 = 0

(17)

(18)

(19)

(20)

(21)

(22)

(11) Wj w2 = 2(wl w2) e+4(\Vi e)(w2 e)

wu = 2(wu)e+2(we)u

wv = 2{wv) e

In the usual notation (20) and (21) show that 932 <= U and U93 c U. From (22)
it follows that 9B2 c U © 93, 2BU c U © 23 and 2B23 c U. In particular, this
establishes

PROPOSITION 3. (£ © U © 93 is an ideal in 23, containing 932.

COROLLARY. The difference algebra © — ((£ © U © 93) is a zero algebra.

Definition 2. The ideal © © U © 93 will be called the core of the Bernstein algebra
23, and will be denoted by (£.

In view of Proposition 3, (£ is independent of the choice of the idempotent e.
In terms of multiplication matrices, (18) may be written

Of the characteristic features of a Lie algebra therefore, the right transformations
corresponding to elements of U are anticommutative in their action on 93, while (19)
shows that the elements themselves satisfy Jacobi's identity, even though multiplica-
tion appears to take them outside U.

It is clear that £ is a baric algebra, with U © 93 as its nil ideal. Let du and d0 be
the dimensions of H and 93, and let Ru* denote the (du+dv)x (du+d0) matrix of the
right multiplication by u, restricted to H © 93. Since by definition of 93 and the
consequence of (20), Ru* maps U into 93 and 93 into U, it can be put into the form

R* =
0

where Ru*
(i) is duxdv and /?u*(2) is dvxdu.Then

R *2 =

»n *»u
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But the special case ut — u2 of (18) shows that 0 = (vu) u = vRu*
2. This implies that

RU*(2)RU*(D = o. If, further, Ru*
w i?u*(2) = 0 and hence Ru*

2 = 0, the Bernstein
algebra will be called orthogonal. If u3 is then set equal to u2 in (19) it takes the form

0 = («! u2)u2 + 2ul u2
2

But since the first term on the right has just been proved to be zero, so must be the
second. Thus u1u2

2 = 0, and since any v = u2u3 =%{(u2 + u3)
2 — u2

2 — u3
2}, it

follows that uv = 0. This is a strengthening of (21) and also implies that the left-
hand sides of (18) and (19) are zero term by term in the orthogonal case.

Equation (17) shows that 932 annihilates U, and since 932 c U the result just
proved shows that it annihilates 93.

PROPOSITION 4. In an orthogonal Bernstein algebra the ideal U 0 93 is nilpotent of
degree 4.

Proof. The powers of H 0 93 may be calculated using the above results.

(U 0 23)2 c 93 0 SB2

(U 0 93)3 c 932

(U © 93)4 = 0.

This makes it possible to formulate the main result of this section.

THEOREM 1. The core of an orthogonal Bernstein algebra is a special train algebra, in
which every element of unit baric value satisfies the train equation

2x4-3x3 + x2 = 0.

It is clear that multiplication by e maps every subspace of U 0 93 into itself,
which establishes the first proposition. The last assertion may be verified by
elementary computation.

The idempotent elements play an important role, and they are described in

THEOREM 2. In a Bernstein algebra, the idempotent elements are precisely those
of the form e + u + u2.

Proof. Clearly an idempotent can have no component in 233. The elements
specified in the theorem are clearly idempotents. If e + u + v is idempotent, squaring
and equating the components in 93 gives v = u2. This establishes the result, which
does not involve the orthogonality condition.

Now that d and 23 — £ have been studied it remains to consider the products of
elements of 933 with those of (£. It is convenient to denote by U* the subspace of U
consisting of elements which annihilate It 0 93.

Equation (17) shows that 932 c U*. Now (e+6w)2 = e + 29we+92 w2. By
definition, we e U. Taking Theorem 2 into account, and noting the powers of 6
which multiply the terms, it can be seen that if we ^ 0, then w2 e 93 and w2 = 4(vve)2.
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(This may be zero.) Alternatively if we = 0 it is possible that w2 e U. Again, on
examining (e+(J)u+6w)2 = e+(j)u+92

 W>2 + 2 0 0 H W + 0 2 w2 it is clear that uw2 = 0,
or 2B2 a U*, and U5B c H*. Finally, a similar exercise with the square of
e+(j)u+\l/v+9w shows that 939B c U*.

In examining particular Bernstein algebras a large number of cases were found
where 932 = 0, compared with the assertion just before Proposition 4 that in general
S33 = 0. A consequence of this, obtained by reworking the computation in the proof
of Proposition 4, is

PROPOSITION 5. If in an orthogonal Bernstein algebra 932 = 0, then U © 93 is nilpotent
of degree 3.

In view of that, it is of interest to establish conditions under which 932 = 0.

PROPOSITION 6. / / every element in 93 is the square of some element in U, then
932 = 0.

Proof. If y = w2, v2 = u™ = 0, and viv2=${(vl-v2)
2-vi

2-v2
2} = 0.

COROLLARY. / / 93 is one-dimensional, then 932 = 0.

Proof. There must be some element in It whose square is v.

An example showing that the case 932 # 0 can arise is as follows. Consider the
algebra with basis e, uu u2, u3, vu v2> v3 and multiplication table

e2 = e, eut = \u{, evt = 0 (i = 1, 2, 3)

Ut
2 = 0vu U2

2 = (f)V2, Ut U2 = \J/V3

vi v2 = du3, v3
2 = y«3, other products zero.

A typical element of weight one, x = e+X)<Xf«i + Z PtVi has a square

The square of this is
x [ 3 ] = x2+2<x1

2<x2
2(6(l)5+2il/2y)u3.

If therefore the constants in the multiplication table are chosen so that 9(j)5 + 2\jj2 y = 0
the algebra is of Bernstein's type. Moreover, it satisfies the orthogonality conditions.

3. Bernstein's classification of 3- and 4-dimensional populations

In contrast to the approach adopted by Lyubich [10] and here, Bernstein made
essential use of the fact that his evolutionary operators mapped the set of vectors of
proportions into itself, and he based his classification on the number of "pure
types " that would exist subject to this. If et denotes the basis vector with 1 in the
i-th position and 0 elsewhere, the i-th type is said to be pure if et V = et. In three
dimensions the laws of inheritance satisfying the stationarity principle are of five
types. The corresponding families of algebras are denoted here by 93O, in which
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there are no pure types, 232
 a nd ©3 in which there are two and three pure types, and

93 n and 2312 the two different laws admitting one pure type.
For each of these situations the quadratic transformation will be quoted from

[3], in a notation more appropriate to the present purpose. The genetic types will be
denoted by F, G, H, their coefficient in the initial generation by x, y, z, and those
in the next by x', y', z'.

In all cases except 2312 it is possible to find a linear transformation of the algebra,
depending on the parameters of the family, which reduces it to a single canonical
form. In the case of 23 ]2 one of the parameters is accounted for by the transforma-
tion, leaving a canonical form involving the other. This is a less " linear " situation.
The parameter values are assumed to be "general". There will be subfamilies
determined by relationships between the initial multiplication constants for which
the structures simplify, and this aspect is not investigated here.

The transformation and the new multiplication table are given in each case.

23O. From equation (30) of [3],

x' = a(x+y+z)2, y' = P(x+y+z)2, z' = y(x+y+z)2

with <x + fi + y = 1

Multiplication table:

F2 = G2 = H2 = FG = FH = GH = uF + pG+yH.

New basis:

bo = oiF + pG+yH, bl = F-G, b2 = F-H.

Canonical multiplication table:

b0
2 = b0, bt bj = 0 unless i = j = 0.

93n. From equations (31) of [3],

y'=y(x+y+z)

Multiplication table:

F2 =H2 = FH = i(l+a) F+±(l-a)H

G2 = G

New basis:

Canonical multiplication table:

bo2 = b0, b0 bx = \bu b2 = b2,

other products zero.
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9312. From equations (32) of [3],

x' = x(x+y+z)+ax(-pz+y)

Multiplication table:

F2 = F

G2=H2 = GH

FH = Kl -

New basis:

Canonical multiplication table:

V = K bobx=\{\-a)b2, b0b2 = \b2

b2 = -ab2, bt b2 = -%a.b2, b2 - 0.

932. From equations (28) of [3],

Multiplication table:

F2 = F, H2=H

New basis:

fe0=JF, bl=F-H,
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Canonical multiplication table:

^o2 = b0, b0 bi = #>! +%b2, b0 b2 = 0,

bx
2 = b2, by b2 = b2 = 0.

93 3. From equations (29) of [3],

x' = x(x+y+z), y' = y(x+y+z), z' = z(x+y+z).

Multiplication table:

F2 = F, G2 = G, H2=H

FG = ±F +±G, FH = ±F +±H, GH = \G +%H.

New basis:

bo = F, b^F-G, b2 = 2G+H.

Canonical multiplication table:

bo2 = b0, b0 bx = %bu b0 b2 = \b2,

b2 = b1b2 = b2
2 = 0.

The nil ideal 3 is nilpotent of degree 2 in 93O and 933, and is nilpotent of degree 3
in 93 l t and 332. I n the former cases the train equation relating principal powers of
elements of weight one is x2-x = 0, and in the latter it is x*-x2 = 0. From
inspection of the canonical multiplication tables it can be seen that in 93U, 232

 a n d
933, the value \ is a train root in Gonshor's sense [6; §2] but not a principal train
root. The algbera 3312 is most interesting in that it is not a special train algebra. In
fact 3fc = {̂ 2} f ° r k>2. The rank equation satisfied by x, x2 and x3 depends on x
other than through P(x). The case 933 is of course the elementary algebra of [8; §2].

Bernstein's work on the four-dimensional case is a continuation of his concern
to find minimal conditions which, when added to his principle of stationarity, ensure
that a population is Mendelian. He showed that the only two systems involving four
pure types are the Mendelian (whose genetic algebra is the elementary special train
algebra of [8; §2], and the " quadrille law ", which has been identified biologically
by Lyubich [10; §4]. If Gu ..., G4 are the genetic types the multiplication table of
the algebra is

Gt
2 = G ( i = l , 2 , 3 , 4 )

Gx G2 = £G3 +-£G4, G3 G4 = \GX +%G2

G{ Gj = $Gi+$Gj when i = 1, 2; j = 3, 4.

An appropriate canonical basis is

d = Gi + G2 — G3 — G4.
Then

other products zero.

3 = {c
The algebra is special train.

e2 = e, ecx = ±clt ec2 = \c2, cx c2
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4. A new classification of Bernstein algebras of low dimension.

It is possible to classify types of Bernstein algebras on the basis of the theory
developed in §2, in terms of the dimensions of the subspaces U, 93, 9B. Let these be
denoted by d with appropriate subscripts. The subspace of U consisting of annihi-
lators of U (and 93) has been called U*. Let its complement in U be called Uf. Then

dv > 0 implies du > 0.

The types of three-dimensional Bernstein algebras are obtained by distributing the
two dimensions of 3 among Uf, U*, 93, 9B. Denoting the results by vectors, there
are four which satisfy the above inequalities.

(i) (0, 0,0, 2). The only possible multiplication table is e2 = e, remaining
products zero. This may be called the equipotent algebra since the square
of every element is e.

(ii) (0, 2,0,0). This is the elementary algebra of [4; §2], with e2 = e,
eut = %Ui (i = 1, 2), the remaining products being zero.

(iii) (0,1,0,1). This is the interesting case where the algebra is not special train.
The multiplication table contains 3 parameters, and is e2 = e, eu= •£«,
ew = Bu, u2 = 0, uw = 0w, w2 = \J/u.

(iv) (1, 0, 1, 0). This is the one-parameter family e2 = e, eu = •£«, u2 = Ov, the

remaining products being zero.
In view of the different principles of classification adopted, the classes described here
do not correspond to those of the previous section.

In four dimensions, the three dimensions of 3 have to be allocated to Uf, U*,
93 and 9B. There are seven admissible cases. Where 9B is absent, © is a special
train algebra by Theorem 1. This occurs where the dimensions are (i) (0, 3,0,0)
(the elementary algebra), (ii) (2,0,1,0) and (iii) (1,1,1,0). The equipotent
algebra (iv) (0, 0, 0, 3) is also special train. There then remain three cases that are
not special train algebras (except possibly for certain sub-families defined by relation-
ships between the multiplication constants). The families (0, 2, 0, 1) and (1, 1, 1, 0)
have three-dimensional cores, and (0, 1, 0, 2) has a two-dimensional core.
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