

Citations

From References: 0 From Reviews: 0

MR1273979 (95c:17052) 17D92

Fuenzalida, Ana; Labra, Alicia (RCH-UCSS); Mallol, Cristian (F-MONT3-MI)

Orthogonality in WBJ algebras. (English summary)

Linear Algebra Appl. 196 (1994), 125–138.

Let A be a finite-dimensional commutative algebra over an infinite field K, char $K \neq 2$. If $\omega \colon A \to K$ is a nonzero algebra morphism, the pair (A,ω) is called a baric algebra. A is called a weak Bernstein-Jordan (WBJ) algebra if it has a decomposition $A = Ke \oplus S$, where e is an idempotent and for all $x \in S$, ex = 2e(ex), $x^2 = ex^2 + 2(ex)x$ and $x^3 = 0$. If $A = Ke \oplus U \oplus V$ is the Peirce decomposition of a WBJ-algebra with respect to an idempotent e, then $U^2 \subset V$, $UV \subset U$, $V^2 \subset Ke$ and the following relations are satisfied: For all $u, u' \in U$, $v \in V$, $v' \in V_{\perp} = \mathrm{Ann}(V)$ and $v^2 = \lambda e$, with $\lambda \in K$, (uu')v = 0, u(u'v) + u'(uv) = 0, v(uv') + v'(uv) = 0, v(uv') = 0, $v(uv) = -\frac{1}{4}\lambda u$, $v(uv')^2 = 0$, $v(uv)^2 = \frac{1}{4}\lambda u^2$, $v(uv)^2 = 0$, and to be strongly orthogonal if $v(uv)^2 = 0$ and $v(uv)^2 = 0$.

In this paper the authors study orthogonality, quasiorthogonality and strong orthogonality in WBJ-algebras. They show that every WBJ-algebra of dimension strictly less than 9, 6 or 5 is respectively quasiorthogonal, orthogonal or strongly orthogonal. Because in the case $V^2=0$ the concepts of orthogonality and quasiorthogonality coincide (A is then a Bernstein-Jordan algebra), every WBJ-algebra satisfying $V^2=0$ of dimension strictly less than 11 or 7 is respectively quasiorthogonal or strongly orthogonal. In each case the authors show that the dimension established is the best possible.

No characterization of quasiorthogonal, orthogonal or strongly orthogonal WBJ-algebras is given. ${\it Moussa~Ouattara}$

© Copyright American Mathematical Society 1995, 2015