\mathcal{L} it has no proper ideal. Since $\mathcal{L}^2 \neq 0$ by assumption, we see that \mathcal{L} is simple. Since the assumptions (i) and (ii) are true in $\mathcal{L}^{\frac{1}{2}}$ we get by an induction argument the decomposition of \mathcal{Q} as a direct sum of simple ideals.

II. Associative Algebras

2.1. Let $\mathbb Q$ be an associative algebra over a ring Φ and assume that $\mathbb Q$ has a unit element e. An element $a \in \mathbb Q$ is called left invertible (resp. right invertible) if there is an element $b \in \mathbb Q$ (b' $\in \mathbb Q$) such that ba = e (resp. ab' = e). a is invertible if a is left and right invertible.

Lemma 1. The following statements are equivalent,

- (i) $a \in Ol$ is invertible,
- (ii) there is a unique element $a^{-1} \in \mathbb{N}$ such that $a^{-1}a = aa^{-1} = e$
- (iii) L(a) is invertible (in End OL).

Proof. Let b,b' $\in \mathbb{O}$ be such that ba = ab' = e. Then

b = be = b(ab') = (ba)b' = eb' = b', consequently (i) \rightarrow (ii).

If $a^{-1}a = aa^{-1} = e$ then $L(a^{-1})L(a) = L(a)L(a^{-1}) = id$. This shows that L(a) is invertible and $L(a^{-1}) = L(a)^{-1}$, thus

(ii) \rightarrow (iii). To show (iii) \rightarrow (i) assume L(a) invertible,

i.e. L(a)U = UL(a) = id for a unique $U \in \operatorname{End} \mathbb{O}$ (apply

(i) \rightarrow (ii) to $\operatorname{End} \mathbb{O}$). All terms of this equation acting on $e \in \mathbb{O}$ gives au = Ua = e for u = Ue. But then L(a)L(u) = id

and L(a)U = id, consequently U = L(u) (since the inverse is unique). It follows au = ua = e. (Observe that the associative law was used at essential steps).

Lemma 2. If $u \in \mathbb{N}$ is nilpotent, then e - u is invertible. Proof. Let $u^k = 0$, then put $v = e + u + ... + u^{k-1}$ and check (e - u)v = v(e - u) = e.

2.2. Lemma 2 leads to the following definition. Let 0 be an associative algebra (not neccessarily with unit element) and $\hat{0} = \Phi 1 \oplus O$ be the algebra obtained from 0 by adjoining a unit element (see 1.7.).

 $x \in \mathcal{O}$ is called <u>quasi invertible</u> (q.i.) with <u>quasi inverse</u> y, if 1-x is invertible in \hat{Q} with inverse 1+y. (Remark: If 1-u has left or right inverse $\alpha 1+v$ in \hat{Q} then $1=(\alpha 1+v)(1-u)=\alpha 1+v-\alpha u-vu$ implies $\alpha=1$.)

Lemma 3. The following statements are equivalent:

- (i) $x \in \Omega$ is quasi invertible,
- (ii) there exists $y \in \mathbb{O}$ such that y x = yx = xy,
- (iii) id L(x) is invertible.

In either case the quasi inverse y is uniquely determined by (2.1) $y = (id - L(x))^{-1}x$.

Proof. (ii) \rightarrow (i). Assume y - x = yx = xy, then 1 = 1 + y - x - yx = (1 + y)(1 - x) and 1 = 1 + y - x - xy = (1 - x)(1 + y).

(i) \rightarrow (iii) If 1-x is invertible in $\hat{\mathbb{O}}$, then by lemma 1 the left multiplication L(1-x) of 1-x in $\hat{\mathbb{O}}$ is invertible and

consequently the restriction to 0, $\hat{L}(1-x)$ = id - L(x) must be invertible since 0 is an ideal of $\hat{0}$. If (iii) holds, set y: = $(id - L(x))^{-1}x$ and obtain y - x = xy = yx. (For xy = yx use the fact that $L(x)(id - L(x))^{-1} = \frac{1}{1+x} \frac{1}{1$

Remarks. 1) Lemma 2 shows that nilpotent elements are quasi invertible.

The equivalence (i) <=> (ii) shows that if $\mathbb Q$ has a unit element e, then x is q.i. iff e - x is invertible in $\mathbb Q$.

2.3. Let $\mathbb Q$ be an associative algebra and $u \in \mathbb Q$. The map $(x,y) \mapsto xuy$, $x,y \in \mathbb Q$ defines another multiplication on $\mathbb Q$.

The module $\mathbb Q$ together with this multiplication is denoted by $\mathbb Q_u$ and is called the u-homotope of $\mathbb Q$. It is obvious that any homotope of an associative algebra is associative.

Lemma 3 shows that x q.i. in $\mathbb Q_u$ with quasi inverse y, iff y - x = xuy = yux.

We introduce the following notations; we say q(x,y) exists, if x is q.i. in \mathcal{O}_{y} with quasi inverse q(x,y); if x is q.i. in \mathcal{O}_{y} we denote the quasi inverse of x by q(x,1). Furthermore, we define

(2.3)
$$B(x,y) := id -L(xy)$$

Lemma 4. (Symmetry principle). The following statements are equivalent,

- (i) q(x,y) exists,
- (ii) q(xy,1) exists,

```
(iii) q(y,x) exists,
```

- (iv) q(yx,1) exists,
- (v) B(x,y) invertible,
- (vi) B(y,x) invertible,

In either case

$$q(x,y) = B(x,y)^{-1}x$$
Exercise. $q(x,x)$ exists $+ q(x,y)$ exists.

Proof. (i) \rightarrow (ii). Let u = q(x,y). Then by (2.2)

u - x = xyu = uyx. Multiply by y from the right to obtain uy - xy = xyuy = uyxy, this means that q(xy,1) exists.

(ii) \rightarrow (iii) Let w = q(xy, l), then

w - xy = wxy = xyw, hence

yw - yxy = ywxy = yxyw. It follows

(yw + y) - y = yw = ywxy + yxy = yxyw + yxy = (yw + y)xy = yx(yw + y).

But this means that q(y,x) exists.

(iii) \rightarrow (iv) \rightarrow (i) follows from interchanging x and y in the parts we already proved. (ii) <=> (v) follows from lemma 3.

Then (2.4) follows from (2.1) in the y-homotope.

Remark. Actually we proved a stronger result, namely if

$$u = q(x,y)$$
 then $uy = q(xy, 1)$ and
$$q(y,x) = yq(x,y)y + y.$$

Lemma 5. (Shifting principle).

If φ , ψ are endomorphisms of Ω such that

 $L(\varphi x)R(\varphi y) = \varphi L(x)R(y)\Psi$

and $L(\psi x)R(\psi y) = \psi L(x)R(y)\varphi$ for all $x,y \in \Omega$,

then $q(x, \gamma y)$ exists iff $q(\gamma x, y)$ exists.

In either case

$$\varphi q(x, \psi y) = q(\varphi x, y)$$
.

<u>Proof.</u> Let $u = q(x, \psi y)$, i.e.

$$u - x = u(\psi y)x = x(\psi y)u.$$

Apply arphi to obtain (using the assumptions on arphi , ψ)

$$\varphi u - \varphi x = \varphi (u \psi y x) = \varphi (x \psi y u)$$

$$= (\varphi u) y (\varphi x) = (\varphi x) y (\varphi u)$$

This shows $\varphi q(x, \psi y) = q(\varphi x, y)$.

Assume $q(\varphi x, y)$ exists, then by the symmetry principle $q(y, \varphi x)$ exists, by the part we already proved we get that $q(\psi y, x)$ exists, again the symmetry principle implies that $q(x, \psi y)$ exists.

Remark: $\varphi = L(a), \psi = R(a)$ and $\varphi = R(b), \psi = L(b), a,b \in \widehat{\mathcal{O}}$ satisfy the hypotheses of the lemma.

Corollary. If $a,b \in \hat{O}$, $x,y \in \hat{O}$, then

q(axb,y) exists iff q(x,bya) exists.

Lemma 6. (Addition formula.) If q(x,y) exists, then

- (i) B(x,y)B(q(x,y),z) = B(x,y+z)
- (ii) q(q(x,y),z) exists iff q(x,y+z) exists. If this is the case then

(2.5)
$$q(q(x,y),z) = q(x,y+z)$$

<u>Proof.</u> Put u = q(x,y). Since u - x = uyx = xyu we get

$$(id - L(xy))(id - L(uz)) = id - L(xy) - L(uz) + L(xyuz)$$

= $id - L(x(y + z)) = B(x,y + z)$

This is (i). Since q(a,b) existing p(a,b) invertible, the first part of (ii) can be read off from (i) since p(x,y) is invertible. Using (2.4) and (i) we get

 $q(x,y + z) = B(q(x,y),z)^{-1}B(x,y)^{-1}x = B(q(x,y),z)^{-1}q(x,y)$ = q(q(x,y),z).

Now we define

Rad Ol: = $\{x \in Ol, q(x,y) \text{ exists for all } y \in Ol\}$ Note: If $x \in \text{Rad} Ol$ then in particular q(x,l) exists (see exercise, p. 13).

Theorem 1. Rad Ω is an ideal in Ω and Rad Ω = 0.

<u>Proof.</u> $x \in Rad \mathcal{O}_{\ell}$ is equivalent to B(x,y) invertible for all $y \in \mathcal{O}_{\ell}$, by lemma 4. If $\alpha \in \Phi$, $x \in Rad \mathcal{O}_{\ell}$ then $\alpha \in Rad \mathcal{O}_{\ell}$ follows immediately from $B(\alpha x,y) = B(x,\alpha y)$. If $y,z \in Rad \mathcal{O}_{\ell}$ then B(x,y) and B(u,z) are invertible for all $x,u \in \mathcal{O}_{\ell}$ (symmetry principle) in particular B(q(x,y),z) is invertible. The addition formula then shows that B(x,y+z) is invertible

for all x, thus $y + z \in Rad Ol$. We proved that Rad Ol is a submodule. If q(x,y) exists for all $y \in Ol$, q(x,ayb) exists for all $a,b \in Ol$. But then q(bxa,y) exists (Shifting principle resp. its corollary). Consequently $Ol(Rad Ol)Ol \subset Rad Ol$ and Rad Ol is an ideal. If $\overline{x} \in Rad \overline{Ol}$, $\overline{Ol} = Ol$, then for every Rad Ol

y there exists \bar{u} such that $\bar{u} - \bar{x} = \bar{u}y\bar{x} = \bar{x}y\bar{u}$ or equivalently $\bar{u} - \bar{x} = \bar{u}y\bar{x} \in \mathbb{R}$ and $\bar{u} = \bar{x} = \bar{u}y\bar{x} = \bar{x}y\bar{u}$ or equivalently $\bar{u} = \bar{x} = \bar{u}y\bar{x} \in \mathbb{R}$ and $\bar{u} = \bar{u}y\bar{x} \in \mathbb{R}$. But then $\bar{u} = \bar{u}y\bar{x} = \bar{u}y\bar{u} = \bar{u}y\bar{x} = \bar{u}y\bar{u} =$