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it has no proper ideal. Since :’é- 4+ 0 by assumption,
we see that;z-is simple. Since the assumptions (i) and (ii)
& :
, are twvue in :@ we get by an induction argument the decomposition

ofa/ as a direct sum of simple ideals.

II. Associative Algebras

R ADRRC

2.1 LetOL be an associative algebra over -a—=xing ¢ and
assume thatOL has a unit element e. An element aéOL is called

left invertible (resp. right invertible) if there is an element

pe b (b'€OL ) such that ba = e (resp. ab' =e). a is

invertible if a is left and right invertible.

Lemma 1. The following statements are }equivalent,

2 (1) aeOl is invertible,

(ii) there is a unique element a le(l such that

a a = aa =e

(iii) L(a) is invertible (in gnd¢0¥ ) o

Proof. Let b,b'e(l be such that ba = ab' = e. Then

b = be = b(ab') = (ba)b' = eb' = b', consequently (i) - (ii).
Tf A ta = as © = e then L(a_l)L(a) = L(a)L(a_l) = id e . . MHis
shows that L(a) is invertible and L(a”t) = L(a)_l, thus

(ii) » (ifi). To show (iii) - (i) assume L(a) invertible,
i.e. L{a)U = UL{a) = id for a unique U € gndOL (apply

(i == (ii) +to End Ol ). All terms of this -equation acting on

e€OL gives au = Ua = e for u = Ue. But then L(a)L(u) = id
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and L(a)U = id, consequently U= L(u) (since the inverse is
unique) . It follows au = ua = e, (Observe that the associative
law was used at essential steps).

Lemma 2. If uell is nilpotent, then e - u is invertible.

Proof., Iet uk_ 0, then put v=e + u +...+ uk_l and

check (e - u)v = v(e - u) = e,
2.2, Lemma 2 leads to the following definition. Let OV be an
associative algebra (not neccessarily with unit element) and

A

GV = o100k be the algebra obtained from axby adjoining a unit

element (see 1.7.).

xe(l is called quasi invertible (g.i.) with quasi inverse vy,

if 1 - x is invertible in (} with inverse 1 + y. (Remark: 1If
1 - u has left or right inverse oLl + v in O} then.
1 =(1+v)(l -u) =«1 +v -u - vu implies &= 1,)

Lemma 3. The following statements are equivalent:

(1) xegcn is guasi invertible,

(ii) there exists yefl such that y - x = yx = xy,

(iii) id - L(x) is invertible.

In either case the gquasi inverse Y is uhiquely determined by

(21 y = (id - L(x)) lx.

Proof. (ii) + (i). Assume y - x = YX = xy, then
l=1+y-x - yXx = (1 + y) (1l - x) and
l=l+y-x-xy=(L<x(l+y).

(1) > (iii) If 1 - x is invertible in (Ol then by lemma 1 the

left multiplication L(l - x) of 1 - x in Ol is invertible and
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consequently the restrictionmtoOL)L(l - X)(R = id - L(x)

~
must be invertible since O} is an ideal of () . If (iii)
holds, set y: = (id - L(x))-lx and obtain y - X = Xy = yX.

i ’

(For xy = yx use the fact that L(x) (id - L(x) — = lfjfiiijm43ﬂ |
= Rove Xy =" X -
(id - L(x)) lL(x).) Since the inverse of an element is wgw“"~

uniquely determined, y is unique and we just saw
y = (id - L(x)) Tx.
Remarks. 1) Lemma 2 shows that nilpotent elements are
quasi invertible.

2) The equivalence (i) <=> (ii) shows that if mfhas
a unit element e, theﬁ x is q.i, iff e - x is invertible in(l .
2.3. Let O} be an associative algebra and.u4£Cl . The map
(x,y) — xuy, X,YGEOL defines anothervmultiplication on OL.

The module(mrtogether with this multiplication is denoted by

Cﬁu and is called the u-homotogg_of‘OL. It is obvious that
any homotope of an associative algebra is associative.
Lemma 3 shows’that X g.is in Cwu with quasi inverse y, iff

(2.2) y = X = Xuy = yuxX.
We introduce the following notations; we say q(x,y) exists, if
X is g.i. in Cky with quasi inverse gq(x,y); if x is g.i. in oL

we denote the quasi inverse of x by q(x,1l). Furthermore, we

define

(21+3) B(x,y): = id -L(xy)-

Lemma 4. (Symmetry principle). The following statements are
equivalent,

(1) g(x,y) exists,

(ii)  g(xy,l) exists,
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(iii) g(y,x) exists,
(iv) g(yx,l) exists,

kv (v) B(x,y) invertible,

(vi) B(y,x) invertible,

In either case

(2.4) q(x,y) = B(x,y) Tx

&

Exercise. |g(x,x) exists = q(iii) exists.
“Proof. (i) » (ii). Let u = g(x,y). Then by (2.2)

u - X = Xyu = uyxX. Multiply by v from the right to obtain
uy = Xy = Xyuy = uyxy, this means that g(xy,l) exists.

(ii) » (iii) Let w = g(xy, 1), then

W = XY = WXY xyw, hence
yw = yXy = ywxy = yxyw., It. follows

(yw + y) =y = yw = ywxry + yxy = yXyw + yXy = (YW + y)Xy = yx(yw + y)-'
.~  But this means that gq(y,x) exists.

(ELi) < (1%) +‘(i) follows from interchanging x and y in the

parts we already proved. (ii)<=> (v) follows from lemma 3.

Then (2.4) follows from (2.l1l) in the y-homotope.

Remark. Actually we proved a stronger result, namely if

u = g(x,y) then uy = g(xy, 1) and

aly,x) = yq(x,y)y + y.
Lemma 5. (Shifting principle).

If ¢, are endomorphisms gz(n'such that

© L(x)R(y)W
Y L(x)IR(y)P for all x,yea’ ’

L(Px)R(Py)
and L(y x)R(}y)

then g(x,py) exists iff g(¥x,y) exists.

, In either case
o —_—
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P alx, yy) = qlex,y).

Proof. Let u = q(x,vwy), i.e.
u-x = ~u(1PY)X = x(yy)u.
Apply ¥ to obtain (using the assumptions on ¥, V)
fu - Px Plupyx) = P (xvyu)
(puy(Px) = (Px)y(Pu)

This shows Palx,by) = gl w@x,y) .
Assume g(¥Px,y) exists, then by the symmetry principle aly, px)

exists, by the part we already proved we get that g( Yy,x) exists,
again the symmetry principle implies that gq(x, Yy) exists.

Remark : QF= L(a),y = R(a) and W= R(b) ,y = L(b),a,be Oi\, satisfy
the hypotheses of the lemma.

A

Corollary. If a,be (| ,x,y€ OL , then

g(axb,y) exists iff g(x,bya) exists.:

Lemma 6. (Addition formula.) If g(x,y) exists, then

(1) B(x,y)B(q(x,y),2) = B(x,y + z)
(ii) qlg(x,y) ,2) exists iff q(x,y + z) exists. If this

1

the case then

(2.5) qg(g(x,y),2) = q(x,y + z)

Proof. Put u = g(x,y). Since u - x = uyx = xXyu we get

(id - L(xy)) (id - L(uz)) = id - L(xy) - L(uz) + L(xyuz)

id - L(x(y + 2)) = B(x,y + 2)
This is (i). Since g(a,b) exd°iff B(a,b) invertible, the first
part of (ii) can be read off from (i) since B(x,y) is invertible.

Using (2.4) and (i) we get
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q(x,y + z) = Bla(x,y),2) TB(x,y) tx = BA(q(x,y) ,2) "La(x,y)
= q(g(x,y) ,2z).

Now we define

Rad O} : ={xe GL r 9(x,y) exists for all ye@}

Note: If xerad(l then in particular g(x,l) exists (see

exercise, p.13)

Theorem 1. Rad(l is an ideal in (} and Rad(m// ) = 0.
Rad (b

Proof. x€& RadGL is equivalent to B(x,y) invertible for all
yEOL , by lemma 4. If xe& 9, x€ RadOL then & xe Radll follows
immediately from B(&x,y) = B(x,xy). If y,ze rRad Ul then
B(x,y) and B{u,z) are invertible for all x,uEfOL (symmetry
principle) in particular B(g(x,y),2) is invertible. The
addition formula then shows that B(x,y + iz) is invertible

for all x, thus y + z€ Rad(} . We proved that Rad(l is a

“9\/&"09 o Ce~ a
Mﬁbgue&aﬂ:e—. = If g(x,y) exists for all ye ) 9(x,ayb) exists

A

for all a,be (. But then g(bxa,y) exists (Shifting principle

resp. its corollary). Consequently O,(RadOL)O]/C_ R’adOL and

i ~ ~ O
Rada« is an ideal. If xe€ Rad(l ' A= / , then for every
Rad(l A .
y there exists U such that U - X = Uyx = xyu or equivalentl e
r"“txeﬁuﬁe a}
u - x - uyxE'RadOL . But then B(u - x - uyx, - y)

T Kt
B(u, - y)B(x,y) is invertible and therefore B(x, v) 1s right ‘:@3{1

e
-w-»-._... R

invertible, 151m11aﬂ7we get that B(x ,y) is also . J.nvertlble, b

hence invertible. Thls is true for all yea , hence €MQM€Q4 '

X € Radol« and x = 0.



