A semi simple Artinian algebra has a unit element. Exercise. Let $\mathbb Q$ be an Artinian algebra. Show that $\mathbb Q$ is semisimple iff any ideal $\mathcal L_1$ in $\mathbb Q$ has a direct (ideal) complement $\mathcal L_2$, i.e., $\mathbb Q = \mathcal L_1 \oplus \mathcal L_2$, $\mathcal L_2$ an ideal of $\mathbb Q$. If $\mathbb Q$ has an involution j and $\mathcal L_1$ is j-invariant, then $\mathcal L_2$ is j-invariant. (Hint: decompose the unit element e in $\mathbb Q$ as $e = e_1 + e_2$, show e_1 unit element in $\mathcal L_1$ and $\mathcal L_2$ and $\mathcal L_3$ and $\mathcal L_4$ and $\mathcal L$

III. Triple Systems.

3.1. A unital ϕ -module γ together with a trilinear map $\gamma \times \gamma \times \gamma \to \gamma$, $(x,y,z) \mapsto \langle xyz \rangle$ is called a triple system. Examples. 1) Let $\gamma = \phi^{(p,q)}$ be the γ -module of rectangular pxq-matrices. If γ if γ then γ then γ is in γ , where γ denotes the transposed of γ . Since γ is in γ , where γ is trilinear, γ together with this "triple product" is a triple system.

- 3) Most important examples for the situation just described are the following. Let \emptyset be a Φ -algebra and $j: \emptyset \to \emptyset$, an involutorial automorphism (i.e. $j(ab) = j(a)j(b), j^2 = id$) then $\emptyset = \{x \in \emptyset \mid j(x) = \epsilon x \}, \epsilon = \pm 1$, are closed under $(x,y,z) \mapsto (xy)z$, but in general \emptyset is not a subalgebra. $(\emptyset_{+} \bowtie a \quad \text{subalgebra})$

The above examples show that a theory of triple systems of course includes a theory of algebras and "minus spaces" of algebras relative to involutorial automorphisms.

For submodules W, W, $W \in \mathcal{T}$, we denote by $\langle W | \mathcal{D} | \mathcal{M} \rangle = \langle U | W | \mathcal{T}$ the submodule of \mathcal{T} generated by all "triple products" $\langle uvw \rangle$, $u \in \mathcal{U}$, $v \in \mathcal{D}$, $w \in \mathcal{W}$. A submodule W is a subsystem if $\langle WW | W \rangle \subset W$, it is an ideal, if $\langle W\mathcal{T}\mathcal{T} \rangle + \langle \mathcal{T}W\mathcal{T} \rangle + \langle \mathcal{T}\mathcal{T} \rangle = \langle \mathcal{U} \rangle$. A Φ -linear map $f: \mathcal{T} \rangle \to \mathcal{T}'$ is a homomorphism of triple systems \mathcal{T} , \mathcal{T}' , if $f(\langle xyz \rangle) = \langle f(x)f(y)f(z) \rangle$ for all $x,y,z \in \mathcal{T}$. Isomorphisms and automorphisms are defined the usual way and the standard results hold. (The proofs are the same as for algebras.) If W is an ideal in a triple system \mathcal{T} , then $\mathcal{T} = \mathcal{T}_W$ together with

$$<(x + U)(y + U)(z + U)>: = + U$$

again is a triple system.

Theorem 1. (i) $W \subset \mathcal{F}$ is an ideal, iff W is the kernel of some homomorphism.

(ii) If f: $\overrightarrow{7} \rightarrow \overrightarrow{7}'$ is a homomorphism, then $f(\overrightarrow{7}) \cong \overrightarrow{7}/$ kernel f

(iii) If \mathcal{N}, \mathcal{Q} are ideals of \mathcal{T} , then $\mathcal{N} + \mathcal{Q}_{\mathcal{P}} \cong \mathcal{N}_{\mathcal{P}}.$

A triple system 7 is called simple if $(777) \neq 0$ and 7 has no proper ideals.

3.2. The <u>derivatives</u> of a triple system \mathcal{T} are defined recursively $\mathcal{T}^{(0)} = \mathcal{T}, \quad \mathcal{T}^{(n+1)} = \langle \mathcal{T}^{(n)}, \mathcal{T}^{(n)}, \mathcal{T}^{(n)} \rangle.$

Definition: every non-empty set of ideals has a maximal element \neq is solvable, if \neq (n) = 0 for some n.

Exercise. State and prove the corresponding results to 1.5. If 7 is Noetherian then there exists a unique maximal solvable of Theren 2 ideal Rad \neq in \neq , the solvable radical of \neq . Rad(\neq) = 0, and if $Rad(\frac{7}{100}) = 0$ then $Rad \neq C VI$. Powers of an element $a \in \mathcal{I}$ are defined recursively

$$a^1$$
: = a, $a^{2(n+1)+1}$: = a^{2n+1} = a^2

Note: Only odd power are defined. $a \in \mathcal{T}$ is nilpotent, if $a^{2n+1} = 0$ for some n. A subsystem $\mathcal{V}_{\mathcal{L}} \subset \mathcal{F}$ is nil, if every element in $\mathcal{V}_{\mathcal{L}}$ is nilpotent. If $(a^{2n+1})^{2m+1} = a^{(2n+1)(2m+1)}$ for all m, n > 0 and all $a \in \mathcal{T}$, then there exists a unique maximal nil ideal in 7 , the nilradical of 7 .

Exercise? Prove existence and uniqueness of the nilradical. on p.7 3.3. Similar to the definition of left and right multiplication in algebras we define bilinear maps $L,R,P: \mathcal{F} \times \mathcal{F} \to \operatorname{End} \mathcal{F}$, $L: (x,y) \mapsto L(x,y) R: (x,y) \mapsto R(x,y),P:$ $(x,y) \mapsto P(x,y)$, by $L(x,y)z = \langle xyz \rangle$, $R(x,y)z = \langle zyx \rangle$, $P(x,y)z = \langle xyz \rangle$ <xzy>. Then

 $\langle xyz \rangle = L(x,y)z = R(z,y)x = P(x,z)y.$

Caution: Observe the reversed order in $\langle xyz \rangle = R(z,y)x$. Derivations are defined the obvious way. De End $\frac{7}{6}$ is a derivation of 7, if

D < xyz > = < (Dx)yz > + < x(Dy)z > + < xy(Dz) >for all $x,y,z \in \mathcal{T}$, or equivalently (3.2) $\left[D,L(x,y)\right] = L(Dx,y) + L(x,Dy)$ for all $x,y \in \mathcal{F}$. Again $\mathcal{I}(\mathcal{I})$ the Φ -module of all derivations of \mathcal{I} is a subalgebra of $(\operatorname{End}_{\Phi}\mathcal{I})^-$

Exercise AIf O is a triple system coming from an algebra

(see example 2) then any algebra derivation or homomorphism is a derivation or homomorphism of the triple system. This chapter for now

3.4. There is still another aspect of triple systems we want to mention. Let \not be an arbitrary triple system over Φ ,L(x,y)z = $\langle xyz \rangle$. Then by definition $(x,y) \mapsto L(x,y)$ is a bilinear map of \not x \not into End $_{\Phi}$ \not . But from the definition of the tensor product of Φ -modules, we get a unique linear map

$$S: \mathcal{F} \longrightarrow End \mathcal{F}$$
, such that $S(x \otimes y) = L(x,y)$.

And obviously any linear map of $\mathcal{T} \otimes \mathcal{T} \to \operatorname{End} \mathcal{T}$ defines a triple system structure on \mathcal{T} .

Now we restrict to a special case. Assume \mathcal{T} is finite dimensional over a field F. Then $\mathcal{T}\otimes\mathcal{T}\cong\operatorname{End}\mathcal{T}$, but there are many ways to obtain this isomorphism. We assume, that λ is a non degenerate symmetric bilinear form on \mathcal{T} . We define $xy^*\in\operatorname{End}\mathcal{T}$ by

$$(xy^*)z: = \lambda(z,y)x$$

It is easy to prove and is left as an exercise, $x \cdot e_y \to xy^*$ defines an isomorphism (of vector spaces) $\mathcal{F} \otimes \mathcal{F}$ and $\operatorname{End} \mathcal{F}$, in particular

- (i) $\{xy^*, x, y \in \mathcal{T}\}$ generates End \mathcal{T} . Furthermore
- (3.3) (ii) trace $xy^* = \lambda(x,y)$
 - (iii) $(xy^*)^* = yx^*$
- (iv) $A(xy^*)B^* = Ax(By)^*$ for all $x,y \in \mathcal{F}$, $A,B \in End \mathcal{F}$ where A^* denotes the adjoint of A relative to λ .

As in the case of algebras (see 1.9.), associative bilinear-forms might be useful.

There are more possibilities to define associative bilinear forms on \not . One possible definition is as follows: λ is called associative, if

- (3.5) (i) $\lambda(\langle xyz\rangle, u) = \lambda(x,\langle uzy\rangle) = \lambda(z,\langle yxu\rangle)$ for all $x,y,z,u\in\mathcal{T}$. Assume λ non degenerate, symmetric and associative. Then (3.5) is equivalent to
- (3.5') $L(x,y)^* = L(y,x); R(z,y)^* = R(y,z)$. If $A \in End \neq T$ then there exists a unique $S(A) \in End \neq T$ such that
- (3.6) trace $AL(x,y) = \lambda(S(A)x,y)$ (since λ is non degenerate). Next we show
- (3.7) $S(uv^*) = L(u,v)$

where $uv^*z = \lambda(z,v)u$ (see (3.3)).

 $\lambda(S(uv^*)x,y) = trace uv^*L(x,y) = tr L(x,y)uv^*$ $= \lambda(\langle xyu\rangle, v) = \lambda(x,\langle vuy\rangle)$ $= \lambda(\langle uvx\rangle, y) = \lambda(L(u,v)x,y).$

- (3.6) and (3.7) imply trace AS(xy*) trace S(A)xy*, consequent-
- (3.8) trace S(A)B = trace AS(B).

Exercise: Define S'(A) by trace $AR(x,y) = \lambda(S'(A)x,y)$ and show tr S'(A)B = tr AS'(B).

IV. Associative Triple Systems.

4.1. As we have seen in example 2) of the previous chapter, one can associate to any class of algebras a corresponding class of triple systems by considering the triple composition $(a,b,c) \rightarrow \langle abc \rangle = (ab)c$, where $(a,b) \rightarrow ab$ is the product in