W

*
A(S(uv )x,y)
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As in the case of algebras (see 1.9.), associative
bilinear-forms might be useful.

There are more possibilities to define associative
bilinear forms on‘y'. One possible definition is as
follows: M is called associative, if
(3.5) (i) A(<xyz>,u) = A(x,<uzy>) = A(z,<yxu>) for all
x,y,z,ucE:Z . Assume A hon degenerate, symmetric and
associative. Then (3.5) is equivalent to
(3.5') L(x,y) = L(y,x):R(z,y) = R(y,z). If A€ End ¥ then
there exists a unique S(A)e End ¥ such that |
(3}6) trace AL(x,y) = A(S(A)x,y) (since A is non degenerate).
Next we show | |

(3.7) . s(uv) = L(u,v)

*

where uv z AMz,v)u (see (3.3)).

1

* *
trace uv L(x,y) = tr L(x,y)uv

A(<xyu>,v) = A(x,<vuy>)

= A(<uvx>,y) ALEw, V) %, %) .

* *
(3.6) and (3.7) imply trace AS(xy ) trace S(A)xy , consequent-

ly
(3.8) trace_S(A)B = trace AS(B).
M(S!'(A)x,y) and

Exercise: Define S'(A) by trace AR(x,y)

show tr S'(A)B = tr AS'(B).

IV. Associative Triple Systems.

4.1. As we have seen in example 2) of the previous chapter,
one can associate to any class of algebras a corresponding
class of triple systems by considering the triple composition

(a,b,c) + <abc> = (ab)c, where (a,b) + ab is the product in
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the algebra. Starting with associative algebras we come to
the definition:

A triple system?¥ is associative (of the first kind), if

(4.1) <xy<uvw>> = <<xyu>vw> = <x<yuv>w> for all x,y,u,v,wcf;?
In terms of left and right multiplications (4.1) is equivalent

to either

(4.2) L(x,y)L(u,v) = L(<xyu>,v) = L(x,<yuv>)
(4.2 R(w,v)R(u,y) = R(<uvw>,y) = R(w,<yuv>)
L(x,y)R(w,v) = R(w,V)L(x,y) = P(x,w)P(y,V)

Examgle. Any associative algebracx together with (x,y,z) (xy) 2

is an associative triple system of the first kind, and so is any

SabS pa ,
subméza%e of O/closed‘under (xy) 2.
Let %?: = EndQ;fe(End©3¥')°p the direct sum of the algebra

of endomorphisms of ¥ with its opposite algebra. Consider &fo

subspace :
thexéibmgéﬂ%e of«E’generated by all A(x,y): = (L(x,y),R(y,x)) then

(4.2) and (4.3) show

A(x,y) A (a,v) (L(x,y) ,R(y,x)(L(u,v) ,R(v,u))

|

(L(x,y)L(u,v) ,R(v,u)R(y,x))

il

(L(<xyu>lv) +R{v, <qu>))

(L (x,<yuv>) ,R(<yuv>,x)), i.e.

(4.5) A(x,y)A(u,v) = A(x,<yuv>) = A(<xyu>,u)
consequently

;fg is a subalgebra of %?. Let E denote the unit element of
£, then ¢ = Ra @
gf : = OE + &f

is a subalgebra of %j, too.
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Avechon Spacs
The <@=module 7’is in a natural way an-E left and an €'right

module according to the following definitions. If
A= (Al'Az)E:C . deflne

(4.6) A*x: = A, X, X°A: = A2x

1
and it is obvious that (A,x) - A<Xx makestr a left-g’module

and (A,x) + x*A makes ¥ a rightﬁgpmodule. Since & is a |
subalgebra of-€7we have the following result:

Lemma 1. ;f together with the maps

I o N Z  ,(A,x) v A-x, FxL -*?' ,(x,A)» x-A is a left and
a right.{?module. (even an %i-bimodule)

Consider the—é—meéaigﬁfﬁigr
Q:=Le¥F

and define a product in(]rby the formula

(4.7) (A®x) (B®y) : = AB + A(x,y)®A.y + X°B

Theorem 1. 52‘1'35 an associative triple system of the first

kind, then (=X ®'¥ with multiplication as defined in (4.7)

is an associative algebra with unit element containing s

(isomorphically imbedded) such that <xyz> = (xy)z for all

X1¥Yr2 67'( . + e -y ) A - = W R

The proof is left as anLEéercise;é:;—J

4.2. Since for later applications we need a classification of
a very similar type of triple systems we do not present a
structure theory for associative triple systems of the first
kind. We leave it as an exercise to use the methods and argu-

ments we shall develop below to build up parts of a structure
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theory of associative triple systems of the first kind.
Very similar to the definition in 4.1 is the following:

A triple system;nlis called associative (of the second kind), i.£

(4.8) <<xyz>uv> = <Xy<zuv>> = <X<uzy>v>

)
Note: The right hand side equations of (4.1) and (4.8) are

different. In the sequel "associative triple system' (= a.t.s)
always means "associative triple system of the second kind".
(4.8) is equivalent to either

(4.9) L(x,y)L(z,u) = L(<xyz>,u)

L(x,<uzy>)

(4.10) R(v,u)R(z,y)

I

R(<zuv>,y) = R(v,<uzy>)

[

(4.11) R(v,u)L(x,y) L(x,y)R(v,u) = P(x,V)P(u,y)

Example. LetOl be an associative algebra with involution

x+ %, then O/ together with the map (x,y,z)t> Xyz is an

SW d(.(?/ OI, ,
assoc1at1ve triple system, and so is any snbmeéu;e-of which

Vecdd Gpace—

is closed under xyz. In particular the -¢=fodute- of all pxg-
Road

matrices over .4 together with (A,B,C)> AB C‘lS an a.t.s.

(see example 1l)in 3.1.).

Let Mbe an a.t.s. We set—%: = EndQWR_Q(EndQW[)Op

we define

(L(x,y) ,L(y,x))

lix,y):

r(er) : (R(y,X) IR(er))-
Let ;f be the submodule of-{ﬁspanned by all 1(x,y) X,y e M

and %a be the submodule of %f spanned by all 1{x,y) x,yeént .

(4.9) and (4.10) imply|(do the computations) If%ﬂﬂcumaél. )

(4.12) Ll(x,y)l(u,v) = 1 (<xyu>,v)

1(x,<vuy>)
(4.13) r(x,y)r(u,v) = r(x,<yuv>) = r(<uyx>,v)

(Note: the product on the left hand side of (4.13) is taken

in %fOp.)
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The last two equations show that %O resp. 330 are subalgebras
of {Jresp. %Op. The algebras { and _(€op have a natural

involution, namely (A,B)w (A,B) = (B,A) . Obviously

1(x,y) = 1(y,x) ',rix,y) = r(y,x). Let El resp. E2

" be the unit element in‘{ resp. €op_ We define

L= oE +oL ,(R= ¢E, + R, (B-Ra C)

From the preceding discussion it_ follows

Lemma 2. % andQ are subalgebras of { resp. %OP invariant under

the canonical involution. ofo% ) is an ideal :Lnx resp. Q)

C{/itt’
The -aessdale M is in a natural way a left f‘é-module and

a right - .g OP_podule, according to the follow1ng compositions.
= _ op

If A = (Al,Az)é_{ , B = (Bl,B ) & fé and xém we set

(4.14) Aex: = Alx ’ X+B: = B,X

i
We take an isomorphic copy of M, denoted by Il . By the
definitions

— T - e

(4.15) X°*A: = A2x , Bex: = B2x

R , : _ op
if xeNL, A = (Al’AZ) e::é and B = (Bl’BZ) & % P
it is obvious that¥il becomes a right -g-module and a left ,goP-module.

SinceZ andp are subalgebras of-g resp .goP we have the

following result

Lemma 3. (i) M together with the mappings defined by (4.14) is a
left x -module and a right (38 -module.
(ii)T] together with the mappings defined by (4.15) 1is 2

right z-module and a left n -module.

J/show that m(resp.W&) is an (&£ ,%®)-bimodule (resp.

(Jﬁ,ﬁf)-bimodule), i.e. it is not only a left Q?—module and a
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righ\@module, but furthermore (A<x)¢B = A-‘(x-B) holds for
all aed ,BeR , xeM.

Now we consider the module
O :=XeMMe We R
For the convenience of notation we write the elements of GL in

matrix form

A X v _
- 7 Aéz IBQR ’ XQTYLIYG ’YYT-
y B :
4 : . . A O 0 x
and by means of the module isomorphisms A+ 00/ X+=>g 0

etc., we identify £, R , M, T with its image. We define

a multiplication on Orby

<A x) (A' ’ x]- AA" + l(x,y") , Ax' + x-B"
(4.16) - * - . s = - . iy
v Bi \y", B v-A" + By , r(y,x') + BB'

The following result is fundamental:

Theorem 2. ;_gm}_s_ an a.t.s. then

(1) O = Me TeR together with the product defined by (4.16)

is an associative o¢-algebra with unit element e = (El . )
0 E
2

(ii) Ovo = erOes Mo e R, is an ideal in A

(iii) The map j: u =(Z_\ X) — u = (%'X) is an involution of Ol
y B

x,B
: , _ 0¥\, /o) _[o %)
(iv) If x,vy,2 eM , then <xyz> = x*y*z, ‘-‘-’(@@ *‘(,0 O)*’(O ¢}

(v) The Peirce componentS_g__gOL relative to the idempotent El’ are

Wy =& Oy =T, GLO_l =M Oy =K
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(For the notations concerning Peirce decomposition see 2.5.).

Proof. The only difficulties related to this theorem are in

finding the given construction. The verification of the above

- statements is done by straightforward computations using

(4.9)-(4.16) and the previous 2 lemmas =.. - = .wec and is left

as an‘exerciseﬁl

OL = Ol/(m) is called the standard imbedding ofm.

Lemma 4. Let m,gg an a.t.s. and 0V its standard imbedding. It

E@_J_._g an ideal g._r_l_OL then

(1) & = (LALLM )B(LATRIS(EAR)

(ii) Ifo4 is j-stable then &N is an ideal in ML
(iii) If <=L oK , then&= 0.

Proof. (i) follows from part (v) of the above theorem and II,
Lemma 7.

.(ii) If b &EnML and x,y M then

<xyb> = x*§¥b and <bxy> = b*x*y

are in M a% . sinceel is j-invariant b is in«& and consequently
<xby> = x*E*y (—“_ognm 5

(iii) If & <X @R then & =(LN £)8(Rn%) anda

LM =F A L =0, by part (i). If A = (Al,Az)éfnx—

then A* Tl = a- M = Almmem= 0, thus A, = 0 similarly

1
A, = 0 and alsof/\g— =p/ﬂ£'= 0.

2

4.3. Let TN be an a.t.s. For fixed uem we consider the maps
(x,y) = <xuy> = x°*y. The resulting algebra is denoted by mu
It is immediately seen from the equation (4.8) (put y = u) that

Wlu is an associative algebra with left multiplication



