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1. Introduction

Ler A be a commutative nonassociative algebra over a field K. We define the
plenary powers of an element x of A by x!"=x, xH =x?  xl*U=xlln 4
is called a kth-order Bernstein algebra (k=1) if A has a nontrivial algebra
homomorphism w:A— K and the plenary powers of any element x € A satisfy
the identity

1542 = gy (x ) x e+ 1], 11

If A is a stochastic algebra describing a population (Worz-Busekros, 1980; p.
12) and the element y of A represents a frequency distribution of genotypes in the
initial generation (in this case, w(y)=1), then y"*] represents the frequency
distribution in the kth generation. Now, if A satisfies the identity (1.1), we have
yl+2 = yle+11 - and this indicates the fact that the population is in equilibrium
after k+1 generations. This means that, whatever the initial distribution of
frequencies, the population achieves a stable state in the (k + 1)th generation.

In the case where k=1, we have the so-called Bernstein algebras. These
algebras have been studied extensively (see e.g. Holgate, 1975; Lyubich, 1978,
1987; Hentzel & Peresi 1989). The definition of kth-order Bernstein algebras and
some examples for k = 2 were given by Abraham (1980: p. 361).

33
© Oxford University Press 1990

%

s
J

4
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The object of this paper is to obtain some properties of kth-order Bernstein
algebras, construct examples, and characterize polyploid multiple allelic gametic
algebras which are kth-order Bernstein.

2. Basic properties and examples

Throughout this section, A will be a kth-order Bernstein algebra, with
nontrivial algebra homomorphism ®, over a field K of characteristic # 2 with at
least 2! elements.

Let xoe A such that w(xo)#0. From the identity (1.1), it follows that
e = w(x) ¥xf*Y is an idempotent of A. Let N denote the kernel of w. Then,
A/N is isomorphic to k and so A = Ke @ N (additive direct sum).

We note that o is uniquely determined. Assume that ¢ : A— K is a nontrivial
algebra homomorphism. If x € N, then x¥**?' =0 by identity (1.1); it follows
that [y(x)]**?=0, i.e. y(x)=0. Thus Y(N)=0. Now, since e’=¢, we have
w(e)=0 or w(e)=1. If w(e)=0, we would have w =0, a contradiction. Then
w(e) =1. Analogously, y(e) = 1. Therefore ¥ = w.

PropositioN  Let L : N— N denote left multiplication by the idempotent e. Denote
by U the image of L* and by Z the kernel of L*. Then '
(1) Lk+1 = %Lk,
(i) A =Ke ® U D Z (additive direct sum);
(i) U={NeN:en=3n}, U’cZ

Proof. Letx=ae+n (o €K, neN). For any [>1,
=x"e+ @ V2L Y(n) +y,
where y; is the sum of terms of lesser degree in . Thus, from (1.1), it follows that
e 4 o@D R () 4y, o = o (0P e + @ TV2XLE(n) + Yirn)-

Since K has enough elements, these two expressions can be equal if and only if
they agree term by term. Thus, comparing the terms in o®"'~, we obtain
L¥*Y(n) = 3L*(n). This proves (i).

If neN, then n=L*2*n)+ (n—L*(2*n)), where L*(2*n) is in U by
definition and n— LF(2*n) is in Z since L*(n)=2"“L*(n) by (i) and so
L*(n — L¥(2*n)) = 0. It follows that N = U + Z. Now, if x € U N Z, then x = L*(n)
for some n € N. Thus, 27%x = L*(x) =0, and so x =0. Therefore N=U ® Z and
(ii) is proved.

Finally, we prove (iii). Let u € U. From the definition of U and (i), it is clear
that eu =iu. On the other hand, if n€ N and en =1in, then n=L*(2*n) e U.
Thus U={neN:en=3%n}. Now, let x=ae+u (a¢ €K, ueU). For any [>1,
we have

= a?'e + @Oy + ¢®DP(L)(u?) + (terms of lesser degree in a),

where P, is the polynomial 2/7%/~2 + 2/~ + ... + 2¢ + 1. From identity (1.1), it
then follows by comparing terms in "' ~2 that (Peio(L) — Peyi(L))(u?) =0.
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Now, write u*=u' +z', where u' € U and z’ € Z. Since
Pex(L)(W )= (k + Du’, P (LYY =ku',
PeioL)(z") € Z, Pe(L)(z") € Z,

it then follows that u'+2z"=0 for some z"e€Z and so u'=0. Therefore
u?=z'e Z, and the fact that U? = Z follows. [

The conditions established in the preceding proposition suggest the following
class of examples. Let P and Q be vector spaces over K, and T: Q— Q be a
linear map. In the Cartesian product K X P x Q, we define addition and
multiplication by elements of K componentwise, and multiplication by

(@ x, y)(a', x', y') = (aa’, 3(ax' + a'x), 3T(ay' + a'y)). 2.1
Define w((«, x, y)) = a. Since, for any > 1,
(@ x, )= (a7, oDy, @ UTI7Y(y)),

the condition (1.1) is satisfied if and only if T***(y) = T*(y) for any y € Q. Thus
the algebra K X P X Q is kth-order Bernstein if and only if T7**! = T*. Note that,
if this is the case and e=(1,0,0), then U={0} xPXx {yeQ:T(y)=y} =
{0} x P xIm T* and Z = {0} X {0} x kernel of T*. Note also that N>*=0. For
a specific example, let P=K? and Q=K? (0sps<w, 1<g<w) and, for
1<k=sgq (k#x), set

T[(}’u---: Yir Yie+15005 yq)] = 2(01 Yires Yie—1, 0;---: O)

(We are setting K°=0.) We have T* =0 and, of course, T¥*! = T*. We denote
this algebra by A.(p, q).

Assume now that the algebra A satisfies the condition N?>=0. We know from
the preceding proposition that N=U® Z, where U={neN:en=1n} and
L¥(Z)=0. For any o, ' € K, u,u' e U, and z,z' € Z, we have

(aetutz)(a@'e+u' +z')=aa’e+3(au’ + ¢'u) +e(az’ + a'2).

Thus, if we identify A with K X U X Z, the multiplication in A is given by (2.1),
where T'=2L. Assume that L(Z) #0 and let s be the greatest integer such that
I1<s<k and L'"Y(Z)#0. Let z; € Z be such that L*"'(z,)#0 and let z,,,=
Li(z) (1<i<s). It is clear that {z,..,z,} is a linearly independent subset of Z.
Denote by I, the subspace of A spanned by z;,..,z. Let I be the maximal
subspace of A that is invariant under L and satisfies the condition I; NI =0. As in
the proof of lemma 6.5.4 in Herstein (1975), we may conclude that Z=1 @I
(additive direct sum). It follows then that el = I. On the other hand, (U &® Z)I =
0 since N*=0. Thus, I is an ideal of A, and A=Ke ® U ® I, @ I (additive direct
sum). Also, A/I=Ke + U + I, as algebras. Let p be the dimension of U. If we
identify A/I with K X K? X K*, we see that the multiplication in A/I is given by
(2.1), where T is defined by T(yy,..y;) =2(0, y,..,y,_;). Therefore A/I
is isomorphic to A,(p, s). ’

In all the examples considered so far, we have the condition N?>=0. We now
give an example where this does not happen. Let S be a commutative plenary nil
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algebra of index k+1, i.e. an algebra such that k +1 is the smallest positive
integer satisfying y**'1=0 for all y € S. In the vector space K X S % S, define the
following multiplication:

(& %, ), ', y") = (aa', 3(ox’ + a'x), yy')-
Since (a, x, y) 1 = (o, o Vx, y*r) = (o, ®~Vx, 0), it follows that con-
dition (1.1) is fulfilled. Thus, the algebra obtained is kth-order Bernstein. Let y
be an element of S such that y*#0. We have (0,0,y)(0,0, y) = (0, 0, y*) #0.
Thus N?#0. For a specific example, we take S to be the algebra with basis
€1, Coc1 and multiplication table given by ¢,¢;=¢;c; = Ciy; if i+j=<2“—1and
the other products zero.

3. Polyploidy with multiple alleles

Consider a 2m-ploid population with n+1 alleles Ao, Ai,.., A,. Each mono-
mial in the variables Ay,..., A, of degree m represents one of the gametic types of
the population. The output of a zygote formed by the union of gametes Al - Al
and Al .-+ Alr is described by the identity

<i0+j0> A <in+jn
ko+---+k,=m ko k,,
If the probability that allele A; changes to allele A; is m; and the probability that
it stays the same is m; in each generation (note that m; =0 and Yiom;=1), the
analogue of (3.1) is given by

Alg e Aire Al - Aly=[(AgM)o - (AuM) ][ (@oMYe - (A MY7), (3.2)

where M = (m;) and A;M = L_omyA;. If we consider the real vector space
generated by all monomials a¥s - g’ of degree m and define multiplication as in
(3.2), we obtain a nonassociative algebra which we shall denote by G(n+
1, 2m, M). Define the linear map o : G(n +1, 2m, M)—R by w(Af - A =1
As is readily seen, o is a nontrivial algebra homomorphism. G(n + 1, 2m, M) is a
genetic algebra in the sense defined by Gonshor (1971), as shown in his theorem
4.1, and a genetic algebra has only one nontrivial algebra homomorphism
(Worz-Busekros, 1980: corollary 3.11, p. 40). Thus, o is uniquely determined.

In what follows, we establish conditions under which G(n+1,2m, M) is a
kth-order Bernstein algebra, or, equivalently, when the gametic distribution of
the population is in equilibrium after k +1 generations whatever the initial
distribution.

We start by noticing that G(n + 1, 2m, I) is not a Bernstein algebra of any
order for m > 1. This follows because the necessary condition established in part
(i) of the Proposition is not fulfilled. Since A is an idempotent, ¢ = Ag' (Ao —
A,)? is in kerw and, if L denotes left multiplication by Ag, we have
L¥(c) = (3")™*(3)*c and then L**'(c) #3L*(c) for any k=1.

Let us call the space L(n + 1) of linear forms in the symbols A, Ay,..., A, the
allelic space of G(n + 1, 2m, M). The vector space underlying G(n + 1, 2m, M) is
the nth symmetric tensor power of L(n + 1). The choice of a canonical basis

) ) . . 2m\~!
(AE)"'AZ')(AH’"'Aﬁ‘)=<r:ln> >A’(§°---Aﬁ". (3.1)
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Cy, C15., C, in L(n + 1) defined by Cy=A,y, C,=A4, —A; (i=1), induces a
canonical basis in G(n + 1, 2m, M). Its multiplication table, in the case M = I is
(see e.g. Campos & Holgate, 1987; eqn (2.4))

2m\ "/ p,+
(CBoCE - CEN(CECY - CZ") = < n’:’) (Po CIo) C€“+q°C’1"+q‘ cee CBrtan,
m
We note the following.

(i) Ker w is spanned by the set of monomials of degree m in C,, C,,..., C, with
the exception of CJ.

(i) G(n+1,2m, M) is a graded algebra, the component of degree k being
spanned by the monomials CE°C%'--- CP» for which p1+pr+ - +p,=k This
is evident from the multiplication table in the case M = I. In general, the linear
mapping M leaves invariant the subspace of L(n + 1) spanned by C,,.., C,, which
will be denoted by ker; w, and hence leaves each component of the grading just
described invariant. Thus it is also a grading for G(n + 1, 2m, M ).

(iii) The automorphisms of G(n + 1, 2m, M) are exactly those induced by the
symmetric tensor product construction from the affine group of linear transforms
of L(n + 1) that leave invariant ker, w (Micali & Revoy, 1986; §4).

We define a vector space homomorphism H to L(n+1) from the space
carrying G(n +1,2m, M) by H(IIA?)=m™' X p;A,. In biological terms, if
a€G(n+1,2m, M) is the distribution of gametic types, H(a) € L(n + 1) is the
distribution of allelic proportions that it implies. From the definition of products,
we have the following.

(i) H(aM)=H(a)M.
(ii) H(ab)=3[H(a)+ H(b)), and in particular H(a*) = H(a).
(iii) H(a*b)=H(aM - bM) = 4[H(aM) + H(bM)] = 3H(a + b)M = H(ab)M.
In particular, :

H(a*a)=H(a)M. (3.3)

THEOREM :

(i) The algebra G(n+ 1,2, M) is a kth-order Bernstein algebra if and only if
MF =M M EMTY (j=1,., k- 1).

(ii) The algebra G(n + 1, 2m, M) (m > 1) is a k-th order Bernstein algebra for
some k < n if and only if 0 is a characteristic root of M with multiplicity n.

Proof. In G(n +1, 2, I), every element d of weight 1 (i.e. every element that is
mapped into 1 by w) is idempotent. Hence its jth plenary power in G(n +
1,2, M) is d*U) = dM/~". The assertion (i) follows immediately.

Now consider part (ii). Assume that 0 is a characteristic root of M with
multiplicity n. A mutation matrix is just a transition matrix of a finite discrete
Markov chain. This type of matrix has 1 as one of its eigenvalues. The
characteristic polynomial of M is then x"(x — 1). By analogy with Markov chain
theory, an allele A; will be called transient if there is another allele A; such that A,
Can mutate to A; in a finite number of steps, but the reverse mutation is not
possible. Otherwise A, will be called persistent. Suppose that there are s transient
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alleles. Then

uel )
M21 M22

where M,, is the submatrix corresponding to the transient allelic subset. The
characteristic roots of M are those of M;, together with those of M,,, and clearly
the single nonzero (unit) root must belong to M,;. Hence we have M35, =0. Thus,
after s generations, the allelic distribution is concentrated entirely on the
persistent alleles. The evolution after that is described by the subalgebra obtained
by deleting the transient alleles, for which My, is the mutation matrix. Therefore
it is sufficient to study the case where there are no transient alleles, i.e. the
irreducible case. Under our conditions, M must be aperiodic. This follows
because the number of characteristic roots of unit modulus of a periodic Markov
matrix is at least equal to its period. Hence, by the results of Brosh & Gerchak
(1978: theorem 3, (1) « (2)), our conditions are equivalent to the existence of an
allelic distribution element & such that for any allelic distribution vector ¢ we
have cM* = 7. For every i (1=<i<n), we have CMK =AM —AM =n—7=
0. Hence dM* =0 for d e ker, @ since ker,  is spanned by Cy,..., C,.

Let us define Ko=ker, o, K;= KoM, K,=K\M = KoM?,..., Ki_y = KoM*™!,
K, = KoM* =0. We now choose a basis for Ln+1),

dOO) dll ¥ dljp d21 yeeey d2j2:'") dk—l,l;'-') dk—l,jk,l,’

such that d;e Ki/Kiv (as a quotient vector space) for i=1,., k—1. The
contractive effect of M on L(n + 1) is expressed by

k—1
dM= 2, 2 Xuyuo-
u=i+1l v
An element that represents a gametic distribution can be written in terms of the
canonical basis,

d =3 xpdfydsy -+ dit,

where t=j,_, and p = (Poo> P11 -+ pr—1..)- Note that d starts with the term dg.
Suppose that d only involves powers of those d; with i=u. Then dM will only
involve powers of d;; with i =u + 1. We now make use of the facts that the change
to the basis in the d; does not alter the multiplication table and that
d*d = (dM)?. Consider the evaluation of d**+1 Tt will begin with the term
(d)***1, and potentially contain other terms arising as products in the =*
multiplication involving the terms from d — d7,. But each of these is a (k + 1)-fold
product, and hence through the k-fold action of M, it vanishes. Thus after k +1
generations we have d¥+1) = () e+ Moreover, d*E = (gl =
(dz)***1. This proves that G(n +1, 2m, M) is a kth-order Bernstein algebra, if
there are no transient alleles.

We now prove the converse. On iterating identity (3.3), we find that
H(d*U) = H(d)M'™". Since we are assuming that G(n + 1, 2m, M) is a kth-order
Bernstein algebra d*<*3 = d***1. Thus H (d)M*** = H(d)M" and, since d is an
arbitrary gametic distribution, we have M1 = M*. In biological terms, the

In :
fact
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stationarity of the distribution of gametes implies the stationarity of the
distribution of allelic proportions. This implies that all characteristic roots of M
are 1 or 0. If the conditions of the theorem are not satisfied, the multiplicity of 1
as a characteristic root must be at least 2. Appealing to the ergodic theory of
finite Markov chains, and noting that the powers of M are not periodic, we
deduce that the set of alleles must be separable into a number of subsets S;, S,,...
such that any allele in S; will only produce alleles in S;, no matter how many times
the transformation M is applied (i.e. how many generations occur). These
correspond to the ‘recurrent’ or ‘persistent’ sets of Markov chain theory, and
there may in addition be a set of transient alleles such that it is impossible to
obtain them by mutation from any member of a persistent class, but which can
mutate into members of persistent classes. Suppose that there are s persistent sets
of alleles, but that the transient set is empty. Then the linear transform defined by
mapping every allele A; into the symbol S; of the persistent set to which it
belongs, defines a homomorphism from G(n +1,2m, M) to G(s,2m, I). And
this latter is not a Bernstein algebra of any order for m > 1 as already noticed.
Finally, suppose that there are transient alleles. The subalgebra obtained by
deleting them is not Bernstein of any order by the previous case, and hence the
algebra of the full system cannot be Bernstein of any order.

It is readily seen from the theorem that G(2, 2m, M) is a Bernstein algebra of
some order if and only if

1—7r r

' 10
m=1 and M=[ ] or m=1 and M=[1 ] (0<r=<1).
-r r

01
In any case, the equilibrium state is achieved in the second generation. This last
fact has been noticed by Gonshor (1960: p. 52). This particular result can also be
proved directly as follows. Let

M= [1 —-r r ]
s 1—s

and assume that G(2,2m, M) is a kth-order Bernstein algebra. Let ¢, €1,.., Ce
denote the canonical basis constructed by Gonshor (1960: theorem 7.1).
The algebra G(2,2m, M) has an idempotent e (Gonshor, 1960: p. 52),
G(2,2m, M) = Re @ Ker o, and Ker o is generated by cy,..., Cp,. SinCE € =Co +f
for some f € Ker w, it follows from the multiplication table that L'(c;) =27"(1—

r—s)c,+x fort=1, where L denotes left multiplication by e and x, is a linear
combination of ¢,,.., c,,. Hence, since L*** = 11% we haver+s=1orr=s=0
and the result follows.

4. Discussion

Bernstein (1923) posed the problem of determining all the equations of
inheritance at the population level that would be in equilibrium in the second
generation. With restriction imposed by the framework of genetics, the problem
has been solved by Lyubich (1973).
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This paper is concerned with equilibrium after a finite number of generations in
polyploid populations with mutation. In Section 3, we have given a characteriza-
tion of these populations in terms of the mutation rates matrix. The two parts of
the Theorem illustrate the two features of a polyploid system that can lead to its
achieving exact equilibrium after a finite number of generations. In a diploid
system, the effect of random breeding described by the Hardy—-Weinberg law is so
strong that it is sufficient for mutation to produce any stationary distribution
whatsoever of allelic types. In a system of higher ploidy, the stronger requirement
of a unique exactly stationary distribution is necessary in order that the
superconverging effect of the mutation should overwhelm the merely geometric
rate of convergence produced by the breeding system.
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