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Abstract In this paper we describe finite-dimensional complex Leibniz algebras
whose quotient algebra with respect to the ideal I generated by squares is isomorphic
to the simple Lie algebra sl2. It is shown that the number of isomorphism classes such
of Leibniz algebras coincides with the number of partitions of dimI.
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1 Introduction

Leibniz algebra is a generalization of Lie algebra. Leibniz algebras have been first
introduced by Cuvier and Loday in [5, 11] as a non-antisymmetric version of Lie
algebras.
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There a marked difference is noted between the structural theory of semisimple
and solvable or nilpotent Lie algebras.

The problem of description of finite dimensional Lie algebras can be represented
as three separate tasks:

• Description of nilpotent Lie algebras;
• Description of solvable algebras with given nilradical;
• Description of Lie algebras with given radical.

The latter two problems are the most studied part of the series and brought
to fruition for the complex algebras in the middle of the last century. The third
problem is reduced to a description of semisimple subalgebras of derivations of
solvable algebras [14]. The problem how to construct by a given solvable algebra
R and a semisimple algebra S, all the algebras L with the radical R and the
quotient algebra L/R being isomorphic to S has been also solved. It turned out
that such algebras L are finite in number, and they correspond in a one-to-one
way to semisimple subalgebras of Der R. For semisimple algebras over the complex
numbers one has the Killing form, Dynkin diagrams, root space decompositions, the
Serre presentation, the theory of highest weight representations, the Weyl character
formula for finite-dimensional representations and much more. The second problem
is reduced to the description of the orbits of some nilpotent linear algebraic groups
[15]. Thus the problem in Lie algebras case has been reduced to the study of nilpotent
algebras.

The present note concerns Leibniz algebras. Many results of the theory of Lie
algebras have been extended to Leibniz algebras since Loday’s introduction of
Leibniz algebras in 1993. However, the majority of the results have been devoted
to (co)homological problems [6, 10, 12, 13], e.c.t., the classification problems of
nilpotent part and its subclasses [1, 2, 4, 16–21], e.c.t.1 Less attention has been paid to
the semisimple part of the Leibniz algebras. Hardly original consideration belongs to
Dzhumadil’daev and Abdykassymova [3, 7] who suggested a notion of simple Leibniz
algebra and studied its properties in characteristic p. In this paper we describe the
class of Leibniz algebras whose quotient algebra with respect to the ideal generated
by squares is a Lie algebra isomorphic to the simple Lie algebra sl2.

The outline of the paper is as follows. Section 2 is a brief introduction that includes
a few facts needed in Section 3 which contains the main results of the paper. Here one
considers the ideal I, generated by squares as an irreducible sl2-module (due to the
simplicity of the Leibniz algebra) and distinguishes three cases when the dimension of
I is even, is equal to three and it is an odd natural number greater than three. We give
results for each of these three cases as Propositions 3.1., 3.2. and 3.3., respectively.
The main results of the paper are summarized in two theorems (Theorems 3.4. and
3.5.).

2 Preliminaries

In this section we give necessary definitions and preliminary results.

1Evidently, this is not at all complete list of references.
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Definition 2.1 An algebra (L, [·, ·]) over a field F is called a Leibniz algebra if for
any x, y, z ∈ L the so-called Leibniz identity

[[x, y], z] = [[x, z], y] + [x, [y, z]] (1)

holds.

Every Lie algebra is a Leibniz algebra, but the bracket in a Leibniz algebra need
not be skew-symmetric.

Let L be a Leibniz algebra and I = 〈[x, x] | x ∈ L〉 be the ideal of L generated by
all squares. Then I is the minimal ideal with respect to the property that G := L/I
is a Lie algebra. The quotient mapping π : L −→ G is a homomorphism of Leibniz
algebras.

Conversely, let G be a Lie algebra, L be a G-module, and π : L −→ G be a
G-module morphism. Assume without loss of generality that π is an epimorphism,
and define the Leibniz algebra structure on L by [x, y] := π(x)y. Then π becomes
an epimorphism of Leibniz algebras. To view Leibniz algebras in this way is to
regard them as being Lie algebra objects in the infinitesimal tensor category of linear
maps [13]. The Lie algebra G is called the corresponding Lie algebra of the Leibniz
algebra L.

Definition 2.2 A Leibniz algebra L ([L, L] �= I) is said to be simple if the only ideals
of L are {0}, I, L.

Obviously, if L is Lie then the ideal I is trivial. Therefore, this definition agrees
with the definition of simple Lie algebra.

Here is an example of simple Leibniz algebra from [3].

Example 2.3 Let G be a simple Lie algebra and M be an irreducible skew-symmetric
G−module (i.e.[x, m] = 0 for all x ∈ G, m ∈ M). Then the vector space Q = G + M
equipped with the multiplication

[x + m, y + n] = [x, y] + [m, y],

is a simple Leibniz algebra, where m, n ∈ M, x, y ∈ G.

Let L be a finite-dimensional simple Leibniz algebra. Then the quotient algebra
L/I is a simple Lie algebra. It should be noted, that the ideal I may be viewed as a
right L/I-module via the action:

m ∗ (a + I) = [m, a], where m ∈ I. (2)

For later use we mention a couple of well-known results from the classical theory
of Lie algebras concerning representations of split three-dimensional simple Lie
algebras. According to [8] a three-dimensional simple Lie algebra L is said to be
split if L contains an element h such that ad h has a non-zero characteristic root ρ
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belonging to the base field. It is well-known that any such algebra has a basis {e, f, h}
with the multiplication table

[e, h] = 2e, [ f, h] = −2 f, [e, f ] = h,

[h, e] = −2e, [h, f ] = 2 f, [ f, e] = −h.

This simple 3-dimensional Lie algebra is denoted by sl2 and the basis {e, f, h}
is called canonical basis. Note that any three-dimensional simple Lie algebra is
isomorphic to sl2. The representation of sl2 is determined by the images E, F, H of
the basis elements e, f, h and we have

[E, H] = 2E, [F, H] = −2F, [E, F] = H,

[H, E] = −2E, [H, F] = 2F, [F, E] = −H.

Conversely, any three linear transformations E, F and H satisfying these relations
determine a representation of sl2 and hence an sl2-module.

Definition 2.4 A nonzero module M whose only submodules are the module itself
and the zero module is called irreducible module. A nonzero module M which is a
direct sum of irreducible modules is said to be completely reducible.

We make use of the following two theorems from [8].

Theorem 2.5 For each integer m = 0, 1, 2, . . . there exists up to isomorphism only
one irreducible sl2-module M of dimension m + 1. The module M has a basis
{x0, x1, ..., xm} such that the representing transformations E, F and H corresponding
to the canonical basis {e, f, h} are given by:

H(xk) = (m − 2k)xk, k = 0, . . . , m,

F(xm) = 0, F(xk) = xk+1, k = 0, . . . , m − 1,

E(x0) = 0, E(xk) = −k(m + 1 − k)xk−1, k = 1, . . . , m.

Theorem 2.6 If L is f inite-dimensional semi-simple Lie algebra over a f ield
of characteristic 0, then every f inite-dimensional module over L is completely
reducible.

3 Main Result

This section is devoted to the description of finite dimensional complex Leibniz
algebras whose corresponding Lie algebra is isomorphic to sl2.

Let L be a simple Leibniz algebra such that L/I ∼= sl2. Then L is isomorphic to
sl2 ⊕ I as a vector space. Due to the simplicity of L, the ideal I can be regarded as
an irreducible module over sl2. Let dim I = m + 1.
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Proposition 3.1 Let m be an odd positive integer. Then there exists a basis
{e, h, f, x0, x1, . . . , xm} of L such that the multiplication table on this basis has the
following form:

[e, h] = 2e, [h, f ] = 2 f, [e, f ] = h,

[h, e] = −2e [ f, h] = −2 f, [ f, e] = −h,

[xk, h] = (m − 2k)xk k = 0, . . . , m,

[xk, f ] = xk+1, k = 0, . . . , m − 1,

[xk, e] = −k(m + 1 − k)xk−1, k = 1, . . . , m,

where the omitted products are equal to zero.

Proof Let {x0, x1, . . . , xm} be a basis of I. We put

[e, h] = 2e +
m∑

k=0

αkxk, [ f, h] = −2 f +
m∑

k=0

βkxk, and [e, f ] = h +
m∑

k=0

γkxk.

Without loss of generality, we may assume that [e, f ] = h (by taking h′ = h +
m∑

k=0
γkxk).

Due to Theorem 2.5 along with Eq. 2 we may suppose that the algebra L =
Span{e, f, h, x0, x1, . . . , xm} has the following multiplication table:

[xk, h] = (m − 2k)xk, k = 0, . . . , m,

[xk, f ] = xk+1, k = 0, . . . , m − 1, [xm, f ] = 0,

[xk, e] = −k(m + 1 − k)xk−1, k = 1, . . . , m, [x0, e] = 0.

Applying the base change

e′ = e −
m∑

k=0

αk

m − 2k − 2
xk,

f ′ = f −
m∑

k=0

βk

m − 2k + 2
xk,

h′ = h −
m−1∑

k=0

αk

m − 2k − 2
xk+1 (3)

(note that m being an odd integer the denominators of the fractions involved are non
zero) we obtain

[e′, h′] = 2e′, [ f ′, h′] = −2 f ′, [e′, f ′] = h′.
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Writing the basis elements without primes we have

[e, e] = a, [e, h] = 2e, [h, e] = −2e + p,

[ f, f ] = b , [ f, h] = −2 f, [h, f ] = 2 f + q,

[h, h] = c, [e, f ] = h, [ f, e] = −h + r,

[xk, h] = (m − 2k)xk k = 0, . . . , m,

[xk, f ] = xk+1, k = 0, . . . , m − 1, [xm, f ] = 0,

[xk, e] = −k(m + 1 − k)xk−1, k = 1, . . . , m, [x0, e] = 0

for some a, b , c, p, q, r ∈ I.
By using the Leibniz identity we derive

[a, h] = [[e, e], h] = [[e, h], e] + [e, [e, h]] = 4a.

Let a =
m∑

k=0
λkxk. Then from the table of multiplication we get

4
m∑

k=0

λkxk = 4a = [a, h] =
m∑

k=0

λk(m − 2k)xk,

and since m is an odd integer, this implies that λk = 0 for 0 ≤ k ≤ m, i.e., a = 0.

Exhausting the Leibniz identity as follows

0 = [a, f ] = [[e, e], f ] = [[e, f ], e] + [e, [e, f ]] = [h, e] + [e, h] = p

we get p = 0.

Similarly, setting b =
m∑

k=0
μkxk, we get

[b , h] = [[ f, f ], h] = [[ f, h], f ] + [ f, [ f, h]] = −4[ f, f ] = −4b

which gives μk(m − 2k + 4) = 0. Since m is odd, one gets μk = 0 for 0 ≤ k ≤ m and
b = 0.

Applying the Leibniz identity as follows

0 = [[ f, f ], e] = [[ f, e], f ] + [ f, [ f, e]] = −[h, f ] + [r, f ] − [ f, h]
= −2 f − q + [r, f ] + 2 f = −q + [r, f ]

we obtain

q = [r, f ]. (*)

Putting c =
m∑

k=0
νkxk and making use of the following relation

[c, e] = [[h, h], e] = [[h, e], h] + [h, [h, e]] = −2[e, h] − 2[h, e] = 0,

we find ν1 = · · · = νm = 0 and c = ν0x0.
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Now we consider

ν0x1 = [c, f ] = [[h, h], f ] = [[h, f ], h] + [h, [h, f ]]
= 2[ f, h] + [q, h] + 2[h, f ] = −4 f + [q, h] + 4 f + 2q = 2q + [q, h].

The substitution q =
m∑

k=0
θkxk gives θ1 = ν0

m and θk = 0, k �= 1, i.e., q = ν0
m x1.

From the relation (*) we derive [r, f ] = ν0
m x1. Expanding r via basis vectors

{x0, . . . , xm} along with the last equality one derives r = ηxm + ν0
m x0.

Finally, the chain of equalities

−2h = −2[e, f ] = [[h, e], f ] = [[h, f ], e] + [h, [e, f ]]
= 2[ f, e] + [q, e] + [h, h] = −2h + 2r + [q, e] + c,

implies that 0 = 2r + [q, e] + c, consequently η = ν0 = 0. Hence, c = q = r = 0 and
we conclude that a = b = c = p = q = r = 0 which completes the proof. �

Let us now consider the case m = 2.

Proposition 3.2 Let m = 2. Then there exists a basis {e, h, f, x0, x1, x2} of L such that
the multiplication table on this basis has the form:

[e, h] = 2e, [h, f ] = 2 f, [e, f ] = h,

[h, e] = −2e, [ f, h] = −2 f, [ f, e] = −h,

[x0, h] = 2x0, [x0, f ] = x1,

[x1, e] = −2x0, [x1, f ] = x2,

[x2, h] = −2x2, [x2, e] = −2x1,

where the omitted products are zero.

Proof Thanks to Theorem 2.5 we have the following multiplication table:

[x0, h] = 2x0, [x0, e] = 0, [x0, f ] = x1,

[x1, h] = 0, [x1, e] = −2x0, [x1, f ] = x2,

[x2, h] = −2x2, [x2, e] = −2x1, [x2, f ] = 0.

Let [e, h] = 2e + αeh
0 x0 + αeh

1 x1 + αeh
2 x2. Making the base change as follows

e′ = e + αeh
1

2
x1 + αeh

2

4
x2 (4)

we obtain [e′, h] = 2e′ + αeh
0 x0.

For the sake of simplicity we will write e instead of e′. Consider

[[e, e], h] = [[e, h], e] + [e, [e, h]] = 4[e, e].
Then due to the table of multiplication above, we derive αee

0 = αee
1 = αee

2 = 0, i.e.
[e, e] = 0.



B.A. Omirov et al.

Similarly, letting [ f, h] = −2 f + α
f h

0 x0 + α
f h

1 x1 + α
f h

2 x2 and making the substitu-
tion

f ′ = f − α
f h

0

2
x0 − α

f h
1

4
x1 (5)

we get [ f ′, h] = −2 f ′ + αeh
2 x2. Further, we use f instead of f ′.

Note that the relation [[ f, f ], h] = [[ f, h], f ] + [ f, [ f, h]] = −4[ f, f ] implies that
[ f, f ] = 0.

Let [h, e] = −2e + αhe
0 x0 + αhe

1 x1 + αhe
2 x2. Making the substitution

h′ = h + αhe
0

2
x1 − αhe

1

2
x2 (6)

we obtain [h′, e] = −2e + αhe
2 x2.

Assume that [h′, h′] is written as αhh
0 x0 + αhh

1 x1 + αhh
2 x2. Then putting

h′′ = h′ − αhh
0

2
x0 (7)

we obtain

[h′′, h′′] = αhh
1 x1 + αhh

2 x2.

From the Leibniz identity

[[h′′, h′′], e] = [[h′′, e], h′′] + [h′′, [h′′, e]]
we get αhh

1 = αeh
0 , αhh

2 = 0, αhe
2 = 0 and [h′′, h′′] = αeh

0 x1. Thus, [h′′, e] = −2e.
We denote h′′ by h. Let [h, f ] = 2 f + α

hf
0 x0 + α

hf
1 x1 + α

hf
2 x2.

Applying the Leibniz identity for the triple {h, h, f } we obtain

[ f, h] = −2 f + αeh
0

2
x2, [h, f ] = 2 f + α

hf
2 x2.

If [e, f ] is written as h + α
ef
0 x0 + α

ef
1 x1 + α

ef
2 x2, then applying the Leibniz identity

to {e, f, h} as

[[e, f ], h] = [[e, h], f ] + [e, [ f, h]]
we derive [e, f ] = h + α

ef
1 x1.

Similarly, from

[[e, f ], e] = [[e, e], f ] + [e, [ f, e]] = [e, [ f, e]]

we get [e, f ] = h + αeh
0
2 x1.

Let us consider

[[h, f ], e] = [[h, e], f ] + [h, [ f, e]].
Then the relation 2[ f, e] − 2α

hf
2 x1 = −2[ef ] − [h, h] yields [ f, e] = −h+

(α
hf
2 − αeh

0 )x1.

Denote α = αeh
0 and β = α

hf
2 .
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We have managed to simplify the initial multiplication table as follows

[e, h] = 2e + αx0, [h, e] = −2e, [e, e] = 0, [e, f ] = h + α

2
x1, [ f, h] = −2 f + α

2
x2,

[h, f ] = 2 f + βx2, [ f, f ] = 0, [ f, e] = −h + (β − α)x1, [h, h] = αx1.

It can be easily seen that the Leibniz identity [[ f, e] f ] = [[ f, f ], e] + [ f, [e, f ]]
implies that α = 0. Finally, after making the substitution

f ′ = f + β

2
x2 (8)

we get [ f ′, e] = −h and [ f ′, h] = −2 f ′, which completes the proof. �

In the next proposition we establish the similar result for the case m is even integer
greater than 2.

Proposition 3.3 Let m = 2n, n ≥ 2. Then there exists a basis {e, h, f, x0, x1, . . . , xm}
such that the non zero products in L are as follows:

[e, h] = 2e, [h, f ] = 2 f, [e, f ] = h,

[h, e] = −2e [ f, h] = −2 f, [ f, e] = −h,

[xk, h] = (m − 2k)xk k = 0, . . . , m,

[xk, f ] = xk+1, k = 0, . . . , m − 1,

[xk, e] = −k(m + 1 − k)xk−1, k = 1, . . . , m.

Proof Let [e, h] = 2e +
m∑

k=0
αeh

k xk. After making the substitution

e′ = e −
∑

k �=n−1

αeh
k

m − 2k − 2
xk (9)

one obtains [e′, h] = 2e′ + αeh
n−1xn−1.

Assume that [e′, e′] =
m∑

k=0
αee

k xk. Then applying the multiplication rules we get

[[e′, e′], h] =
m∑

k=0

αee
k (m − 2k)xk.

On the other hand, the Leibniz identity yields

[[e′, e′], h] = [[e′, h], e′] + [e′, [e′, h]] = 4
m∑

k=0

αee
k xk − (n − 1)(n + 2)αeh

n−1xn−2.

Comparing the coefficients of the basis vectors we derive

αee
k = αeh

n−1 = 0, k �= n − 2.

Therefore,

[e′, h] = 2e′ and [e′, e′] = αee
n−2xn−2.
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Similarly, assuming that [ f, h] = −2 f +
m∑

k=0
α

f h
k xk and making the substitution

f ′ = f −
∑

k �=n+1

α
f h

k

m − 2k + 2
xk (10)

one gets

[ f ′, h] = −2 f ′ + α
f h

n+1xn+1.

Writing [ f ′, f ′] as a linear combination of xi as [ f ′, f ′] =
m∑

k=0
α

f f
k xk we have

[[ f ′, f ′], h] =
m∑

k=0

α
f f

k (m − 2k)xk.

On the other hand, the Leibniz identity gives

[[ f ′, f ′], h] = [[ f ′, h], f ′] + [ f ′, [ f ′, h]] = −4
m∑

k=0

α
f f

k xk + α
f h

n+1xn+2,

which implies that α
f f

k = α
f h

n+1 = 0, k �= n + 2. Hence,

[ f ′, h] = −2 f ′, [ f ′, f ′] = α
f f

n+2xn+2.

Let now [h, e] = −2e +
m∑

k=0
αhe

k xk and [h, h] =
m∑

k=0
αhh

k xk.

The transformation

h′ = h +
m−1∑

k=0

αhe
k

(k + 1)(m − k)
xk+1 − αhh

0

m
x0 (11)

yields [h′, e] = −2e + αhe
m xm and [h′, h′] =

m∑
k=1

αhh
k xk.

Analogously, from the following identity

−
m∑

k=1

αhh
k k(m + 1 − k)xk−1 = [[h′, h′], e]

= [[h′, e], h′] + [h′, [h′, e]] = −αhe
m (m + 2)xm

we get

[h′, e] = −2e and [h′, h′] = 0.

Again, we use h instead of h′ and the Leibniz identity written as follows

[[e, h], f ] = [[e, f ], h] + [e, [h, f ]]
gives [[e, f ], h] = 0 and [e, f ] = h + α

ef
n xn.
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Similarly, from the chain of equalities

−2[ f, e] = [[ f, h], e] = [[ f, e], h] + [ f, [h, e]] = [[ f, e], h] − 2[ f, e]
we derive [[ f, e], h] = 0 and hence [ f, e] = −h + α

f e
n xn.

In addition, by using the Leibniz identity for the triple { f, e, f } it is easy to get

[h, f ] = 2 f + (n + 2)(n − 1)α
f f

n+2xn+1 + α f e
n xn+1.

The Leibniz identity applied to {h, e, f } gives

α
f f

n+2 = 1

(n + 2)(n − 1)

(
2α

f e
n + 2α

ef
n

n(n + 1)
− α f e

n

)
.

As a result we get [h, f ] = 2 f + 2
n(n+1)

(α
f e

n + α
ef
n )xn+1.

Next, due to the Leibniz identity

[[e, e], f ] = [[e, f ], e] + [e, [e, f ]]
we obtain αee

n−2xn−1 = −α
ef
n n(n + 1)xn−1 and if one denotes α = α

ef
n , β = α

f e
n , then

we get

αee
n−2 = −n(n + 1)α, α

f f
n+2 = 1

(n + 2)(n − 1)

(
2β + 2α

n(n + 1)
− β

)
.

Finally, making the basis transformation as follows

e′ = e − n(n + 1)α

(n − 1)(n + 2)
xn−1, h′ = h − 2α

(n − 1)(n + 2)
xn (12)

f ′ = f +
(

β

n(n + 1)
− 2α

n(n − 1)(n + 1)(n + 2)

)
xn+1 (13)

we obtain the required result. �

Summarizing all the observations above the final result can be written as follows.

Theorem 3.4 Let L be a complex n−dimensional (n ≥ 4) simple Leibniz algebra and
let I be the ideal generated by squares in L. Assume that the quotient L/I is isomorphic
to the simple Lie algebra sl2. Then there exist a basis {e, f, h, x0, x1, . . . , xn−4} of L such
that the non zero products of the basis vectors in L are represented as follows:

[xk, h] = (n − 4 − 2k)xk, (0 ≤ k ≤ n − 4)

[xk, f ] = xk+1, (0 ≤ k ≤ n − 5)

[xk, e] = k(k + 3 − n)xk−1, (1 ≤ k ≤ n − 4)

[e, h] = 2e, [h, e] = −2e, [ f, h] = −2 f,

[h, f ] = 2 f, [e, f ] = h, [ f, e] = −h.

The next theorem presents a generalization of Theorem 3.4 for arbitrary finite-
dimensional Leibniz algebras with the corresponding algebra sl2.
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Theorem 3.5 Let L be a f inite-dimensional complex Leibniz algebra such that L/I ∼=
sl2. Then there exists a basis {e, f, h, x1

1, . . . , x1
t1 , x2

1, . . . , x2
t2 , . . . , xp

1 , . . . , xp
tp
} of L such

that the only non-zero products in the table of multiplication of L with respect to this
basis are given as follows

[e, h] = 2e, [ f, h] = −2 f, [e, f ] = h,

[h, e] = −2e, [h, f ] = 2 f, [ f, e] = −h,

[
x j

k, h
]

= (t j − 2k)x j
k, k = 0, . . . , t j

[
x j

k, f
]

= x j
k+1, k = 0, . . . , t j − 1

[
x j

k, e
]

= −k(t j + 1 − k)x j
k−1, k = 1, . . . , t j,

1 ≤ j ≤ p.

Proof In view of Theorem 2.6 the ideal I as a sl2-module is a direct sum of irreducible
sl2-modules I1, . . . , Ip. Therefore, L decomposes into a direct sum of vector spaces
sl2 ⊕ I1 ⊕ I2 ⊕ · · · ⊕ Ip. Denote t j = dim I j and let {x j

1, . . . , x j
t j
} be the basis of I j for

1 ≤ j ≤ p which satisfies the assertion of Theorem 2.5.
Note that I is in the right annihilator of the Leibniz algebra L. Therefore, the only

products which should be determined are [sl2, sl2] and [I, sl2].
For any fixed j from {1, 2, . . . , p} similar to the proof of Propositions 3.1–3.3,

depending on the parity of t j = dim I j one can arrange transformations for the basis
vectors e, f and h via {x j

1, . . . , x j
t j
} similar to those of Eqs. 4–13 in such a way that

the basis expansions of the products of new basis vectors e, f and h from sl2 do not
contain elements of {x j

1, . . . , x j
t j
}. We apply this argument to sl2-modules I1, . . . , Ip,

sequentially. Then, eventually, we get the required basis of L. �

Let L be an n-dimensional complex Leibniz algebra with the corresponding
algebra sl2. Then according to Theorem 3.5 L corresponds to a partition of n − 3.

Conversely, to a partition of the number n − 3 we can assign a unique up to isomor-
phism precise n-dimensional Leibniz algebra L with the corresponding algebra sl2.

Evidently, this assignment is one to one correspondence between the isomorphism
classes of n-dimensional complex Leibniz algebras with corresponding algebra sl2

and the set of all partitions of n − 3. If we denote the number of partitions of a

number s by f (s) then it is well known that lims→∞ f (s)
1

4s
√

3
eA

√
s = 1 [9], where A = π

√
2
3 .

Therefore, the number of non isomorphic n-dimensional complex Leibniz algebras

with corresponding algebra sl2 can be estimated approximately by 1
4(n−3)

√
3
eπ

√
2(n−3)

3 .
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