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Abstract

The paper deals with the classification of Leibniz central extensions of a filiform Lie algebra. We choose
a basis with respect to which the multiplication table has a simple form. In low-dimensional cases
isomorphism classes of the central extensions are given. In the case of parametric families of orbits,
invariant functions (orbit functions) are provided.
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1. Introduction

Leibniz algebras were introduced by Loday [4]. A Leibniz algebra is a generalization
of a Lie algebra: a skew-symmetric Leibniz algebra is a Lie algebra. The initial
motivation of Loday to introduce this class of algebras was the search for an
‘obstruction’ to the periodicity in algebraic K-theory. Besides this purely algebraic
motivation, certain relationships with classical geometry, noncommutative geometry
and physics have recently been discovered. Leibniz algebras appear to be related in
a natural way to several topics such as differential geometry, homological algebra,
classical algebraic topology, algebraic K-theory, loop spaces, noncommutative
geometry, quantum physics and so on, as a generalization of the corresponding
applications of Lie algebras to these topics.

In 1891, Umlauf [7] initiated the study of the simplest nontrivial class of Lie
algebras. In his thesis he presented a list of Lie algebras of dimension less than ten
admitting a so-called adapted basis. (Lie algebras with this property have been called
filiform Lie algebras.) Now it is well known that up to isomorphism there is only one
such an algebra; the others are just linear deformations of it [3]. This is the filiform
Lie algebra with the composition law [-, -] given by

Mn:lei, el =eir1, 1<i<n-2,
with respect to the adapted basis {eg, €1, . .., en—1}.
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The outline of the paper is as follows. Section 2 is a brief introduction to Leibniz
algebras and central extensions. Section 3 describes the behaviour of parameters
under the isomorphism action (adapted base change). Sections 3.1-3.5 contain the
main results of the paper, consisting of complete lists of all one-dimensional Leibniz
central extensions of u,, where n=4,...,8. We distinguish the isomorphism
classes and show that they exhaust all possible cases. For parametric family cases
the corresponding invariant functions are provided. Since proofs from the five-
dimensional cases can be carried over to higher-dimensional cases by minor changes,
we have chosen to omit their proofs. All details of the omitted proofs are available
from the authors.

2. Preliminaries

Let K be an algebraically closed field of characteristic 0. A Leibniz algebra L
over K is a vector space equipped with a bilinear map [-, -]: L x L — L satisfying
the Leibniz identity

[x, [y, zll = [lx, yI, z] = [[x, z], ¥]
forall x, y,z € L.

If, in addition, [x, x] =0, for all x € L, the Leibniz identity is equivalent to the
Jacobi identity. In particular, a Lie algebra is an example of a Leibniz algebra.

The centre of a Leibniz algebra L is defined as C(L)={xeL|[x, L]=
[L, x]=0}.

Let L and L be two Leibniz algebras over a field K. The Leibniz algebra L is
said to be a one-dimensional central extension of L if there is a Leibniz algebra exact
sequence 0 — K¢ —> L —> L —> 0, where Kc is one-dimensional trivial Leibniz
algebra and the image of Kc is contained in the centre of L.

A Leibniz 2-cocycle on a Leibniz algebra L is a K-valued form 6 satisfying the
condition

O(x, [y, z]) =0([x, y],z) — 0([x, z],y) forallx,y,z€L.

If a Leibniz 2-cocycle 6 is also antisymmetric, then by definition, 8 is a Lie
2-cocycle. As in the Lie algebra case, one-dimensional Leibniz central extensions of a
Leibniz algebra L are uniquely determined by a Leibniz 2-cocycle on L. If a Leibniz
2-cocycle 6 is induced by a linear map v : L — L (that is, 6(x, y) = v([x, y])), then
0 is said to be trivial (or a coboundary), while the corresponding one-dimensional
Leibniz central extension is also a trivial extension; that is, it is isomorphic to the
direct sum of L and K. Two Leibniz 2-cocycles 6 and ¢+ define the same central
extension if their difference 8 — ¢ is a coboundary.

Given a Leibniz 2-cocycle 6 on L, one can construct a one-dimensional Leibniz
central extension Ly = L @ Kc of L in a canonical way as follows:

[x +ve, y+wcelp, =[x, ylo +0(x,y)c, x,yeL,v,wek,

where [-, -]z is the bracket on L. Every one-dimensional Leibniz central extension of
L can be obtained in this way. The following result is known.
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PROPOSITION 2.1 [5]. There exists a one-to-one correspondence between the set of
equivalent classes of one-dimensional Leibniz central extensions of L by K and the
second Leibniz cohomology group HL*(L, K).

In this paper we focus on one-dimensional Leibniz central extensions of the filiform
Lie algebra pu, denoted here by CE ().
Let L be a Leibniz algebra. Define

L'=L, LM'=[L% L], k>1.

DEFINITION 2.2. A Leibniz algebra L is nilpotent if there exists an integer s € N,
such that
L'S>L*> - DL ={0}.

DEFINITION 2.3. A Leibniz algebra L is filiform if dim L' =n — i, where n = dim L
and 2 <i <n.

Obviously, a filiform Leibniz algebra is nilpotent. Throughout the paper all algebras
are assumed to be over the field of complex numbers C.

3. Simplifications in CE ()

In this section we consider a subclass of the class of Leibniz algebras called
truncated filiform Leibniz algebras in [6], which provided the motivation to study this
case. The multiplication tables of the truncated filiform Leibniz algebras in the class
CE (uy,) can be represented as follows:

lei, eo]l = eiy1, 1<i<n-—1,
leo, ei] = —eiy1, 2<i<n-—1,
leo, eo] = bo,0en,

[eo, e1] = —ex + by, 164,

le1, e1] = by 1ep,

lei, ej1= (—=1)""'by1 iy j—1n, I<i<j<n-—1,i+ jodd,

lei, ej] = —lej, €], l<i<j<n-1,

lei, en_il = —len—i, eil=(—=1Dibe,, 1<i<n— 1, whereb =0 foreven n.
The basis {eg, €1, . . ., e,} is said to be adapted. Here are a few remarks about the

multiplication table above.

(1) The undefined brackets are assumed to be zero.
(2) As aresult of the Leibniz identity one has

biy1,j=—bijt1, 1=i,j<n—1,i+j#n,
and
. n—2
b12i+1=0, O0<i< |
As an immediate consequence of these relations we get

bit2,i = bii+2 =0, 3.1
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and

bij=—bi_1jy1=bi 2 j2="---= (_l)i_lbi—(i—l),j—i-(i—l)

o (3.2)
=D by gz

(3) The centre of L € CE(uy,) is (e,) and the quotient L/{e,) is isomorphic to u,.
Hence, one can choose a Leibniz cocycle 6 on u, such that L is isomorphic
to Lg. (The procedure is the same as in the Lie algebras case (see [2]).)

Elements of CE(u,) represented by the table above are denoted by L(«),
where

o = (b0,0’ bO,l, bl,li b1,27 b1,47 ceey bl,n—Z) for even nv
(bo.0» bo.1, b1.1, b12, b14, ..., b1 n—3,b) foroddn.

Since a truncated filiform Leibniz algebra admits an adapted basis it is sufficient to
consider only base changes sending adapted bases to adapted. This set is a subgroup
G g of all base changes in CE (u,). A filiform Leibniz algebra is two-generated and
s0 a base change on it can be given as:

fleo) = Z Aiei,  fle)=)_ Bie;.

i=0 i=0
Then one has the following proposition.

PROPOSITION 3.1. Let f € Gyq and L € CE () then f has the following form:

n
ey =fle)) =) Ajei,
i=0
n—-1
e =fle)=) Ay 'Bi-iyiei+(®e,, 1<i<n—1,
k=i

¢l = f(en) = Al T2B1(Ag + A1b)en,
where AgB1 (Ao + A1b) #£ 0.

PROOF. It is easy to see that

e; = f(e)) =[f(ei-1), f(e0)]

n—1
il . 3.3)
=Y Ay (AoBj_it1 — Aj_i1Boej + (ey, 2<i<n—1,

j=i

ey, = flen) =[f(en 1), fleo)] = Aj T (AoB1 — A1 Bo)(Ag + A1b)e,.  (3.4)
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Bearing in mind that f is adapted, we get

[f(e1), fle)]=b e, = b} , AT > (AgBy — A1Bo)(Ag + A1b)en

n—1
=By Y (AoBi_2 — Ai_2Bo)ei + ()e,.
i=3
Therefore,
Bo(AoBi—2 — Aj—2Bp) =0, 3<i<n-—1
Since f is not singular, AgB; — A Bg # 0, and this implies that By = 0. O

DEFINITION 3.2. The following types of adapted base change of L € CE(u,) are
said to be elementary:

T(ep) = aeq + bey,
T(a, b, c) = { t(e1) = cey, ac #0,
T(ei+1) =[t(ei), T(e0)], 1<i<n-—1,

o (ep) = e + aeg, 2<k=<n,
o(a, k)= {o(e) =e,

o(eir1) =lo(e), o(e0)], 1=<i=<n-—1,
¢ (e0) = ep,

¢la, k) = d(e1) =e1 + cey, 2<k=<n,
dlei+1) =[P(ei), p(eo)], 1=<i=<n-—1,

where a, b, ¢ € C.

PROPOSITION 3.3. Let f be an adapted transformation of L € CE (). Then it can
be represented as the composition

f=¢By,n)op(By—1,n—1)o---0¢(B2,2)00(Ay,n)o0(Ay—1,n—1)o---
o0 (Az, 2)o1(Ag, A1, By).

PROOF. The proof is straightforward. O

PROPOSITION 3.4. The adapted transformation

g=¢(By,n)op(By—1,n—1)0d(By—2,n—2)
00(An,n) oo (Ap_1,n—1)0--00(As2),

for even n, and
g=¢(By,n)odp(By_1,n—1)00(Ap,n) 00 (Ap—1,n—1)0---00(Az,?2),

for odd n, does not change the structure constants of L € CE (i4,).
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PROOF. Consider the transformation

o(ep) = e + Aex, 2<k<n,
o(Ap, k)=130(e1) =eq,
o(eiy1) =lo(ei),o(ep)], 1<i<n-—1.

First notice that

o(e)) =ei + (—1)'83, k)Axby ivk—2en, 2<i<n-—1,

where
1 if s + ¢ is even,
8(s,t)={—-1 ifs=n-—1,
0 otherwise.
Indeed,

[o(ei), o(ej)] =le + (=1)'8G, k) Axb ith—2en, €j + (=17 8(j, D) Ak j+k—2¢n]
= [e;, ;]
The calculations for ¢ (B,,, n) and ¢ (B,—1, n — 1) are handled similarly. It is worth

mentioning that for even n the transformation ¢ (B,—2, n — 2) does not change the
structure constants, because in this case b = 0. O

The next lemma keeps track of the behaviour of the structure constants of algebras
from CE (u,) under the adapted basis change.

LEMMA 3.5. Let L(a) € CE(i1,) and L(') be the image of L(a) under the action of
Gad. Then one has

Alboo + AoArbo1 + A%by b Aobo.1 + 2A1b1 1

by = = ,
00 AY2B1(Ag + Arb) “UT AL (A0 + Arb)
by = Bib1,1
lal - n—2 ’
Ay (Ao + Arb)
— 1
1,2j =

Ay Bi(Ag + A1b)

n—1 n—k—1 n—2
x (Z > (=D BieBiaj b1 + Z(—l)kBan—k—szb),
k=1

k=1 =2
I+k+#n

_ Bb
- A0+A]b.

/
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PROOF. Consider the product [ f(eq), f(eg)] = b6,0 f (en). Equating coefficients of ¢,
in it, we get

Afbo,o + AoA1bo1 + ATby 1 = b) Al 2 B1(Ag + A1b).

Then we find
A3boo + AoA1bo,1 + Alby

A2T2B1(Ag + Ab)

The product [f(e1), f(e1)] = b/l’lf(en) yields b/l,l = Blb1,1/A872(A0 + A1b).
Analysing the equality

56,1f(€n) =[f(e1), f(eo)] + [f(eo), fe1)],
we obtain bé’lAg_zBl (Ao + A1b) = AgB1bo,1 + 2A1B1b1,1, and this implies that

/ —
b0,0 -

Aobo,1 +2A1b11
ADT3(Ag + A1b)

/
bO,l =

From Propositions 3.3 and 3.4,

e(/) = A()e() + Aleh

e/l = Blel + 3262 + -+ Bn—Zen—z’
n—1 )

e => Ay 'Biiniei + (e, 2<i<n—1,
k=i

¢, = Al 2B (Ag + Arb)ey.
Then

n—1 n—1
- -
e}, € 1=| D Ay Bioiyiex + (en. Y A Bz-j+1ez+(*)en]
=i =

n—1 n—1 |
i1 Jj=
[Z Ay Bi—itiek, Z A} Blj+l€l:|
p =
1

itj—2
Ay Bi—iv1Bi—j+1lex, ef]

1n

3
|

~
Il

il

i
1 n—

Il
~ =

3
|

i+j—2
Ay Bi—i+1B1—j+1by 1en.

~
Il
~
Il

il=j

Hence the equality b} .e), = [e!, e;.] gives the relation

i,jon

n—1 n—k

— j+j—2
bz/',jAg 231 (AO + Alb) = A6+j Z Z Bk—i—s—lBl—j-i-lbk,l,
k=i I=j
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and implies that

n—1 n—k

b; Y BeitiBiojiibi.
YTy fBl<Ao+A1b)k =

Now use (3.2) to obtain

1
A2i-1g
0 1(Ao + A1D)

n—1n—k—1
(Z > (=D BiBigjiby i 1+Z( D BByt 2,+1b>

k=1 [=2j
[+k+#n

/ —
12j =

Finally, the last equality comes from [e),_,, ej]="D'e;,. O

n—1°

The next sections deal with the applications of the results of this section to the
classification problem of CE(u,) forn =4, ...,8. We remind the reader that the
classification of all complex nilpotent Leibniz algebras in dimensions at most four has
been given before in [1].

Here, to classify algebras from the class CE(u,) in each fixed dimension we
represent CE (i1,) as a disjoint union of its subsets. Some of these subsets are single
orbits and others contain infinitely many orbits. In the last case we give invariant
functions to distinguish the orbits.

To simplify calculations we introduce the following notation:

A=Dbj, —4boobi,1 and A =bf, —4bj b |

3.1. Isomorphism classes in CE (jt4). In this section we describe the isomorphism
classes of algebras from CE(u4). According to the notation introduced above,
elements of CE (u4) will be denoted by L(«), where o = (b0, bo.1, b1.1, b1,2). Note
that in this case b = 0 because n is even (see the multiplication table of CE (u,)).

THEOREM 3.6 (Isomorphism criterion for CE(1u4)). Two filiform Leibniz algebras
L(a) and L(a') from CE (u4) are isomorphic if and only if there exist Ay, A1, By € C
such that AgB1 # 0 and the following equalities hold:

A%bovo + ApA1bo1 + A%b“

by o= , 3.5
Bib1 1
r ,
1= A—S’ (3.6)
Aobo,1 +2A1b1 1
by, = — -, (3.7
Ap
Bib1
/ 5
2= —A(Z) . (3.8)
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PROOF. If L(«) and L(’) are isomorphic, then the equalities are a consequence of
Lemma 3.5.
Conversely, suppose that the equalities (3.5)—(3.8) hold. Then the following base
change is adapted and it transforms L («) to L(a'):
66 = Ageg + Ajey,
ey = Bjey,
ey = AgBres + A1 B1b es,
e% = A%Ble3 — A1AoB1b1zea,
ey = ASBle4.
Indeed,

leg. €] = A(z)bo,oat + ApA1(—ex + bo,1es) + A1Ager + A%b1,1€4
_ Aobo0 + AoA1bo1 + Atbr

3 g7 /
0

Similarly, one easily can see that
leg, €] = —AoBiez + AoBibo,1es + A1 B1by 1e4
=—ApBie; — A1B1by,1es + AgB1bo1es +2A1B1by 164
= —e) + Bi(Aobo,1 +2A1bi1,1)es
= —e) + by 1 AgBres = —¢; + by 1€}
[e’l, e'l] = Blzbl,le4 = AgBlb/l’le4 = b,1,1€4v
e}, €51 = B{ Aobi2e4 = A} B1b ye4 = b e
The other products of the basis vectors ¢, ¢/, . . ., e, are zero. O

In order to describe the isomorphism classes of algebras from CE (14) we represent
it as a disjoint union of the following subsets:

U} ={L(@) € CE(ua) | bi,1 #0, by 2 # 0};

U; ={L(@) € CE(ua) | b11 #0, b12 =0, A %0}

U; = {L(@) € CE(ua) | b11 #0. b1y = A =0}

U = {L(@) € CE(uua) | b1 =0, bo1 #0, by 2 # 0};

U = (L(@) € CE(1a) | b1y =0, by 1 #0, by 2 =0};

Uf = {L(a) € CE(uu4) | bi.1 =bo1 =0, boo #0, b1.2 # 0};
U] = {L(@) € CE(14) | b1 = bo1 =0, bo,o # 0, b1 2 = 0};
US = (L(@) € CE(ua) | b1,y =bo.1 = boo =0, by 2 # 0);
U = {L(@) € CE(t4) | bi.1 = bo.1 =bo.o =b12 =0}.
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Here, the subset U 41 turns out to be a union of infinitely many orbits. The following
proposition is a description of U j.

PROPOSITION 3.7.
(1) Two algebras L(a) and L(a’) from U, i are isomorphic if and only if

b/ 4 b 4
(-G

b1,1 b1
(2) For any X from C there exists L(x) € U4l such that (bl,z/b1,1)4A =A

PROOF. (1) Let L(a) and L(a’) be isomorphic. Then from Theorem 3.6 there are
complex numbers Ag, A} and Bj such that AgB; # 0 and the action of the adapted
group G,q is expressed by the following system of equalities:

AZbo,o + AgA1bo,1 + Atby

/ —
b0,0 -

A} By ’
Bib1
b/l,l = FER
0
, Aobo.1 + 2A1b1 1
bO,l = A3 )
0
B
/
=—b
1,2 B 1,2
Aj

Then one can easily see that (b/l,z/bll,l)4A/ = (b12/b1.1)*A.
Conversely, suppose that that the equality (b} ,/ b/1,1)4A/ = (b1.2/b1.1)*A holds.
Let {eq, e1, e2, €3, e4} and {e(, e}, e}, €5, e,} be adapted bases of L(er) and L(a'),
respectively. Then the adapted base change
fo= Aoeo + Aje,
f1 = Bjey,
fo=A¢Biey + A1B1by 1e4,
f3=A3Bies — A1 AgBbi sey,
fa = A}Bjey,

where Ao =b1.1/b12, A1 =—bo,1/2b12 and B =b%’1/bf’2, transforms L(a) to
L((b/12b1,0%A, 0, 1, 1).
An analogous base change
fo=Aveo + Aley
fi = Biel.
fi = AyBiey + A1 BIb 1cl,
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’r_ /2
/3
f4 =A Bl 4>
2 173
where Ay =0 |/b} ,, = —by/2b} , and B} =b/{ b}, transforms L(a') to

L((b, 2/bm)m/, 0,1, 1). However, by hypothesis, (b1.2/b1 1)* A = 0] /by A
Hence L(«) and L (o) are isomorphic.
(2) This is obvious. O

As a consequence of this proposition the orbits in Ui can be parameterized as
L(,0,1,1),reC.
The next proposition is a description of single orbits.

PROPOSITION 3.8. The subsets Uf, Uf, Uf, Uf, Uf, UZ, Uf and Uf are single orbits
with representatives

L(1,0,1,0), L,01,0), L@ 10,1, L(,1I00),
L(1,0,0,1), L(1,0,0,0), L(0,0,0,1) and L(0,0,0,0),
respectively.

PROOF. For each of the subsets above we give the corresponding base change leading
to the indicated representative.
2.
For Uy
eo=Aoeo + Are1, ¢y =Biel, e,5=AoBies+ A1Biby jeq,
€/3=A(2)Ble3, €2=ASBI€4,

where .
A by, A A3
Ag==, Al=" and Bf=_—
4 64171 1 64-[)1 |
For Uf:
ey =Aoeo + Arer, €, =Bjei, ey, =AoBiey+ A1B1b es,
6/3=A(2)Ble3, 62=A83164,
where 5
—Apb
AOG(C*’ Alzw and Blz—o
2b; 1 b1,
For Uf:

/ / /
ey =Apeo + Are;, €} =Bie;, ey;=AoBjey,
/ 2 ’ 3
ez =AgBres — AgA1B1b1 e, ey = AyBies,
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where

2 2 b(%o bo,1
A0=b0’1, Al=—= and Bj=——.
bo,1 1,2

For Uf:

/ / ’ / 2 / 3
ey =Apeg + Are1, e =Bje), ey;=AgBie;, e3=AjB1e;, e;=AyBey,

where )
b
Al=by,, Al= ﬁ and B €C".
6.
For U,
ey = Aoeo + Arer, ej=Biel, ¢y =AgBiey,
ey = A%Bleg — ApAB1bises, €)= A831e4,
where ;
b
A(S):bovob]’z, Al eC and B3:i.
bo,0b1,2
7.
For Uy:

ey =Apeo + Arer, €, =Bier, ¢h=AgBies, e5=A}Bjes, eQ:ASBlm,

where b
AgeC*, A;eC and By =22
Ao
For U8:
be
ey =Ageo + Arer, € =Biei, ¢, =AoBjes,
6/3 = A(2)3163 — AoA1B1by ey, 62 = A(3)31€4,
where
A2
A()G(C*, A]EC and Blz—o.
by
For Uf:

66=A060+A161, e/l = Bjey, 6/2=A()Ble2, 6/3=A(2)Ble3, 62=A83164,

where
Ao,B] EC*, Aq eC.

This concludes the proof. O
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3.2. Isomorphism classes in CE(us). Notice that in this case b = b3 = by 4.
Hence, an element of CE (us) is L(«), with o = (bo.0, bo.1, b1.1, b1,2, b).

THEOREM 3.9 (Isomorphism criterion for CE(us)). Two filiform Leibniz algebras
L(a) and L(a') from CE(us) are isomorphic if and only if there exist
Ao, A1, By, By, B3 € C such that AygB1(Ag + A1b) # 0, and the following equalities
hold:

Alboo + AgArbo1 + Aby
AJBi(Ag + A1)
,_ Aobo1+2A1b1

’

/ —_—
b0,0 -

1T Al (Ao + Arb)
, _ Bibi;
|70 - W e—
A3(Ao + Arb)
,_ Bibia+ (By —2BiB3)b
b2 AZBi(Ag + Arb)
, Bib

T Ao+ Ab

To find the isomorphism classes in CE(us) we represent it as a union of the
following subsets:

Uy ={L(a) € CE(us) | b#0, by #0);

Us ={L(a) € CE(us) | b #0, b11 =0, bo,1 #0};

U3 ={L(a) € CE(us) | b#0, biy =bo,1 =0, boo #0};

Ui ={L(a) € CE(us) | b #0, b1,y =bo,1 = boo = 0};

Us ={L(a) € CE(us) | b=0, by,1 #0, by 2 #0};

U ={L(a) € CE(us) | b=0,b1,1 #0, b1 =0, A #0};

Ul ={L(a) € CE(us) |[b=0,b11 #0,b12=A=0};

Us = {L(a) € CE(us) |b=b1,1 =0, bo,1 #0, b1 2 #0};

Ud ={L(x) € CE(us) | b=b1,1=0,bo1 #0, b2 =0}

Us® = {L(a) € CE(u5) | b=b1,1 =bo1 =0, by #0, by 2 #0};
Us' ={L(a) € CE(uu5) | b=b1,1 =bo1 =0, by #0, b1 2 =0};
Us? = {L(a) € CE(us) | b=1b1,1 =bo,1 = by =0, by1 # O};
Us? = {L(a) € CE(us) | b=1by,1 = bo,1 = boo = by1,1 =0}

Here, the subsets U51 and U55 turn out to be a union of infinitely many orbits. The
following propositions are descriptions of them.
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PROPOSITION 3.10.
(1) Two algebras L(«) and L(a') from U51 are isomorphic if and only if
A'D? AB?

2 2°
(b0 —201,)" (boab=2b11)

(2) For any X from C, there exists L(a) € U; such that Abz/(bo,lb — 2b1,1)2 =X\
The orbits in U; are parameterized as L(A, 0, 1,0, 1), A € C.

PROPOSITION 3.11.
(1) Two algebras L(a) and L(a') from U55 are isomorphic if and only if

bi5\° b12\°
<b/’ ) A/=<b—’> A.
11 1,1

(2) For any X from C there exists L(x) € U; such that (b1,2/4b1,1)6A =\

The orbits in U55 are parameterized as L(A, 0, 1, 1,0), A € C.

PROPOSITION 3.12. The subsets U2, U2, U2, US, U], U, UZ, UL, U, UL, and
U513 are single orbits with representatives
L©, 1,00, 1), L(1,0,0,0,1), L(,0,0,0,1), L(1,0,1L0,0),
L©,0,1,0,0), L(0,1,0,1,0), L(,1,000), L(1,0,0,1,0),
L(1,0,0,0,0), L,0,0,1,0) and L(0,0,0,0,0),

respectively.

3.3. Isomorphism classes in CE(pg). The section deals with the classification of
CE(1e). Itis easy to see here that by 3 = —bj 4.

THEOREM 3.13 (Isomorphism criterion for CE (ju6)). Two filiform Leibniz algebras
L(a) and L(e'), @ = (bo,0, bo.1, b1.1, b12, b1,4) and o' = (b6,07 bé’l, bll,l’ b/l,zv b’1’4),
from CE () are isomorphic if and only if there exist Ay, A1, B1, B2, Bz € C such
that AgB1 # 0 and the following equalities hold:

A(z)b(),() + ApgA1bo1 + A%b1’1

b= ,
0.0 A3B)

, _ Bibi

1= "3 >

Ap
, Aobo.1 +2A1b1 1
bO,l = AS 3
0
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1
2=——(Bibi2+ (2B B;s — B3)b1 4),
ASBy
/ 1
= —b1 4.
1,4 2“1,
AO

The set CE () is represented as a union of the following subsets

Ug = {L(a) € CE(te) | bi1 #0, by 4 #0};

Ug = {L(e) € CE(u6) | br1 #0, br.a =0, b1 2 # O);

U3 ={L(@) € CE(ue) | b1,1 #0, bia =b12=0, A #0};

Ug = {L(@) € CE(u6) | b1 #0. bra=b1o = A=0};

U = {L(«) € CE(t6) | b1,1 =0, bo1 #0, by 4 #0};

U§ ={L(@) € CE(ne) | bi,1 =0, bo,1 #0, bia =0, b1 2 #0);

UJ = {L(a) € CE(ue) | b1,1 =0, bo,y #0, by.4 = b1, =0}

Us = {L(@) € CE(16) | b1.1 = bo.1 =0, boo # 0, b1 .4 # O);

Ug ={L(@) € CE(ug) | br,1 = bo,1 =0, b0 0, br.a =0, by2#0);
U’ = {L(e) € CE(ug) | b1,1 =bo,1 =0, bo,o # 0. br.a = b1.o = 0);
Ug' = {L(@) € CE(ue) | b1,1 = bo.1 = bo,o =0, by,a #0);

Ug? =1{L(@) € CE(16) | b1,1 = bo,1 =boo =b14=0, b1 2 #0};
U ={L(a) € CE(ug) | b11 =bo.1 = boo = b4 =bi =0}

PROPOSITION 3.14.
(1) Two algebras L(a) and L(a') from U61 are isomorphic if and only if

b/ 8 b 8
() o= (22)
bl,l bl,l
(2) For any X from C there exists L(x) € U61 such that (b1,4/b1,1)8A3 =A
The orbits in U61 can be parameterized as L(1, 0, 1,0, 1), A € C.

PROPOSITION 3.15.
(1) Two algebras L(«) and L(a') from U62 are isomorphic if and only if

b/ 8 b 8
(5) =) =
b],] b],l
(2) For any A from C there exists L(a) € Ug such that (bl,z/bLl)SA =A
Then orbits in U62 can be parameterized as L(1, 0, 1, 1, 0), L € C.
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PROPOSITION 3.16. The subsets U, U, U2, US, U/, U§, UZ, US°, UL, U2, and
U613 are single orbits with representatives
L{1,0,1,0,0), L(,0,1,0,0), L(,1,0,0,1), L(,1,0,1,0),
L©,1,0,0,0), L(,0,0,0,1), L(1,0,0,1,0), L(1,0,0,0,0),
L(0,0,0,0,1), L(0,0,0,1,0) and L(0,0,0,0,0),
respectively.
3.4. Isomorphism classes in CE (yt7). From the interrelations between b; ; (see the

multiplication table of CE (u,,)) we get by 5 = —b3 4 = b, b 3 = —b1 4. Hence L(w),
where o = (bo,0, bo.1, b1.1, b1.2, b1.4, D), designates an element of CE (u7).

THEOREM 3.17 (Isomorphism criterion for CE(jt7)). Two filiform Leibniz algebras
L(a) and L(a') from CE (u7) are isomorphic if and only if there exist Ag, A, B; € C,
1 <i <5, such that AgB1(Ag + A1b) # 0, and the following equalities hold:
Alboo + AoArbo1 + Alby

A3B1(Ag + A1b)
,_ Aobo1 +2A1b;

/
bo,o =

017 AS(Ag + Arb)
;o B1b1
MU AS (A0 + A
. Bibia+ (2B1Bs — B)bi 4+ (2BaBy — 2Bi Bs — B3)b
L2— 2A3B1(Ag + A1b) ’
., _ _Bibia+(2B1B; — B)b
M AZBI(Ag + Arh)
p=—5b
Ao+ A1b

The class CE(u7) is represented as a union of the following subsets.
Ui ={L(a) € CE(u7) | b #0, by #0);
U7 ={L(a) € CE(u7) | b #0, bi1 =0, bo,1 #0};
U3 ={L(a) € CE(u7) | b #0, bi1 =bo,1 =0, bo,o # 0};
Uf = {L(a) € CE(u7) | b #0, b1,y = bo,1 = bo,o = 0};
U3 ={L(a) € CE(1t7) | b=0, by 4 #0, by # 0}
US ={L(a) € CE(u7) | b=0, b14#0, by,1 =0, bo,y #O};
U] = {L(a) € CE(117) | b=0, by 4 #0, by,1 = by, =0, by, # O};
U$ ={L(a) € CE(u7) | b=0, by 4 #0, b1,y = bo,1 = boo = 0};
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U7 ={L(a) € CE(u7) | b=b14=0,b12#0, by 1 #0};

U;% ={L(e) € CE(u7) |b=b14=0,b12#0,b11 =0, by #0};

Uj' ={L(e) € CE(u7) |b=b14=0,b12#0, b1 =bo1 =0, b #0};
U;? ={L(a) € CE(u7) |b=b14=0,b12#0, b1 =bo,1 = by =0;
Uy? ={L(e) € CE(u7) |b=b14=b1,=0,by; #0, A #0};

Ut ={L(a) € CE(u7) | b=b14=b12=0,b1,1 #0, A =0};

Up® ={L(@) € CE(u7) | b=b14 =b12=b1,1 =0, by, #0};

U7% ={L(a) € CE(u7) | b= b1 .4 = b1 =by1,1 =bo,1 =0, bo,o # O};

U;7 ={L(a) € CE(u7) | b=b1.4 = b1 =b1.1 =bo,1 = boo = 0}.

PROPOSITION 3.18.
(1) Two algebras L(a) and L(a') from U71 are isomorphic if and only if

b/ 2 b 2
— | AN=(—) A
20}, — by b/ 2b1.1 — bo1b

(2) For any X from C there exists L(x) € U71 such that (b/(2by,1 — bo,lb))zA =A
Then orbits in U71 can be parameterized as L(1, 0,1, 0,0, 1), A € C.

PROPOSITION 3.19.
(1) Two algebras L(«) and L(«') from U75 are isomorphic if and only if

b/1,4 IOA’3= lﬂ 10A3
bl by1 '

(2) For any X from C there exists L(x) € U75 such that (b1,4/b1,1)10A3 = A

Then orbits in U75 can be parameterized as L(1, 0, 1,0, 1,0), A € C.

PROPOSITION 3.20.
(1) Two algebras L(a) and L(a') from U79 are isomorphic if and only if

/ 10 10
(-G
bl,] bl,]

(2) For any X from C there exists L(x) € U79 such that (171,2/b],1)10A3 =A

Then orbits in U79 can be parameterized as L(1, 0,1, 1,0, 0), A € C.
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PROPOSITION 3.21. The subsets Uz, U3, U3, US, U], U3, UJ°, UL, UI2, U3, US4,

U715, U716, and U717 are single orbits with representatives

L©,1,0,0,0,1), L(1,0,0,0,0,1), L(,0,0,0,0,1), L(0,1,0,0,1,0),

L(1,0,0,0,1,0), L(0,0,0,0,1,0), L(0,1,0,1,0,0), L(1,0,0,1,0,0),

L©,0,0,1,0,0), L(1,0,1,0,0,0), L(,0,1,0,0,0), L(0,1,0,0,0,0),
L(1,0,0,0,0,0) and L(0,0,0,0,0,0),

respectively.

3.5. Isomorphism classes in CE(ug). It is easy to see that by 4 =—b32, b1 6=

b34=0>bs57 and b=0. An element of CE(ug) is denoted by L(«), where o =
(bo,05 bo,1, b1,1, b1,2, b1,4, b16).

THEOREM 3.22 (Isomorphism criterion for CE(uug)). Two filiform Leibniz algebras
L(a) and L(a') from CE (uug) are isomorphic if and only if there exist Ay, Ay, B; € C,
1 <i <5, such that AgB1 # 0 and the following equalities hold:

AZbo,o + AoA1bo,1 + Alb

by o= ,

0.0 AgBl

p 2A1b1,1 + Aobo,
bO,l = A7 )

0
B1b1 1
bll,l = a7
0
;o Bibi s+ (2B1B3 — B3)by 4+ (2B1Bs — 2By Bs + B)bi 6
12~ ,
A$By
. B?bi 4+ (2B1B3 — B3)bi ¢
14~ )
AB;
, _ Bibig
1,6 A% .

The class CE (ug) is represented as a union of the following subsets.
Ug = {L(a) € CE(ug) | bi.6 #0, b1,1 #0};
Ug = {L(e) € CE(ug) | bi,s #0, bi,1 =0, bo,1 #0};
Ug ={L(a) € CE(ug) | bi.6 #0, by,1 =bo.1 =0, by # O};
Ug ={L(a) € CE(ug) | bi,6 #0, b1,1 = bo,1 = bo,o = 0};
Ug ={L(a) € CE(ug) | b1,6 =0, b4 #0, by, #0};
U$ ={L(a) € CE(ug) | b1,6 =0, by 4 #0, by,1 =0, by, #0};
Ud = {L(a) € CE(us) | b16=0,b14#0, b1 =bo1 =0, boo#0};
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U§ = {L(a) € CE(18) | b1,6 =0, b14 #0, b1 =bo,1 = by = O;

Ug = {L(a) € CE(u3) | b1,6 =b14 =0, b1 #0, by 1 #0};

Ug® = {L(a) € CE(ug) | bi,s =b14=0,b12#0,by,1 =0, by #0};
Ug' ={L(a) € CE(ug) | bi6=b14=0,b12#0, by,1 =bo1 =0, bo#0};
Ug® = {L(a) € CE(ug) | b1,6 =b1,4=0,b1 270, by,1 =bo,1 = boo=0};
Ug® = {L(e) € CE(ug) | b1.6 =b14=b12=0,b11 #0, A0}
Ug*={L(@) € CE(ug) | brs=b14=b12=0,b1,1 #0, A=0};
Ug® ={L(ct) € CE(us) | b1.6 =b14 =b12=b11 =0, by #0};
Ug® = {L(a) € CE(us) | b1.g=b1a=b12=b11 =bo1 =0, boo#0};
Uy’ ={L(a) € CE(ug) | bi,o = b1,4 =b12=b1,1 = by, =bo,o=0}.
The following propositions describe U}, Ug and Ug .

PROPOSITION 3.23.
(1) Two algebras L(«) and L(a’) from U81 are isomorphic if and only if

() -
b1’1 bl,l
(2) For any X from C there exists L(x) € Ug1 such that (b1,6/b1,1)12A5 =A

Orbits in U81 can be parameterized as L(1, 0, 1,0, 0, 1), > € C.

PROPOSITION 3.24.
(1) Two algebras L(«) and L(«’) from Ug are isomorphic if and only if

(b_)i _ (@)‘E
b/1,4 A’ b1 A
(2) For any X from C there exists L(a) € Ug such that (bl,l/b1,4)4(1/A) =A

The parametrization of orbits in Ug can be viewed as L()1,0,1,0, 1, 0), A € C.

PROPOSITION 3.25.
(1) Two algebras L(x) and L(a') from U89 are isomorphic if and only if

B\ 12 b1\ 12
(52) «=() =
b]y] bl,l
(2) Forany X € C there exists L(a) € UE? such that (bl,z/bm)le =A
The set of orbits in Ug can be parameterized as L(1, 0,1, 1,0, 0), L € C.
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PROPOSITION 3.26. The subsets U2, U3, Ug, US, UJ, US, ULY, Udl, U2, Uul3, Uud4,
U815, Ul°, and U817 are single orbits with representatives

L@,1,0,0,0,1, L(,0,0,0,0,1), L(,0,0,0,0,1), L(,1,0,0,1,0),

L(,0,0,0,1,0), L(0,0,0,0,1,0), L(,1,0,1,0,0), L(1,0,0,1,0,0),

Lo,0,0,1,0,0, L(,0,1,0,0,0), L(,0,1,0,0,0), L(0,1,0,0,0,0),
L(1,0,0,0,0,0) and L(0,0,0,0,0,0),

respectively.
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