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ON ISOMORPHISMS AND INVARIANTS OF FINITE
DIMENSIONAL COMPLEX FILIFORM LEIBNIZ ALGEBRAS
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In this article, we propose an approach classifying a class of filiform Leibniz algebras.
The approach is based on algebraic invariants. The method allows to classify all filiform
Leibniz algebras (including filiform Lie algebras) in a given fixed dimensional case.
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1. INTRODUCTION

It is well known that the natural gradation of nilpotent Lie and Leibniz
algebras is very helpful in investigation of their structural properties. This technique
is more effective when the length of the natural gradation is sufficiently large. In
the case when it is maximal, the algebra is called filiform. For applications of this
technique, for instance, see Vergne [18], Goze et al. [10] (for Lie algebras) and
Ayupov et al. [2] (for Leibniz algebras) case.

The present article deals with a class of nonassociative algebras that
generalizes the class of Lie algebras. These algebras satisfy certain identities that
were suggested by Loday [12] and Cuvier [5]. When one uses the tensor product
instead of external product in the definition of the nth cochain, in order to prove
the differential property, that is defined on cochains, it suffices to replace the
anticommutativity and Jacobi identity by the Leibniz identity. This is one of the
motivations to appear for this class of algebras. It turned out later that they
appeared to be related in a natural way to several topics such as differential
geometry, homological algebra, classical algebraic topology, algebraic K-theory,
loop spaces, noncommutative geometry, quantum physics etc., as a generalization
of the corresponding applications of Lie algebras to these topics.

The (co)homology theory, representations, and related problems of Leibniz
algebras were studied by Cuvier [4], Loday et al. [14], Liu et al. [15], and others. A
good survey about these all and related problems is Loday et al. [13].
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4706 RAKHIMOV AND BEKBAEV

The problems related to the group theoretical realizations of Leibniz algebras
are studied by Kinyon et al. [11] and others.

Deformation theory of Leibniz algebras and related physical applications of it
are initiated by Fialowski et al. [7].

Problems concerning Cartan subalgebras, solvability, and weight spaces were
studied by Albeverio et al. [1] and Omirov [16].

The notion of simple Leibniz algebra was suggested by Dzhumadil’daev et al.
[6], who obtained some results concerning special cases of simple Leibniz algebras.

The article is organized as follows. Section 2 collects basic definitions,
notations, and conventions used in the article. Section 3 is devoted to the adapted
basis and the adapted transformations. Here we mention an isomorphism criterion
from Gómez et al. [8] for filiform Leibniz algebras whose naturally gradation is non-
Lie filiform Leibniz algebra. Then we rewrite it adjusting to our purpose. The main
results of the article are in Sections 4 and 5. In Section 4 we give an algorithm
for algebraic classification of finite dimensional complex filiform Leibniz algebras
derived from the naturally graded non-Lie filiform Leibniz algebra in terms of
invariant functions (Sections 4.1 and 4.2). Section 4.3 deals with the class of filiform
Leibniz algebras whose natural gradation is a filiform Lie algebra. Here we simplify
the table of multiplication and keep track of the behavior of the structure constants
under the adapted base change. Section 5 contains implementations of the results in
some low dimensional cases.

2. PRELIMINARIES

Let V be a vector space of dimension n over an algebraically closed field
K (charK=0). Bilinear maps V × V → V form a vector space Hom�V ⊗ V� V� of
dimensional n3, which can be considered together with its natural structure of an
affine algebraic variety over K and denoted by Algn�K� � Kn3 . An n-dimensional
algebra L over K can be considered as an element ��L� of Algn�K� via the
bilinear mapping � � L⊗ L → L defining a binary algebraic operation on L: let
�e1� e2� � � � � en� be a basis of the algebra L. Then the table of multiplication of L is
represented by point �	kij� of this affine space as follows:

��ei� ej� =
n∑

k=1

	kijek�

Here 	kij are called structure constants of L. The linear reductive group GLn�K� acts
on Algn�K� by �g ∗ ���x� y� = g���g−1�x�� g−1�y��� (“transport of structure”). Two
algebras �1 and �2 are isomorphic if and only if they belong to the same orbit under
this action.

Recall that an algebra L over a field F is called a Leibniz algebra if it satisfies
the Leibniz identity


x� 
y� z�� = 

x� y�� z�− 

x� z�� y�� (1)

where 
·� ·� denotes the multiplication in L.
A skew-symmetric Leibniz algebra is a Lie algebra. In this case, (1) is just the

Jacobi identity.
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ON ISOMORPHISMS AND INVARIANTS 4707

Let LBn�K� be a subvariety of Algn�K� consisting of all n-dimensional Leibniz
algebras over K. It is stable under the above mentioned action of GLn�K�. As a
subset of Algn�K� the set LBn�K� is specified by the system of equations with respect
to structure constants 	kij

n∑
l=1

�	ljk	
m
il − 	lij	

m
lk + 	lik	

m
lj � = 0� where i� j� k�m = 1� 2� � � � � n�

The first naive way to describe LBn�K� is to solve this quadratic system with
respect to 	kij , which is somewhat cumbersome. It has been done for low-dimensional
Leibniz algebras (n ≤ 3). The complexity of the computations increases much with
increasing of dimension. Therefore, usually one has to create some appropriate
methods of investigation. However, to classify whole LBn�K� for any fixed n is a
hopeless task. Hence one considers some subclasses of LBn�K� to be classified.

Let L be a Leibniz algebra. We define the lower central series

L1 = L� Lk+1 = 
Lk� L�� k ≥ 1�

Definition 2.1. A Leibniz algebra L is called nilpotent if there exists s ∈ � such
that Ls = 0.

Definition 2.2. A Leibniz algebra L is said to be filiform if dimLi�L� = n− i�
where n = dimL and 2 ≤ i ≤ n.

Let Lbn denote the class of all n-dimensional filiform Leibniz algebras. Clearly,
it is a subclass of nilpotent Leibniz algebras. Let L be a nilpotent Leibniz algebra
with nilindex s. Consider Li = Li/Li+1� 1 ≤ i ≤ s − 1�, and grL = L1 ⊕ L2 ⊕ · · ·Ln−1.
Then 
Li� Lj� ⊆ Li+j , and we obtain the graded algebra grL.

Definition 2.3. If a Leibniz algebra L′ is isomorphic to a filiform naturally graded
algebra grL, then L′ is said to be naturally graded filiform Leibniz algebra.

Later on all algebras are supposed to be over the field of complex numbers
� and omitted products of basis vectors are supposed to be zero. The following
theorem summarizes the results of Ayupov et al. [2] and Vergne [18].

Theorem 2.1. Any complex �n+ 1�-dimensional naturally graded filiform Leibniz
algebra is isomorphic to one of the following pairwise non-isomorphic algebras:

NGF1 =
{

e0� e0� = e2�


ei� e0� = ei+1� 1 ≤ i ≤ n− 1�

NGF2 =
{

e0� e0� = e2�


ei� e0� = ei+1� 2 ≤ i ≤ n− 1�

NGF3 =




ei� e0� = −
e0� ei� = ei+1� 1 ≤ i ≤ n− 1�


ei� en−i� = −
en−i� ei� = ��−1�i+1en� 1 ≤ i ≤ n− 1�

� ∈ �0� 1� for odd n and � = 0 for even n�
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4708 RAKHIMOV AND BEKBAEV

It is clear that NGF3 is a Lie algebra, but neither NGF1 nor NGF2 is the case.
Based on this theorem, the class of fixed dimensional filiform Leibniz algebras

can be split into three disjoint classes as follows (see Gómez et al. [8]).

Theorem 2.2. Any �n+ 1�-dimensional complex filiform Leibniz algebra admits a
basis �e0� e1� � � � � en� called adapted, such that the table of multiplication of the algebra
has one of the following forms:

FLbn+1 =





e0� e0� = e2�


ei� e0� = ei+1� 1 ≤ i ≤ n− 1�


e0� e1� = �3e3 + �4e4 + · · · + �n−1en−1 + en�


ej� e1� = �3ej+2 + �4ej+3 + · · · + �n+1−jen� 1 ≤ j ≤ n− 2�

�3� �4� � � � � �n�  ∈ ��

SLbn+1 =





e0� e0� = e2�


ei� e0� = ei+1� 2 ≤ i ≤ n− 1�


e0� e1� = �3e3 + �4e4 + · · · + �nen�


e1� e1� = 	en�


ej� e1� = �3ej+2 + �4ej+3 + · · · + �n+1−jen� 2 ≤ j ≤ n− 2�

�3� �4� � � � � �n� 	 ∈ ��

TLbn+1 =





ei� e0� = ei+1� 1 ≤ i ≤ n− 1�


e0� ei� = −ei+1� 2 ≤ i ≤ n− 1�


e0� e0� = b0�0en�


e0� e1� = −e2 + b0�1en�


e1� e1� = b1�1en�


ei� ej� = −
ej� ei� ∈ span��ei+j+1� ei+j+2� � � � � en � 1 ≤ i ≤ n− 3�

2 ≤ j ≤ n− 1− i��


ei� en−i� = −
en−i� ei� = �−1�ibi�n−ien�

where ak
i�j� bi�j ∈ � and bi�n−i = b whenever 1 ≤ i ≤ n− 1�

and b = 0 for even n�

The above theorem means that the natural gradation of a filiform Leibniz
algebra may be an algebra from one of NGFi for i = 1� 2� 3.

3. ADAPTED BASE CHANGE AND ISOMORPHISM CRITERIA

In this section we simplify the isomorphic action of GLn (“transport of
structure”) on the class of algebras coming out from the naturally graded non-Lie
filiform Leibniz algebras. The details of the proofs can be found in Gómez et al. [8].

Let L be a filiform Leibniz algebra defined on a vector space V and
�e0� e1� � � � � en� be an adapted basis of L.
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ON ISOMORPHISMS AND INVARIANTS 4709

The closed subgroup of GL�V� consisting of all linear transformation sending
one adapted basis to another is said to be adapted for the structure of L. This
subgroup is denoted by Gad. In Gad, we consider the following isomorphisms, called
elementary:

first type − ��a� b� k� =




f�e0� = e0 + aek�

f�e1� = e1 + bek�

f�ei+1� = 
f�ei�� f�e0��� 1 ≤ i ≤ n− 1� 2 ≤ k ≤ n�

f�e2� = 
f�e0�� f�e0���

second type − ��a� b� =




f�e0� = ae0 + be1�

f�e1� = �a+ b�e1 + b�− �n�en−1� a�a+ b� �= 0�

f�ei+1� = 
f�ei�� f�e0��� 1 ≤ i ≤ n− 1�

f�e2� = 
f�e0�� f�e0���

third type − ��b� n� =




f�e0� = e0�

f�e1� = e1 + ben�

f�ei+1� = 
f�ei�� f�e0��� 2 ≤ i ≤ n− 1�

f�e2� = 
f�e0�� f�e0���

fourth type − ��a� k� =




f�e0� = e0 + aek�

f�e1� = e1�

f�ei+1� = 
f�ei�� f�e0��� 2 ≤ i ≤ n− 1� 2 ≤ k ≤ n�

f�e2� = 
f�e0�� f�e0���

fifth type − ��a� b� d� =




f�e0� = ae0 + be1�

f�e1� = de1 − bd	

a
en−1� ad �= 0�

f�ei+1� = 
f�ei�� f�e0��� 2 ≤ i ≤ n− 1�

f�e2� = 
f�e0�� f�e0���

where a� b� d ∈ �.

Proposition 3.1.

(a) Let f be an adapted transformation of FLbn+1; then

f = ��an� bn� n�  ��an−1� an−1� n− 1�  · · ·  ��a2� a2� 2�  ��a0� a1��

(b) Let f be an adapted transformation of SLbn+1; then

f = ��bn� n�  ��an� n�  ��an−1� n− 1�  · · ·  ��a2� 2�  ��a0� a1� b1��
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4710 RAKHIMOV AND BEKBAEV

Proposition 3.2.

(a) The transformation

��an� bn� n�  ��an−1� an−1� n− 1�  · · ·  ��a2� a2� 2�

preserves the structure constants of algebras from FLbn+1.
(b) The transformation

��bn� n�  ��an� n�  ��an−1� n− 1�  · · ·  ��a2� 2�

preserves the structure constants of algebras from SLbn+1.

Thus the action of GLad�V� on FLbn+1 and SLbn+1 can be reduced to the action
of the elementary transformations of the second and the fifth types, respectively.

The next two theorems are reformulations of the corresponding results of
Gómez et al. [8] on isomorphism criteria for filiform Leibniz algebras appearing
from the naturally graded non Lie filiform Leibniz algebras.

Introduce the following series of functions:

�t�y� z�

= �t�y� z3� z4� � � � � zn� zn+1�

= �1+ y�zt −
t−1∑
k=3

((
k− 1
k− 2

)
yzt+2−k +

(
k− 1
k− 3

)
y2

t∑
i1=k+2

zt+3−i1
zi1+1−k

+
(
k− 1
k− 4

)
y3

t∑
i2=k+3

i2∑
i1=k+3

zt+3−i2
zi2+3−i1

zi1−k + � � �

= +
(
k− 1
1

)
yk−2

t∑
ik−3=2k−2

ik−3∑
ik−4=2k−2

· · ·
i2∑

i1=2k−2

zt+3−ik−3
zik−3+3−ik−4

� � � zi2+3−i1
zi1+5−2k

+ yk−1
t∑

ik−2=2k−1

ik−2∑
ik−3=2k−1

· · ·
i2∑

i1=2k−1

zt+3−ik−2
zik−2+3−ik−3

� � � zi2+3−i1
zi1+4−2k

)
�k�y� z��

for 3 ≤ t ≤ n�

Theorem 3.1. Two algebras L��� and L��′� from FLbn+1, where � =
��3� �4� � � � � �n� �, and �′ = ��′3� �

′
4� � � � � �

′
n� 

′� are isomorphic if and only if there exist
complex numbers A and B such that A�A+ B � �= 0 and the following conditions
hold:

�′t =
1

At−2
�t

(
B

A
� �

)
� 3 ≤ t ≤ n�

′ = 1
An−2

�n+1

(
B

A
� �

)
�
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ON ISOMORPHISMS AND INVARIANTS 4711

Let

�t�y� z�

= �t�y� z3� z4� � � � � zn� zn+1�

= zt −
t−1∑
k=3

((
k− 1
k− 2

)
yzt+2−k +

(
k− 1
k− 3

)
y2

t∑
i1=k+2

zt+3−i1
zi1+1−k

+ Ck−4
k−1y

3
t∑

i2=k+3

i2∑
i1=k+3

zt+3−i2
zi2+3−i1

zi1−k + � � �

+ C1
k−1y

k−2
t∑

ik−3=2k−2

ik−3∑
ik−4=2k−2

· · ·
i2∑

i1=2k−2

zt+3−ik−3
zik−3+3−ik−4

� � � zi2+3−i1
zi1+5−2k

+ yk−1
t∑

ik−2=2k−1

ik−2∑
ik−3=2k−1

· · ·
i2∑

i1=2k−1

zt+3−ik−2
zik−2+3−ik−3

� � � zi2+3−i1
zi1+4−2k

)
�k�y� z��

where 3 ≤ t ≤ n�

and

�n+1�y� z� = zn+1�

Theorem 3.2. Two algebras L��� and L��′� from SLbn+1, where � = ��3� �4� � � � �
�n� 	�, and �′ = ��′

3� �
′
4� � � � � �

′
n� 	

′�, are isomorphic if and only if there exist complex
numbers A�B, andD such that AD �= 0 and the following conditions hold:

�′
t =

1
At−2

D

A
�t

(
B

A
� �

)
� 3 ≤ t ≤ n− 1�

�′
n = 1

An−2

D

A

B

A
	+ �n

(
B

A
� �

)
�

and

	′ = 1
An−2

(
D

A

)2

�n+1

(
B

A
� �

)
�

Now we commence to create the classification procedure for Lbn+1.
To simplify notation let us agree that in the above case for transition

from L��� to L��′�, and from L��� to L��′� we write �′ = �
(
1
A
� B
A
� �
)
and �′ =

�
(
1
A
� B
A
� D

A
� �
)
, respectively, where

�

(
1
A
�
B

A
� �

)
=
(
�1

(
1
A
�
B

A
� �

)
� �2

(
1
A
�
B

A
� �

)
� � � � � �n−1

(
1
A
�
B

A
� �

))
�

with

�t�x� y� z� = xt�t+2�y� z� for 1 ≤ t ≤ n− 2�

�n−1�x� y� z� = xn−2�n+1�y� z��
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4712 RAKHIMOV AND BEKBAEV

and

�

(
1
A
�
B

A
�
D

A
� �

)
=
(
�1

(
1
A
�
B

A
�
D

A
� �

)
� �2

(
1
A
�
B

A
�
D

A
� �

)
� � � � � �n−1

(
1
A
�
B

A
�
D

A
� �

))
�

with

�t�x� y� v� z� = xtv�t+2�y� z� for 1 ≤ t ≤ n− 3�

�n−2�x� y� v� z� = xn−2v�yzn+1 + �n�y� z���

�n−1�x� y� v� z� = xn−2�n+1�y� z�� respectively�

Here are the main properties of the operators � and � used in this article:

10. ��1� 0� ·� is the identity operator;
20. �

(
1
A2
� B2
A2
� �
(

1
A1
� B1
A1
� �
)) = �

(
1

A1A2
� A1B2+A2B1+B1B2

A1A2
� �
)
;

30. If �′ = �
(
1
A
� B
A
� �
)
, then � = �

(
A�− B

A+B
� �′
)
.

10. ��1� 0� 1� ·� is the identity operator;
20. �

(
1
A2
� B2
A2
� D2

A2
� �
(

1
A1
� B1
A1
� D1

A1
� �
)) = �

(
1

A1A2
� B1A2+B2D1

A1A2
� D1D2

A1A2
� �
)
;

30. If �′ = �
(
1
A
� B
A
� D

A
� ��

)
, then � = �

(
A�− B

D
� A
D
� �′).

From here on, we assume that n ≥ 4 since there are complete classifications of
complex nilpotent Leibniz algebras of dimension at most four in Albeverio et al. [3].

4. CLASSIFICATION PROCEDURE

Definition 4.1. An action of algebraic group G on a variety X is a morphism � �
G× X −→ X with:

(i) ��e� x� = x, where e is an identity element of G and x ∈ X;
(ii) ��g� ��h� x�� = ��gh� x�, for all g� h ∈ G and x ∈ X.

One writes gx for ��g� x� and call X a G-variety. O�x� = �y ∈ X � ∃ g ∈ G� y =
gx� is the orbit of x. A function f � X −→ K is said to be invariant if f�gx� = f�x�
for all g ∈ G and x ∈ X.

We consider the case when G = Gad and X = Lbn+1. Then the orbits with
respect to the action of G = Gad on X = Lbn+1 consist of all isomorphic to each
other algebras.

4.1. Classification Algorithm and Invariants for FLbn+1

Consider the following representation of FLbn+1: FLbn+1 = U ∪ F , where

U = �L��� ∈ FLbn+1 � �3 �= 0� and F = �L��� ∈ FLbn+1 � �3 = 0��

Then U can be represented as a disjoint union of the subsets

U1 = �L��� ∈ U � �4 �= −2�23� and F1 = �L��� ∈ U � �4 = −2�23��
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ON ISOMORPHISMS AND INVARIANTS 4713

Theorem 4.1.

(i) Two algebras L��� and L��′� from U1 are isomorphic if and only if

�i

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= �i

(
2�′3

�′4 + 2�′23
�
�′4
2�′23

� �′
)
�

whenever i = 3� 4� � � � � n− 1.
(ii) For any �a3� a4� � � � � an−1� ∈ �n−3, there is an algebra L��� from U1 such that

�i

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= ai� i = 3� 4� � � � � n− 1�

Proof. (i). “If” part. Let two algebras L��� and L��′� be isomorphic. Then
there exist A�B ∈ � such that A�A+ B� �= 0 and �′ = �

(
1
A
� B
A
� �
)
. Hence, � =

�
(
A� −B

A+B
� �′
)
. Consider the algebra L��0�, where �0 = �

(
1
A0
� B0
A0
� �
)

and A0 =
�4+2�23
2�3

� B0 = �4��4+2�23�

4�33
. Then �0 = �

( 2�3
�4+2�23

� �4
2�23

� �
) = �

(
1
A0
� B0
A0
� �
(
A� −B

A+B
� �′
)) =

�
(

A
A0
� B0A−A0B

A�A+B�
� �′
)
. It is easy to check that A

A0
= 2�′3

�′4+2�′23
and B0A−A0B

A�A+B�
= �′4

2�′23
.

Therefore,

�

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= �

(
2�′3

�′4 + 2�′23
�
�′4
2�′23

� �′
)

and, hence,

�i

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= �i

(
2�′3

�′4 + 2�′23
�
�′4
2�′23

� �′
)
�

for all i = 3� 4� � � � � n− 1.
This procedure can be shown schematically as follows:

“Only if” part. Let the equalities

�i

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= �i

(
2�′3

�′4 + 2�′23
�
�′4
2�′23

� �′
)
� i = 3� 4� � � � � n− 1

hold. Then it is easy to see that

�i

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= �i

(
2�′3

�′4 + 2�′23
�
�′4
2�′23

� �′
)

for i = 1� 2

as well and, therefore, �
( 2�3
�4+2�23

� �4
2�23

� �
) = �

( 2�′3
�′4+2�′23

�
�′4
2�′23

� �′
)
, which means that the

algebras L��� and L��′� are isomorphic.
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4714 RAKHIMOV AND BEKBAEV

(ii). The system of equations

�i

(
2�3

�4 + 2�23
�
�4
2�23

� �

)
= ai� 3 ≤ i ≤ n− 1� (2)

where �a3� a4� � � � � an−1� is given and � = ��3� �4� � � � � �n−1� � is unknown, has
a solution as far as for any 3 ≤ i ≤ n− 1 in �i

( 2�3
�4+2�23

� �4
2�23

� �
)

only variables
�3� �4� � � � � �i occur and each of these equations is a linear equation with respect to
the last variable occurred in it. Hence, making each of �i the subject of (2), where
i = 3� � � � � n− 1, one can find the required algebra L���. �

Let us now consider the isomorphism criterion for F1. This set in its turn can
be written as a disjoint union of the subsets

V1 = �L��� ∈ F1 � �5 �= 5�33� and G1 = �L��� ∈ F1 � �5 = 5�33��

and V1 can be represented as a disjoint union of the subsets

U2 = �L��� ∈ V1 � �6 + 6�3�5 − 16�43 �= 0� and

G2 = �L��� ∈ V1 � �6 + 6�3�5 − 16�43 = 0��

Then the isomorphism criterion for U2 can be spelled out as follows.

Theorem 4.2.

(i) Two algebras L��� and L��′� from U2 are isomorphic if and only if

�i

(
5�33 − �5

�6 + 6�3�5 − 16�43
�
�6 + 7�3�5 − 21�43

�3
(
5�33 − �5

) � �

)

= �i

(
5�′33 − �′5

�′6 + 6�′3�
′
5 − 16�′43

�
�′6 + 7�′3�

′
5 − 21�′43

�′3
(
5�′33 − �′5

) � �′
)

for i = 4� � � � � n− 1.
(ii) For any �a4� � � � � an−1� ∈ �n−4, there is an algebra L��� from U2 such that

�i

(
5�33 − �5

�6 + 6�3�5 − 16�43
�
�6 + 7�3�5 − 21�43

�3
(
5�33 − �5

) � �

)
= ai� i = 4� 5� � � � � n− 1�

Proof can be carried out with minor changing in the proof of the Theorem 4.1.
As for the subsets F , G1, and G2, the isomorphism criteria for them can be

treated likewise.

4.2. Classification Algorithm and Invariants for SLbn+1

In this section we consider SLbn+1. The classification algorithm in this case
works effectively as well. However, in this case, instead of the representation � we
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ON ISOMORPHISMS AND INVARIANTS 4715

have to use the representation � (see Section 3). To illustrate it, we represent SLbn+1

as a union of two stable subsets:

SLbn+1 = U ∪ F� (3)

where

U = �L��� � �4�2
3�6 − 12�3�4�6 + �3

4��4�3�5 − 5�2
4� �= 0�

and

F = �L��� � �4�2
3�6 − 12�3�4�6 + �3

4��4�3�5 − 5�2
4� = 0��

Theorem 4.3.

(i) Two algebras L��� and L��′� from U are isomorphic if and only if

�i

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)

= �i

(
4�′2

3 �
′
6 − 12�′

3�
′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′2

4

�
�′
4

2�′2
3

�
1
�′
3

� �′
)
�

whenever i = 3� 4� � � � � n− 1.
(ii) For any �b3� b4� � � � � bn−1� ∈ �n−3, there is an algebra L��� from U such that

�i

(
4�2

3�6 − 12�3�4�6 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= bi� i = 3� 4� � � � � n− 1�

Proof. i). Let L��� and L��′� be isomorphic. Then there exist A�B�D ∈ �
such that AD �= 0 and �′ = �

(
1
A
� B
A
� D

A
� �
)
. Consider the algebra L��0�, where �0 =

�
(

1
A0
� B0
A0
� D0

A0
� �
)
, and

A0 =
4�3�5 − 5�2

4

4�2
3�6 − 12�3�4�5 + �3

4

� B0 =
�4�4�3�5 − 5�2

4�

2�2
3�4�

2
3�6 − 12�3�4�5 + �3

4�
�

D0 =
4�3�5 − 5�2

4

�3�4�
2
3�6 − 12�3�4�5 + �3

4�
�

Since � = �
(
A� −B

D
� A
D
� �′), then

�0 = �

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= �

(
1
A0

�
B0

A0

�
D0

A0

� �

(
A�

−B

D
�
A

D
� �′
))

= �

(
A

A0

�
B0A− A0B

A0D
�
D0A

A0D
� �′
)
�
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4716 RAKHIMOV AND BEKBAEV

One can easily check that

A

A0

= 4�′
3
2�′

6 − 12�′
3�

′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′

4
2 �

B0A− A0B

A0D
= �′

4

2�′
3
2 � and

D0A

A0D
= 1

�′
3

�

Therefore,

�

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= �

(
4�′2

3 �
′
6 − 12�′

3�
′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′2

4

�
�′
4

2�′2
3

�
1
�′
3

� �′
)

and

�i

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= �i

(
4�′2

3 �
′
6 − 12�′

3�
′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′2

4

�
�′
4

2�′2
3

�
1
�′
3

� �′
)
�

(4)

for all i = 3� 4� � � � � n− 1.
This procedure can be shown schematically by the following picture:

Conversely, let the equalities

�i

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= �i

(
4�′2

3 �
′
6 − 12�′

3�
′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′2

4

�
�′
4

2�′2
3

�
1
�′
3

� �′
)

hold for i = 3� 4� � � � � n− 1. Then it is easy to see that

�i

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= �i

(
4�′2

3 �
′
6 − 12�′

3�
′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′2

4

�
�′
4

2�′2
3

�
1
�′
3

� �′
)

for i = 1� 2 as well and, therefore,

�

(
4�2

3�6 − 12�3�4�5 + �3
4

4�3�5 − 5�2
4

�
�4

2�2
3

�
1
�3

� �

)
= �

(
4�′2

3 �
′
6 − 12�′

3�
′
4�

′
5 + �′3

4

4�′
3�

′
5 − 5�′2

4

�
�′
4

2�′2
3

�
1
�′
3

� �′
)

that means the algebras L��� and L��′� are isomorphic.
Part ii) is similar to that of the Theorem 4.1. �

In regard to the set F , it can be split into subsets and the algorithm can be
applied with �, instead of �, by using the properties of �.

4.3. Simplifications in TLbn+1

In this section we treat filiform Leibniz algebras whose natural gradation is an
algebra from NGF3. This class has been denoted as TLbn+1. Here we clarify the table
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ON ISOMORPHISMS AND INVARIANTS 4717

of multiplications of algebras from TLbn+1 and investigate the behavior of structure
constants under the base change. We recall that �n+ 1�-dimensional filiform Lie
algebras are in TLbn+1. A study of TLbn+1 was initiated in Omirov et al. [17].

Proposition 4.1.

TLbn+1 =





ei� e0� = ei+1� 1 ≤ i ≤ n− 1�


e0� ei� = −ei+1� 2 ≤ i ≤ n− 1�


e0� e0� = b0�0en�


e0� e1� = −e2 + b0�1en�


e1� e1� = b1�1en�


ei� ej� = a1
i�jei+j+1 + · · · + a

n−�i+j+1�
i�j en−1 + bi�jen� 1 ≤ i < j ≤ n− 2�


ei� ej� = −
ej� ei�� 1 ≤ i < j ≤ n− 1�


ei� en−i� = −
en−i� ei� = �−1�ibi�n−ien� 1 ≤ i ≤ n− 1�
(5)

where ak
i�j� bi�j ∈ � and bi�n−i = b, whenever 1 ≤ i ≤ n− 1, b ∈ �0� 1� for odd n and

b = 0 for even n.

Proof. Let L ∈ TLbn+1 and e0� e1� � � � � en be a basis of L. Then due to Theorem 2.2

ei� ej� ∈ span�ei+j+1� � � � � en� for any i� j �= 0.

Then


ei� e0� = ei+1 + �∗�ei+2 + · · · + �∗�en� 1 ≤ i ≤ n− 1�

Putting e′1 = e1� e
′
0 = e0� e

′
i+1 �= 
e′i� e

′
0�, we may assume that 
ei� e0� = ei+1� 1 ≤

i ≤ n− 1.
Now consider


e0� ei� = −ei+1 + �i+2
0�i ei+2 + �i+3

0�i ei+3 + · · · + �n0�ien� 1 ≤ i ≤ n− 1�

Then we get


ei� e0�+ 
e0� ei� = �i+2
0�i ei+2 + �i+3

0�i ei+3 + · · · + �n0�ien� 1 ≤ i ≤ n− 1� (6)

Note that the Leibniz identity implies that 
x� y�+ 
y� x� ∈ ��L�, for any x� y ∈
L, where ��L� is the right annihilator of L. Therefore, if we multiply the both
sides of (6) from the right-hand side �n− i− 2� times by e0, we obtain �i+2

0�i = 0.
Substituting and repeating it, we get

�i+k
0�i = 0� 2 ≤ k ≤ n− 1− i�

Applying the above to 
ei� ei�� 0 ≤ i ≤ 
 n2 �, we get 
ei� ei� = �ni�ien.
The chain of equalities


e0� ei� = 
e0� 
ei−1� e0�� = 

e0� ei−1�� e0�− 

e0� e0�� ei−1�

= 
−ei + �n0�i−1en� e0� = −
ei� e0� = −ei+1
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4718 RAKHIMOV AND BEKBAEV

leads to 
ei� e0� = −
e0� ei� = ei+1 for 2 ≤ i ≤ n− 1, i.e. 
e0� x� = −
x� e0� for any
x ∈ L2.

We claim that


ei� ej� = −
ej� ei�� 1 ≤ i < j ≤ n− 1� (7)

The induction by i for any j and the following chain of equalities:


ei� ej+1� = 
ei� 
ej� e0�� = 

ei� ej�� e0�− 

ei� e0�� ej� = �since 
ei� ej� ∈ L2�

= −
e0� 
ei� ej��+ 

e0� ei�− �n0�ien� ej� = −
e0� 
ei� ej��+ 

e0� ei�� ej�

= −

e0� ei�� ej�+ 

e0� ej�� ei�+ 

e0� ei�� ej� = −
ej+1� ei�� 1 ≤ j ≤ n− 1

show (7).
The above observations lead to the required table of multiplication of L ∈

TLbn+1. �

Let L ∈ TLbn+1. The subspace spanned by �en� is an ideal of L and the quotient
algebra L/�en� is the n-dimensional filiform Lie algebra �n with the composition law


ei� e0� = ei+1� i = 1� 2� � � � � n− 1�


ei� ej� = a1
i�jei+j+1 + · · · + a

n−�i+j+1�
i�j en−1� 1 ≤ i < j ≤ n− 1�

Moreover, en is in the center of L. Therefore, L can be considered as a Leibniz
central extension of �n.

Lemma 4.1. Let L ∈ TLbn+1. Then

n−�i+j+k+1�∑
s=1

as
j�kbi�j+k+s =

n−�i+j+k+1�∑
s=1

�as
i�jbi+j+s�k − as

i�kbi+k+s�j�� (8)

Proof. The Leibniz identity for ei� ej , and ek gives the required relations between
the structure constants. Indeed,


ei� 
ej� ek�� =
[
ei�

n−�j+k+1�∑
s=1

as
j�kej+k+s + bj�ken

]

=
n−�i+j+k+1�∑

s=1

as
j�k

(
n−�i+j+k+s+1�∑

t=1

at
i�j+k+sei+j+k+s+t + bi�j+k+sen

)
�



ei� ej�� ek� =
[
n−�i+j+1�∑

s=1

as
i�jei+j+s + bi�jen� ek

]

=
n−�i+j+k+1�∑

s=1

as
i�j

(
n−�i+j+k+s+1�∑

t=1

at
i+j+s�kei+j+k+s+t + bi+j+s�ken

)
�
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ON ISOMORPHISMS AND INVARIANTS 4719



ei� ek�� ej� =
[
n−�i+k+1�∑

s=1

as
i�kei+k+s + bi�ken� ej

]

=
n−�i+j+k+1�∑

s=1

as
i�k

(
n−�i+j+k+s+1�∑

t=1

at
i+k+s�jei+j+k+s+t + bi+k+s�jen

)
�

and then it implies that

n−�i+j+k+1�∑
s=1

as
j�kbi�j+k+s =

n−�i+j+k+1�∑
s=1

�as
i�jbi+j+s�k − as

i�kbi+k+s�j��
�

Here are several useful remarks regarding (8) that permit much simplify the
multiplication table of TLbn+1:

1. It is symmetric with respect to i� j� k (since ak
s�t = −ak

t�s and bs�t = −bt�s for any s
and t, except for �s� t� = �0� 0�� �1� 1�� �0� 1�� �1� 0�).

2. In the case when �i� j� k� = �0� j� k�, we get

n−�j+k+1�∑
s=1

as
j�kb0�j+k+s =

n−�j+k+1�∑
s=1

�as
0�jbj+s�k − as

0�kbk+s�j��

where j �= 0� k �= 0.
3. Since as

0�t = 0 as s �= 1 and a1
0�t = −1, we get

a1
j�kb0�j+k+1 + a2

j�kb0�j+k+2 + · · · + a
n−�j+k+1�
j�k b0�n−1 = −bj+1�k + bk+1�j �

4. Since b0�t = 0 as t = 2� � � � � n− 2 and b0�n−1 = −1, it implies that

a
n−�j+k+1�
j�k = bj+1�k − bk+1�j�

for k = j + 1� j + 2� � � � � n− j − 2 and j = 1� 2� � � � � 
 n−3
2 �.

Lemma 4.2. Let L ∈ TLbn+1. Then


ei� ej+k� =
k∑

s=0

�−1�k−s

(
k
s

)

ei+k−s� ej�R

s
e0
� (9)

where 1 ≤ i� j� k ≤ n and yRx = 
y� x� is the right multiplication operator on L.

Proof. The proof will be proceed by the induction with respect to k. Let k = 1.
Then 
ei� ej+1� = 
ei� 
ej� e0�� = −
ei+1� ej�+ 

ei� ej�� e0�� i.e., (9) holds at k = 1. This
is a base of the induction. Then the following chain of equalities lead to the claim:


ei� ej+k+1� = 
ei� 
ej+k� e0�� = 

ei� ej+k�� e0�− 

ei� e0�� ej+k�

=
k∑

s=0

�−1�k−s

(
k
s

)

ei+k−s� ej�R

s+1
e0

−
k∑

s=0

�−1�k−s

(
k
s

)

ei+k+1−s� ej�R

s
e0
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4720 RAKHIMOV AND BEKBAEV

= −
k+1∑
s=1

�−1�k−s

(
k

s − 1

)

ei+k+1−s� ej�R

s
e0
−

k∑
s=0

�−1�k−s

(
k
s

)

ei+k+1−s� ej�R

s
e0

=
k∑

s=1

�−1�k+1−s

((
k

s − 1

)
+
(
k
s

))

ei+k+1−s� ej�R

s
e0

+ 
ei+k+1� ej�R
k+1
e0

− �−1�k
ei+1+k� ek�

=
k+1∑
s=0

�−1�k+1−s

(
k+ 1
s

)

ei+k+1−s� ej�R

s
e0
�

�

The following proposition specifies elements of Gad corresponding to the
structure of L ∈ TLbn+1.

Proposition 4.2. Let L ∈ TLbn+1 and f be an adapted transformation of L. Then f

can be represented as follows:

f�e0� = e′0 =
n∑

i=0

Aiei�

f�e1� = e′1 =
n∑

i=1

Biei�

f�ei� = e′i = 
f�ei−1�� f�e0��� 2 ≤ i ≤ n�

A0� Ai� Bj� �i� j = 1� � � � � n� are complex numbers, and A0 B1�A0 + A1b� �= 0.

Proof. Since a filiform Leibniz algebra is 2-generated, it is sufficient to consider
the adapted action of f on the generators e0� e1:

f�e0� = e′0 =
n∑

i=0

Aiei� and f�e1� = e′1 =
n∑

i=0

Biei�

Then f�ei� = 
f�ei−1�� f�e0�� = Ai−2
0 �A1B0 − A0B1�ei +

∑n
j=i+1�∗�ej , 2 ≤ i ≤ n. Note

that A0 �= 0, �A1B0 − A0B1� �= 0; otherwise, f�en� = 0. The condition A0 B1�A0 +
A1b� �= 0 appears naturally since f is not singular.

Let now consider 
f�e1�� f�e2�� = B0 �A1 B0 − A0 B1� e3 +
∑n

j=4�∗�ej . Then for
the basis �f�e0�� f�e1�� � � � � f�en�� to be adapted, B0�A1B0 − A0B1� must not be zero.
But according to the above observation, �A1B0 − A0B1� �= 0. Therefore, B0 = 0. �

The following elements of Gad are said to be elementary with respect to the
structure of L ∈ TLbn+1:

��b� k� =



f�e0� = e0�

f�e1� = e1 + b ek� b ∈ �� 2 ≤ k ≤ n�

f�ei+1� = 
f�ei�� f�e0��� 1 ≤ i ≤ n− 1�
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ON ISOMORPHISMS AND INVARIANTS 4721

��a� k� =



f�e0� = e0 + a ek� a ∈ �� 1 ≤ k ≤ n�

f�e1� = e1�

f�ei+1� = 
f�ei�� f�e0��� 1 ≤ i ≤ n− 1�

��a� b� =



f�e0� = a e0�

f�e1� = b e1� a� b ∈ �∗�

f�ei+1� = 
f�ei�� f�e0��� 1 ≤ i ≤ n− 1�

Proposition 4.3. Let f be an adapted transformation of L. Then it can be represented
as a composition:

f = ��An� n�  ��An−1� n− 1�  · · ·  ��A2� 2�  ��Bn� n�  ��Bn−1� n− 1�

 · · ·  ��B2� 2�  ��A1� 1�  ��A0� B1��

Proof. The proof is straightforward. �

Proposition 4.4. The transformations

g = ��An� n�  ��An−1� n− 1�  ��An−2� n− 2�  ��An−3� n− 3�  ��An−4� n− 4�

 ��Bn� n�  ��Bn−1� n− 1�  ��Bn−2� n− 2�  ��Bn−3� n− 3�� if n even,

and

g = ��An� n�  ��An−1� n− 1�  ��An−2� n− 2�  ��An−3� n− 3�

 ��Bn� n�  ��Bn−1� n− 1�  ��Bn−2� n− 2�� for odd n

do not change the structure constants of algebras from TLbn+1.

Remark. From the propositions above, one easily can see that the class TLbn+1

is less yieldable to simplification of adapted transformations than the first two
classes. Nevertheless, the following lemma tracks out the behavior of some structure
constants.

Lemma 4.3. Let L and L′ be filiform Leibniz algebras from TLbn+1 with the
parameters �b0�0� b0�1� b1�1� b1�2� � � � � bi�j� and �b′0�0� b

′
0�1� b

′
1�1� b

′
1�2� � � � � b

′
i�j�, respectively,

where 1 ≤ j ≤ n− 1. Suppose that L′ is obtained from L by the adapted base change.
Then

b′0�0 =
A2

0b0�0 + A0A1b0�1 + A2
1b1�1

An−2
0 B1�A0 + A1b�

b′0�1 =
A0b0�1 + 2A1b1�1

An−2
0 �A0 + A1b�

�

b′1�1 =
B1b1�1

An−2
0 �A0 + A1b�

�
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4722 RAKHIMOV AND BEKBAEV

Proof. Consider the product 
f�e0�� f�e0�� = b′0�0f�en�. Equating the coefficients of
en in it, we get

A2
0b0�0 + A0A1b0�1 + A2

1b1�1 = b′0�0A
n−2
0 B1�A0 + A1b��

Then b′0�0 = A2
0b0�0+A0A1b0�1+A2

1b1�1

An−2
0 B1�A0+A1b�

.
The product 
f�e1�� f�e1�� = b′1�1f�en� yields

b′1�1 =
B1b1�1

An−2
0 �A0 + A1b�

�

Consider the equality

b′0�1f�en� = 
f�e1�� f�e0��+ 
f�e0�� f�e1���

Then b′0�1A
n−2
0 B1�A0 + A1b� = A0B1b0�1 + 2A1B1b1�1, and it implies that

b′0�1 =
A0b0�1 + 2A1b1�1

An−2
0 �A0 + A1b�

�
�

The complete implementation of the procedure for some low dimensional cases
will be given in the next section.

5. APPLICATIONS

The objective of this section is to provide the isomorphism classes of complex
filiform Leibniz algebras Lbn for n = 5� 6.

For the computational purpose, we establish the following notations and
conventions:

�4 = �4 + 2�23, �5 = �5 − 5�33, �i = − �i, i = 4� 5, and the letters �4, �5,
�4, and �5 with ′ (prime) denote the same expression depending on parameters
�′3� �

′
4� �

′
5� 

′. Notice that �i = �i �i = 4� 5� as �3 = 0.
� = 4�3�5 − 5�2

4 and �′ = 4�′
3�

′
5 − 5�

′2
4 .

� = 4b0�0b1�1 − b20�1 and �′ = 4b′0�0b
′
1�1 − b′20�1.

5.1. The Isomorphism Classes in FLb5 and FLb6

5.1.1. Dimension 5. The class FLb5 can be represented as a disjoint union
of the following subsets:

FLb5 = U1

⋃
U2

⋃
U3

⋃
U4

⋃
U5

⋃
U6

⋃
U7�

where

U1 = �L��� ∈ FLb5 � �3 �= 0� �4 �= 0��

U2 = �L��� ∈ FLb5 � �3 �= 0� �4 = 0� �4 �= 0��
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ON ISOMORPHISMS AND INVARIANTS 4723

U3 = �L��� ∈ FLb5 � �3 �= 0� �4 = 0� �4 = 0��

U4 = �L��� ∈ FLb5 � �3 = 0� �4 �= 0� �4 �= 0��

U5 = �L��� ∈ FLb5 � �3 = 0� �4 �= 0� �4 = 0��

U6 = �L��� ∈ FLb5 � �3 = 0� �4 = 0� �4 �= 0��

U7 = �L��� ∈ FLb5 � �3 = 0� �4 = 0� �4 = 0��

Now we consider the isomorphism problem for each of these sets separately.

Proposition 5.1. Two algebras L��� and L��′� from U1 are isomorphic if and only if

(
�3
�4

)2

�4 =
(
�′3
�′

4

)2

�′
4

The expression

(
�3
�4

)2

�4

can be taken as a parameter �, and orbits from the set U1 can be parameterized as
L�1� 0� ��, � ∈ �.

Proposition 5.2. The subsets U2, U3, U4, U5, U6, and U7 are single orbits with
the representatives L�1�−2� 0�, L�1�−2�−2�, L�0� 1� 0�, L�0� 1� 1�, L�0� 0� 1�, and
L�0� 0� 0�.

We summarize these all in the following theorem.

Theorem 5.1. Let L be a non-Lie complex filiform Leibniz algebra in FLb5. Then it
is isomorphic to one of the following pairwise non-isomorphic Leibniz algebras:

1) L�0� 0� 0�:

L
f
5 = �e0e0 = e2� eie0 = ei+1� 1 ≤ i ≤ 3��

2) L�0� 0� 1�:

L
f
5 � e0e1 = e4�

3) L�0� 1� 1�:

L
f
5 � e0e1 = e4� e1e1 = e4�

4) L�0� 1� 0�:

L
f
5 � e1e1 = e4�
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4724 RAKHIMOV AND BEKBAEV

5) L�1�−2�−2�:

L
f
5 � e0e1 = e3 − 2e4� e1e1 = e3 − 2e4� e2e1 = e4�

6) L�1�−2� 0�:

L
f
5 � e0e1 = e3� e1e1 = e3 − 2e4� e2e1 = e4�

7) L�1� 0� ��:

L
f
5 � e0e1 = e3 + �e4� e1e1 = e3� e2e1 = e4� � ∈ ��

5.1.2. Dimension 6. The set FLb6 can be represented as a disjoint union of
its subsets as follows:

FLb6 = U1

⋃
U2

⋃
U3

⋃
U4

⋃
U5

⋃
U6

⋃
U7

⋃
U8

⋃
U9

⋃
U10

⋃
U11�

where

U1 = �L��� ∈ FLb6 � �3 �= 0� �4 �= 0��

U2 = �L��� ∈ FLb6 � �3 �= 0� �4 = 0� �5 �= 0� �5 �= 0��

U3 = �L��� ∈ FLb6 � �3 = 0� �4 �= 0� �5 �= 0��

U4 = �L��� ∈ FLb6 � �3 �= 0� �4 = 0� �5 �= 0� �5 = 0��

U5 = �L��� ∈ FLb6 � �3 �= 0� �4 = 0� �5 = 0� �5 �= 0��

U6 = �L��� ∈ FLb6 � �3 = 0� �4 �= 0� �5 = 0� �5 �= 0��

U7 = �L��� ∈ FLb6 � �3 = 0� �4 �= 0� �5 = 0� �5 = 0��

U8 = �L��� ∈ FLb6 � �3 = 0� �4 = 0� �5 �= 0� �5 �= 0��

U9 = �L��� ∈ FLb6 � �3 = 0� �4 = 0� �5 �= 0� �5 = 0��

U10 = �L��� ∈ FLb6 � �3 = 0� �4 = 0� �5 = 0� �5 �= 0��

U11 = �L��� ∈ FLb6 � �3 = 0� �4 = 0� �5 = 0� �5 = 0��

Proposition 5.3. Two algebras L��� and L��′� from U1 are isomorphic if and only if

�3��5 + 5�3�4�

�2
4

= �′3��
′
5 + 5�′3�

′
4�

�′2
4

and

�33�5

�3
4

= �′33 �
′
5

�′3
4

�
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ON ISOMORPHISMS AND INVARIANTS 4725

The following two expressions can be taken as parameters �1� �2:

�3��5 + 5�3�4�

�2
4

�
�33�5

�3
4

and orbits in U1 are parameterized as

L�1� 0� �1� �2�� �1� �2 ∈ ��

Proposition 5.4. Two algebras L��� and L��′� from U2 are isomorphic if and only if

�3
5

�33�
2
5

= �′3
5

�′33 �
′2
5

�

In the set U2, the expression

�3
5

�33�
2
5

can be taken as a parameter and orbits from U2 are parameterized as

L�1�−2� �� 2�− 5�� � ∈ ��

Proposition 5.5. Two algebras L��� and L��′� from U3 are isomorphic if and only if

�34�5

�35
= �′34 �

′
5

�′35
�

and the expression

�34�5

�35

can be taken as a parameter and orbits from the set U3 can be represented as a
union of orbits with representatives

L�0� 1� 1� ��� � ∈ ��

Proposition 5.6. Subsets U4, U5, U6, U7, U8, U9, U10, and U11 are single orbits
with the representatives L�1�−2� 0� 0�, L�1�−2� 5� 0�, L�0� 1� 0� 1�, L�0� 1� 0� 0�,
L�0� 0� 1� 0�, L�0� 0� 1� 1�, L�0� 0� 0� 1�, and L�0� 0� 0� 0�, respectively.

Theorem 5.2. Let L be a non-Lie complex filiform Leibniz algebra in FLb6. Then it
is isomorphic to one of the following pairwise non-isomorphic Leibniz algebras:

1) L�0� 0� 0� 0�:

L
f
6 = �e0e0 = e2� eie0 = ei+1� 1 ≤ i ≤ 4��
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4726 RAKHIMOV AND BEKBAEV

2) L�0� 0� 0� 1�:

L
f
6 � e0e1 = e5�

3) L�0� 0� 1� 1�:

L
f
6 � e0e1 = e5� e1e1 = e5�

4) L�0� 0� 1� 0�:

L
f
6 � e1e1 = e5�

5) L�0� 1� 0� 0�:

L
f
6 � e0e1 = e4� e1e1 = e4� e2e1 = e5�

6) L�0� 1� 0� 1�:

L
f
6 � e0e1 = e4 + e5� e1e1 = e4� e2e1 = e5�

7) L�1�−2� 5� 0�:

L
f
6 � e0e1 = e3 − 2e4� e1e1 = e3 − 2e4 + 5e5� e2e1 = e4 − 2e5� e3e1 = e5�

8) L�1�−2� 0� 0�:

L
f
6 � e0e1 = e3 − 2e4� e1e1 = e3 − 2e4� e2e1 = e4 − 2e5� e3e1 = e5�

9) L�0� 1� 1� ��:

L
f
6 � e0e1 = e4 + �e5� e1e1 = e4 + e5� e2e1 = e5� � ∈ ��

10) L�1�−2� �� 2�− 5�:

L
f
6 � e0e1 = e3 − 2e4 + �2�− 5�e5� e1e1 = e3 − 2e4 + �e5� e2e1 = e4 − 2e5�

e3e1 = e5� � ∈ ��

11) L�1� 0� �1� �2�:

L
f
6 � e0e1 = e3 + �1e5� e1e1 = e3 + �2e5� e2e1 = e4� e3e1 = e5� �1� �2 ∈ ��

The Propositions 5.1, 5.3–5.5 are variation of the Theorem 4.1.
Propositions 5.2 and 5.6 can be proven by precise indication of base change leading
to the representatives.
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ON ISOMORPHISMS AND INVARIANTS 4727

5.2. The Isomorphism Classes in SLb5 and SLb6

5.2.1. Dimension 5. It is easy to see that there is the following
representation of SLb5 as a disjoint union of its subsets as follows:

SLb5 = U1

⋃
U2

⋃
U3

⋃
U4

⋃
U5�

where

U1 = �L��� ∈ SLb5 � �3 �= 0� 	− 2�2
3 �= 0��

U2 = �L��� ∈ SLb5 � �3 �= 0� 	− 2�2
3 = 0� �4 �= 0��

U3 = �L��� ∈ SLb5 � �3 = 0� 	 �= 0��

U4 = �L��� ∈ SLb5 � �3 = 0� 	 = 0� �4 = 0��

U5 = �L��� ∈ SLb5 � �3 = 0� 	 = 0� �4 �= 0��

Proposition 5.7. Two algebras L��� and L��′� from U1 are isomorphic if and only if

	

�2
3

= 	′

�′2
3

�

Then orbits from the set U1 can be parameterized as L�1� 0� �� � ∈ �.

Proposition 5.8. Subsets U2, U3, U4, and U5 are single orbits with the representatives
L�1� 1� 2�, L�0� 0� 1�, L�0� 1� 0�, and L�0� 0� 0�, respectively.

Theorem 5.3. Let L be a non-Lie complex filiform Leibniz algebra in SLb5. Then it
is isomorphic to one of the following pairwise non-isomorphic Leibniz algebras:

1) L�0� 0� 0�:

Ls
5 = �e0e0 = e2� eie0 = ei+1� 2 ≤ i ≤ 3��

2) L�0� 1� 0�:

Ls
5� e0e1 = e4�

3) L�0� 0� 1�:

Ls
5� e1e1 = e4�

4) L�1� 1� 2�:

Ls
5� e0e1 = e3 + e4� e1e1 = 2e4� e2e1 = e4�

5) L�1� 0� ��:

Ls
5� e0e1 = e3� e1e1 = �e4� e2e1 = e4� � ∈ ��
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4728 RAKHIMOV AND BEKBAEV

5.2.2. Dimension 6. The set SLb6 can be represented as a disjoint union of
its subsets

SLb6 = U1

⋃
U2

⋃
U3

⋃
U4

⋃
U5

⋃
U6

⋃
U7

⋃
U8

⋃
U9�

where

U1 = �L��� ∈ SLb6 � �3 �= 0� 	 �= 0��

U2 = �L��� ∈ SLb6 � �3 �= 0� 	 = 0� � �= 0��

U3 = �L��� ∈ SLb6 � �3 �= 0� 	 = 0� � = 0��

U4 = �L��� ∈ SLb6 � �3 = 0� �4 �= 0� 	 �= 0��

U5 = �L��� ∈ SLb6 � �3 = 0� �4 �= 0� 	 = 0� �5 �= 0��

U6 = �L��� ∈ SLb6 � �3 = 0� �4 �= 0� 	 = 0� �5 = 0��

U7 = �L��� ∈ SLb6 � �3 = 0� �4 = 0� 	 �= 0��

U8 = �L��� ∈ SLb6 � �3 = 0� �4 = 0� 	 = 0� �5 �= 0��

U9 = �L��� ∈ SLb6 � �3 = 0� �4 = 0� 	 = 0� �5 = 0��

Proposition 5.9. Two algebras L��� and L��′� from U1 are isomorphic if and only if

2�3�4	+ �2
3�

	2
= 2�′

3�
′
4	

′ + �′2
3 �

′

	′2
�

Orbits in U1 can be parameterized as L�1� 0� �� 1�� � ∈ �.

Proposition 5.10. Algebras L�1� 0� 1� 0�, L�1� 0� 0� 0�, L�0� 1� 0� 1�, L�0� 1� 1� 0�,
L�0� 1� 0� 0�, L�0� 0� 0� 1�, L�0� 0� 1� 0�, and L�0� 0� 0� 0� are representatives of the
single orbits U2, U3, U4, U5, U6, U7, U8, and U9, respectively.

Theorem 5.4. Let L be a non-Lie complex filiform Leibniz algebra in SLb6. Then it
is isomorphic to one of the following pairwise non-isomorphic Leibniz algebras:

1) L�0� 0� 0� 0�:

Ls
6 = �e0e0 = e2� eie0 = ei+1� 2 ≤ i ≤ 4��

2) L�0� 0� 1� 0�:

Ls
6� e0e1 = e5�

3) L�0� 0� 0� 1�:

Ls
6� e1e1 = e5�
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ON ISOMORPHISMS AND INVARIANTS 4729

4) L�0� 1� 0� 0�:

Ls
6� e0e1 = e4� e2e1 = e5�

5) L�0� 1� 1� 0�:

Ls
6� e0e1 = e4 + e5� e2e1 = e5�

6) L�0� 1� 0� 1�:

Ls
6� e0e1 = e4� e1e1 = e5� e2e1 = e5�

7) L�1� 0� 0� 0�:

Ls
6� e0e1 = e3� e2e1 = e4� e3e1 = e5�

8) L�1� 0� 1� 0�:

Ls
6� e0e1 = e3 + e5� e2e1 = e4� e3e1 = e5�

9) L�1� 0� �� 1�:

Ls
6� e0e1 = e3 + �e5� e1e1 = e5� e2e1 = e4� e3e1 = e5� � ∈ ��

The Propositions 5.7, 5.9 are variation of the Theorem 4.3. Propositions 5.8
and 5.10 can be proven by precise indication of base change leading to the
representatives.

5.3. The Description of TLbn, n = 5�6

5.3.1. 5-Dimensional Case. By virtue of Proposition 4.1, we represent
TLb5 as follows:

TLb5 =





ei� e0� = ei+1� 1 ≤ i ≤ 3�


e0� ei� = −ei+1� 2 ≤ i ≤ 3�


e0� e0� = b0�0e4�


e0� e1� = −e2 + b0�1e4�


e1� e1� = b1�1e4�


e1� e2� = −
e2� e1� = b1�2e4�

b0�0� b0�1� b1�1� b1�2 ∈ ��

Here elements of TLb5 will be denoted by L��� = �b0�1� b0�1� b1�1� b1�2�.
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4730 RAKHIMOV AND BEKBAEV

Theorem 5.5 (Isomorphism Criterion for TLb5). Two algebras L��� and L��′� from
TLb5 are isomorphic if and only if there exist complex numbers A0� A1, and B1: A0 B1 �=
0, and the following conditions hold:

b′0�0 =
A2

0b0�0 + A1A0b0�1 + A2
1b1�1

A3
0B1

� (10)

b′0�1 =
A0b0�1 + 2A1b1�1

A3
0

� (11)

b′1�1 =
B1b1�1

A3
0

� (12)

b′1�2 =
B1b1�2

A2
0

� (13)

Proof. Part “If”. Let L1 and L2 from TLb5 be isomorphic: f � L1 � L2. We choose
the corresponding adapted bases �e0� e1� e2� e3� e4� and �e′0� e

′
1� e

′
2� e

′
3� e

′
4� in L1 and

L2, respectively. Then in these bases the algebras will be presented as L��� and L��′�.
According to Proposition 4.1 one has

e′0 = f�e0� = A0e0 + A1e1 + A2e2 + A3e3 + A4e4�
(14)

e′1 = f�e1� = B1e1 + B2e2 + B3e3 + B4e4�

Then we get

e′2 = f�e2� = 
f�e1�� f�e0�� = A0B1e2 + A0B2e3

+ (
A0B3 + A1B1b1�1 + �A2B1 − A1B2�b1�2

)
e4�

e′3 = f�e3� = 
f�e2�� f�e0�� = A2
0B1e3 + �A2

0B2 − A0A1B1b1�2�e4�

e′4 = f�e4� = 
f�e3�� f�e0�� = A3
0B1e4�

By using the table of multiplications, one finds the relation between the
coefficients b0�0� b0�1� b1�1� b1�2 and b′0�0� b

′
0�1� b

′
1�1� b

′
1�2. First consider the equality


f�e0�� f�e0�� = b′0�0f�e4�, we get Eq. (1) and from the equality 
f�e1�� f�e0��+

f�e0�� f�e1�� = b′0�1f�e4�, we have �2� and 
f�e1�� f�e1�� = b′1�1 f�e4� gives �3�. Finally
the equality �4� comes out from 
f�e1�� f�e2�� = b′1�2f�e4�.

“Only if” part.
Let Eqs. (1)–(4) hold. Then the base change (5) above is adapted, and it

transforms L��� into L��′�. Indeed,


e′0� e
′
0� =

[
4∑

i=0

Aiei�
4∑

i=0

Aiei

]

= A2
0
e0� e0�+ A0A1
e0� e1�+ A0A1
e1� e0�+ A2

1
e1� e1�

= (
A2

0b0�0 + A0A1b0�1 + A2
1b1�1

)
e4 = b′0�0A

3
0B1e4 = b′0�0e

′
4�
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e′0� e
′
1� =

[
4∑

i=0

Aiei�
4∑

i=1

Biei

]

= −�A0B1e2 + A0B2e3 + �A1B1b1�1 + A2B1b1�2 − A1B2b1�2 + A0B3�e4�

+ B1

(
B0�1A0 + 2A1B1�1

)
e4

= −e′2 + A3
0B1b

′
0�1e4 = −e′2 + b′0�1e

′
4�

Using the same manner, one can prove that 
e′1� e
′
1� = b′1�1e

′
4 and 
e′1� e

′
2� = b′1�2 e

′
n. �

Now we list all isomorphism classes of algebras from TLb5.
Represent TLb5 as a disjoint union of the following subsets:

U1 = �L��� ∈ TLb5 � b1�1 �= 0� b1�2 �= 0��

U2 = �L��� ∈ TLb5 � b1�1 �= 0� b1�2 = 0� � �= 0��

U3 = �L��� ∈ TLb5 � b1�1 �= 0� b1�2 = � = 0��

U4 = �L��� ∈ TLb5 � b1�1 = 0� b0�1 �= 0� b1�2 �= 0��

U5 = �L��� ∈ TLb5 � b1�1 = 0� b0�1 �= 0� b1�2 = 0��

U6 = �L��� ∈ TLb5 � b1�1 = b0�1 = 0� b0�0 �= 0� b1�2 �= 0��

U7 = �L��� ∈ TLb5 � b1�1 = b0�1 = 0� b0�0 �= 0� b1�2 = 0��

U8 = �L��� ∈ TLb5 � b1�1 = b0�1 = b0�0 = 0� b1�2 �= 0��

U9 = �L��� ∈ TLb5 � b1�1 = b0�1 = b0�0 = b1�2 = 0��

Proposition 5.11.

1. Two algebras L��� and L��′� from U1 are isomorphic if and only if
(

b′1�2
b′1�1

)4
�′ =(

b1�2
b1�1

)4
�.

2. For any � from �, there exists L��� ∈ U1 �
(

b1�2
b1�1

)4
� = �.

Proof. 1. “⇒”. Let L��� and L��′� be isomorphic. Then due to Theorem 3.1, it

is easy to see that
(

b′1�2
b′1�1

)4
�′ =

(
b1�2
b1�1

)4
�.

“⇐”. Let the equality
(

b′1�2
b′1�1

)4
�′ =

(
b1�2
b1�1

)4
� hold. Consider the base change

(5) above with A0 = b1�1
b1�2

, A1 = − b0�1
2b1�2

, and B1 = b21�1
b31�2

. This changing leads L���

into L

((
b1�2
b1�1

)4
�� 0� 1� 1

)
. An analogous base change transforms L��′� into

L

((
b′1�2
b′1�1

)4
�′� 0� 1� 1

)
.

Since
(

b′1�2
b′1�1

)4
�′ =

(
b1�2
b1�1

)4
� then L��� is isomorphic to L��′�.

2. Obvious. �
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4732 RAKHIMOV AND BEKBAEV

Proposition 5.12. The subsets U2� U3� U4� U5� U6� U7� U8, and U9 are single orbits
with the representatives L�1� 0� 1� 0�� L�0� 0� 1� 0�� L�0� 1� 0� 1�� L�0� 1� 0� 0�� L�1� 0�
0� 1�� L�1� 0� 0� 0�� L�0� 0� 0� 1�, and L�0� 0� 0� 0�, respectively.

Theorem 5.6. Let L ∈ TLb5. Then it is isomorphic to one of the following pairwise
non-isomorphic Leibniz algebras:

1) L �0� �� ��:

Lt
5 = �
ei� e0� = ei+1� 1 ≤ i ≤ 3� 
e0� ei� = −ei+1� 2 ≤ i ≤ 3��


e0� e0� = e4� 
e0� e1� = −e2� 
e1� e1� = �e4� 
e2� e1� = −
e1� e2� = �e4� � ∈ ��

2) L �0� 1� 0�:

Lt
5� 
e0� e0� = e4� 
e0� e1� = −e2� 
e1� e1� = e4�

3) L �1� 0� 1�:

Lt
5� 
e0� e1� = −e2 + e4� 
e0� e0� = e4� 
e2� e1� = 
e1� e2� = e4�

4) L �1� 0� 0�:

Lt
5� 
e0� e1� = −e2 + e4� 
e0� e0� = e4�

5) L �2� 1� 1�:

Lt
5� 
e0� e0�= e4� 
e0� e1�=−e2 + 4 e4� 
e1� e1�= 2 e4� 
e2� e1�=−
e1� e2�= e4�

6) L �2� 1� 0�:

Lt
5� 
e0� e0� = e4� 
e0� e1� = −e2 + 4 e4� 
e1� e1� = 2 e4�

7) L �0� 0� 1�:

Lt
5� 
e0� e0� = e4� 
e2� e1� = −
e1� e2� = e4� 
e0� e1� = −e2�

5.3.2. 6-Dimensional case. TLb6 can be represented by the following table
of multiplication:

TLb6 =





ei� e0� = ei+1� 1 ≤ i ≤ 4�


e0� ei� = −ei+1� 2 ≤ i ≤ 4�


e0� e0� = b0�0e5� 
e0� e1� = −e2 + b0�1e5� 
e1� e1� = b1�1e5�


e1� e2� = −
e2� e1� = b1�2e4 + b1�3e5�


e1� e3� = −
e3� e1� = b1�2e5�


e1� e4� = −
e4� e1� = −
e2� e3� = 
e3� e2� = −b2�3en�
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ON ISOMORPHISMS AND INVARIANTS 4733

Elements of TLb6 will be denoted here by L���, where � = �b0�1� b1�1� b1�2�
b1�3� b2�3�.

Theorem 5.7 (Isomorphism Criterion for TLb6). Two filiform Leibniz algebras
L��� and L��′� from TLb6 are isomorphic iff there exist A0� A1� B1� B2� B3 ∈ � such
that A0B1�A0 + A1 b2�3� �= 0, and the following equalities hold:

b′0�0 =
A2

0b0�0 + A0A1b0�1 + A2
1b1�1

A3
0B1�A0 + A1 b2�3�

�

b′0�1 =
A0b0�1 + 2A1b1�1

A3
0�A0 + A1 b2�3�

�

b′1�1 =
B1b1�1

A3
0�A0 + A1 b2�3�

�

b′1�2 =
B1 b1�2

A2
0

�

b′1�3 =
2A0A1B

2
1b

2
1�2 + A2

0B
2
1b1�3 +

(
A2

0

(−2B1B3 + B2
2

)+ A2
1B

2
1b

2
1�2

)
b2�3

A2
0B1

(
A0 + A1b2�3

) �

b′2�3 =
B1 b2�3

A0 + A1 b2�3
�

The proof is similar to that of Theorem 3.1.
Represent TLb6 as a union of the following subsets:

U1 = �L��� ∈ TLb6 � b2�3 �= 0� b1�1 �= 0��

U2 = �L��� ∈ TLb6 � b2�3 �= 0� b1�1 = 0� b0�1 �= 0��

U3 = �L��� ∈ TLb6 � b2�3 �= 0� b1�1 = b0�1 = 0� b1�2 �= 0� b0�0 �= 0��

U4 = �L��� ∈ TLb6 � b2�3 �= 0� b1�1 = b0�1 = 0� b1�2 �= 0� b0�0 = 0��

U5 = �L��� ∈ TLb6 � b2�3 �= 0� b1�1 = b0�1 = b1�2 = 0� b0�0 �= 0��

U6 = �L��� ∈ TLb6 � b2�3 �= 0� b1�1 = b0�1 = b1�2 = b0�0 = 0��

U7 = �L��� ∈ TLb6 � b2�3 = 0� b1�2 �= 0� b1�1 �= 0��

U8 = �L��� ∈ TLb6 � b2�3 = 0� b1�2 �= 0� b1�1 = 0� b0�1 �= 0��

U9 = �L��� ∈ TLb6 � b2�3 = 0� b1�2 �= 0� b1�1 = b0�1 = 0� b0�0 �= 0��

U10 = �L��� ∈ TLb6 � b2�3 = 0� b1�2 �= 0� b1�1 = b0�1 = b0�0 = 0��

U11 = �L��� ∈ TLb6 � b2�3 = b1�2 = 0� b1�1 �= 0� b1�3 �= 0��

U12 = �L��� ∈ TLb6 � b2�3 = b1�2 = 0� b1�1 �= 0� b1�3 = 0� � �= 0��

U13 = �L��� ∈ TLb6 � b2�3 = b1�2 = 0� b1�1 �= 0� b1�3 = � = 0��

U14 = �L��� ∈ TLb6 � b2�3 = b1�2 = b1�1 = 0� b0�1 �= 0� b1�3 �= 0��

U15 = �L��� ∈ TLb6 � b2�3 = b1�2 = b1�1 = 0� b0�1 �= 0� b1�3 = 0��
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4734 RAKHIMOV AND BEKBAEV

U16 = �L��� ∈ TLb6 � b2�3 = b1�2 = b1�1 = b0�1 = 0� b0�0 �= 0� b1�3 �= 0��

U17 = �L��� ∈ TLb6 � b2�3 = b1�2 = b1�1 = b0�1 = 0� b0�0 �= 0� b1�3 = 0��

U18 = �L��� ∈ TLb6 � b2�3 = b1�2 = b1�1 = b0�1 = b0�0 = 0� b1�3 �= 0��

U19 = �L��� ∈ TLb6 � b2�3 = b1�2 = b1�1 = b0�1 = b0�0 = b1�3 = 0��

Proposition 5.13.

1. Two algebras L��� and L��′� from U1 are isomorphic if and only if

(
b′2�3

2b′1�1 − b′0�1b
′
2�3

)2

�′ =
(

b2�3
2 b1�1 − b0�1b2�3

)2

��

and (
2b′1�1 − b′2�3b

′
0�1

)3
b′31�2

b′22�3b
′4
1�1

=
(
2b1�1 − b2�3b0�1

)3
b31�2

b22�3b
4
1�1

�

2. For any �1� �2 ∈ �, there exists L��� ∈ U1:

(
b2�3

2b1�1 − b0�1b2�3

)2

� = �1�

(
2b1�1 − b2�3b0�1

)3
b31�2

b22�3b
4
1�1

= �2�

Then orbits from the set U1 can be parameterized as L ��1� 0� 1� �2� 0� 1�,
�1� �2 ∈�.

Proposition 5.14.

1. Two algebras L��� and L��′� from U2 are isomorphic if and only if

(
b′0�1 − b′2�3b

′
0�0

)4
b′31�2

b′32�3b′
5
0�1

=
(
b0�1 − b2�3b0�0

)4
b31�2

b32�3b
5
0�1

�

2. For any � ∈ �, there exists L��� ∈ U2:
�b0�1−b2�3b0�0�

4
b31�2

b32�3b
5
0�1

= �.

Therefore, orbits from U2 can be parameterized as L �0� 1� 0� �� 0� 1�, � ∈ �.

Proposition 5.15.

1. Two algebras L��� and L��′� from U7 are isomorphic if and only if

4 b′0�0b
′4
1�2 − 2 b′1�3b

′
0�1b

′2
1�2 + b′21�3b

′
1�1

b′1�2b
′2
1�1

= 4 b0�0b
4
1�2 − 2 b1�3b0�1b

2
1�2 + b21�3b1�1

b1�2b
2
1�1

and (
b′0�1b

′2
1�2 − b′1�3b

′
1�1

)2
b′1�2b

′3
1�1

=
(
b0�1b

2
1�2 − b1�3b1�1

)2
b1�2b

3
1�1

�
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ON ISOMORPHISMS AND INVARIANTS 4735

2. For any �1� �2 ∈ �, there exists L��� ∈ U7:

4 b0�0b
4
1�2 − 2 b1�3b0�1b

2
1�2 + b21�3b1�1

b1�2b
2
1�1

= �1�

(
b0�1b

2
1�2 − b1�3b1�1

)2
b1�2b

3
1�1

= �2�

Orbits from U7 can be parameterized as L ��1� �2� 1� 1� 0� 0�, �1� �2 ∈ �.

Proposition 5.16.

1. Two algebras L��� and L��′� from U8 are isomorphic if and only if

(
2 b′0�0b

′2
1�2 − b′1�3b

′
0�1

)3
b′31�2b

′4
0�1

=
(
2 b0�0b

2
1�2 − b1�3b0�1

)3
b31�2b

4
0�1

�

2. For any � ∈ �, there exists L��� ∈ U8:(
2 b0�0b

2
1�2 − b1�3b0�1

)3
b31�2b

4
0�1

= ��

The orbits from the set U8 can be parameterized as L ��� 1� 0� 1� 0� 0�, � ∈ �.

Proposition 5.17.

1. Two algebras L��� and L��′� from U11 are isomorphic if and only if

(
b′1�3
b′1�1

)6

�′ =
(
b1�3
b1�1

)6

��

2. For any � ∈ �, there exists L��� ∈ U11:(
b1�3
b1�1

)6

� = ��

The orbits from U11 can be parameterized as L ��� 0� 1� 0� 1� 0� � � ∈ �.

Proposition 5.18. The subsets U3� U4� U5� U6� U9� U10� U12� U13� U14� U15� U16� U18,
and U19 are single orbits with the representatives L�1� 0� 0� 1� 0� 1�� L�0� 0� 0� 1� 0� 1��
L�1� 0� 0� 0� 0� 1�� L�0� 0� 0� 0� 0� 1�� L�1� 0� 0� 1� 0� 0�� L�0� 0� 0� 1� 0� 0�� L�1� 0� 1� 0�
0� 0�� L�0� 0� 1� 0� 0� 0�� L�0� 1� 0� 0� 1� 0�� L�0� 1� 0� 0� 0� 0�� L�1� 0� 0� 0� 1� 0�� L�1� 0�
0� 0� 0� 0�� L�0� 0� 0� 0� 1� 0�, and L�0� 0� 0� 0� 0� 0�, respectively.

Theorem 5.8. Let L be a complex filiform Leibniz algebra in TLb6. Then it is
isomorphic to one of the following pairwise non-isomorphic Leibniz algebras:

1) L �0� �1� �2� �1�:

Lt
6 = �
ei� e0� = ei+1� 1 ≤ i ≤ 4� 
e0� ei� = −ei+1� 2 ≤ i ≤ 4��
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4736 RAKHIMOV AND BEKBAEV


e0� e0� = e5� 
e0� e1� = −e2� 
e1� e1� = �1e5� 
e2� e1� = − 
e1� e2�

= �2e4 + �1e5� 
e3� e1� = − 
e1� e3� = �2e5� �1� �2 ∈ �� �1 �= 0�

2) L �0� �� �� 0�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2� 
e2� e1� = − 
e1� e2� = �e4�


e1� e1� = 
e3� e1� = − 
e1� e3� = �e5� � ∈ ��

3) L �0� 1� 0� 0�:

Lt
6� 
e0� e0� = 
e1� e1� = e5� 
e0� e1� = −e2�

4) L ��� 0� �� 0�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + �e5� 
e2� e1� = − 
e1� e2� = �e4�


e3� e1� = − 
e1� e3� = �e5� � ∈ �∗�

5) L �1� 0� 1�−2�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + e5� 
e2� e1� = − 
e1� e2� = e4 − 2e5�


e3� e1� = − 
e1� e3� = e5�

6) L �1� 0� 0� 1�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + e5� 
e2� e1� = − 
e1� e2� = e5�

7) L �1� 0� 0� 0�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + e5�

8) L
(
�� �2� �� 0

)
:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + �e5� 
e1� e1� = �2e5�


e2� e1� = − 
e1� e2� = �e4� 
e3� e1� = − 
e1� e3� = �e5� � ∈ �∗�

9) L �4� 4� 0� 1�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + 4e5� 
e1� e1� = 4e5� 
e2� e1�

= − 
e1� e2� = e5�

10) L �4� 4� 0� 0�:

Lt
6� 
e0� e0� = e5� 
e0� e1� = −e2 + 4e5� 
e1� e1� = 4e5�
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11) L �0� 0� 1� 0�:

Lt
6� 
e0� e0�= 
e3� e1�=− 
e1� e3�=e5� 
e0� e1�=−e2� 
e2� e1�=− 
e1� e2�=e4�

12) L �0� 0� 0� 1�:

Lt
6� 
e0� e0� = 
e2� e1� = − 
e1� e2� = e5� 
e0� e1� = −e2�

As we have mentioned before the class TLbn contains n-dimensional
filiform Lie algebras. The sets U8� U9 in the 5-dimensional case and the sets
U4� U6� U10� U18� U19 in the 6-dimensional case represent Lie cases. Our classification
here agreed with the classification of 5- and 6-dimensional filiform Lie algebras in
Gómez et al. [9].

CONCLUSION

The methods and algorithms of this article are applicable to any fixed
dimensional case. They have been implemented in dimensions at most 9, and
complete lists of all isomorphism types of algebras from Lbn (n = 5� 6� 7� 8� 9) are
obtained.
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