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In this paper we describe the isomorphism classes of finite-

dimensional complex Leibniz algebras whose quotient algebra with

respect to the ideal generated by squares is isomorphic to the di-

rect sum of three-dimensional simple Lie algebra sl2 and a three-

dimensional solvable ideal. We choose a basis of the isomorphism

classes’ representatives and give explicit multiplication tables.
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1. Introduction

Leibniz algebra is a generalization of Lie algebra. Leibniz algebras have been first introduced by

Loday in [5] as a non-antisymmetric version of Lie algebras.

The classification problem of finite-dimensional Lie algebras is fundamental and a very difficult

problem. It is split into three parts: (1) classification of nilpotent Lie algebras; (2) description of solv-

able Lie algebras with given nilradical; (3) description of Lie algebras with given radical. The third
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problem has been reduced to the description of semisimple subalgebras in the algebra of derivations

of a given solvable algebra [6]. The classification of semisimple Lie algebras has been known ever since

the works of Cartan and Killing. According to the Cartan–Killing theory the semisimple Lie algebras

can be represented as a direct sum of the classical simple Lie algebras from series An(n � 1), Bn(n �
2), Cn(n � 3), Dn(n � 4) and five exceptional simple Lie algebras G2, F4, E6, E7, E8. The second

problem has been reduced to the description of orbits of certain unipotent linear groups [7]. The first

problem is most complicated. There a marked difference is noted between the structural theory of

semisimple Lie algebras and the structural theory of solvable or nilpotent Lie algebras. Just recall that

the classification of all complex Lie algebras is obtained in dimensionup to 6, andnilpotent complex Lie

algebras are classified only in dimension up to 7. Inmore higher dimensions there are only partial clas-

sifications as subclasses of nilpotent Lie algebras. It seems the same scheme as above occurs in Leibniz

algebras case as well. The counterpart of the problem (1) has been studied in [1,8,10–15] and others.

The problem (2) for Leibniz algebras is still remaining untouched. This paper presents a progressmade

in theproblem(3). It dealswith thedescriptionof someclassesof semisimple complexLeibniz algebras.

All algebras considered are supposed to be over the field of complex numbers C.

2. Preliminaries

This section contains necessary definitions and preliminary results.

Definition 1. An algebra L is called Leibniz algebra if for any x, y, z ∈ L the so-called Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]
holds true.

Every Lie algebra is a Leibniz algebra, but the bracket in a Leibniz algebra need not be skew-

symmetric.

Let L be a Leibniz algebra and I = 〈[x, x] | x ∈ L〉 be the ideal of L generated by all squares. Then I

is the minimal ideal with respect to the property that G := L/I is a Lie algebra. The quotient mapping

π : L −→ G is a homomorphism of Leibniz algebras.

The definition of simplicity for Leibniz algebras has been suggested by Dzhumadil’daev in [3] as

algebra L having the only ideals {0}, I and L. However, in order to eschew the solvability of L, the

reasonable definition of the simplicity must be as follows.

Definition 2. Leibniz algebra L (with [L, L] �= I) is said to be simple if the only ideals of L are {0}, I

and L.

Obviously, in the casewhen the Leibniz algebra L is Lie, the ideal I is trivial and this definition agrees

with the classical definition of simple Lie algebra.

There were two papers so far dealing with the classification of Leibniz algebras with the quotient

algebra L/I to be a Lie algebra. In the first case in [9] the quotient algebra L/I was supposed to be

isomorphic to sl2 and in the second paper [2] the authors considered the case when L/I is isomorphic

to the direct sum of sl2 and a two-dimensional solvable Lie algebra.

We shall make use the result of [9], where simple Leibniz algebras with the quotient Lie algebra L/I
isomorphic to the classic three dimensional simple algebra sl2 have been classified. It is well-known

that the algebra sl2 has a basis {e, f , h} with the multiplication table

[e, h] = 2e, [f , h] = −2f , [e, f ] = h,

[h, e] = −2e, [h, f ] = 2f , [f , e] = −h.

Here is the result of [9] which we make use in the paper.
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Theorem3. Let L be a complex (m+4)-dimensional simple Leibniz algebra and let I be the ideal generated

by squares in L. Assume that the quotient L/I is isomorphic to the simple Lie algebra sl2. Then there exist

a basis {e, f , h, x0, x1, . . . , xm} of L such that non-zero products of basis vectors in L are represented as

follows:

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m.

We remind that in the paper we study Leibniz algebras L with the condition L/I ∼= sl2 ⊕ R, where

R is a three dimensional solvable Lie algebra. Here we suppose that the ideal I is an irreducible sl2-

module. The case when R is a two dimensional solvable Lie algebra has been given in [2]. It is clear that

this is the most reasonable way to get examples of semisimple Leibniz algebras.

To make the combination sl2 ⊕ R we need the classification of three-dimensional solvable Lie

algebras. Such a classification can be found in [4] and it is as follows.

Theorem 4. Let R be a three dimensional solvable non-split Lie algebra. Then R is isomorphic to one of the

following pairwise non-isomorphic Lie algebras

R1 : [u,w] = u, [v,w] = αv, α �= 0,

R2 : [u,w] = u + v, [v,w] = v.

Remark 5. It is observed that two algebras from the class R1 with parameters α and α′ are not

isomorphic unless αα′ = 1.

Let L be a Leibniz algebra with condition L/I ∼= sl2 ⊕ R. Then without losing generality we may

assume that the vector space L = sl2 + I + R has a basis

{e, h, f , x0, x1, . . . , xm, y1, y2, . . . , yn},
where {e, h, f } is basis in sl2, {x0, x1, . . . , xm} is basis in I and {y1, y2, . . . , yn} is basis in R. In fact,

if L = sl2 + I + R then L/I ∼= sl2 ⊕ R. Further, L/I ∼= sl2 ⊕ R stands for L/I ∼= sl2 ⊕ R. As I

being an irreducible module according to Theorem 3 the products of the basis vectors {e, h, f } and

{x0, x1, . . . , xm} are represented as follows

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m.

As for the composition laws for the other basis vectors, introducing notations aukl, αpr, βst and γqv

for the structure constants, we write them as follows

[e, h] = 2e + m∑
j=0

a
j
ehxj, [h, f ] = 2f + m∑

j=0

a
j
hf xj, [e, f ] = h + m∑

j=0

a
j
ef xj,

[h, e] = −2e + m∑
j=0

a
j
hexj, [f , h] = −2f + m∑

j=0

a
j
fhxj, [f , e] = −h + m∑

j=0

a
j
fexj,

[e, yi] = m∑
j=0

αijxj, [f , yi] = m∑
j=0

βijxj, [h, yi] = m∑
j=0

γijxj
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However, it is not difficult to see that,with a slight correction of the basis, the table ofmultiplication

for the basis vectors {e, h, f } can be written as follows (for the details we refer to [9]):

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h.

3. Main result

This section is devoted to the description of complex finite dimensional Leibniz algebras whose

corresponding Lie algebra is isomorphic to sl2 ⊕R,where R is a three dimensional solvable Lie algebra.

Due to Theorem 4 the solvable part R can be taken from the list given there. An observation shows that

one has to consider two alternative cases: dimI �= 3 and dimI = 3.

3.1. Case: dimI �= 3.

If dimI �= 3, then one has the following result.

Lemma 6. Let L be a Leibniz algebra corresponding to L/I ∼= sl2 ⊕ R, where R is the solvable ideal and I

generated by squares as an irreducible sl2-module then

[sl2, R] = 0.

Proof. It is clear that it is sufficient to prove the statement for the basis vectors

{e, f , h} ∈ sl2 and {y1, y2, . . . , yn} ∈ R.

Let us consider the Leibniz identity for the triplet {e, e, yi}. Then we get

[e, [e, yi]] = [[e, e], yi] − [[e, yi], e] = −[[e, yi], e] = −
m∑
j=0

αij[xj, e]

= −
m∑
j=1

(−mj + j(j − 1))αijxj−1.

Since [e, [e, yi]] = [e, m∑
j=0

αijxj] = 0, we have αij = 0 for 1 � j � m and hence, [e, yi] = αi0x0.

Analogously, considering

0 =
⎡
⎣e,

m∑
j=0

βijxj

⎤
⎦ =[e, [f , yi]]=[[e, f ], yi]−[[e, yi], f ] = [h, yi]−αi0[x0, f ] = [h, yi]−αi0x1,

we obtain [h, yi] = αi0x1.
The equality

0 = [e, [h, yi]] = [[e, h], yi] − [[e, yi], h] = 2[e, yi] − αi0[x0, h] = 2αi0x0 − mαi0x0

= αi0(2 − m)x0,

yields αi0 = 0 for m �= 2. Therefore, [e, yi] = [h, yi] = 0.
Consider the identity

0 = [f , [e, yi]] = [[f , e], yi] − [[f , yi], e] = −[h, yi] − [[f , yi], e] = −[[f , yi], e]



I.S. Rakhimov et al. / Linear Algebra and its Applications 437 (2012) 2209–2227 2213

= −
m∑
j=0

βij[xj, e] = −
m∑
j=1

(−mj + j(j − 1))βijxj−1.

This implies βij = 0 for 1 � j � m, as a result we get [f , yi] = βi0x0.

From the identity

0 = [f , [f , yi]] = [[f , f ], yi] − [[f , yi], f ] = −[[f , yi], f ] = −βi0[x0, f ] = −βi0x1,

we obtain [f , yi] = 0. Therefore, [e, yi] = [f , yi] = [h, yi] = 0. �

The followingpropositiondescribes Leibniz algebra structures onvector space Lwith the conditions

L/I ∼= sl2 ⊕ R and R ∼= R1.

Proposition 7. There exist a basis {e, h, f , x0, x1, . . . , xm, u, v,w} in L such that the non-zero Leibniz

brackets on L are given as follows

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m,

[w, e] = m∑
j=0

a
j
wexj, [w, f ] = m∑

j=0

a
j
wf xj, [w, h] = m∑

j=0

a
j
whxj,

[u,w] = u, [w, u] = −u, [v,w] = αv,

[w, v] = −αv, [w,w] = m∑
j=0

a
j
wxj, [xi,w] = axi, 0 � i � m.

where m = dimI − 1 and the omitted products are zero.

Proof. As it was mentioned above the products in the subspaces [sl2, sl2] and [I, sl2] have the form as

the table of multiplications in Theorem 3. In addition, for the cases [R, sl2], [I, R] and [R, R] we put

[u, e] = m∑
j=0

a
j
uexj, [v, e] = m∑

j=0

a
j
vexj, [w, e] = m∑

j=0

a
j
wexj,

[u, f ] = m∑
j=0

a
j
uf xj, [v, f ] = m∑

j=0

a
j
vf xj, [w, f ] = m∑

j=0

a
j
wf xj,

[u, h] = m∑
j=0

a
j
uhxj, [v, h] = m∑

j=0

a
j
vhxj, [w, h] = m∑

j=0

a
j
whxj,

[xi, u] = m∑
j=0

a
j
uixj, [xi, v] = m∑

j=0

a
j
vixj, [xi,w] = m∑

j=0

a
j
wixj,

[u, u] = m∑
j=0

a
j
uxj, [u, v] = m∑

j=0

a
j
uvxj, [u,w] = u + m∑

j=0

a
j
uwxj,

[v, u] = m∑
j=0

a
j
vuxj, [v, v] = m∑

j=0

a
j
vxj, [v,w] = αv + m∑

j=0

a
j
vwxj,

[w, u] = −u + m∑
j=0

a
j
wuxj, [w, v] = −αv + m∑

j=0

a
j
wvxj, [w,w] = m∑

j=0

a
j
wxj.

Taking the following change of basis

u′ = u −
m∑
j=0

ajwuxj, v′ = αv −
m∑
j=0

ajwvxj,
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we obtain

[u,w] = u +
m∑
j=0

ajuwxj, [w, u] = −u,

[v,w] = αv +
m∑
j=0

ajvwxj, [w, v] = −αv.

Consider the following equalities

[xi, [h, u]] = [[xi, h], u] − [[xi, u], h] = (m − 2i)[xi, u] −
m∑

k=0

akui[xk, h]

= (m − 2i)
m∑

k=0

akuixk −
m∑

k=0

akui(m − 2k)xk =
m∑

k=0

akui(m − 2i − (m − 2k))xk

=
m∑

k=0

2akui(k − i)xk.

On the other hand, due to Lemma 6 we get [xi, [h, u]] = 0. So, akui = 0 for i �= k, which implies

[xi, u] = aiuixi. In order to simplify the notation we shall write aui instead of aiui. By using the similar

relations as above for [xi, [h, v]] and [xi, [h,w]] we get

[xi, v] = avixi, [xi,w] = awixi.

In virtue of the identity

[xi, [u,w]] = [[xi, u],w] − [[xi,w], u] = [auixi,w] − [awixi, u] = auiawixi − awiauixi = 0,

bearing in mind

[xi, [u,w]] =
⎡
⎣xi, u +

m∑
k=0

akuwxk

⎤
⎦ = [xi, u],

we obtain [xi, u] = 0.
By applying the similar identity as above for [xi, [v,w]] we get [xi, v] = 0.
The identity

0 = [xi, [w, e]] = [[xi,w], e] − [[xi, e],w] = awi[xi, e] − (−mi + i(i − 1))[xi−1,w]
= awi(−mi + i(i − 1))xi−1 − aw,i−1(−mi + i(i − 1))xi−1

= (−mi + i(i − 1))(awi − aw,i−1)xi−1,

implies awi = aw,i−1 = a, that is [xi,w] = axi, where 0 � i � m. Therefore, we obtain the only

non-zero products [xi,w] = axi for [I, R].
Let us now treat [R, R]. Consider the identity

[[u, u], f ] = [u, [u, f ]] + [[u, f ], u] =
⎡
⎣u,

m∑
j=0

a
j
uf xj

⎤
⎦ +

⎡
⎣ m∑
j=0

a
j
uf xj, u

⎤
⎦ = 0.

Due to

[[u, u], f ] =
m∑
j=0

aju[xj, f ] =
m−1∑
j=0

ajuxj+1,

along with a
j
u = 0 for j �= m we get [u, u] = amu xm.
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Therefore, with regard for the identity

0 = [u, [u, h]] + [[u, h], u] = [[u, u], h] = amu [xm, h] = −mamu xm,

we obtain [u, u] = 0.
Analogously, by using the Leibniz identity for [[v, v], f ] and [[v, v], h] as above it is easy to see that

[v, v] = 0.
Further, due to the identity

0 = [v, [u, f ]] + [[v, f ], u] = [[v, u], f ] =
m∑
j=0

ajvu[xj, f ] =
m−1∑
j=0

ajvuxj+1,

we get a
j
vu = 0 for j �= m, which gives [v, u] = amvuxm.

The identity

0 = [v, [u, h]] + [[v, h], u] = [[v, u], h] = amvu[xm, h] = −mamvuxm,

gives [v, u] = 0.
Applying again the Leibniz identity to [[u, v], f ] and [[u, v], h] it is easy to see that [u, v] = 0.
It is observed that, from the chain of the following equalities

0 = [w, [u, e]] + [[w, e], u] = [[w, u], e] = −[u, e],
0 = [w, [u, f ]] + [[w, f ], u] = [[w, u], f ] = −[u, f ],
0 = [w, [u, h]] + [[w, h], u] = [[w, u], h] = −[u, h],
0 = [w, [v, e]] + [[w, e], v] = [[w, v], e] = −α[v, e],
0 = [w, [v, f ]] + [[w, f ], v] = [[w, v], f ] = −α[v, f ],
0 = [w, [v, h]] + [[w, h], v] = [[w, v], h] = −α[v, h],

we obtain [R, sl2], as:
[u, e] = [u, f ] = [u, h] = [v, e] = [v, f ] = [v, h] = 0,

[w, e] =
m∑
j=0

ajwexj, [w, f ] =
m∑
j=0

a
j
wf xj, [w, h] =

m∑
j=0

a
j
whxj,

To finish the proof of the proposition it is sufficient to derive the products

[u,w] = u, [w, u] = −u, [v,w] = αv,

[w, v] = −αv, [w,w] = m∑
j=0

a
j
wxj.

Owing to the identity

0 = [u, [w, f ]] + [[u, f ],w] = [[u,w], f ] = [u, f ] +
m∑
j=0

ajuw[xj, f ] =
m−1∑
j=0

ajuwxj+1,

we get a
j
uw = 0 for j �= m and this implies that [u,w] = u + amuwxm.

The identity

0 = [u, [w, h]] + [[u, h],w] = [[u,w], h] = [u + amuwxm, h] = −mamuwxm,

gives [u,w] = u.
Analogously, from [[v,w], f ] and [[v,w], h] one gets [v,w] = αv. �
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Let now R be isomorphic to R2. Then one has

Proposition 8. Let R be isomorphic to R2 and dimI �= 3, then there exists a basis {e, h, f , x0, x1, . . . ,
xm, u, v,w} of the vector space L such that the Leibniz algebra structure on L is defined as follows

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m,

[w, e] = m∑
j=0

a
j
wexj, [w, f ] = m∑

j=0

a
j
wf xj, [w, h] = m∑

j=0

a
j
whxj,

[u,w] = u + v, [w, u] = −u − v, [v,w] = v,

[w, v] = −v, [w,w] = m∑
j=0

a
j
wxj, [xi,w] = axi, 0 � i � m.

where m = dimI − 1 and the omitted products are zero.

Proof. The compositions [sl2, sl2] and [I, sl2] are obtained similarly to that of Proposition 7 and

Theorem 3, respectively. To describe [R, sl2], [I, R] and [R, R] we suppose that

[u, e] = m∑
j=0

a
j
uexj, [v, e] = m∑

j=0

a
j
vexj, [w, e] = m∑

j=0

a
j
wexj,

[u, f ] = m∑
j=0

a
j
uf xj, [v, f ] = m∑

j=0

a
j
vf xj, [w, f ] = m∑

j=0

a
j
wf xj,

[u, h] = m∑
j=0

a
j
uhxj, [v, h] = m∑

j=0

a
j
vhxj, [w, h] = m∑

j=0

a
j
whxj,

[xi, u] = m∑
j=0

a
j
uixj, [xi, v] = m∑

j=0

a
j
vixj, [xi,w] = m∑

j=0

a
j
wixj,

[u, u] = m∑
j=0

a
j
uxj, [u, v] = m∑

j=0

a
j
uvxj, [u,w] = u + v + m∑

j=0

a
j
uwxj,

[v, u] = m∑
j=0

a
j
vuxj, [v, v] = m∑

j=0

a
j
vxj, [v,w] = v + m∑

j=0

a
j
vwxj,

[w, u] = −u − v + m∑
j=0

a
j
wuxj, [w, v] = −v + m∑

j=0

a
j
wvxj, [w,w] = m∑

j=0

a
j
wxj.

Taking the change of basis

u′ = u −
m∑
j=0

ajwuxj +
m∑
j=0

ajwvxj, v′ = v −
m∑
j=0

ajwvxj,

we derive

[w, u] = −u − v, [w, v] = −v.

Analogously to the proof of Proposition 7 applying the Leibniz identity to [xi, [h, u]], [xi, [h, v]]
and [xi, [h,w]] we get

[xi, u] = auixi, [xi, v] = avixi, [xi,w] = awixi.
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Due to the identities

[xi, [v,w]] = [[xi, v],w] − [[xi,w], v] = avi[xi,w] − awi[xi, v] = aviawixi − awiavixi = 0,

[xi, [v,w]] =
⎡
⎣xi, v +

m∑
j=0

ajuwxj

⎤
⎦ ,

we obtain [xi, v] = 0.
Consider the identity

[xi, [u,w]] = [[xi, u],w] − [[xi,w], u] = [auixi,w] − [awixi, u] = auiawixi − awiauixi = 0.

By virtue of the relation

[xi, [u,w]] =
⎡
⎣xi, u + v +

m∑
k=0

akuwxk

⎤
⎦ = [xi, u],

we obtain [xi, u] = 0.
In such a way as in the proof of Proposition 7 considering the Leibniz identity for [xi, [w, e]],

[u, [u, f ]], [u, [u, h]], [v, [v, f ]], [v, [v, h]], [u, [v, f ]], [u, [v, h]], [v, [u, f ]], [v, [u, h]] we have

[xi,w] = axi, [u, u] = 0, [v, v] = 0, [v, u] = 0, [u, v] = 0.

Applying the Leibniz identity for

[[w, u], e], [[w, u], f ], [[w, u], h], [[w, v], e], [[w, v], f ], [[w, v], h],
we obtain

[u, e] = [u, f ] = [u, h] = [v, e] = [v, f ] = [v, h] = 0,

[w, e] =
m∑
j=0

ajwexj, [w, f ] =
m∑
j=0

a
j
wf xj, [w, h] =

m∑
j=0

a
j
whxj,

To end the proof of the proposition it is required to derive the following products

[u,w] = u + v, [w, u] = −u − v, [v,w] = v,

[w, v] = −v, [w,w] = m∑
j=0

a
j
wxj.

From the identity

0 = [u, [w, f ]] + [[u, f ],w] = [[u,w], f ] = [u + v, f ] +
m∑
j=0

ajuw[xk, f ] =
m−1∑
j=0

ajuwxj+1,

we have a
j
uw = 0 for j �= m and so [u,w] = u + v + amuwxm.

The identity

0 = [u, [w, h]] + [[u, h],w] = [[u,w], h] = [u + v + amuwxm, h] = −mamuwxm,

gives [u,w] = u + v.

Analogously from [[v,w], f ] and [[v,w], h] we can get [v,w] = −v. �

The following theoremdescribes the Leibniz algebras Lwhose quotient L/I is isomorphic to sl2⊕R,
where R is a three dimensional solvable Lie algebra and dimI �= 3.
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Theorem 9. Let L/I ∼= sl2 ⊕ R, dimR = 3 and dimI �= 3. Then L is isomorphic to one of the following

pairwise non-isomorphic algebras:

L1(α, a) : [e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m,

[u,w] = u, [w, u] = −u, [v,w] = αv,

[w, v] = −αv, [xi,w] = axi, 0 � i � m.

L2(a) : [e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m,

[u,w] = u + v, [w, u] = −u − v, [v,w] = v,

[w, v] = −v, [xi,w] = axi, 0 � i � m.

where m = dimI − 1 and the omitted products are zero.

Proof. Let L be an algebra satisfying the conditions of the theorem. According to Propositions 7 and 8

there are two classes such of algebras.

Case 1. Let R be isomorphic to R1, then there exists a basis {e, h, f , x0, x1, . . . , xm, u, v,w} of L such

that the table of multiplications has the form:

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 0 � k � m,

[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m,

[w, e] = m∑
j=0

a
j
wexj, [w, f ] = m∑

j=0

a
j
wf xj, [w, h] = m∑

j=0

a
j
whxj,

[u,w] = u, [w, u] = −u, [v,w] = αv,

[w, v] = −αv, [w,w] = m∑
j=0

a
j
wxj, [xi,w] = axi, 0 � i � m.

where the omitted products are zero.

It is needed to show that [w, e] = [w, f ] = [w, h] = [w,w] = 0.

Let a �= 0, then taking the change of basis, w′ = w − m∑
j=0

a
j
w

a
xj it is not difficult to see that

[w′,w′] = 0.
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By means of the identity

0 = [w, [w, h]] = [[w,w], h]−[[w, h],w] = −[[w, h],w]=−
m∑
j=0

a
j
wh[xj,w] =−

m∑
j=0

a
j
whaxj,

we have a
j
wh = 0 for 0 � j � m.

Analogously from the identities

0 = [w, [w, f ]] = [[w,w], f ] − [[w, f ],w] = −
m∑
j=0

a
j
wf [xj,w] = −

m∑
j=0

a
j
wf axj,

0 = [w, [w, e]] = [[w,w], e] − [[w, e],w] = −
m∑
j=0

ajwe[xj,w] = −
m∑
j=0

ajweaxj,

we obtain a
j
wf = 0 and a

j
we = 0 for 0 � j � m.

Therefore we get the restrictions

[w, e] = [w, f ] = [w, h] = [w,w] = 0 for a �= 0.

Let a = 0. Then from the identity

[w, [w, f ]] = [[w,w], f ] − [[w, f ],w],
we have

0 =
m∑
j=0

ajw[xj, f ] =
m−1∑
j=0

ajwxj+1,

which implies a
j
w = 0, 0 � j � m − 1. Hence [w,w] = amwxm.

In accordance with the identity

0 = [w, [w, h]] = [[w,w], h] − [[w, h],w] = amw[xm, h] = −mamwxm,

we obtain amw = 0, which implies [w,w] = 0.

Applying the change of basis

w′ = w −
m∑
j=1

a
j−1
we

−mj + j(j − 1)
xj,

we obtain

[w′, e] = [w, e] −
m∑
j=1

a
j−1
we

−mj + j(j − 1)
[xj, e]

= [w, e] −
m∑
j=1

a
j−1
we

−mj + j(j − 1)
(−mj + j(j − 1))xj−1

=
m∑
j=0

ajwexj −
m∑
j=1

aj−1
we xj−1 =

m∑
j=0

ajwexj −
m−1∑
j=0

ajwexj = amwexm.

So, we can suppose that

[w, e] = amwexm, [w, h] =
m∑
j=0

a
j
whxj, [w, f ] =

m∑
j=0

a
j
wf xj.
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Considering the identity

[w, [e, h]] = [[w, e], h] − [[w, h], e] = amwe[xm, h] −
m∑
j=0

a
j
wh[xj, e]

= −mamwexm −
m∑
j=1

a
j
wh(−mj + j(j − 1))xj−1

and taking into account [w, [e, h]] = 2[w, e] = 2amwexm, we find amwe = 0 and a
j
wh = 0, for j �= 0.

Hence, [w, e] = 0, [w, f ] = m∑
j=0

a
j
wf xj , [w, h] = a0whx0.

The identity

[w, [e, f ]] = [[w, e], f ] − [[w, f ], e] = −
m∑
j=0

a
j
wf [xj, e] = −

m∑
j=1

a
j
wf (−mj + j(j − 1))xj−1

= ma1wf x0 −
m∑
j=2

a
j
wf (−mj + j(j − 1))xj−1,

along with [w, [e, f ]] = [w, h] = a0whx0 gives a0wh = ma1wf and a
j
wf = 0 where j � 2. Therefore,

[w, f ] = a0wf x0 + a1wf x1.

The identity

−2[w, f ] = [w, [f , h]] = [[w, f ], h] − [[w, h], f ] = [a0wf x0 + a1wf x1, h] − ma1wf [x0, f ],
implies

−2a0wf x0 − 2a1wf x1 = ma0wf x0 + a1wf (m − 2)x1 − ma1wf x1,

(m + 2)a0wf x0 = 0 ⇒ a0wf = 0.

Hence, [w, f ] = a1wf x1 and [w, h] = ma1wf x0.

It is not difficult to see that applying the change of basis

w′ = w − a1wf x0,

we get

[w′, f ] = [w, f ] − a1wf [x0, f ] = a1wf x1 − a1wf x1 = 0,

[w′, h] = [w, h] − a1wf [x0, h] = ma1wf x0 − ma1wf x0 = 0.

Hence,

[w, e] = [w, f ] = [w, h] = [w,w] = 0.

Case 2. Let R be isomorphic to R2, then according to Proposition 8 there exists a basis {e, h, f , x0, x1,
. . . , xm, u, v,w} in L with the following table of multiplications

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[xk, h] = (m − 2k)xk, 1 � k � m,
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[xk, f ] = xk+1, 0 � k � m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 � k � m,

[w, e] = m∑
j=0

a
j
wexj, [w, f ] = m∑

j=0

a
j
wf xj, [w, h] = m∑

j=0

a
j
whxj

[u,w] = u + v, [w, u] = −u − v, [v,w] = v,

[w, v] = −v, [w,w] = m∑
j=0

a
j
wxj, [xi,w] = axi, 0 � i � m.

where the omitted products are zero.

The details are similar to that of Case 1. As a result we get the class L2. It is easy to see that for the

different values of the parameter a one gets non-isomorphic to each other algebras. �

Remark 10. Two algebras from the class L1 with parameters α and α′ are not isomorphic unless

αα′ = 1.

3.2. Case: dimI = 3.

Let L/I ∼= sl2 ⊕ R, where dimR = 3 and dimI = 3.

Again we distinguish two cases:

Let first R be isomorphic to R1. Considering the Leibniz identity we obtain the following table of

multiplication

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[x1, e] = −2x0, [x2, e] = −2x1, [x0, f ] = x1,

[x1, f ] = x2, [x0, h] = 2x0, [x2, h] = −2x2,

[e, u] = γ1x0, [f , u] = 1
2
γ1x2, [h, u] = γ1x1,

[e, v] = γ2x0, [f , v] = 1
2
γ2x2, [h, v] = γ2x1,

[e,w] = γ3x0, [f ,w] = 1
2
γ3x2, [h,w] = γ3x1,

[u,w] = u, [v,w] = αv,

[w, u] = −u, [w, v] = −αv,

[x0,w] = θx0, [x1,w] = θx1, [x2,w] = θx2,

(1)

with the constraints

γ1(1 − θ) = 0, γ2(α − θ) = 0.

Denote this class by L(γ1, γ2, γ3, θ, α). Then one has

Theorem 11. Let L/I ∼= sl2 ⊕ R, dimI = 3, dimR = 3 and R be isomorphic to R1. Then L is isomorphic to

one of the pairwise non-isomorphic algebras:

L1(1, 0, 0, 1, α), L2(0, 0, 0, θ, α), L3(0, 0, 1, θ, α).

Proof. Let L be an algebra satisfying the conditions of the theorem. Then as has beenmentioned above

the table of multiplication of L is written as (1) with constraints
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γ1(1 − θ) = 0, γ2(α − θ) = 0.

Case 1. Let γ1 �= 0, then θ = 1. Taking the change of basis

u′ = 1

γ1

u, v′ = −γ2

γ1

u + v, w′ = −γ3

γ1

u + w,

we obtain γ2 = γ3 = 0 and γ1 = 1. Therefore, we get L1(1, 0, 0, 1, α).
Case 2. Let γ1 = 0, then we have γ2(α − θ) = 0.
Case 2.1. Let γ2 �= 0, then θ = α. Applying the change of basis

u′ = 1

γ2

v, v′ = u, w′ = − γ3

αγ2

v + 1

α
w,

one can get

[e, u′] = x0, [f , u′] = 1
2
x2, [h, u′] = x1,

[e, v′] = 0, [f , v′] = 0, [h, v′] = 0,

[e,w′] = 0, [f ,w′] = 0, [h,w′] = 0,

[x0,w′] = x0, [x1,w′] = x1, [x2,w′] = x2.

Therefore, in this case L is written as L1(1, 0, 0, 1, α).
Case 2.2. Let γ2 = 0. If γ3 = 0, then we have L2(0, 0, 0, θ, α).

If γ3 �= 0, then taking the change of basis

x′
0 = γ3x0, x′

1 = γ3x1, x′
2 = γ3x2,

we obtain L3(0, 0, 1, θ, α).
The conditions

L1(1, 0, 0, 1, α) : [sl2, R] �= 0, [sl2, R2] �= 0,

L2(0, 0, 0, θ, α) : [sl2, R] = 0, [sl2, R2] = 0,

L3(0, 0, 1, θ, α) : [sl2, R] �= 0, [sl2, R2] = 0.

show that the algebras L1 − L3 are not pairwise isomorphic. �

From Remark 5 it follows that if αα′ = 1, and θ ′α = θ then the corresponding two algebras from

the class L2 are isomorphic. The analogous condition is true for algebras from the class L3.
Let us now consider the case when R is isomorphic to R2 and dimI = 3.
Using the Leibniz identity we find

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[x1, e] = −2x0, [x2, e] = −2x1, [x0, f ] = x1,

[x1, f ] = x2, [x0, h] = 2x0, [x2, h] = −2x2,

[e, u] = α1x0, [f , u] = 1
2
α1x2, [h, u] = α1x1,

[e, v] = α2x0, [f , v] = 1
2
α2x2, [h, v] = α2x1,

[e,w] = α3x0, [f ,w] = 1
2
α3x2, [h,w] = α3x1,

[x0,w] = θx0, [x1,w] = θx1, [x2,w] = θx2,

[u, e] = β1x0 + β2x1, [u, f ] = − 1
2
β1x2, [u, h] = β2x2,
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[v, e] = β3x0 + β4x1, [v, f ] = − 1
2
β3x2, [v, h] = β4x2,

[w, e] = β5x0 + β2x1, [w, f ] = − 1
2
β5x2, [w, h] = β2x2,

[u,w] = u + v + γ1x1 + γ2x2, [v,w] = v + γ3x1 + γ4x2, [w,w] = γ7x1 + γ8x2

[w, u] = −u − v + γ5x1 + γ6x2, [w, v] = −v + γ9x1 + γ10x2,

Applying the change of basis u′ = u + 1
2
β1x1 + 1

2
β2x2 we find

[u′, e] =
[
u + 1

2
β1x1 + 1

2
β2x2, e

]
= [u, e] + 1

2
β1[x1, e] + 1

2
β2[x2, e]

= β1x0 + β2x1 − β1x0 − β2x1 = 0,

[u′, f ] = [u, f ] + 1

2
β1[x1, f ] + 1

2
β2[x2, f ] = −1

2
β1x2 + 1

2
β1x2 = 0,

[u′, h] = [u, h] + 1

2
β1[x1, h] + 1

2
β2[x2, h] = β2x2 − β2x2 = 0.

Hence [u′, e] = [u′, f ] = [u′, h] = 0.
Similarly taking the change of basis

v′ = v + 1

2
β3x1 + 1

2
β4x2, w′ = w + 1

2
β5x1 + 1

2
β2x2,

we obtain [v′, e] = [v′, f ] = [v′, h] = [w′, e] = [w′, f ] = [w′, h] = 0.
Using the Leibniz identity we get

[u, [e,w]] = [[u, e],w] − [[u,w], e] ⇒ γ1 = γ2 = 0

[v, [e,w]] = [[v, e],w] − [[v,w], e] ⇒ γ3 = γ4 = 0

[w, [e, u]] = [[w, e], u] − [[w, u], e] ⇒ γ5 = γ6 = 0

[w, [e, v]] = [[w, e], v] − [[w, v], e] ⇒ γ7 = γ8 = 0

[w, [e,w]] = [[w, e],w] − [[w,w], e] ⇒ γ9 = γ10 = 0

Therefore, we obtain the class of algebras with the table of multiplications as follows

[e, h] = 2e, [h, f ] = 2f , [e, f ] = h,

[h, e] = −2e, [f , h] = −2f , [f , e] = −h,

[x1, e] = −2x0, [x2, e] = −2x1, [x0, f ] = x1,

[x1, f ] = x2 [x0, h] = 2x0, [x2, h] = −2x2,

[e, u] = α1x0, [f , u] = 1
2
α1x2, [h, u] = α1x1,

[e, v] = α2x0, [f , v] = 1
2
α2x2, [h, v] = α2x1,

[e,w] = α3x0, [f ,w] = 1
2
α3x2, [h,w] = α3x1,

[x0,w] = θx0, [x1,w] = θx1, [x2,w] = θx2,

[u,w] = u + v, [v,w] = v,

[w, u] = −u − v, [w, v] = −v,

where

α1(1 − θ) = 0, α1 + α2 − α1θ = 0. (2)
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This class of algebras is denoted by G(α1, α2, α3, θ).
It is obvious, that due to the constraints (2), we get α2 = 0 and α1(1 − θ) = 0.

Theorem 12. Let L/I ∼= sl2 ⊕ R, dimI = 3, dimR = 3 and R be isomorphic to R2. Then L is isomorphic to

one of the following pairwise non-isomorphic algebras:

G1(1, 0, 0, 1), G2(0, 0, 0, θ), G3(0, 0, 1, θ).

Proof. Case 1. Let α1 �= 0 then θ = 1. Taking the change of basis

u′ = 1

α1

u, v′ = v, w′ = w − α3

α1

u,

we get α1 = 1, α3 = 0, i.e., it is G1(1, 0, 0, 1).
Case 2. Let α1 = 0. If α3 = 0, then we have G2(0, 0, 0, θ).

If α3 �= 0, then taking the change of basis

x′
0 = α3x0, x′

1 = α3x1, x′
2 = α3x2,

we get G3(0, 0, 1, θ).
The conditions

G1(1, 0, 0, 1) : [sl2, R] �= 0, [sl2, R2] �= 0,

G2(0, 0, 0, θ) : [sl2, R] = 0, [sl2, R2] = 0,

G3(0, 0, 1, θ) : [sl2, R] �= 0, [sl2, R2] = 0.

imply that the algebras G1 − G3 are not pairwise isomorphic. �

Table 1

List of Isomorphism classes with representatives.

dim I = 3 dim I �= 3

R1

L1(1, 0, 0, 1, α)
L2(0, 0, 0, θ, α)
L3(0, 0, 1, θ, α)

L1(α, a)

R2

G1(1, 0, 0, 1)
G2(0, 0, 0, θ)
G3(0, 0, 1, θ)

L2(a)

Table 1 presents the list of isomorphism classes of complex Leibniz algebras with L/I isomorphic

to the direct sum of sl2 and a three-dimensional solvable Lie algebra.

Remark 13. For some computations in the paper we used the Mathematica software.

• We have double checked by using the Mathematica software that the algebras from Theorem 9 in

low dimensional cases for different values of the parameter a are not isomorphic to each other.
• In finding the table of multiplications (1) we used the Mathematica software.
• On the page 2223 to show that γi = 0, for i = 1, 2, . . . , 10 also a computer program has been

used.
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3.3. The computer program

In this section we provide a computer program that checks if two algebras from Theorem 9 are iso-

morphic. The structure constants of the given algebras are denoted by a[i, j, k] and b[i, j, k],
respectively. Here is a block scheme for the program which is followed by the program in Wolfram

Mathematica 7.

dim = 8; (*Dimension of the algebra*)
changebasis = Table[c[i, j], {i, 1, dim}, {j, 1, dim}];
firstalgebra =
Table[a[i, j, k], {i, 1, dim}, {j, 1, dim}, {k, 1, dim}];

secondalgebra =
Table[b[i, j, k], {i, 1, dim}, {j, 1, dim}, {k, 1, dim}];

(*First Algebra*)
For[i = 1, i \[LessSlantEqual] dim, i++,
For[j = 1, j <= dim, j++,
For[k = 1, k \[LessSlantEqual] dim, k++,
a[i, j, k] := 0]]];

a[1, 3, 1] = 2; a[3, 2, 2] = 2; a[1, 2, 3] = 1; a[3, 1, 1] = -2;
a[2, 3, 2] = -2; a[2, 1, 3] = -1; a[7, 3, 7] = 1; a[8, 3, 8] = -1;
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a[7, 2, 8] = 1; a[8, 1, 7] = -1; a[4, 6, 4] = 1; a[4, 6, 5] = 1;
a[6, 4, 4] = -1; a[6, 4, 5] = -1; a[5, 6, 5] = 1; a[6, 5, 5] = -1;
a[7, 6, 7] = 1; a[8, 6, 8] = 1;

(*Second Algebra*)
For[i = 1, i \[LessSlantEqual] dim, i++,
For[j = 1, j <= dim, j++,
For[k = 1, k \[LessSlantEqual] dim, k++,
b[i, j, k] := 0]]];

b[1, 3, 1] = 2; b[3, 2, 2] = 2; b[1, 2, 3] = 1; b[3, 1, 1] = -2;
b[2, 3, 2] = -2; b[2, 1, 3] = -1; b[7, 3, 7] = 1; b[8, 3, 8] = -1;
b[7, 2, 8] = 1; b[8, 1, 7] = -1; b[4, 6, 4] = 1; b[4, 6, 5] = 1;
b[6, 4, 4] = -1; b[6, 4, 5] = -1; b[5, 6, 5] = 1; b[6, 5, 5] = -1;
b[7, 6, 7] = 2; b[8, 6, 8] = 2;

For[i = 1, i <= dim, i++,
For[j = 1, j <= dim, j++,
For[k = 1, k <= dim, k++,
expression[i, j, k] := \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(s = 1\), \(dim\)]\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 1\), \(dim\)]\((c[i, m]*

c[j, s]*a[m, s, k])\)\)\) - \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(p = 1\), \(dim\)]\(c[p, k]*

b[i, j, p]\)\)]]]

(*solve system*)
system =
Union[Select[
Flatten[Table[

expression[i, j, k], {i, 1, dim}, {j, 1, dim}, {k, 1, dim}]], !
NumberQ[#] &]];

equations =
Map[(# == 0) &, GroebnerBasis[system, Flatten[changebasis]]];

Off[Solve::"svars"]; Off[Solve::"verif"];
listsol =
Union[Solve[
Reduce[Union[equations, {c[1, 1] \neq 0}], Flatten[changebasis]],
Flatten[changebasis]]];

(*we compute the determinant of all solutions*)
For[u = 1, u <= Length[listsol], u++,
matriz[u_Integer] :=
Simplify[Table[c[i, j], {i, 1, dim}, {j, 1, dim}] /. listsol[[u]]]

];

For[u = 1, u <= Length[listsol], u++,
determinant[u_Integer] := Det[matriz[u]]];

For[u = 1, u <= Length[listsol], u++,
If[! NumberQ[determinant[u]] || determinant[u] \neq 0,
Print["Isomorphic Algebras"], Print["NonIsomorphic Algebras"]]]
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