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The article aims to study the classification problem of low-dimensional
complex filiform Leibniz algebras. It is known that filiform Leibniz algebras
come out from two sources. The first source is a naturally graded non-Lie
filiform Leibniz algebra, and another one is a naturally graded filiform Lie
algebra. In this article, we classify a subclass of the class of filiform
Leibniz algebras appearing from the naturally graded non-Lie filiform
Leibniz algebra. We give complete classification and isomorphism criteria in
dimensions 5-7. The method of classification is purely algorithmic. The
isomorphism criteria are given in terms of invariant functions.

Keywords: filiform Leibniz algebra; invariant function; isomorphism

AMS Subject Classifications: 17A32; 17B30(primary); 13A50(secondary)

1. Introduction

In the early 1990s, Loday [10] introduced Leibniz algebra as a non-associative
algebra with multiplication, satisfying the Leibniz identity:
[)C, [ys Z]] = [[x,y],z] - [[xy Z]ay]'

This identity and the classical Jacobi identity are equivalent, when the
multiplication is skewsymmetric. Leibniz algebras appear to be related, in a natural
way, to several topics, such as differential geometry and homological algebra,
classical algebraic topology, algebraic K-theory, loop spaces, noncommutative
geometry and quantum physics, as a generalization of the corresponding
applications of Lie algebras to these topics. Most papers deal with the homological
problems of Leibniz algebras. In [11] Loday and Pirashvili have described the free
Leibniz algebras, paper [13] by Mikhalev and Umirbaev is devoted to solution of the
non-commutative analogue of the Jacobian conjecture in the affirmative for free
Leibniz algebras, in the spirit of the corresponding result of Reutenauer [15],
Shpilrain [16] and Umirbaev [17]. The problems concerning Cartan subalgebras and
solvability were studied by Ayupov and Omirov [1]. The notion of simple Leibniz
algebra was suggested by Dzhumadil’daev and Abdukassymova [7], who obtained
some results concerning special cases of simple Leibniz algebras.
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Unfortunately, up to now, there is no paper that has included complete
discussion on comparisons of structural theory of Lie and Leibniz algebras
(one means results like Levi-Malcev decomposition theorem, Lie-Engel theorem,
Malcev reduction theorem, the analogue of Killing form, Dinkin diagrams, root
space decompositions, the Serre presentation, the theory of highest weight
representations, the Weyl character formula and much more).

Papers [2,4,14] and preprints [5,6,9] concern the classification problem of filiform
Leibniz algebras.

The organization of this article is as follows. Section 2 consists of some facts on
filiform Leibniz algebras. They can be found in [4]. In Section 3, the reader will be
reminded regarding adapted basis and adapted transformations. Then we describe
the isomorphism action of the adapted transformations group. Section 4 deals with
the classification problem of low-dimensional filiform Leibniz algebras. Here for
5- and 6-dimensional cases we give just final result since the proofs in these cases are
similar to those of 7-dimensional case (for the last case in Section 4.3 we give
complete proof only for generic case, since other cases can be managed by a minor
adaption). In discrete orbits cases (Proposition 4.14) we give a base change, leading
to appropriate canonical representative.

2. Preliminaries

Let V' be a vector space of dimension n over an algebraically closed field K
(charK=0). Bilinear maps V' x VV— V form a vector spacc Hom(V® V, V) of
dimensional 7°, which can be considered together with its natural structure of an
affine algebraic variety over K and denoted by Alg, (K )%K”3. An n-dimensional
algebra structure L over K on V' can be considered as an element A(L) of Alg,(K) via
the bilinear mapping A: V® V' — V defining a binary algebraic operation on V-
let {ey, es,...,e,} be a basis of the algebra L. Then, the table of multiplication of L is
represented by point (y,/) of this affine space as follows:

n
A‘(eiaef)zzyge/(a l’]: 1,2’...,7’1.
k=1

Here y" is said to be structure constants of L. The linear reductive group GL,(K) acts
on Algn(K ) by (gx2)(x,y)=g(g”"(x),g'(»)(‘transport of structure’). Two
algebra structures A; and A, on V are isomorphic if and only if they belong to the
same orbit under this action.

Definition 2.1 An algebra L over a field K is called a Leibniz algebra, if its bilinear
operation [-,-] satisfies the following Leibniz identity:

[X, [ya Z]] = [[xay]’z] - [[X, Z]’y]'

Let Leib,(K) be the subvariety of Alg,(K), consisting of all n-dimensional
Leibniz algebras over K. It is invariant under the above mentioned action of GL,(K).
As a subset of Alg,(K) the set Leib,(K) is specified by a system of equations with
respect to structure constants y,-J’-”':

Y v = v vy =0, ijk=12...n
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It is easy to see that, if [-,-] in Leibniz algebra is anticommutative, then it is a
Lie algebra. Therefore, Leibniz algebra is a ‘noncommutative’ generalization of Lie
algebra. For the Lie algebras case, several classifications of low-dimensional cases
have been given. Except for simple Lie algebras, the classifications problem of all
Lie algebras in common remains a big problem. Malcev [12] reduced the
classification of solvable Lie algebras to the classification of nilpotent Lie algebras.
Apparently, the first non-trivial classification of some classes of low-dimensional
nilpotent Lie algebras are due to Umlauf. In his thesis [18], he presented the
redundant list of nilpotent Lie algebras of dimension less than seven. He also gave
the list of nilpotent Lie algebras of dimension less than 10 admitting a so-called
adapted basis (now, the nilpotent Lie algebra with this property is called filiform Lie
algebra). The importance of filiform Lie algebras in the study of the variety of
nilpotent Lie algebras laws was shown by Vergne [19]. Paper [8] concerns the
classification problem of low-dimensional filiform Lie algebras.

In [5,6], a method of classification of fixed dimensional filiform Leibniz algebras
has been proposed. This article is an implementation of the method in low-
dimensional cases.

Throughout the following sections, all algebras are assumed to be over the field
of complex numbers C.

Let L be a Leibniz algebra. We put

L'=L, L[M'=[LF 1], keN.
Definition 2.2 A Leibniz algebra L is said to be nilpotent, if there exists an integer
seN, such that
L’ = {0}.
The smallest integer s for that L°=0 is called the nilindex of L.
Definition 2.3  An n-dimensional Leibniz algebra L is said to be filiform, if

dimL'=n—1i, where2 <i<n.

It is clear that a filiform Leibniz algebra is nilpotent.
The class of filiform Leibniz algebras in dimension # is denoted by Leib,,.
In [9], Gomez and Omirov split Leib,, into three subclasses as follows.

THeOREM 2.1  Any (n+ 1)-dimensional complex filiform Leibniz algebra admits a
basis {eg, e, . ..,e,} called adapted, such that the table of multiplication of the algebra
has one of the following forms, where omitted products of basis vectors are supposed
to be zero:

[eo, e0] = e2,

lei, eo]l = eit1, l1<i<n-1,
FLeib,y = § [eo, e1] = aze3 +ageq + -+ - + cy_1€,_1 + Oy,

lej, e1] = azejpr +agej3 + -+ app1_jen, l<j<n-2,

o3,04,...,0, 0O C.
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[eo, eo] = e2,
[ei» e0] = eiy1, 2<i<n-—1,
SLeib,,| = E?f)ﬂ = 5262 ¥ Baea+ -+ B,
[€j,€1] :/33ej+2+,848+3 +"'+:3n+lfjens 2<j<n-2,
ﬁ3a,34,~~-,,3m)/€ .

[ei, e0] = eit1, 1
[eo, ei] = —eiy1, 2
[eo, eo] = bo,oen,
[eo, e1] = —ex + bo 1€,
TLeib,y; = [er,e1] = by en,
lei, )] = —[ej, e;] € spang{eiyjs1, €ivjy2,s---»en
I<i<n-3,2<j<n-1-1ij,
[eia 6,1,[] = —[en,,-, ei] = (_l)lbi,nfieno
where affi, bijeC and b;,_;=1b
whenever 1 <i<n—1, and b =0 for even n.

In [9], the base change for this kind algebra has been reduced to the so-called
adapted base change. The subclasses are stable with respect to the adapted base
change. Hence, the isomorphisms problem inside of each class can be studied
separately. This article deals with F'Leib,_ ;. Results on SLeib, ., and TLeib, . have
appeared elsewhere, particularly in [6,14].

Elements of FLeib,; will be denoted by L(ws,y,...,®,, 0), which means that
they are defined by the parameters a3, oy, ..., o, 0.

3. On adapted changing of basis and isomorphism criterion for FLeib, , ,

In this section, we simplify the isomorphic action of GL,, (‘transport of structure’) on
FLeib,,. All the details can be found in [5,9].

Let L be an element of FLeib, |, V be the underlying vector space and
{eg,e1,...,e,} be the adapted basis of L.

Definition 3.1 The basis transformation fe GL(V) is said to be adapted for the
structure of L, if the basis { f(eo), f(e1),--..[f(e,)} is adapted.

The closed subgroup of GL(V) spanned by the adapted transformations is
denoted by GL,, In GL,; we consider the following types of basis transformations
of FLeib,; called elementary:

S(eo) = eo + aey,

_ f‘(el) =€ + beka
first type, = (@, 0, K) = Vo) = [flen.f(eo)). 1<i<n—1, 2<k<n,

f(e2) =[f(eo).f (eo)]:

S (eo) = aeq + bey,

fler) = (a+Db)ey + b0 — ay)e,—1, ala+Db)#0,
Sf(eir1) = [f (e, f(eo)], l<i<n-1,
S(e2) = [f(eo), [ (eo)]-

The proof of the following proposition is straightforward.

second type — v(a, b) =

ProrosiTioN 3.1

(a) If fis an adapted transformation of FLeib, | then

f=t(ay, by,n)ot(ay_1,ay,—1,n—1)o---ot(as,az,2) oviay,ay).
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(b) Transformations of the form t(a,b,n), t(a,a,n) and t(a,a, k), where
2<k<n—2, aeC preserve the structure constants of FLeib, .

Since a composition of adapted transformations is adapted, the proposition above
means that the transformation t(a,,b,,n)ot(a,_1,a,_1,n—1)o---ot(as, a»,2)
does not change the structure constants of FLeib,,,; and thus the action of GL,; on
Fleib,,; can be reduced to the action of elementary transformation of the
second type.

Let R"(x) :=[[...[x, al,d],...,a], and RY(x) := x.

Now, due to Proposition 3.1(b), it is easy to see that, for FLeib,, the adapted
change of basis has the following forms:

ey = Aey + Bey,
¢y = (A + B)ey — B0 — a)en-1,
¢y, = A(A + B)es + A(A + B)(azes + -+ - + ap_1,-1) + B(Aa, + Bb)ey,

k=2
¢ =(4+ B)( Cioi A T BR] (ex-i) + B R’;—l(eo)>,
i=0
where 3 <k <n and 4, B€ C such that A(A4 + B)#0.

Now we restate the isomorphism criterion for FLeib, ;. First, we introduce the
following series of functions:

0y 2) = @3 23, 24, . 3 lemZnJrl) r

= <(1 + )20 = Y Oz + C Y Zuao  Zigi—

k=3 . iy =k+2
t I3

k—4.3 E E
+ Ck—]y ZT+371'2 ° Zl'2+37i| : Zl'lfk + e

ih=k+3 ij=k+3 i .
! k-3 )

1 k—2
+ Ckfly Z Z to Z Zi43—ix—3 " Zig3+3—ij—g "

i/(,3=2/€—2 i;\»,4=2/€—2 il =2/€.—2
!

ik ir

k—1 § § E
: Zl‘2+371'1 : Zi|+572/c + y e Z[+37i]\v,2

ipr=2k—1ip_y=2k—1 _ij=2k—1

CZip o B3mip s Zi3—iy - Zipra—2k) - ok(y32) ), for 3 <t <m.

Ont1(15 2) = @1 (V3 23, 24, . ... ,zn,zn+11)
n—

= (ZnJrl + Yin — (l + y) Z(CQZ%yszerk + Ci:?yz

; k=3
k—4_3
X E Znya—i - Zirl—k + Cr_1y
h=k+2
n i
X E E Zn43—iy * Zip43—iy * Zi—k T
h=k+3 ij=k+3

ik—3 iy

t
1 k—2
+ C/(—ly Z Z “ e Z Zn+3—i/\~,3 . Zik—3+3_ik—4 e

i/(,3=2/€—2 ik,4=2k—2 i]=2/(72 .
n 153

ik
k—1
“Zi43—iy - Zi45—2k TV E E E Znt3—ip_s

ipr=2k—1it_3=2k—1 _ij=2k—1

Zio3mip s  Zi3—iy + Zipd—2k) - k(13 2) ).
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The isomorphism criterion for FLieb,,, proven in [9] is then spelled out as
follows.

Tueorem 3.1 [5] Two algebras L(a) and L(«') from FlLleib, ., where o=/ (as,
gy 0, 0) and o = (03,04, . .., @, ,0'), are isomorphic, if and only if there exist
complex numbers A and B, such that A(A+ B)#0 and the following conditions hold.

, 1 B
a’:Af—Z(p'<A;a)’ 3<t<n, (1)
1 B
=F<Pn+1(z;0!>- (2)

To simplify notations, in the above case for transition from (7 + 1)-dimensional
filiform Leibniz algebra L(«) to (n+ 1)-dimensional filiform Leibniz algebra L(«’)
we write o = p(%, &; a)):

1 B\ 1 B 1 B 1 B
p A’A’a - )01 A,A’a ap2 A’A’a »~~~=pn1 A Asa )

0i(x,y:2) = X'@ppa(y;z) forl<t<n-—2,

where

and

oum1 (6,3 2) = X201 (13 2).
Here are main properties of the operator p used in this article:

(1,0, 1, )) is the identity operator.

Y. o B ol B @) = pgly, ABEREERE g,
3’Ifa_p(A,A,oz) then o = p(4, A+B,o¢)

From here on, n is a positive integer. We assume that n >4, since there are
complete classifications of complex nilpotent Leibniz algebras of dimension of at
most four [3].

In our study, we proceed from the viewpoint of [5]. Later on, if no confusion is
possible, we write xy for [x, y] as well.

4. Classification
In this section we classify algebras from FLeib, | for n=4,5,6. For the purpose of
simplification, we establish the following notations and conventions:

Ay =3, A4 :a4+2a§, As :a5—5a§, A¢ = o + 14a§, 0,=0—«

and

Ay =, A} =d) + 205, AL =adl — 505,

Ay =y + 14d, © =6 — o), for i=4,5,6. 3)
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Observe that A;=«; (i=4,5,6) as a3 =0. After these notations, the algebra
L(as, a4, ..., ,,0) from Fleib, | becomes L(A3, Ay, ..., A,, ©,).

4.1. Dimension 5

According to the above notations, one can rewrite Theorem 3.1 for FlLeibs
as follows.

TuaEOREM 4.1 Two algebras L(A) and L(A') from FLeibs, where A = (A3, A4, ®4) and
AN = (A3, A{, ®F), are isomorphic, if and only if there exist complex numbers A and B,
such that A(A+ B)#0 and the following conditions hold.

o B

A3 = Z(l +Z)A3,
o B

A4 = Z(l +Z>A4,

0, = 0. )

In order to describe orbits in F Leibs under the action of the adapted base change,
we split it into the following subsets:

U; = {L(A) € FLeibs: A3 #0,A4 # 0},

U, = {L(A) € FLeibs: A3 # 0,A4 =0, ®4 # 0},
U; = {L(A) € FLeibs: A3 # 0,A4 = 0,04 = 0},
Uy = {L(A) € FLeibs: A3 =0,A4 # 0,04 # 0},
Us = {L(A) € FLeibs: A3 =0,A4 # 0,04 = 0},
Us = {L(A) € FLeibs: A3 =0,A4 = 0,04 # 0},
U; = {L(A) e FLeibs: A3 =0,A4 = 0,04 = 0}.

It is obvious that {U;}, i=1,2,...,7, is a partition of FLeibs. The following

proposition shows that U is a union of infinitely many orbits and these orbits can be
parametrized by C.

ProrosiTioN 4.1

(1) Two algebras L(A) and L(A) from U, are isomorphic if and only if

A3\? AL
A3 _ () o 5
(2o (3) o

(i1) Orbits in Uy can be parametrized as L(1,1,1), A € C.

The next proposition is a description of subsets U, i=2,...,7.
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ProrosITION 4.2 The subsets Uy, Us, Uy, Us, Ug and U; are single orbits with the
representatives L(1,0,1), L(1,0,0), L(0,1,1), L(0,1,0), L(0,0,1) and L1(0,0,0),
respectively.

We summarize the above observations under the following classification
theorem.

THEOREM 4.2 Let L be an element of FLeibs. Then, it is isomorphic to one of the
following pairwise non-isomorphic Leibniz algebras:

(1) L(O, 0, 0) = L; 1eo€o=2¢€n, €0 =2¢€;41, 1 <i< 3.

(2) L(0,0,1): L5, eger = es.

(3) L(O, 1,0)2 Lg, epl] = €é4, €161 = é4.

(4) L(O, l, l) Lg, eper = 264, ejer = é4.

(5) L(1,0,0): L3, ege; = e3 — 2es, eje] = e3 — 2es, ere] = e4.

(6) L(I,O, 1)2 Lg, epel = e3 — €4, e161 = e3 — 264, ere1 = €4.

(7) L1, 1,0): LS, eger =e3+ (A — 1es, ejey =e3 —es, ereg =e4, reC.

4.2. Dimension 6

This section concerns FLeibs. According to the notations (3), we rephrase
Theorem 3.1 as follows.

THEOREM 4.3 Two algebras L(A) and L(A') from F Leibg, where A = (A}, Ay, A, ©%)
and A" = (A}, Ay, A, ©F), are isomorphic, if and only if there exist complex numbers A
and B, such that A(A+ B) #0 and the following conditions hold.

o B
A3 ZZ(I +Z)A3,

o1 B
A4 — ﬁ <1 +Z)A4,

1 B
A+ 5ALA, = Vi <1 + Z) (As + 5A3A4),
, 1
@5 == Z@S (6)

To classify FLeibg, we represent it as a disjoint union of the following subsets:

U1 = {L(A) eFLeibﬁ: A3 75 0, A4 7é 0},

U2 = {L(A)EFLelb6 . A3 75 0,A4 = 0,A5 75 0, @5 75 0},
U3 = {L(A)GFLCIbﬁ . A3 = O,A 4 75 0,A5 750},

U6 = {L(A)GFLelb6 . A3 75 0,A4 = 0,A5 75 0, @5 = 0},
U5 = {L(A)GFLGIbﬁ . A3 75 0,A4 = 0,A5 = O,®5 75 0},
Us = [L(A) € FLeibg : Ay # 0,As = 0,As = 0, 5 = 0},
U7 = {L(A)EFL@Ibﬁ . A3 = 0,A4 75 0,A5 = 0, @5 75 0},
Ug = {L(A)GFLeib() . A3 = 0,A4 ;ﬁ O,As = 0, @5 = 0},
Ug = {L(A)GFLGIbﬁ . A3 = 0,A4 = 0,A5 75 0, @5 75 0},
U10 = {L(A)GFLeib() . A3 = 0,A4 = O,As 75 0, @5 = 0},
Uy = {L(A) € FLeibg : Ay = 0,As = 0,As = 0, @5 # 0},
Upp = {L(A)GFLCib6 . A3 = 0,A4 = O,As = 0, @5 = 0}
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Since each of these sets is a G,,-stable, the isomorphism problem, for each of
them, can be attacked separately. Here each of the subsets U;, U, and U; turns out
to be a union of infinitely many orbits and they can be described as follows.

ProrosiTiON 4.3
(1) Two algebras L(A) and L(A) from U, are isomorphic if and only if

As(As + 5A3A5)  AL(AS + SAA))
A’ N A?

. (7
and

AOs A6
Ay A

®)

(i1) Orbits in U, can be parametrized as L(1, 1,1, 13), A1, A, €C.
ProrosiTION 4.4

(1) Two algebras L(A) and L(A") from U, are isomorphic if and only if

A3 A/3
T 27 AR 5, : ©)
A30:  ATOL2
(i1) Orbits in U, can be parametrized as L(1,0, A, 1), A € C*.
ProrosiTiON 4.5
(1) Two algebras L(A) and L(A") from Us are isomorphic if and only if
3 3oy
AOs A} O (10)
A3 - A/3 .
5 5
(i1) Orbits in U; can be parameterized as L(0,1,1,1), A € C.
However, each of the sets Uy, Us, ..., Uy is a single orbit, here is a description of

them.

ProprosITION 4.6 The subsets Uy, Us, Ug, Uy, Us, Uy, Uy, Uy and Uy, are single
orbits with the representatives L(1,0,1,0), L(1,0,0,1), L(1,0,0,0), L(0,1,0,1),
L1(0,1,0,0), L(0,0,1,1), L(0,0,1,0), L(0,0,0,1) and L(0,0,0,0), respectively.

The result of all the above observations can be spelled out as follows.

THEOREM 4.4 Let L be an element of FLeibg. Then, it is isomorphic to one of the

following pairwise non-isomorphic Leibniz algebras:

(1) L(0,0,0,0) = Lg: egeg=e2, e;eg=¢e:41, 1 <i<4.

(2) L(O, 0, 0, 1) LS, epep = eés.

(3) L(0,0,1,0): Lg, epe; =es, eje; = es.

(4) L(0,0,1,1): L§, epe; = 2es, eje; = es.

(5) L(0,1,0,0): L§, epe; = e4, eje; = e4, erey = es.

(6) L(O, 1,0, 1) L‘é, eper = ey +es5, eje; = ey, exe; = es.
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(7) L(1,0,0,1): L, eger = e3 — 2e4 + bes, eje; = ez — 2e4 + Ses, eze) = eq — 2es,
e3e)] = es.

(8) L(1,0,1,0):  Lg, ege; = e3 — 2e4 + bes, eje; = e3 — 2eq + bes, ere) = eq — 2es,
e3e|] = es.

(9) L(0,1,1,A): L, ege; = eq+ (A + Des, ejey = eq +e5, exey =es, reC.

(10) L(I,O,)»,)»)Z L‘é, eper =e3 —2€4+(2)»+5)€5, eer =e3 —2€4+()»+5)€5,
ere =eq4—2es5, eze1=es5, L€ C.

(11) L(1, 1, A1, 1»): Ly, eger =e3 —eq+ (A +Ax + S)es, ere; = e3 —eq + (A1 + S)es,
ere = e4 —es, exe;=es, A, A eC.

Note 4.1 The orbit Uy with the representative L(1,0,0,0) can be included in the
parametric family of orbits with the representatives L(1,0,4,1) at A=0.

4.3. Dimension 7

This section deals with FLeib;. For FLeib7, the isomorphism criteria (Theorem 3.1)
can be rewritten as follows.

THeEOREM 4.5 Two algebras L(A) and L(A') from FLeib;, where A= (As, A4,
As,Ag, ©g) and N = (A}, A}, A, A, ©F), are isomorphic, if and only if there exist
complex numbers A and B, such that A(A+ B)#0 and the following conditions hold.

1 B
A, =— — A
1 B
A=\ )

1 B

) . 1 B
Ag + 6A5AS +9ATA, +3A] = ye (1 + Z) (As + 6A3As + 9ATA4 + 3A7),
1
0, = —19% (11)
Under the appropriate constraints to Az, A4, ..., Ag and O, the set F Leib; can be
written as a union of the following subsets:

U1 = {L(A) eFLeib7: A3 75 0,A4 7& O},

U2 = {L(A) eFLeib7: A3 75 0,A4 = 0, A5 75 0, A(, + 6A3A5 75 0},

U3 = {L(A) € FLCib7I A3 # 0,A4 = 0, A5 ;é 0, A(, + 6A3A5 = 0},

U4 = {L(A) eFLeib7: A3 75 0,A4 = 0, A5 = 0, Af) 75 0, @(, 75 0},

Us = {L(A) € FLeiby: A3 = 0,Aq # 0, As # 0},

Us = {L(A) € FLeib7: A3 = 0,A4 # 0,As = 0, A 4 3A% # 0,

U, = {L(A) € FLeiby: Ay = 0,Ay = 0,As # 0, Ag # 0},

Us = {L(A) € FLeiby: Ay £ 0,Ay = 0,As = 0, Ag £ 0, O = 0},

Us = {L(A) € FLeiby: A3 £ 0,Ay = 0,As = 0, Ag = 0, O # 0},

Uip = {L(A) € FLeiby: Ay #0,As = 0,As = 0,Ag = 0, O = 0},

Uy = {L(A)e FLeiby: A3 =0,A4 #0,As =0,A¢ + SAi =0,0¢ # 0},
Uiy = {L(A) € FLeiby: A; = 0, A4 # 0,As = 0, Ag + 3A] = 0, © = 0},



Downloaded by [The UC Irvine Libraries] at 13:01 28 September 2017

Linear and Multilinear Algebra 215

U13 = {L(A) eFLeib7: A3 = 0, A4 = 0,A5 75 0, A(, = 0, ®6 75 0},
Uy = {L(A) € FLeiby: Ay = 0, Ay = 0,As # 0, Ag = 0, O = 0},
Ups = {L(A) € FLeiby: Ay = 0,Ay = 0,As = 0, Ag # 0, O # 0},
Uis = {L(A) € FLeiby: Ay = 0,Ay = 0,As = 0, Ag # 0, Og = 0},
Upr = {L(A) € FLeiby: Ay = 0,Ay = 0,As = 0, Ag = 0, O # 0},
Uis = {L(A) € FLeiby: Ay = 0,Ay = 0,As = 0, Ag = 0, ©¢ = 0}.

It is clear that these subsets are disjoint. The following propositions show that each
of the subsets U;—Uj is a union of infinitely many orbits. The second part of each
proposition gives a parametrization of the orbits.

ProrosiTioN 4.7

(1) Two algebras L(A) and L(A") from U, are isomorphic if and only if

A3(Ag + 6A3As5 + 9ATA, + 3A; D _ AZ (A, + 6ALAS 4+ 9ATA, 4 3A] )

As(As + 5A3A5)  AL(A + SAA))
A’ N A?

) (12)

(13)

AZ A/S

As A
23) @ 14
<A4) 0= <AZ> s 1

(i1) Orbits in Uy can be parametrized as L(1,1, A1, Ay, X3), A1, Ay, A3€C.

Proof

(i) =: Let L(A) and L(A’) be isomorphic. Then, due to Theorem (4.5), there are

complex numbers 4 and B: A(4 + B) #0, such that the action of the adapted
group G,, can be expressed by the system as (11).
Now, if we substitute the value of Ay Ay A5+ SASAL A + 6AAG+

9AZA, + 3A} and ©) to the expressions 85 (85 +30, A“) A (Ao, A AT, +3A4)

4 A3
and ( A,) ®f we will get the required equalltles )
&: Let the equahtles (12), (13) and (14) hold.
We put
Ay AV WiV
Ay=—, B 1 1
=5 Bi= A3(A2 ) (1s)
and
, A . AL (A
AO:K;’ B, = (M_l) (16)

Then, Ag:,o(ALO B A) and Ay = p( T A) (see the convention in

X b AO b
Section 3), where

5A7

Ay L<1, | As(As + 5838 A(Ag + 6A3As + 9A2A, + 3A2) (A ) ®6>
4

AS A}
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and

Ay(As + 5ALAL)  AZ(A) 4 6ALAL + 9AZA, + 3A7) Ay 4@,
o % &) %)
Then, the equalities (12), (13) and (14) imply that Ag=A’y. Now, we make use

of the properties 1’ — 3" of p and find the complex numbers 4 and B such that
A(A+ B)#0:

Ap ByA) — By Ay
4="20 p="9% " P00 17
P A Ay + By) 4
Thus we get
q= A g MA(ATA (18)

For the given 4 and B, we get the corresponding system of Equation (11):

1 B )
Z <1 +A>A3 - AS’
1 B )
#O+QM=%

1 B
(1 + A>(A5 + 5A3A4) = A + SASA;,

VE
1 B 2 2 ’ AT "2 A7 2
7 (17 ) (A6 + 6A3As + 9ATAL + 3A3) = Ag + 6ASAL + 9ATA, + 3A,

1

F@(, == @g,

meaning that L(A) and L(A’) are isomorphic.

(i1) Itiseasy to see that, for any Ay, A», A3 € C, there exists an algebra L(As, A4, As,

A2(As+6A3A5+9A2A4+3A2
A()’ ®6) fr0m4 Ul! such that )\’1 — w’ )\’2 — 3(Ag+645 SA';' 3A4+34%)
4 4

and A3 = (ﬁ—j) Os. u

ProrosiTioNn 4.8

(1) Two algebras L(A) and L(A') from U, are isomorphic if and only if

3 73
AS 2 = ’ / A5 I AIN2? (19)
As(Ag + 6A3As)>  AY(A + 6ALAY)
As 4 A 4
_— -, = —_— @ / . 20
(A6 + 6A3A5> s <A’6 + 6A;A;.) O (20)

(i) Orbits in U, can be represented as L(1,0, 1, —5A;, A2), A €C", A, € C.
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ProrosiTioNn 4.9

(1) Two algebras L(A) and L(A") from Us are isomorphic if and only if

A3 A,
® O
() o= ()
(i1) Orbits in U can be parametrized as L(1,0,1,—6, 1), » € C.
ProrosiTioN 4.10
(1) Two algebras L(A) and L(A) from Uy are isomorphic if and only if
Ap _ Ay
’ 2
AO; A 47
(i1) Orbits in Uy can be parametrized as L(1,0,0,x,1), A € C".

ProrosiTion 4.11

(1) Two algebras L(A) and L(A") from Us are isomorphic if and only if

As(Ag + 3A2 D Ay(Ag + 3A%)
A3 A7

Ay AN
(A5> 0= <A'5> O

(i1) Orbits in Us can be parametrized as L(0, 1,1, A1, 15), A1, A €C.

>

ProrosiTiON 4.12

(1) Two algebras L(A) and L(A") from Ug are isomorphic if and only if

A ? A, ?
: 5] ®6 = 7 ! ) 9/6'
A¢ + 3A; Ay + 3A,

(i1) Orbits in Ug can be parametrized as 1.(0,1,0,0,1), » € C.
ProrosiTiON 4.13

(1) Two algebras L(A) and L(A") from Uy are isomorphic if and only if

As AN
() o= (5) e

(i1) Orbit in Uy can be parametrized as 1(0,0,1,1,1), » € C.

217

@1

(22)

(23)

24

(25)

(26)

ProrosiTioN 4.14  The subsets Ug, Ug, Ul(), Ullo U]z, U13, U14, U15, U16, U17 and U]g
are single orbits with the representatives L(1,0,0,1,0), L(1,0,0,0,1), L(1,0,0,0,0),
L(Oa 17 07 _3’ 1)’ L(O7 1’ 0’ _3’ 0)5 L(O’ Oa 15 09 1)3 L(Oa 09 19 05 O)’ L(Oa 05 Oa 13 1)7

1(0,0,0,1,0), 1(0,0,0,0, 1) and L(0,0,0,0,0), respectively.
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Proof The appropriate base changes leading to the representatives are indicated
below:

UgI For L(A3, A4, As, A6, ®6) € Ug,

1 B
(4 L0180 AL A0 00)) = £1.0.0,1.0),

_ 3/ Ag _ 3 A 3/ As 1
where 4 = TIA; and B = 14A3( TIA; A

Uy: For L(Asz, Ay, As, Ag, ©¢) € Uy,

1 B
(A 1 L(A3,A4,A5,A6,®6)> = 1(1,0,0,0,1),

where 4 = /% and B = /9% —
3

Uip: For L(A3, A4, As, Ag, ©g) € Uy,

1 B
<A 41 L(A%,A4,A5,A6,®6)> = 1(1,0,0,0,0),

where A4 is any nonzero complex number and B = A(A% —1).
Uit For L(As, Ay, As, Ag, ©g) € Uy,

A A

where A = 4%and B = 4%(\/%&_
Uia: For L(Az, Ay, As, Ag, ©g) € Uy,

1 B
< L(A3’A47 AS, A67 O6)> = L(O> 13 Oa _35 l)a

1 B
(A A L(A37A47A5aA67 ®6)> = L(Ov 19 09 - 35 0)9

where A is any nonzero complex number and B = A(”A’—i —1).
Ul3: For L(A3s A4s ASa AG» ®6) € Ul3s

1 B
<A A L(A’;’ A47 AS’ A67 ®6)> = L((), 05 15 09 1)9

4 3
where 4 = /Og and B = 4‘/@6(@ —
U14: For L(A3e A49 ASa A69 ®6) € U14a

1 B
<A i L(As,AmAs,Aé,@é)) = 1(0,0,1,0,0),

where A4 is any nonzero complex number and B = A(Z‘—j - 1.
Uis: For L(Az, A4, As, Ag, Og) € Uy s, »

1 B
<A =1 L(A3,A4,A5,A6,®6)> = L(0,0,0,1,1),

where 4 = /=06 and B = /—0¢(7* O" —
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UIG: For L(A3s A4s ASa AG» ®6) € Ulés

1 B
IO<A’ Z : L(A3a A4’ ASa A65 ®6)> = L(O’ 07 07 1’ O)a

where A is any nonzero complex number and B = A(”A‘—: —1).

Uy7: For L(A3, A4, As, Ag, Og) € Uy,

1 B

IO<A’ Z : L(A3a A4’ ASa Aﬁs ®6)> = L(O’ 03 07 05 l)a
where 4 = /@ and B is any complex number except for —/©g.
Uig: For L(A3, Ay, As, Ag, O¢) € Uy,

1 B
p(Za Z : L(A3s A4a ASa AG: ®6)> = L(O’ Oa Oa 09 0)3
where A4 is any nonzero complex number and B is any complex number except
for —A4. |

THEOREM 4.6 Let L be an element of FLeib,. Then, it is isomorphic to one of the
following pairwise non-isomorphic Leibniz algebras:

(1) L(0,0,0,0,0) = L5 : egeg=e2, e;eg=¢€:41, 1 <i<5.

(2) L(0,0,0,0, 1): L3, epey = es.

(3) L(O, 0, 0, 1,0)1 LJ, epe] = €¢, €11 = €4.

(4) L(O, 0, 0, 1, 1) LS, epel = 266, e|ey = eéq.

(5) L(0,0,1,0,0): L5, epe; = es, eje; = es, ere] = .

(6) L(0,0,1,0,1): LS, epe; = es + e, e1e) = es, ere] = e.

(7) L(0,1,0,=3,1): L5, epe; = es — 2eq, eje1 = e4 — 3es, €201 = €5, €3e] = €.

(8) L(O, 1,0, —3,0)1 L‘;, epe| = €4 — 36’6, e1ey = e4 — 366, ere] = es5, €381 = €q.

(9) L(l,O, 0, l,O)I LA7', epel =e3 —266, eep =e3— 1366, €261 = €4, €3] = €5,64€] = €4.
(10) L(0,0, 1, 1,A): L5, epe; = es+ (A 4+ 1)eg, eje; = es+eq, e2e; = ¢4, AeC.
(11) L(0,1,0,0,1): L, ege; = eq + Aeg, e1e) = ey, ere) =es, eze = ¢, LeC.
(12) L0, 1,1, 11, A0): L3, ege; = es+es+ (A1 + Aa)es, ejer = es+e5+ Ajes, ere) =
es +eg, e3e1==¢eg, Ay, Ay € C.

(13) L(1,0,0,A,1): L3, epey = ez + (21 — 14)eq, ejeq = e3 + (A — 14)eq, erey = ey,
eze) = es, eqe;=eq, A€ C.

(14) L(1,0,1,—6,1): L%, epe; = e3 + 6es + (A — 20)eq, e1e; = e3 + Ses — 20eq, ere; =
e4 + 6¢g, eze1 = es, eqe; =e4, A€ C.

(15) L(1,0, 1y, =5A1, Aa): L5, epey = e3 + (A1 + S)es + (Ao — SAy — 14)es, eje; = e3+
()\1 + 5)65 — (5)\1 + 14)6’6, €701 :€4+()\.1 + 5)6’6, €3€] = €5, €4€] = Cg, )\1, )\QEC.

(16) L(1,1,x1, X, X3): L‘;, epe; = ez —eq+ (M +5)es + (As + Ay — 14)eg, eje;p =e3—
eq+ (A1 +5)es + (Ar — 14)es, exey =eq — €5+ (A + S)es, eze; =e5 — ey, esey = eg, Ay, Ao,
A3 eC.

Note 4.2 The orbits Uy and U,y with the representatives L(1,0,0,0,1) and
L(1,0,0,0,0) can be included in the parametric family of orbits with representatives
L(1,0, A1, A1, 20) and L(1,0,0,1, 1) with the values of parameters r;=0,i,=1
and A =0, respectively.
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