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Abstract. The paper deals with the complete classification of a subclass of
complex filiform Leibniz algebras in dimensions 5 and 6. This subclass arises
from the naturally graded filiform Lie algebras. We give a complete list of
algebras. In parametric families cases, the corresponding orbit functions (in-
variants) are given. In discrete orbits case, we show a representative of the
orbits.
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1. Introduction

Leibniz algebras were introduced by Loday [5]. A skew-symmetric Leibniz algebra
is a Lie algebra. The main motivation of Loday to introduce this class of algebras
was the search of an “obstruction” to the periodicity in algebraic K-theory. Besides
this purely algebraic motivation, some relationships with classical geometry, non-
commutative geometry, and physics have been recently discovered. The present
paper deals with the low-dimensional case of a subclass of filiform Leibniz algebras.

The outline of the paper is as follows. Section 1 is an introduction to the subclass
of Leibniz algebras that we are going to investigate. The main results of the paper
consisting of a complete classification of a subclass of low dimensional filiform Leibniz
algebras are in Section 2. Here, for 5- and 6-dimensional cases, we give complete
classification. For parametric family cases, the corresponding invariant functions
are presented. Since the proofs in 6-dimensional case are similar to those in 5-
dimensional case, the detailed proofs are given for dimension 5 only.
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Definition 1.1. An algebra L over a field K is called a Leibniz algebra, if its bilinear
operation [-, -] satisfies the following Leibniz identity:

[z, [y, 2] = [[=,9), 2 = [, 2], 4], @,y,2€ L.
Onward, all algebras are assumed to be over the fields of complex numbers C. Let
L be a Leibniz algebra. We put:
L'=1L, LM =[L* 1], k> 1.
Definition 1.2. A Leibniz algebra L is said to be nilpotent, if there exists s € N,

such that

L'>L*> .. DL ={0}.
Definition 1.3. A Leibniz algebra L is said to be filiform, if dimL’ = n — i, where
n=dimL and 2 <i<n.

The set of n-dimensional filiform Leibniz algebras we denote by Leib,,.
The following theorem from [3] splits Leib, 11 into three disjoint subset.

Theorem 1.1. Any (n + 1)-dimensional complex filiform Leibniz algebra admits a
basis {eq, €1, ..., en } called adapted, such that the table of multiplication of the algebra
has one of the following forms, where undefined products are zero:

[0, €0] = ez,
FLeib | = [61‘760]:614-1, 1§’L§Tl*1,
nt leo, e1] = azes +oueq + ...+ an_1en_1 + Oey,
lej,e1] = agejio+ asejis + ...+ Qppi—jen, 1<j<n-2,

A3, 04y ..y Oy 0 eC.

leo, e0] = ea,

[ei, e0] = €iv1, 2<i<n—1,
SLeiby11 = leo,e1] = Bzes + Baea + ... 4+ Bpen,

[617 61] = Y€n,

lej.e1] = Bsejyo + Ba€jisz+ ... + Pnii—jen, 2<ji<n—-2,
637ﬁ4a "'aﬂ”n?’y S C.

[ei, e0] = €iy1, 1<i<n—-1,

[eo, €] = —€iy1, 2<i<n—1,

leo, e0] = bo,oen,

[eo, €1] = —ea + Do 1€,
TLeib,y1 = le1,e1] = b1 16n,

[ei,ej] = a}7j6i+]"+_1 4+ ...

+a?’;(z+y+1)en,1 + b; jen, 1<i<j<n-1,

[ei, 5] = —lej, il ' 1<i<j<n-—1,

[isen—i] = —[en—isei] = (=1)"bjn—ien,
where aﬁj, bi; € C and b; r,—; = b whenever 1 <i<n—1, and b =0 for even n.

According to this theorem, the isomorphism problem inside of each class can be
studied separately. The classes F'Leib,, SLeib, in low dimensional cases have been
considered in [7, 8]. The general methods of classification for Leib,, has been given
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in [1, 2, 6]. This paper deals with the classification problem of low-dimensional cases
of T'Leib,,.
Observe that the class of n-dimensional filiform Lie algebras is in T Leib,,.

Definition 1.4. Let {eg,e1,...,en} be an adapted basis of L € TLeib, 1. Then a
nonsingular linear transformation f : L — L is said to be adapted, if the basis

{f(eo), f(e1), ..., f(en)} is adapted.

The set of all adapted elements of GL,, 11 forms a subgroup and it is denoted by
Goq. The following proposition specifies elements of Ggq.

Proposition 1.1. Let f € G,q. Then f can be represented as follows:

fleo) =€y = ZAieia
i=0

fler) =¢ = ZBiei;

i=1
fei) = e; = [flei-1), f(eo)], 2<i<m,
Ao, Ay, Bj, (i,j =1,...,n) are complex numbers and Ag B;(Ag + A1b) # 0.

Proof. Since a filiform Leibniz algebra is 2-generated (see Theorem 1.1), it is suffi-
cient to consider the adapted action of f on the generators eg, e; :

fleo) = e = ZAieia fler) =¢} = ZBi6i~
i=0 =0
Then
fle:) = [fleim1), feo)] = Ay 2(A1By — AoBi)e; + Z (¥)ej, 2<i<mn.

j=it1

Note that, Ag # 0, and A1 By — AgB; # 0, otherwise f(e,) = 0. The condition
Ag B1(Ap + A1b) # 0 appears naturally, since f is not singular.

Let now consider [f(el), f(eg)} = B() (A1 BQ — AO Bl) e3 + 2?24(*)6_]‘. Then for
the basis {f(eo), f(e1), ..., f(en)} to be adapted By(A1By — AgB;1) = 0. However,
according to the observation above, A1 By — AgBy # 0. Therefore, By = 0. 1

2. The description of T Leib,, n = 5,6.
2.1. 5-dimensional case

In this section we deal with the class T Leibs. By virtue of Theorem 1.1. we can
represent T Leibs as follows:

[eiaeo] = €i+1, 1<:< 37
[eo, ei] = —€iy1, 2<i <3,
= bg e
TLeibe — leo, eo] = bo oea,
° leo, e1] = —ez + bo 164,
le1,e1] = by 1€,
le1, e2] = —[ea, e1] = by 264,
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b0,0,b0,1,01,1,b1,2 € C. Further, the elements of T'Leibs will be denoted by L(a) =
L(bo,0,b0,1,b1,1,b1,2)-

Theorem 2.1 (Isomorphism criterion for T Leibs). Two algebras L(«) and L(a')
from T Leibs are isomorphic, if and only if there exist complexr numbers Ay, A1 and
By : Ag By # 0 and the following conditions hold:

A §bo,0 + Ag Ay b01+A bll

(2.1) by = o
~ Agbo,1 +2A1b1
(2'2) b/O 1 — A3 I
Blbl 1
(2.3) b ,
1,1 — Ag
Blbl 2
(2.4) y , =S1bz
1,2 A(Q)

Proof. Part “if”. Let Ly and Lo from T Leibs; be isomorphic: f : L1 = Lo. We
choose the corresponding adapted bases {eg, €1, e2,e3,e4} and {ep, €], e5, €5, €4} in
Ly and Lo, respectively. Then, in these bases the algebras will be presented as L(«)
and L(a'), where o = (bo,0,b0,1,b1,1,b1,2), and o' = (bj o, 1,67 1,67 2)-

According to Proposition 1.1 one has:

(2.5) ey = feo) = Apeo + Arer + Ases + Ases + Ageu,
' = f(e1) = Bie1 + Baea + Bses + Byey.

Then we get

ey = fle2) = [f(e1), f(eo)]
= AgBiea + AgBses + (AgBs + A1B1b1 1 + (A2 B1 — A1B2)b1 2) eq,

ey = fles) = [f(e2), f(eo)] = AjBies + (AGBz — Ao A1 B1by 2)es,
€y = f(ea) = [f(es), f(eo)] = AjBiea.

By using the table of multiplications one finds the relations between the coeffi-
cients bo 0, bo,1,b1,1,b1,2 and bg g, bg 1,01 1, b o First, consider the equality
[f(eo), f(eo)] = by 0f(ea), we get equation (2.1) and from the equality [f(e1), f(eo)]+
[F(eo), f(ex)] = b1 fles) we have (2.2), and [f(er), f(er)] = b, fles) gives (23).
Finally, the equality (2.4) comes out from [f(e1), f(e2)] = b7 5f(ea).

“Only if” part.

Let the equalities (2.1)—(2.4) hold. Then, the base change (2.5) above is adapted
and it transforms L(«) into L(a/). Indeed,

'S

4

Z Aiei, Z Aie;
= Ao[eo, eo] + A0A1 [eo, e1] + AoAiler, eo] + Afler, eq]

= (A(z)bo,o + A0A1b071 + A%blyl) €eq = b6’0A3B1€4 = bg’oeil,

60» eo
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and
[eg, €] ZA e“ZB €;
—(AoBlez + AoB2€3 + (A1B1b11 + A2B1b1 2 — A1 Bob1 2 + AgBs)es)
+ By (bp1Ag+2A1B11)es
= —eb + AJB1b{) yeq = —€5 + b 1 €).
By the same manner one can prove that [e},e]] = b jel, [e],e5] = ) 5 € and the
other products are zero. 1

For the purpose of simplicity, we establish the following notation: A = 4bg gb1 1 —
bg,l. Now, we list the isomorphism classes of algebras from T Leibs.

Represent T'Leibs as a disjoint union of the following subsets: T Leibs = LQJ U¢,
where -
Ul = {L(a) € TLeibs : by 1 # 0, by o # 0};
{L(a) € TLeibs : 011 #0, b12 =0, A#0};
{L(e) € TLeibs : b11 #0, by 2o =A =0};
{L(«r) € TLeibs : by1 =0, bo1 # 0, by 2 #0};

U2 = {L(a) € TLeibs : by 1 =0, by1 #0, by o =0};
{L(«r) € TLeibs : by1 =bg1 =0, by #0, by 2 #0};
{L(e) € TLeibs : b11 =bp1 =0, boo #0, b12=0};
{L(er) € TLeibs : by,1 =bg1 =boo =0, by 2 #0};
{L(e) € TLeibs : by,1 = bo1 = b = b1,2 = 0}.

Proposition 2.1.
(1) Two algebras L(a) and L(a') from U} are isomorphic, if and only if

(2) For any X from C, there exists L(a) € U3 : (bi f) A=A
Proof. (1) (=) Let L(a) and L(¢’) be isomorphic. Then, due to Theorem 2.1 it is

easy to see that
by o ) b\’
s ! __ )
(b’ ) A= (b > A.
1,1 1,1

1.2 ! bio\*
) A/ _ (,) A
(b/1’1> bl,l

(«<=) Let the equality
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hold. Consider the base change (2.5) above with Ay = 21, A} = —%L  apd

b1,2” T 2b12
2
b1 1

B, = e This changing leads L(«) into

b 4
L ((”) A,0,1,1> .
b1

An analogous base change transforms L(a/) into

Since

then L(«) is isomorphic to L(a').
(2) Obvious. 1

Proposition 2.2. The subsets U2, U2, U2, U2, US, U, U8 and U are single orbits
with representatives L(1,0,1,0), L(0,0,1,0), L(0,1,0,1), L(0,1,0,0), L(1,0,0,1), L(1,
0,0,0),L(0,0,0,1) and L(0,0,0,0), respectively.

Proof. To prove it, we give the appropriate values of Ag, A; and B; in the base
change (as for other A;, B, i, = 2,3,4 they are any, except where specified
otherwise).

For U2 :
eq = Aoeg + Arer + Ases + Agzes + Ageq,
€] = Biej + Baes + Bses + Byey,
ey = AoBies + AgBaes + (A1 B1byy + Ao Bs) ey,
¢y = A2Bies + A2Bsey,
ey = A03B164,
where Ag = % , A = —g%ﬁf and By, = 2\/%7;1.
For Ug’ :
eq = Aoeg + Arer + Ases + Aszes + Ageq,
¢y = Biey + Baey + Bses + Bey,
ey = AgBres + AgBoes + (A1 B1b1 1 + AgBs) ey,
ey = A2Bjes + Ag®Baey,
ey = Ao’ Brey,
where Ag € C*, A; = —é”bbl‘?'ll and By = %.
For U :

eo = Aoeg + Arer + Ages + Ages + Ageu,
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6/1 = Bie; + Byes + Bzesz + B464,
ey = AgBies + AgBaes + (AgBs + (A2B1 — A1Bs)bs 2)ea,
ey = A3Bjes + (A3By — A1 AgBiby o)e,

/ 3
ey = Ag”Biey,

2
where A% =bg 1, A1 = —Agob,?‘o and B; = 1;?7,02'
For U? :
eq = Ageg + Arer + Ages + Agzes + Agey,
¢} = Bie1 + Baes + Bszes + Baey,
6’2 = A08162 + A0B263 + A()Bg€4,
eé = A8B1€3 + A(2)32€47
621 = A88164,
where A2 =bg 1, A; = — %.0  and B, € C*.
’ V' bo,1
For UY :

ey = Ageo + Arer + Ages + Azes + Agey,

e} = Biey + Baesy 4+ Bses + Byey,

ey = AgBres + AgBaes + (AgBs + (A2B1 — A1 Bo)by 2)eq,
ey = A3Bjes + (A3By — Ay AgBiby o)es,

/ 3
e) = Ag”Biey,

who

where Ag = b070b172, A1 € C and Bl = b;’o .

=)

o>
ol

2

For UY :
eo = Aoeo + Arer + Ases + Azes + Age,
¢} = Biey + Baea + Bses + Baey,
ey = AgBies + AgBaes + AgBseu,
ey = A2Bie3 + A%Baey,
el = A3Biey,
where Ag € C*, Ay € C and By = %'
For U :
ey = Apeg + Arer + Ages + Azes + Age,
¢} = Biey + Baea + Bses + Byey,
ey = AgBiea + AgBaes + (AgBs + (A2B1 — A1 Ba)by 2)es,
ey = AgBleg, + (A(%Bg — A1 ApBbi 2)eq,

/ 3
ey = Ag”Biey,
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where Ag € C*, Ay € C and B = %.

For U? :
eq = Ageg + Arer + Ases + Agzes + Ageq,
6’1 = Bie; + Boes + Bses + Baey,
ey = AgBiey + AgBaes + AgBsey,
ey = A2Bie3 + A2Bsey,
ey = A3 Bjey,
where Ay, By € C* and A, € C. |

2.2. 6-dimensional case

This section is devoted to the description of T'Leibg. This class can be represented
by the following table of multiplication:

lei, e0] = €it1, 1<4<4,
[eo, ei] = —eiy1, 2 <i<A4,
TLeibg = [eo, e0] = booes, [eo,er] = —e2 +bores, [ersen] = biies,
[61,62] = —[62,61] = by 2e4 + by €5,
[e1, e3] = —[es, e1] = by ze5,
le1, eq] = —[eq, e1] = —[e2, €3] = [e3, e2] = —ba 3€5.

The elements of T'Leibs will be denoted by L(«), where oo = (bg 1, b1.1,b1,2, 01,3, b2,3).

Theorem 2.2 (Isomorphism criterion for T'Leibg). Two filiform Leibniz algebras
L(«) and L(a') from T Leibg are isomorphic, if and only if there exist Ag, A1, By, Ba,
Bs € C: such that AgB1(Ao + A1 ba3) # 0 and the following equalities hold:

;o ABboo 4 AgAibo s + ATby

007 ABBi(Ag+ Arbas)

, Aobo1 +2A101

0L A3(Ag + A bag)’

/ Bibi 1
(2-6) 1,1 — Ag(Ao N b2’3);
b/1,2 = BlAbgl’2a
0
. 2A0A\BIB 5+ A3B3by s + (A3 (—2B1Bs + B3) + AIBIb ) b s
13— AdBy (Ag + A1ba3) ’
by, = Bi1ba3 _
w Ag+ Arbos
Proof. The proof is the similar to that of Theorem 2.1. 1
Represent T'Leibg as a union of the following subsets:
T Leib}

Ud = {L(a) € TLeibs : byz # 0, bi1 # 0};
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ba3 # 0,
b3 # 0,
ba3 # 0,
b3z # 0,
ba3 # 0,
baz =0,
by 3 =0,
baz =0,
by 3 =0,

bi1 =0, bo1 # 0};

bi1 =0bo1 =0, bia#0, by #0};
bi1="bo1 =0, b12#0, byo=0};
b11=bo1=0b12=0, by #0};
b1,1 = bo,l = b1,2 = bo,o = 0}§

bia #0, b1y #0};

bi2#0, bi1 =0, bo1 # 0};
bio#0, bii =bo1 =0, by # 0};
bi2 #0, b1y =bo,1 =byo=0};

baz=0b12=0, bi1 #0, by 3#0};
bog=0b12=0, b11#0, bi3=0, A#0}
boz=b12=0, bi1#0, bi3=A=0}
bag=bia=0b11=0, bp1 #0, b 3#0};
bag=bia=0b11=0, bp1 #0, b1 3=0}
bog=bia=0b11=0p1=0, boo#0, b1 3#0}
bag=0b1a=0b11=001=0, boo#0, by3=0}

Ug = {L(a) € TLeibg :

Ug = {L(a) € TLeib :
U = {L(a) € TLeib :
Ug = {L(a) € TLeib :
US = {L(a) € TLeibg :
U¢ = {L(a) € TLeib :
U§ = {L(a) € TLeibg :
Us = {L(a) € TLeib :
Ug? = {L(a) € TLeibg :
Ug' = {L(a) € TLeib :
Ud? = {L(a) € TLeibs :
Ug? = {L(a) € TLeibs :
Ud* = {L(a) € TLeibs :
UsS = {L(a) € TLeibg :
U = {L(a) € TLeibs :
Us" = {L(a) € TLeibg :
Ud® = {L(a) € TLeib :
Ug? = {L(a) € TLeibs :

Proposition 2.3.

(1) Two algebras L(a) and L(a/

(o

and

(204, —

2
/
b 3
/ /
—bpabs3

boz =b12 = 51,1 = bo,l = bo,o =0, b3 # 0}5
bag =b1a2 =011 ="0bo1="0p0=0b1,3=0}

) from U} are isomorphic, if and only if

ba.3 2
v (=t Vs
2b1,1 —boibas

3
/ / /3
b2,3b0,1) b1,2 _

(2611 — b2,3b0,1)3 b? ,

/12 114
b2,3b1,1

2 14
b3 3b7 1

2
(2) For any A1, 2 € C, there exists L(a) € Ug : (bis) A=),

(2 b1,1—b2,3b0,1)3b?,2

bg,?’b

s
1,1

= a.

2b1,1—bo,1b2,3

Then orbits from the set U} can be parameterized as L (\1,0,1,X2,0,1), A1, \g €

C.

Proposition 2.4.

(1) Two algebras L(a) and L(a/

(Bo1 —

) from UZ are isomorphic, if and only if

4 )
b/2,3b6,0) b/?,Q _ (bo,1 — b2,3bo,o)4 b‘iQ

/3 115
b5 5001

3 15
b3 5631
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. (b0,1—b2,3b0,0)4bi’,2

(2) For any X € C, there exists L(a) € UZ : s =\
2,370,1
)

Therefore orbits from UZ can be parameterized as L (0,1,0,),0,1), X € C.

Proposition 2.5.
(1) Two algebras L(a) and L(a') from U{ are isomorphic, if and only if
40 obity — 269 3bp D + D251 4boobl o — 261 3D0107 5 + 0T 3b1 1

/ /2 2
b1,2b1,1 b172b1,1

and
(061075 — b'l,gb'l,1)2 (bo1b 5 — b1sbia)’
by b7 N b1 267 '
(2) For any A1, Ay € C, there exists L(a) € U{ :
4bo,0b% 5 — 2b13b0,1b3 5 + 02 gb11 R (bo,1b2.5 — brgbi 1)’
b 2b7 IR bi2b?

The orbits from U{ can be parameterized as L (A1, X2,1,1,0,0), A1, X2 € C.

= Aa.

Proposition 2.6.
(1) Two algebras L(a) and L(a') from U§ are isomorphic, if and only if

(26 b2y — h3bh1)°  (2b0.0b%s — bisbon)’

3 /4 3 14
b1,2b0,1 b1,2b0,1

. ] (2 b0,0big_bl,SbO,l)a
(2) For any X € C, there exists L(a) € U§ : 5 50,

=\
The orbits from the set US can be parameterized as L (X, 1,0,1,0,0), X € C.

Proposition 2.7.
(1) Two algebras L(c) and L(a') from U} are isomorphic, if and only if

6
bl b 6
L3 ) A= (”’) A.
b1,1 bl,l
6
(2) For any X € C, there exists L(a) € Ug! : (Zi—f) A=\

The orbits from Ut can be parameterized as L (),0,1,0,1,0), X € C.
Proposition 2.8. The subsets U3, Ug, US, US, U, U°, U2, U3, UM, U,
U, UL, U and UL® are single orbits with representatives L(1,0,0,1,0,1),
£(0,0,0,1,0,1), L(1,0,0,0,0,1), L(0,0,0,0,0,1), L(1,0,0,1,0,0), £(0,0,0,1,0,0),
L(1,0,1,0,0,0),L(0,0,1,0,0,0), £(0,1,0,0,1,0), £(0,1,0,0,0,0), L(1,0,0,0,1,0),
L(1,0,0,0,0,0), L(0,0,0,0,1,0) and L(0,0,0,0,0,0), respectively.

3. Conclusion

(1) In T Leibs, we distinguished nine isomorphism classes (one parametric family
and eight concrete) of three dimensional Leibniz algebras and shown that
they exhaust all possible cases.

(2) In the case of T'Leibg, there are 19 isomorphism classes (five parametric
families and 14 concrete) and they exhaust all possible cases.
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Remark 3.1. It should be pointed out that the filiform Lie algebras case is covered
by U$, U2 in 5- and U, US, UL, U8, UL in 6-dimensional cases, respectively.
Therefore, the list of filiform Lie algebras in the paper agrees with the list given in [4].
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