
PROGRAMMING OF FINITE ELEMENT METHODS IN MATLAB

LONG CHEN

We shall discuss how to implement the linear finite element method for solving the Pois-
son equation. We begin with the data structure to represent the triangulation and boundary
conditions, introduce the sparse matrix, and then discuss the assembling process. Since we
use MATLAB as the programming language, we pay attention to an efficient programming
style using sparse matrices in MATLAB.

1. DATA STRUCTURE OF TRIANGULATION

We shall discuss the data structure to represent triangulations and boundary conditions.

1.1. Mesh data structure. The matrices node(1:N,1:d) and elem(1:NT,1:d+1) are
used to represent a d-dimensional triangulation embedded in Rd, where N is the number
of vertices and NT is the number of elements. These two matrices represent two different
structure of a triangulation: elem for the topology and node for the geometric embedding.

The matrix elem represents a set of abstract simplices. The index set {1, 2, . . . , N} is
called the global index set of vertices. Here an vertex is thought as an abstract entity. For
a simplex t, {1, 2, . . . , d + 1} is the local index set of t. The matrix elem is the mapping
(pointer) from the local index to the global one, i.e., elem(t,1:d+1) records the global
indices of d + 1 vertices which form the abstract d-simplex t. Note that any permutation
of vertices of a simplex will represent the same abstract simplex.

The matrix node gives the geometric realization of the simplicial complex. For ex-
ample, for a 2-D triangulation, node(k,1:2) contain x- and y-coordinates of the k-th
nodes.

The geometric realization introduces an ordering of the simplex. For each elem(t,:),
we shall always order the vertices of a simplex such that the signed area is positive. That
is in 2-D, three vertices of a triangle is ordered counter-clockwise and in 3-D, the ordering
of vertices follows the right-hand rule.

Remark 1.1. Even with the orientation requirement, certain permutation of vertices is still
allowed. Similarly any labeling of simplices in the triangulation, i.e. any permutation of the
first index of elem matrix will represent the same triangulation. The ordering of simplexes
and vertices will be used to facilitate the implementation of the local mesh refinement and
coarsening. �

As an example, node and elem matrices for the triangulation of the L-shape domain
(−1, 1)× (−1, 1)\([0, 1]× [0,−1]) are given in the Figure 1 (a) and (b).

1.2. Boundary condition. We use bdFlag(1:NT,1:d+1) to record the type of boundary
sides (edges in 2-D and faces in 3-D). The value is the type of boundary condition:

• 0 for non-boundary sides;
• 1 for the first type, i.e., Dirichlet boundary;
• 2 for the second type, i.e., Neumann boundary;
• 3 for the third type, i.e., Robin boundary.
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(a) A triangulation of a L-shape domain.
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FIGURE 3. A triangulation of a L-shape domain.
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4 5
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5 8
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6 8
7 8

1 2
edge

TABLE 1. node,elem and edge matrices for the L-shape domain in Figure 3.

3.3.2. Auxiliary data structure for 2-D triangulation. We shall discuss how to extract the topological
or combinatorial structure of a triangulation by using elem array only. The combinatorial structure will
benefit the finite element implementation.

edge. We first complete the 2-D simplicial complex by constructing the 1-dimensional simplex. In the
matrix edge(1:NE,1:2), the first and second rows contain indices of the starting and ending points.
The column is sorted in the way that for the k-th edge, edge(k,1)<edge(k,2). The following code
will generate an edge matrix.

1 totalEdge = sort([elem(:,[1,2]); elem(:,[1,3]); elem(:,[2,3])],2);

2 [i,j,s] = find(sparse(totalEdge(:,2),totalEdge(:,1),1));

3 edge = [j,i]; bdEdge = [j(s==1),i(s==1)];

The first line collect all edges from the set of triangles and sort the column such that totalEdge(k,1)
<totalEdge(k,2). The interior edges are repeated twice in totalEdge. We use the summation
property of sparse command to merge the duplicated indices. The nonzero vector s takes values 1 (for
boundary edges) or 2 (for interior edges). We then use find to return the nonzero indices which forms

(b) node and elem matrices

FIGURE 1. (a) A triangulation of the L-shape domain (−1, 1) ×
(−1, 1)\([0, 1] × [0,−1]). (b) Its representation using node and elem

matrices.

For a d-simplex, we label its (d − 1)-faces in the way so that the ith face is opposite to
the ith vertex. Therefore, for a 2-D triangulation, bdFlag(t,:) = [1 0 2] means, the
edge opposite to elem(t,1) is a Dirichlet boundary edge, the one to elem(t,3) is of
Neumann type, and the other is an interior edge.

We may extract boundary edges for a 2-D triangulation from bdFlag by:

1 totalEdge = [elem(:,[2,3]); elem(:,[3,1]); elem(:,[1,2])];

2 Dirichlet = totalEdge(bdFlag(:) == 1,:);

3 Neumann = totalEdge(bdFlag(:) == 2,:);

Remark 1.2. The matrix bdFlag is sparse but we use a dense matrix to store it. It would
save storage if we record boundary edges or faces only. The current form is convenient
for the local refinement and coarsening since the boundary can be easily update along with
the change of elements. We do not save bdFlag as a sparse matrix since updating sparse
matrix is time consuming. We can set up the type of bdFlag to int8 to minimize the
waste of spaces. �

2. SPARSE MATRIX IN MATLAB

MATLAB is an interactive environment and high-level programming language for nu-
meric scientific computation. One of its distinguishing features is that the only data type is
the matrix. Matrices may be manipulated element-by-element, as in low-level languages
like Fortran or C. But it is better to manipulate matrices at a time which will be called high
level coding style. This style will result in more compact code and usually improve the
efficiency.

We start with explanation of sparse matrix and corresponding operations. The fast
sparse matrix package and build in functions in MATLAB will be used extensively later
on. The content presented here is mostly based on Gilbert, Moler and Schereiber [4].

One of the nice features of finite element methods is the sparsity of the matrix obtained
via the discretization. Although the matrix is N × N = N2, there are only cN nonzero
entries in the matrix with a small constant c. Sparse matrix is the corresponding data struc-
ture to take advantage of this sparsity. Sparse matrix algorithms require less computational
time by avoiding operations on zero entries and sparse matrix data structures require less
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computer memory by not storing many zero entries. We refer to the book [6] for detailed
description on sparse matrix data structure and [7] for a quick introduction on popular data
structures of sparse matrix. In particular, the sparse matrix data structure and operations
has been added to MATLAB by Gilbert, Moler and Schereiber and documented in [4].

2.1. Storage scheme. There are different types of data structures for the sparse matrix.
All of them share the same basic idea: use a single array to store all nonzero entries and
two additional integer arrays to store the indices of nonzero entries.

An intutive scheme, known as coordinate format, is to store both the row and column
indices. In the sequel, we suppose A is a m × n matrix containing only nnz nonzero
elements. Let us look at the following simple example:

(1) A =


1 0 0
0 2 4
0 0 0
0 9 0

 , i =


1
2
4
2

 , j =


1
2
2
3

 , s =


1
2
9
4

 .
In this example, i vector stores row indices of non-zeros, j column indices, and s the value
of non-zeros. All three vectors have the same length nnz. The two indices vectors i and j
contains redundant information. We can compress the column index vector j to a column
pointer vector with length n + 1. The value j(k) is the pointer to the beginning of k-th
column in the vector of i and s, and j(n + 1) = nnz. For example, in CSC formate,
the vector to store the column pointer will be j = [ 1 3 4 ]t. This scheme is known
as Compressed Sparse Column (CSC) scheme and is used in MATLAB sparse matrices
package. Comparing with coordinate formate, CSC formate saves storage for nnz−n− 1
integers which could be nonnegligilble when the number of nonzero is much larger than
that of the column. In CSC formate it is efficient to extract a column of a sparse matrix.
For example, the k-th column of a sparse matrix can be build from the index vector i and
the value vector s ranging from j(k) to j(k + 1)− 1. There is no need of searching index
arrays. An algorithm that builds up a sparse matrix one column at a time can be also
implemented efficiently [4].

Remark 2.1. CSC is the internal representation of sparse matrices in MATLAB. For user
convenience, the coordinate scheme is presented as the interface. This allows users to
create and decompose sparse matrices in a more straightforward way.

Comparing with the dense matrix, the sparse matrix lost the direct relation between
the index (i,j) and the physical location to store the value A(i,j). The accessing and
manipulating matrices one element at a time requires the searching of the index vectors to
find such nonzero entry. It takes time at least proportional to the logarithm of the length
of the column; inserting or removing a nonzero may require extensive data movement [4].
Therefore, do not manipulate a sparse matrix element-by-element in a large for loop in
MATLAB.

Due to the lost of the link between the index and the value of entries, the operations
on sparse matrices is delicate. One needs to code specific subroutines for standard matrix
operations: matrix times vector, addition of two sparse matrices, and transpose of sparse
matrices etc. Since some operations will change the sparse pattern, typically there is a
priori loop to set up the nonzero pattern of the resulting sparse matrix. Good sparse matrix
algorithms should follow the “time is proportional to flops” rule [4]: The time required for
a sparse matrix operation should be proportional to the number of arithmetic operations on
nonzero quantities. The sparse package in MATLAB follows this rule; See [4] for details.
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2.2. Create and decompose sparse matrix. To create a sparse matrix, we first form i, j
and s vectors, i.e., a list of nonzero entries and their indices, and then call the function
sparse using i, j, s as input. Several alternative forms of sparse (with more than one
argument) allow this. The most commonly used one is

A = sparse(i,j,s,m,n).
This call generates an m × n sparse matrix, having one nonzero for each entry in the

vectors i, j, and s such that A(i(k), j(k)) = s(k). The first three arguments all have the
same length. However, the indices in i and j need not be given in any particular order and
could have duplications. If a pair of indices occurs more than once in i and j, sparse adds
the corresponding values of s together. This nice summation property is very useful for the
assembling procedure in finite element computation.

The function [i,j,s]=find(A) is the inverse of sparse function. It will extract the
nonzero elements together with their indices. The indices set (i, j) are sorted in column
major order and thus the nonzero A(i,j) is sorted in lexicographic order of (j,i) not
(i,j). See the example in (1).

Remark 2.2. There is a similar command accumarray to create a dense matrix A from
indices and values. It is slightly different from sparse. The index [i j] should be paired
together to form a subscript vectors. So is the dimension [m n]. Since the accessing of a
single element in a dense matrix is much faster than that in a sparse matrix, when m or n
is small, say n = 1, it is better to use accumarray instead of sparse. A most commonly
used command is

accumarray([i j], s, [m n]).

3. ASSEMBLING OF MATRIX EQUATION

In this section, we discuss how to obtain the matrix equation for the linear finite element
method of solving the Poisson equation

(2) −∆u = f in Ω, u = gD on ΓD, ∇u · n = gN on ΓN ,

where ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. We assume ΓD is closed and ΓN open.
Denoted byH1

g,D(Ω) = {v ∈ L2(Ω),∇v ∈ L2(Ω) and v|ΓD = gD}. Using integration
by parts, the weak form of the Poisson equation (2) is: find u ∈ H1

g,D(Ω) such that

(3) a(u, v) :=

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx +

∫
ΓN

gNv dS for all v ∈ H1
0,D(Ω).

Let T be a triangulation of Ω. We define the linear finite element space on T as

VT = {v ∈ C(Ω̄) : v|τ ∈ P1,∀τ ∈ T },
whereP1 is the space of linear polynomials. For each vertex vi of T , let φi be the piecewise
linear function such that φi(vi) = 1 and φi(vj) = 0 if j 6= i. Then it is easy to see
VT is spanned by {φi}Ni=1. The linear finite element method for solving (2) is to find
u ∈ VT ∩H1

g,D(Ω) such that (3) holds for all v ∈ VT ∩H1
0,D(Ω).

We shall discuss an efficient way to obtain the algebraic equation. It is an improved
version, for the sake of efficiency, of that in the paper [1].

3.1. Assembling the stiffness matrix. For a function v ∈ VT , there is a unique represen-
tation: v =

∑N
i=1 viφi. We define an isomorphism VT ∼= RN by

(4) v =

N∑
i=1

viφi ←→ v = (v1, · · · , vN )t,
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and call v the coordinate vector of v relative to the basis {φi}Ni=1). Following the termi-
nology in linear elasticity, we introduce the stiffness matrix

A = (aij)N×N , with aij = a(φj , φi).

In this subsection, we discuss how to form the matrix A efficiently in MATLAB.

3.1.1. Standard assembling process. By the definition, for 1 ≤ i, j ≤ N ,

aij =

∫
Ω

∇φj · ∇φi dx =
∑
τ∈T

∫
τ

∇φj · ∇φi dx.

For each simplex τ , we define the local stiffness matrix Aτ = (aτij)(d+1)×(d+1) as

aτiτ jτ =

∫
τ

∇λjτ · ∇λiτ dx, for 1 ≤ iτ , jτ ≤ d+ 1.

The computation of aij will then be decomposed into the computation of local stiffness
matrix and the summation over all elements. Here we use the fact that restricted to one
simplex, the basis φi is identical to λiτ and the subscript in aτiτ jτ is the local index while
in aij it is the global index. The assembling process is to distribute the quantity associated
to the local index to that to the global index.

Suppose we have a subroutine to compute the local stiffness matrix, to get the global
stiffness matrix, we apply a for loop of all elements and distribute element-wise quantity
to node-wise quantity. A straightforward MATLAB code is like

1 function A = assemblingstandard(node,elem)

2 N=size(node,1); NT=size(elem,1);

3 A=zeros(N,N); %A = sparse(N,N);

4 for t=1:NT

5 At=locatstiffness(node(elem(t,:),:));

6 for i=1:3

7 for j=1:3

8 A(elem(t,i),elem(t,j))=A(elem(t,i),elem(t,j))+At(i,j);

9 end

10 end

11 end

The above code is correct but not efficient. There are at least two reasons for the slow
performance:

(1) The stiffness matrix A is a full matrix which needsO(N2) storage. It will be out of
memory quickly when N is big (e.g., N = 104). Sparse matrix should be used for
the sake of memory. Nothing wrong with MATLAB. Coding in other languages
also need to use sparse matrix data structure.

(2) There is a large for loops with size of the number of elements. This can quickly
add significant overhead when NT is large since each line in the loop will be inter-
preted in each iteration. This is a weak point of MATLAB. Vectorization should
be applied for the sake of efficiency.

We now discuss the standard procedure: transfer the computation to a reference simplex
through an affine map, on computing of the local stiffness matrix. We include the two
dimensional case here for the comparison and completeness.

We call the triangle τ̂ spanned by v̂1 = (1, 0), v̂2 = (0, 1) and v̂3 = (0, 0) a reference
triangle and use x̂ = (x̂, ŷ)t for the vector in that coordinate. For any τ ∈ T , we treat it
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as the image of τ̂ under an affine map: F : τ̂ → τ . One of such affine map is to match the
local indices of three vertices, i.e., F (v̂i) = vi, i = 1, 2, 3:

F (x̂) = Bt(x̂) + c,

where

B =

[
x1 − x3 y1 − y3

x2 − x3 y2 − y3

]
, and c = (x3, y3)t.

We define û(x̂) = u(F (x̂)). Then ∇̂û = B∇u and dxdy = |det(B)|dx̂dŷ. We change
the computation of the integral in τ to τ̂ by∫

τ

∇λi · ∇λjdxdy =

∫
τ̂

(B−1∇̂λ̂i) · (B−1∇̂λ̂j)|det(B)|dx̂dŷ

=
1

2
|det(B)|(B−1∇̂λ̂i) · (B−1∇̂λ̂j).

In the reference triangle, λ̂1 = x̂, λ̂2 = ŷ and λ̂3 = 1− x̂− ŷ. Thus

∇̂λ̂1 =

[
1
0

]
, ∇̂λ̂2 =

[
0
1

]
, and ∇̂λ̂3 =

[
−1
−1

]
.

We then end with the following subroutine [1] to compute the local stiffness matrix in one
triangle τ .

1 function [At,area] = localstiffness(p)

2 At = zeros(3,3);

3 B = [p(1,:)-p(3,:); p(2,:)-p(3,:)];

4 G = [[1,0]’,[0,1]’,[-1,-1]’];

5 area = 0.5*abs(det(B));

6 for i = 1:3

7 for j = 1:3

8 At(i,j) = area*((B\G(:,i))’*(B\G(:,j)));

9 end

10 end

The advantage of this approach is that by modifying the subroutine localstiffness,
one can easily adapt to new elements and new equations.

3.1.2. Assembling using sparse matrix. A straightforward modification of using sparse
matrix is to replace the line 3 in the subroutine assemblingstandard by A=sparse(N,N).
Then MATLAB will use sparse matrix to store A and thus we solve the problem of stor-
age. Thanks to the sparse matrix package in MATLAB, we can still access and operate the
sparse A use standard format and thus keep other lines of code unchanged.

However, as we mentioned before, updating one single element of a sparse matrix
in a large loop is very expensive since the nonzero indices and values vectors will be
reformed and a large of data movement is involved. Therefore the code in line 8 of
assemblingstandard will dominate the whole computation procedure. In this example,
numerical experiments show that the subroutine assemblingstandard will take O(N2)
time.

We should use sparse command to form the sparse matrix. The following subroutine
is suggested by T. Davis [2].

1 function A = assemblingsparse(node,elem)

2 N = size(node,1); NT = size(elem,1);

3 i = zeros(9*NT,1); j = zeros(9*NT,1); s = zeros(9*NT,1);
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4 index = 0;

5 for t = 1:NT

6 At = localstiffness(node(elem(t,:),:));

7 for ti = 1:3

8 for tj = 1:3

9 index = index + 1;

10 i(index) = elem(t,ti);

11 j(index) = elem(t,tj);

12 s(index) = At(ti,tj);

13 end

14 end

15 end

16 A = sparse(i, j, s, N, N);

In the subroutine assemblingsparse, we first record a list of index and nonzero en-
tries in the loop and use build-in function sparse to form the sparse matrix outside the
loop. By doing in this way, we avoid updating a sparse matrix inside a large loop. The sub-
routine assemblingsparse is faster than assemblingstandard. Numerical test shows
the computational complexity is improved fromO(N2) toO(N logN). This simple mod-
ification is recommended when translating C or Fortran codes into MATLAB.

3.1.3. Vectorization of assembling. There is still a large loop in the subroutine aseemblingsparse.
We shall use the vectorization technique to avoid the outer large for loop.

Given a d-simplex τ , recall that the barycentric coordinates λj(x), j = 1, · · · , d + 1
are linear functions of x. If the j-th vertices of a simplex τ is the k-th vertex, then the hat
basis function φk restricted to a simplex τ will coincide with the barycentric coordinate
λj . Note that the index j = 1, · · · , d + 1 is the local index set for the vertices of τ , while
k = 1, · · · , N is the global index set of all vertices in the triangulation.

We shall derive a formula for∇λi, i = 1, · · · , d+1. Let Fi denote the (d−1)-face of τ
opposite to the ith-vertex. Since λi(x) = 0 for all x ∈ Fi, and λi(x) is an affine function
of x, the gradient ∇λi is a normal vector of the face Fi with magnitude 1/hi, where hi is
the distance from the vertex xi to the face Fi. Using the relation |τ | = 1

d |Fi|hi, we end
with the following formula

(5) ∇λi =
1

d! |τ |
ni,

where ni is an inward normal vector of the face Fi with magnitude ‖ni‖ = (d − 1)!|Fi|.
Therefore

aτij =

∫
τ

∇λi · ∇λj dx =
1

d!2|τ |
ni · nj .

In 2-D, the scaled normal vector ni can be easily computed by a rotation of the edge
vector. For a triangle spanned by x1,x2 and x3, we define li = xi+1 − xi−1 where the
subscript is 3-cyclic. For a vector v = (x, y), we denoted by v⊥ = (−y, x). Then ni = l⊥i
and ni · nj = li · lj . The edge vector li for all triangles can be computed as a matrix and
will be used to compute the area of all triangles.

We then end with the following compact and efficient code for the assembling of stiff-
ness matrix in two dimensions.

1 function A = assembling(node,elem)

2 N = size(node,1); NT = size(elem,1);

3 ii = zeros(9*NT,1); jj = zeros(9*NT,1); sA = zeros(9*NT,1);

4 ve(:,:,3) = node(elem(:,2),:)-node(elem(:,1),:);
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5 ve(:,:,1) = node(elem(:,3),:)-node(elem(:,2),:);

6 ve(:,:,2) = node(elem(:,1),:)-node(elem(:,3),:);

7 area = 0.5*abs(-ve(:,1,3).*ve(:,2,2)+ve(:,2,3).*ve(:,1,2));

8 index = 0;

9 for i = 1:3

10 for j = 1:3

11 ii(index+1:index+NT) = elem(:,i);

12 jj(index+1:index+NT) = elem(:,j);

13 sA(index+1:index+NT) = dot(ve(:,:,i),ve(:,:,j),2)./(4*area);

14 index = index + NT;

15 end

16 end

17 A = sparse(ii,jj,sA,N,N);

Remark 3.1. One can further improve the efficiency of the above subroutine by using the
symmetry of the matrix. For example, the inner loop can be changed to for j = i:3.

In 3-D, the scaled normal vector ni can be computed by the cross product of two edge
vectors. We list the code below and explain it briefly.

1 function A = assembling3(node,elem)

2 N = size(node,1); NT = size(elem,1);

3 ii = zeros(16*NT,1); jj = zeros(16*NT,1); sA = zeros(16*NT,1);

4 face = [elem(:,[2 4 3]);elem(:,[1 3 4]);elem(:, [1 4 2]);elem(:, [1 2 3])];

5 v12 = node(face(:,2),:)-node(face(:,1),:);

6 v13 = node(face(:,3),:)-node(face(:,1),:);

7 allNormal = cross(v12,v13,2);

8 normal(1:NT,:,4) = allNormal(3*NT+1:4*NT,:);

9 normal(1:NT,:,1) = allNormal(1:NT,:);

10 normal(1:NT,:,2) = allNormal(NT+1:2*NT,:);

11 normal(1:NT,:,3) = allNormal(2*NT+1:3*NT,:);

12 v12 = v12(3*NT+1:4*NT,:);

13 v13 = v13(3*NT+1:4*NT,:);

14 v14 = node(elem(:,4),:)-node(elem(:,1),:);

15 volume = dot(cross(v12,v13,2),v14,2)/6;

16 index = 0;

17 for i = 1:4

18 for j = 1:4

19 ii(index+1:index+NT) = elem(:,i);

20 jj(index+1:index+NT) = elem(:,j);

21 sA(index+1:index+NT) = dot(normal(:,:,i),normal(:,:,j),2)./(36*volume);

22 index = index + NT;

23 end

24 end

25 A = sparse(ii,jj,sA,N,N);

The code in line 4 will collect all faces of the tetrahedron mesh. So the face is of dimen-
sion 4NT×3. For each face, we form two edge vectors v12 and v13, and apply the cross
product to obtain the scaled normal vector in allNormal matrix. The code in line 8-11 is
to reshape the 4NT×3 normal vector to a NT×3×4 matrix. Note that in line 8, we assign
the value to normal(:,:,4) first such that the MATLAB will allocate enough memory
for the array normal when creating it. Line 15 use the mix product of three edge vectors to
compute the volume and line 19–22 is similar to 2-D case. The introduction of the scaled
normal vector ni simplify the implementation and enable us to vectorize the code.
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3.2. Right hand side. We define the vector f = (f1, · · · , fN )t by fi =
∫

Ω
fφi, where

φi is the hat basis at the vertex vi. For quasi-uniform meshes, all simplices are around the
same size, while in adaptive finite element method, some elements with large mesh size
could remain unchanged. Therefore, although the 1-point quadrature is adequate for the
linear element on quasi-uniform meshes, to reduce the error introduced by the numerical
quadrature, we compute the load term

∫
Ω
fφi by 3-points quadrature rule in 2-D and 4-

points rule in 3-D. General order numerical quadrature will be discussed in the next section.
We list the 2-D code below as an example to emphasize that the command accumarray

is used to avoid the slow for loop over all elements.

1 mid1 = (node(elem(:,2),:)+node(elem(:,3),:))/2;

2 mid2 = (node(elem(:,3),:)+node(elem(:,1),:))/2;

3 mid3 = (node(elem(:,1),:)+node(elem(:,2),:))/2;

4 bt1 = area.*(f(mid2)+f(mid3))/6;

5 bt2 = area.*(f(mid3)+f(mid1))/6;

6 bt3 = area.*(f(mid1)+f(mid2))/6;

7 b = accumarray(elem(:),[bt1;bt2;bt3],[N 1]);

3.3. Boundary condition. We list the code for 2-D case and briefly explain it for the
completeness. Recall that Dirichlet and Neumann are boundary edges which can be
found using bdFlag.

1 %-------------------- Dirichlet boundary conditions------------------------

2 isBdNode = false(N,1);

3 isBdNode(Dirichlet) = true;

4 bdNode = find(isBdNode);

5 freeNode = find(˜isBdNode);

6 u = zeros(N,1);

7 u(bdNode) = g_D(node(bdNode,:));

8 b = b - A*u;

9 %-------------------- Neumann boundary conditions -------------------------

10 if (˜isempty(Neumann))

11 Nve = node(Neumann(:,1),:) - node(Neumann(:,2),:);

12 edgeLength = sqrt(sum(Nve.ˆ2,2));

13 mid = (node(Neumann(:,1),:) + node(Neumann(:,2),:))/2;

14 b = b + accumarray([Neumann(:),ones(2*size(Neumann,1),1)], ...

15 repmat(edgeLength.*g_N(mid)/2,2,1),[N,1]);

16 end

Line 2-4 will find all Dirichlet boundary nodes. The Dirichlet boundary condition is
posed by assign the function values at Dirichlet boundary nodes bdNode. It could be
found by using bdNode = unique(Dirichlet) but unique is very costly. So we use
logic array to find all nodes on the Dirichlet boundary, denoted by bdNode. The other
nodes will be denoted by freeNode.

The vector u is initialized as zero vector. Therefore after line 7, the vector u will rep-
resent a function uD ∈ Hg,D. Writing u = ũ + uD, the problem (3) is equivalent to
finding ũ ∈ VT ∩ H1

0 (Ω) such that a(ũ, v) = (f, v) − a(uD, v) + (gN , v)ΓN for all
v ∈ VT ∩ H1

0 (Ω). The modification of the right hand side (f, v) − a(uD, v) is realized
by the code b=b-A*u in line 8. The boundary integral involving the Neumann boundary
part is computed in line 11–15 using the middle point quadrature. Note that it is vectorized
using accumarray.



10 LONG CHEN

Since uD and ũ use disjoint nodes set, one vector u is used to represent both. The
addition of ũ+uD is realized by assign values to different index sets of the same vector u.
We have assigned the value to boundary nodes in line 5. We will compute ũ, i.e., the value
at other nodes (denoted by freeNode), by

(6) u(freeNode)=A(freeNode,freeNode)\b(freeNode).

For the Poisson equation with Neumann boundary condition

−∆u = f in Ω,
∂u

∂n
= g on Γ,

there are two issues on the well posedness of the continuous problem:
(1) solutions are not unique. If u is a solution of Neumann problem, so is u + c for

any constant c ∈ R. One more constraint is needed to determine this constant. A
common choice is

∫
Ω
udx = 0.

(2) a compatible condition for the existence of a solution. There is a compatible con-
dition for f and g:

(7) −
∫

Ω

f dx =

∫
Ω

∆udx =

∫
∂Ω

∂u

∂n
dS =

∫
∂Ω

g dS.

We then discuss the consequence of these two issues in the discretization. The stiffness
matrix A is symmetric but only semi-definite. The kernel of A consists of constant vectors,
i.e, the rank of A is N-1. Then Au=b is solvable if and only if

(8) mean(b)=0

which is the discrete compatible condition. If the integral is computed exactly, according
to (7), (8) should hold in the discrete case. But since we use numerical quadrature to
approximate the integral, (8) may hold accurately. We can enforce (8) by the modification
b = b - mean(b).

To deal with the constant kernel of A, we can simply set freeNode=2:N and then use
(6) to find values of u at freeNode. Since solution u is unique up to a constant, afterwards
we need to modify u to satisfy certain constraint. For example, to impose the zero average,
i.e.,

∫
Ω
udx = 0/|Ω|, we could use the following code:

1 c = sum(mean(u(elem),2).*area)/sum(area);

2 u = u - c;

The H1 error will not affect by the constant shift but when computing L2 error, make sure
the exact solution will satisfy the same constraint.

4. NUMERICAL QUADRATURE

In the implementation, we need to compute various integrals on a simplex. In this
section, we will present several numerical quadrature rules for simplexes in 1, 2 and 3
dimensions.

The numerical quadrature is to approximate an integral by weighted average of function
values at sampling points pi:∫

τ

f(x) dx ≈ In(f) :=

n∑
i=1

f(pi)wi|τ |.

The order of a numerical quadrature is defined as the largest integer k such that
∫
f =

In(f) when f is a polynomial of degree less than equal to k.
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A numerical quadrature is determined by the quadrature points and corresponding weight:
(pi, wi), i = 1, . . . , n. For a d-simplex τ , let xi, i = 1, . . . , d + 1 be vertices of τ . The
simplest one is the one point rule:

I1(f) = f(cτ )|τ |, cτ =
1

d+ 1

d+1∑
i=1

xi.

A very popular one is the trapezoidal rule:

I1(f) =
1

d+ 1

d+1∑
i=1

f(xi)|τ |.

Both of them are of order one, i.e., exact for linear polynomial. For second order quadra-
ture, in 1-D, the Simpson rule is quite popular∫ b

a

f(x) dx ≈ (b− a)
1

6
(f(a) + 4f((a+ b)/2) + f(b)) .

For a triangle, a second order quadrature is using three middle points mi, i = 1, 2, 3 of
edges: ∫

τ

f(x) dx ≈ |τ |1
3

3∑
i=1

f(mi).

These rules are popular due to the reason that the points and the weight are easy to memo-
rize. No such rule exists for 3-D second order quadrature rule.

A criterion for choosing quadrature points is to attain a given precision with the fewest
possible function evaluations. A simple question: for the two first order quadrature rules
given above, which one shall we use? Restricting to one simplex, the answer is obvious.
When considering an integral over a triangulation, the trapezoidal rule is better since it
only evaluates the function at N vertices while the center rule needs NT evaluation. It is
a simple exercise to show NT ≈ 2N asymptotically.

Another criterion will be related to the inverse of matrix. For example, mass lumping
can be realized by the trapezoidal rule. We will discuss this in future chapters.

In 1-D, the Gauss quadrature use n points to achieve the order 2n − 1 which is the
highest order for n points. The Gauss points are roots of orthogonal polynomials and can
be found in almost all books on numerical analysis. We collect some quadrature rules for
triangles and tetrahedron which is less well documented in the literature. We present the
points in the barycentric coordinate p = (λ1, . . . , λd+1). The Cartesian coordinate of p is
obtained by

∑d+1
i=1 λixi. The high order rules are less desirable since too many points are

needed.
The 2-D quadrature points can be found in the paper [3] and the 3-D case is in [5]. 16

digits accurate quadrature points is included in iFEM. Type quadpts and quadpts3.
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