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Abstract: In this paper, we design two classes of stabilized mixed finite element methods for linear elasticity
on simplicial grids. In the first class of elements, we use H(div, Ω;S)-Pk and L2(Ω;ℝn)-Pk−1 to approximate
the stress and displacement spaces, respectively, for 1 ≤ k ≤ n, and employ a stabilization technique in terms
of the jump of the discrete displacement over the edges/faces of the triangulation under consideration; in the
second class of elements, we use H1

0(Ω;ℝn)-Pk to approximate the displacement space for 1 ≤ k ≤ n, and
adopt the stabilization technique suggested by Brezzi, Fortin, and Marini [19]. We establish the discrete inf-
sup conditions, and consequently present the a priori error analysis for them. The main ingredient for the
analysis are two special interpolation operators, which can be constructed using a crucial H(div) bubble
function space of polynomials on each element. The feature of these methods is the low number of global
degrees of freedom in the lowest order case.Wepresent somenumerical results to demonstrate the theoretical
estimates.

Keywords: Linear Elasticity, Stabilized Mixed Finite Element Method, Error Analysis, Simplicial Grid,
Inf-Sup Condition
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1 Introduction
Assume that Ω ⊂ ℝn is a bounded polytope. Denote by S the space of all symmetric n × n tensors. The
Hellinger–Reissner mixed formulation of the linear elasticity under the load f ∈ L2(Ω;ℝn) is given as fol-
lows: Find (σ, u) ∈ Σ × V := H(div, Ω;S) × L2(Ω;ℝn) such that

a(σ, τ) + b(τ, u) = 0 for all τ ∈ Σ, (1.1)

−b(σ, v) = ∫
Ω

f ⋅ v dx for all v ∈ V , (1.2)

where
a(σ, τ) := ∫

Ω

Aσ : τ dx, b(τ, v) := ∫
Ω

div τ ⋅ v dx

withA being the compliance tensor of fourth order defined by

Aσ := 1
2μ(σ −

λ
nλ + 2μ (tr σ)δ).
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Here δ := (δij)n×n is the Kronecker tensor, tr is the trace operator, and positive constants λ and μ are the Lamé
constants. It is arduous to design H(div, Ω;S) conforming finite element with polynomial shape functions
due to the symmetry requirement of the stress tensor. Hence composite elements were one main choice to
approximate the stress in the last century (cf. [7, 30, 46, 56]).

In the early years of this century, Arnold andWinther constructed the firstH(div, Ω;S) conformingmixed
finite elementwith polynomial shape functions in two dimensions in [10], whichwas extended to tetrahedral
grids in three dimensions in [1, 4] and simplicial grids in any dimension in [42]. In those elements, the dis-
placement space is approximated by L2(Ω;ℝn)-Pk−1 while the stress space is approximated by the space of
functions in H(div, Ω;S)-Pk+n−1 whose divergence is in L2(Ω;ℝn)-Pk−1 for k ≥ 2. Recently, Hu and Zhang
showed that the more compact pair of H(div, Ω;S)-Pk and L2(Ω;ℝn)-Pk−1 spaces is stable on triangular and
tetrahedral grids for k ≥ n + 1with n = 2, 3 in [40, 41]. AndHugeneralized those stable finite elements to sim-
plicial grids in any dimension for k ≥ n + 1 in [37]. One key observation there is that the divergence space of
the H(div) bubble function space of polynomials on each element is just the orthogonal complement space
of the piecewise rigid motion space with respect to the discrete displacement space. Then the discrete inf-
sup condition was proved for k ≥ n + 1 through controlling the piecewise rigid motion space by H1(Ω;S)-Pk
space. It is, however, troublesome to prove that the pair of H(div, Ω;S)-Pk and L2(Ω;ℝn)-Pk−1 is still stable
for 1 ≤ k ≤ n. For such a reason, Hu and Zhang enriched the H(div, Ω;S)-Pk space with H(div, Ω;S)-Pn+1
face-bubble functions of piecewise polynomials for each n − 1 dimensional simplex in [42]. Gong, Wu and
Xu constructed two types of interior penalty mixed finite element methods by using nonconforming symmet-
ric stress approximation in [31]. The stability of those nonconforming mixed methods is ensured by H(div)
nonconforming face-bubble spaces. An interior penalty mixed finite element method using Crouzeix–Raviart
nonconforming linear element to approximate the stress was studied in [21]. To get rid of the vertex degrees
of freedom appeared in the H(div, Ω;S)-conforming elements and make the resulting mixed finite element
methods hybridizable, nonconforming mixed elements on triangular and tetrahedral grids were developed
in [5, 11, 32, 57]. On rectangular grids, we refer to [3, 12, 23, 36, 38] for symmetric conforming mixed finite
elements and [39, 47, 58, 59] for symmetric nonconforming mixed finite elements. For keeping the symme-
try of the discrete stress space and relaxing the continuity across the interior faces of the triangulation, many
discontinuous Galerkinmethods were proposed in [20, 24, 27, 43–45], hybridizable discontinuous Galerkin
methods in [35, 51], weak Galerkin methods in [22, 55], hybrid high-order method in [29]. For the weakly
symmetric mixed finite element methods for linear elasticity, we refer to [2, 6, 8, 9, 15, 26, 28, 33, 34, 48–
50, 53].

In this paper, we intend to design stable mixed finite element methods for the linear elasticity using as
few global degrees of freedom as possible. To this end, two classes of stabilized mixed finite element meth-
ods on simplicial grids in any dimension are proposed. In the first one, we use the pair of H(div, Ω;S)-Pk
and L2(Ω;ℝn)-Pk−1 constructed in [37] to approximate the stress and displacement for 1 ≤ k ≤ n. To simplify
the notation, we shall use superscript (⋅)div for H(div, Ω;S) conforming elements, (⋅)−1 for discontinuous el-
ements, and (⋅)0 for H1(Ω;ℝn) or H1(Ω;S) continuous elements. Instead of enriching Pdivk elements with
face bubble functions of piecewise polynomials as in [31, 42], we include a jump stabilization term into the
Hellinger–Reissner mixed formulation to make the discrete method stable, inspired by the discontinuous
Galerkin methods constructed in [24] for the linear elasticity problem. The discrete inf-sup condition in a
compact form is established with the help of a partial inf-sup condition (2.1) estabilished in [37, 40, 41] and
a well-tailored interpolation operator for the stress. Then we show the a priori error analysis for the resulting
stabilized Pdivk − P

−1
k−1 elements.

In the second class of stabilized mixed finite element methods, we adopt the stabilization technique sug-
gested in [19] and use H1

0(Ω;ℝn)-Pk to approximate the displacement space. The merit of this stabilization
technique is that the coercivity condition for the bilinear form related to the stress holds automatically, thus
we only need to focus on the discrete inf-sup condition. To recover the inf-sup condition, we first employ
H1(Ω;S)-Pk enriched with (k + 1)-st order H(div) bubble function space of polynomials on each element to
approximate the stress space. The discrete inf-sup condition is established by using another special inter-
polation operator for the stress. The a priori error estimate for the (P0k + B

div
k+1) − P

0
k is then derived by the

standard theory of mixed finite element methods. The rate of convergence for the displacement in L2(Ω;ℝn)
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norm is, however, suboptimal due to the coupling of stress error measured in H(div)-norm. To remedy this,
we use H(div, Ω;S)-Pk+1 to approximate the stress space instead. The resulting stable finite element pair is
the Hood–Taylor type Pdivk+1 − P

0
k . It was mentioned in [19] that it is not known if the Hood–Taylor element

in [13, 14, 54] is stable for the linear elasticity. We solve this problem by enriching the Hood–Taylor ele-
ment space P0k+1 for the stress with the same degree of H(div) bubble function space of polynomials on each
element.

Note that the key component in constructing the previous two interpolation operators is the H(div) bub-
ble function space of polynomials on each element.Wewould like tomention that for the stress we obtain the
optimal error estimates inH(div, Ω;S) norm, whereas these error estimates in L2(Ω;S) norm are suboptimal.
To the best of our knowledge, the global degrees of freedom of ourmethods for the lowest order case k = 1 are
fewer than those of any existing mixed-type symmetric finite element method for the linear elasticity in the
literature. To be specific, the global degrees of freedom for the stress and the displacement for the stabilized
mixed finite element methods (3.1)–(3.2), (4.1)–(4.2) and (4.9)–(4.10) with k = 1 are, respectively,

n(n + 1)
2 |V| + n|T|, n(n + 1)

2 (|V| + |T|) + n|V|, n(n + 1)
2 |V| +

(n − 1)(n + 2)
2 |E| +

n(n + 1)
2 |T| + n|V|.

Here |V|, |E|, |T| are the numbers of vertices, edges and elements of the triangulation.
When adopting the same degree of polynomial spaces for displacement, the Hood–Taylor type elements

Pdivk+1 − P
0
k and the stabilized elements Pdivk+1 − P

−1
k share the same convergence rate, which is one order higher

than the stabilized elements (P0k + B
div
k+1) − P

0
k . It is worth mentioning that to keep the same convergence rate,

the stabilized elements Pdivk+1 − P
−1
k need larger global degrees of freedom than theHood–Taylor type elements

Pdivk+1 − P
0
k .

The rest of this article is organized as follows. We present some notations and definitions in Section 2 for
later uses. In Section 3, a stabilized mixed finite element method with discontinuous displacement for the
linear elasticity is designed and analyzed. Then we propose a second class of stabilized mixed finite element
methods with continuous displacement for the linear elasticity in Section 4. In Section 5, some numerical
experiments are given to demonstrate the theoretical results.

2 Preliminaries
Given a bounded domain G ⊂ ℝn and a non-negative integer m, let Hm(G) be the usual Sobolev space of
functions on G, and Hm(G;X) the usual Sobolev space of functions taking values in the finite-dimensional
vector space X for X being S or ℝn. The corresponding norm and seminorm are denoted respectively by
‖⋅‖m,G and |⋅|m,G. If G is Ω, we abbreviate them by ‖⋅‖m and |⋅|m, respectively. Let Hm0 (G;ℝn) be the closure
of C∞0 (G;ℝn) with respect to the norm ‖⋅‖m,G. Denote by H(div, G;S) the Sobolev space of square-integrable
symmetric tensor fields with square-integrable divergence. For any τ ∈ H(div, Ω;S), we equip the norm

‖τ‖2H(div,A) := a(τ, τ) + ‖div τ‖
2
0.

When τ ∈ H(div, Ω;S) satisfying ∫Ω tr τ dx = 0, it follows from [16, Proposition 9.1.1] that there exists a con-
stant C > 0 such that

‖τ‖0 ≤ C‖τ‖H(div,A),

which means ‖τ‖H(div,A) and ‖τ‖H(div) are equivalent uniformly with respect to the Lamé constant λ. Hence
the norm ‖⋅‖H(div,A) presented in all of the estimates in this paper can be replaced by the norm ‖⋅‖H(div).

Suppose the domain Ω is subdivided by a family of shape regular simplicial grids Th (cf. [17, 25]) with
h := maxK∈Th hK and hK := diam(K). Let Fh be the union of all n − 1 dimensional faces of Th. For any F ∈ Fh,
denote by hF its diameter. Let Pm(G) stand for the set of all polynomials in G with the total degree no more
thanm, and Pm(G;X) denote the tensor or vector version of Pm(G) forX being S orℝn, respectively. Through-
out this paper, we also use “≲ ⋅ ⋅ ⋅” to mean that “≤ C ⋅ ⋅ ⋅”, where C is a generic positive constant independent
of h and the Lamé constant λ, which may take different values at different appearances.
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Consider two adjacent simplices K+ and K− sharing an interior face F. Denote by ν+ and ν− the unit
outward normals to the common face F of the simplices K+ and K−, respectively. For a vector-valued function
w, write w+ := w|K+ and w− := w|K− . Then define a matrix-valued jump as

JwK := 12 (w
+(ν+)T + ν+(w+)T + w−(ν−)T + ν−(w−)T).

On a face F lying on the boundary ∂Ω, the above term is defined by

JwK := 12 (wν
T + νwT).

For each K ∈ Th, define an H(div, K;S) bubble function space of polynomials of degree k as

BK,k := {τ ∈ Pk(K;S) : τν|∂K = 0}.

It is easy to check that BK,1 is merely the zero space. Denote the vertices of simplex K by x0, . . . , xn. For any
edge xixj (i ̸= j) of element K, let ti,j be the associated tangent vectors and

T i,j := ti,jtTi,j , 0 ≤ i < j ≤ n.

It follows from [37] that, for k ≥ 2,
BK,k = ∑

0≤i<j≤n
λiλjPk−2(K)T i,j ,

where λi are the associated barycentric coordinates corresponding to xi for i = 0, . . . , n. Some global finite
element spaces are given by

Bk,h := {τ ∈ H(div, Ω;S) : τ|K ∈ BK,k for all K ∈ Th},
Σ̃k,h := {τ ∈ H1(Ω;S) : τ|K ∈ Pk(K;S) for all K ∈ Th},
Σk,h := Σ̃k,h + Bk,h ,

Vk−1,h := {v ∈ L2(Ω;ℝn) : v|K ∈ Pk−1(K;ℝn) for all K ∈ Th},

with integer k ≥ 1. It follows from [37, 40, 41] that

R⊥(K) = div BK,k for all K ∈ Th , (2.1)

where the local rigid motion space and its orthogonal complement space with respect to Pk−1(K;ℝn) on each
simplex K ∈ Th are defined as (cf. [37])

R(K) := {v ∈ H1(K;ℝn) : ε(v) = 0},

R⊥(K) := {v ∈ Pk−1(K;ℝn) : ∫
K

v ⋅ w dx = 0 for all w ∈ R(K)},

with ε(v) := (∇v + (∇v)T)/2 being the linearized strain tensor.
To introduce an elementwise H(div) bubble function interpolation operator, we first present the degrees

of freedom for Σk,h which are slightly different from those given in [37]. For the ease of notation, we under-
stand Pk = 0 for negative integers k.

Lemma 2.1. A matrix field τ ∈ Pk(K;S) can be uniquely determined by the following degrees of freedom:
(i) for each ℓ dimensional simplex ∆ℓ of K, 0 ≤ ℓ ≤ n − 1, with ℓ linearly independent tangential vectors

t1, . . . , tℓ, and n − ℓ linearly independent normal vectors ν1, . . . , νn−ℓ, the mean moments of degree at
most k − ℓ − 1 over ∆ℓ, of tTl τνi, ν

T
i τνj, l = 1, . . . , ℓ, i, j = 1, . . . , n − ℓ;

(ii) the values ∫K τ : ς dx for any ς ∈ Pk−2(K;S).

Proof. This lemma can be proved by applying the arguments used in [37, Theorems 2.1, 2.2].
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It is easy to see that we have the same first set of degrees of freedom as those in [37], whereas the second set
of degrees of freedom is different.

Now we present an elementwise H(div) bubble function interpolation operator. Given τ ∈ L2(Ω;S), de-
fine Ibk,hτ ∈ Σk,h as follows: on each simplex K ∈ Th,
∙ for any degree of freedom D in the first set of degrees of freedom in Lemma 2.1,

D(Ibk,hτ) = 0,

∙ for any ς ∈ Pk−2(K;S),
∫
K

Ibk,hτ : ς dx = ∫
K

τ : ς dx. (2.2)

Since the first set of degrees of freedom in Lemma 2.1 completely determines τν on ∂K for any τ ∈ Pk(K;S)
(cf. [37, Theorem 2.1]), thus Ibk,hτ ∈ Bk,h. Applying a scaling argument, we have, for any τ ∈ L2(Ω;S),

‖Ibk,hτ‖0,K ≲ ‖τ‖0,K for all K ∈ Th . (2.3)

3 A Stabilized Mixed Finite Element Method with Discontinuous
Displacement

In this section, we devise a stabilized mixed finite element method for linear elasticity. In [37], the pair of
H(div, Ω;S)-Pk and L2(Ω;ℝn)-Pk−1 is shown to be stable for k ≥ n + 1. Here we consider the range 1 ≤ k ≤ n.

With previous preparation, a stabilized mixed finite element method for linear elasticity is defined as
follows: Find (σh , uh) ∈ Σk,h × Vk−1,h such that

a(σh , τh) + b(τh , uh) = 0 for all τh ∈ Σk,h , (3.1)

−b(σh , vh) + c(uh , vh) = ∫
Ω

f ⋅ vh dx for all vh ∈ Vk−1,h , (3.2)

where the jump stabilization term for the displacement is

c(uh , vh) := ∑
F∈Fh

hF ∫
F

JuhK : JvhKds.

With this jump stabilization term, a jump seminorm for Vk−1,h + H1(Ω;ℝn) is defined as

‖vh‖2c := c(vh , vh) for all vh ∈ Vk−1,h + H1(Ω;ℝn).

We also define the following two norms:

‖τ‖2a := a(τ, τ) for all τ ∈ L2(Ω;S),
‖vh‖20,c := ‖vh‖20 + ‖vh‖2c for all vh ∈ Vk−1,h + H1(Ω;ℝn).

Let Qh be the L2 orthogonal projection from L2(Ω;ℝn) onto Vk−1,h. The following error estimate holds
(cf. [17, 25]):

‖v − Qhv‖0,K + h
1/2
K ‖v − Qhv‖0,∂K ≲ h

min{k,m}
K |v|m,K for all v ∈ Hm(Ω;ℝn)

with integer m ≥ 1. Let ISZh be a tensorial or vectorial Scott–Zhang interpolation operator designed in [52],
which possesses the following error estimate:

∑
K∈Th

h−2K ‖τ − ISZh τ‖
2
0,K + |τ − I

SZ
h τ|

2
1 ≲ h

2min{k,m−1}‖τ‖2m (3.3)
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for any τ ∈ Hm(Ω;S) with integer m ≥ 1. Then for each τ ∈ H1(Ω;S), define

Ihτ := ISZh τ + I
b
k,h(τ − I

SZ
h τ).

Apparently we have Ihτ ∈ Σk,h. And it follows from (2.2) that

∫
K

(Ihτ − τ) : ς dx = 0 for all ς ∈ Pk−2(K;S) and K ∈ Th . (3.4)

Lemma 3.1. Given integers m, k ≥ 1, we have, for any τ ∈ Hm(Ω;S),

∑
K∈Th

h−2K (‖τ − Ihτ‖20,K + hK‖τ − Ihτ‖
2
0,∂K) ≲ h

2min{k,m−1}‖τ‖2m . (3.5)

Proof. According to the triangle inequality and (2.3), it holds

‖τ − Ihτ‖0,K ≤ ‖τ − ISZh τ‖0,K + ‖I
b
k,h(τ − I

SZ
h τ)‖0,K ≲ ‖τ − I

SZ
h τ‖0,K .

Analogously, from the triangle inequality, the inverse inequality, the trace inequality and (2.3) we obtain

h1/2K ‖τ − Ihτ‖0,∂K ≤ h1/2K ‖τ − ISZh τ‖0,∂K + h
1/2
K ‖Ibk,h(τ − I

SZ
h τ)‖0,∂K

≲ h1/2K ‖τ − ISZh τ‖0,∂K + ‖I
b
k,h(τ − I

SZ
h τ)‖0,K

≲ ‖τ − ISZh τ‖0,K + hK |τ − I
SZ
h τ|1,K .

Thus the combination of the last two inequalities and (3.3) implies (3.5).

To derive a discrete inf-sup condition for the stabilized mixed finite element method (3.1)–(3.2), we rewrite
it in a compact way: Find (σh , uh) ∈ Σk,h × Vk−1,h such that

B(σh , uh; τh , vh) = ∫
Ω

f ⋅ vh dx for all (τh , vh) ∈ Σk,h × Vk−1,h , (3.6)

where
B(σh , uh; τh , vh) := a(σh , τh) + b(τh , uh) − b(σh , vh) + c(uh , vh).

Similarly, problem (1.1)–(1.2) can be rewritten as

B(σ, u; τ, v) = ∫
Ω

f ⋅ v dx for all (τ, v) ∈ Σ × V . (3.7)

Obviously the bilinear formB is continuous with respect to the norm ‖⋅‖H(div,A) + ‖⋅‖0,c. Now we present
the following inf-sup condition for (3.6).

Lemma 3.2. For any (σ̃h , ũh) ∈ Σk,h × Vk−1,h, it follows

‖σ̃h‖H(div,A) + ‖ũh‖0,c ≲ sup
(τh ,vh)∈Σk,h×Vk−1,h

B(σ̃h , ũh; τh , vh)
‖τh‖H(div,A) + ‖vh‖0,c

. (3.8)

Proof. It is sufficient to prove that for a given pair (σ̃h , ũh) ∈ Σk,h × Vk−1,h, there exists (τh , vh) ∈ Σk,h × Vk−1,h
such that

‖σ̃h‖2H(div,A) + ‖ũh‖
2
0,c ≲ B(σ̃h , ũh; τh , vh), (3.9)

‖τh‖H(div,A) + ‖vh‖0,c ≲ ‖σ̃h‖H(div,A) + ‖ũh‖0,c . (3.10)

Let ũ⊥h ∈ L2(Ω;ℝn) such that ũ
⊥
h |K is the L2-projection of ũh|K onto R⊥(K) for each K ∈ Th. By (2.1), there

exists τ1 ∈ Bk,h such that (cf. [41, Lemma 3.3] and [37, Lemma 3.1])

div τ1 = ũ⊥h , ‖τ1‖H(div,K) ≲ ‖ũ⊥h ‖0,K . (3.11)
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By the definition of τ1, it holds

B(σ̃h , ũh; τ1, 0) = a(σ̃h , τ1) + b(τ1, ũh) = a(σ̃h , τ1) + (ũ⊥h , ũh) = a(σ̃h , τ1) + ‖ũ
⊥
h ‖

2
0.

Thus by (3.11), there exists a constant C1 > 0 such that

B(σ̃h , ũh; τ1, 0) ≥ −‖σ̃h‖a‖τ1‖a + ‖ũ⊥h ‖20 ≥ −C1‖σ̃h‖a‖ũ
⊥
h ‖0 + ‖ũ

⊥
h ‖

2
0

≥ −
C21
2 ‖σ̃h‖2a +

1
2 ‖ũ
⊥
h ‖

2
0. (3.12)

On the other hand, there exists τ2 ∈ H1
0(Ω;S) such that (cf. [4, 10])

div τ2 = ũh − ũ⊥h and ‖τ2‖1 ≲ ‖ũh − ũ⊥h ‖0. (3.13)

Thanks to (3.4), integration by parts leads to

b(Ihτ2, ũh) = b(Ihτ2 − τ2, ũh) + b(τ2, ũh)

= ∑
F∈Fh

∫
F

(Ihτ2 − τ2) : JũhKds + ∫
Ω

(ũh − ũ⊥h ) ⋅ ũh dx

= ∑
F∈Fh

∫
F

(Ihτ2 − τ2) : JũhKds + ‖ũh − ũ⊥h ‖20 + ∫
Ω

(ũh − ũ⊥h ) ⋅ ũ
⊥
h dx.

Together with (3.5) and (3.13), there exists a constant C2 > 0 such that

B(σ̃h , ũh; Ihτ2, 0) = a(σ̃h , Ihτ2) + b(Ihτ2, ũh)
≥ ‖ũh − ũ⊥h ‖20 − C2‖ũh − ũ

⊥
h ‖0(‖σ̃h‖a + ‖ũh‖c + ‖ũ

⊥
h ‖0)

≥
1
2 ‖ũh − ũ

⊥
h ‖

2
0 −

3
2C

2
2(‖σ̃h‖

2
a + ‖ũh‖2c + ‖ũ

⊥
h ‖

2
0). (3.14)

Due to the inverse inequality, there exists a constant C3 > 0 such that

‖div σ̃h‖c ≤ C3‖div σ̃h‖0.

Then from the Cauchy–Schwarz inequality we get

B(σ̃h , ũh;0, −div σ̃h) = ‖div σ̃h‖20 − c(ũh , div σ̃h) ≥ ‖div σ̃h‖20 − ‖ũh‖c‖div σ̃h‖c

≥ ‖div σ̃h‖20 − C3‖ũh‖c‖div σ̃h‖0 ≥
1
2 ‖div σ̃h‖

2
0 −

C23
2 ‖ũh‖2c . (3.15)

Now take τh = σ̃h + γ1τ1 + γ2Ihτ2 and vh = ũh − γ3 div σ̃hwhere γ1, γ2 and γ3 are three to-be-determined
positive constants. Then from (3.12), (3.14) and (3.15) we get

B(σ̃h , ũh; τh , vh) = B(σ̃h , ũh; σ̃h , ũh) + γ1B(σ̃h , ũh; τ1, 0)
+ γ2B(σ̃h , ũh; Ihτ2, 0) + γ3B(σ̃h , ũh;0, −div σ̃h)

= ‖σ̃h‖2a + ‖ũh‖2c + γ1B(σ̃h , ũh; τ1, 0)
+ γ2B(σ̃h , ũh; Ihτ2, 0) + γ3B(σ̃h , ũh;0, −div σ̃h)

≥ (1 − γ1
C21
2 − γ2

3C22
2 )‖σ̃h‖2a +

γ3
2 ‖div σ̃h‖20 +

γ2
2 ‖ũh − ũ⊥h ‖20

+ (
γ1
2 − γ2

3C22
2 )‖ũ⊥h ‖20 + (1 − γ2

3C22
2 − γ3

C23
2 )‖ũh‖2c .

Hence we acquire (3.9) by choosing

γ1 =
2
3C21

, γ2 = min{ 2
9C22

, γ1
1 + 3C22

}, γ3 =
2
3C23

.

Estimate (3.10) follows immediately from the definitions of τh and vh.
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The unique solvability of the stabilized mixed finite element method (3.1)–(3.2) is the immediate result of
the inf-sup condition (3.8).

Next we show the a priori error analysis for the stabilized mixed finite element method (3.1)–(3.2). Sub-
tracting (3.6) from (3.7), we have the following error equation from the definition of Qh:

B(Ihσ − σh , Qhu − uh; τh , vh) = a(Ihσ − σ, τh) + b(σ − Ihσ, vh) + c(Qhu, vh) (3.16)

for any (τh , vh) ∈ Σk,h × Vk−1,h.

Theorem 3.3. Let (σ, u) be the exact solution of problem (1.1)–(1.2) and (σh , uh) the discrete solution of the
stabilizedmixed finite element method (3.1)–(3.2) using Pdivk − P

−1
k−1 elements. Assume that σ ∈ H

k+1(Ω;S) and
u ∈ Hk(Ω;ℝn), then

‖σ − σh‖H(div,A) + ‖u − uh‖0,c ≲ hk(‖σ‖k+1 + ‖u‖k).

Proof. Set σ̃h = Ihσ − σh and ũh = Qhu − uh in Lemma 3.2. From the error equation (3.16) we have

‖Ihσ − σh‖H(div,A) + ‖Qhu − uh‖0,c ≲ sup
(τh ,vh)∈Σk,h×Vk−1,h

B(Ihσ − σh , Qhu − uh; τh , vh)
‖τh‖H(div,A) + ‖vh‖0,c

= sup
(τh ,vh)∈Σk,h×Vk−1,h

a(Ihσ − σ, τh) + b(σ − Ihσ, vh) + c(Qhu − u, vh)
‖τh‖H(div,A) + ‖vh‖0,c

≲ ‖σ − Ihσ‖H(div,A) + ‖u − Qhu‖c .

Hence we can finish the proof by using the triangle inequality and the interpolation error estimates.

4 Two Stabilized Mixed Finite Element Methods with Continuous
Displacement

In this section, we will present another class of stabilized mixed finite element methods by a different stabi-
lization mechanism suggested in [19]. To pursue a small number of global degrees of freedom, the displace-
mentwill be approximated by Lagrange elements. To be specific,we adopt the following finite element spaces
for stress and displacement:

Σ∗
k,h := Σ̃k,h + Bk+1,h , Wk,h := Vk,h ∩ H1

0(Ω;ℝn).

Recurring to the stabilization technique in [19], we devise a stabilizedmixed finite element method for linear
elasticity as follows: Find (σh , uh) ∈ Σ∗

k,h ×Wk,h such that

a∗(σh , τh) + b(τh , uh) = −∫
Ω

f ⋅ div τh dx for all τh ∈ Σ∗
k,h , (4.1)

−b(σh , vh) = ∫
Ω

f ⋅ vh dx for all vh ∈ Wk,h , (4.2)

where
a∗(σh , τh) := a(σh , τh) + ∫

Ω

div σh ⋅ div τh dx.

The benefit of this stabilization technique is that the coercivity condition onH(div, Ω;S)with norm ‖⋅‖H(div,A)

for the bilinear form a∗(⋅, ⋅) holds automatically.
We are now in the position to prove the discrete inf-sup condition for the stabilized mixed finite element

method (4.1)–(4.2). For this, define an interpolation operator I∗h : H
1(Ω;S)→ Σ∗

k,h in the following way: for
each τ ∈ H1(Ω;S), let

I∗hτ := I
SZ
h τ + I

b
k+1,h(τ − I

SZ
h τ).
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We deduce from (2.2) that

∫
K

(I∗hτ − τ) : ς dx = 0 for all ς ∈ Pk−1(K;S) and K ∈ Th . (4.3)

Similar to Lemma 3.1, we have the following interpolation error estimate.

Lemma 4.1. Given integers m, k ≥ 1, we have, for any τ ∈ Hm(Ω;S),

∑
K∈Th

h−2K ‖τ − I∗hτ‖
2
0,K + |τ − I

∗
hτ|

2
1 ≲ h

2min{k,m−1}‖τ‖2m . (4.4)

Then using integration by parts and (4.3), we have

b(I∗hτ, vh) = b(τ, vh) for all τ ∈ H1(Ω;S) and vh ∈ Wk,h . (4.5)

Lemma 4.2. The following discrete inf-sup condition holds:

‖vh‖0 ≲ sup
0 ̸=τh∈Σ∗

k,h

b(τh , vh)
‖τh‖H(div,A)

for all vh ∈ Wk,h . (4.6)

Proof. Let vh ∈ Wk,h, then there exists a τ ∈ H1(Ω;S) such that (cf. [4, 10])

div τ = vh and ‖τ‖1 ≲ ‖vh‖0.

It follows from (4.5) that
b(I∗hτ, vh) = b(τ, vh) = ‖vh‖

2
0. (4.7)

On the other hand, from (4.4) we get

‖I∗hτ‖H(div,A) ≲ ‖τ‖1 ≲ ‖vh‖0. (4.8)

Hence (4.6) is the immediate result of (4.7) and (4.8).

With the previous preparation, we show the a priori error estimate for the (P0k + B
div
k+1) − P

0
k elements.

Theorem 4.3. Let (σ, u) be the exact solution of problem (1.1)–(1.2) and (σh , uh) the discrete solution
of the stabilized mixed finite element method (4.1)–(4.2) using the (P0k + B

div
k+1) − P

0
k element. Assume that

σ ∈ Hk+1(Ω;S) and u ∈ Hk+1(Ω;ℝn), then

‖σ − σh‖H(div,A) + ‖u − uh‖0 ≲ hk(‖σ‖k+1 + h‖u‖k+1).

Proof. The coercivity of the bilinear form a∗(⋅, ⋅) with respect to the norm ‖⋅‖H(div,A) is trivial. Together with
the discrete inf-sup condition (4.6), we obtain the following error estimate by the standard theory of mixed
finite element methods (cf. [16, 18]):

‖σ − σh‖H(div,A) + ‖u − uh‖0 ≲ inf
τh∈Σ∗

k,h ,vh∈Wk,h
(‖σ − τh‖H(div,A) + ‖u − vh‖0).

Choose τh = I∗hσ and vh = ISZh u. Then we can finish the proof by combining the last inequality, (4.4) and
(3.3).

To achieve the optimal convergence rate of ‖u − uh‖0, we can further enrich the stress finite element space
Σ∗
k,h to Σk+1,h. The resulting mixed finite element method is: Find (σh , uh) ∈ Σk+1,h ×Wk,h such that

a∗(σh , τh) + b(τh , uh) = −∫
Ω

f ⋅ div τh dx for all τh ∈ Σk+1,h , (4.9)

−b(σh , vh) = ∫
Ω

f ⋅ vh dx for all vh ∈ Wk,h . (4.10)
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Corollary 4.4. Let (σ, u) be the exact solution of problem (1.1)–(1.2) and (σh , uh) the discrete solution of the
stabilized mixed finite element method (4.9)–(4.10) using the Pdivk+1 − P

0
k element. Then under the assumption

of σ ∈ Hk+2(Ω;S) and u ∈ Hk+1(Ω;ℝn), it follows

‖σ − σh‖H(div,A) + ‖u − uh‖0 ≲ hk+1(‖σ‖k+2 + ‖u‖k+1). (4.11)

Remark 4.5. The finite element pair Σk+1,h ×Wk,h is just the Hood–Taylor element in [13, 14, 54] augmented
by the elementwise H(div) bubble function space Bk+1,h. Hence we give a positive answer to the question in
[19, Example 3.3] whether the Hood–Taylor element is stable for the linear elasticity.

Remark 4.6. In order to remain the zero right-hand side as in (1.1) and (3.1), we can use the following stabi-
lized mixed finite element method: Find (σh , uh) ∈ Σk+1,h ×Wk,h such that

a∘(σh , τh) + b(τh , uh) = 0 for all τh ∈ Σk+1,h ,

−b(σh , vh) = ∫
Ω

f ⋅ vh dx for all vh ∈ Wk,h ,

where
a∘(σ, τ) = ∫

Ω

Aσ : τ dx + ∑
F∈Fh

hF ∫
F

[div σ] ⋅ [div τ]ds.

For any τh ∈ Σk+1,h, define the norm

9τh92 := ‖τh‖2H(div,A) + ∑
F∈Fh

hF‖[div τh]‖20,F .

It can be shown that a∘(⋅, ⋅) is coercive on the kernel space

Kh := {τh ∈ Σk+1,h : b(τh , vh) = 0 for all vh ∈ Wk,h},

i.e.
9τh92 ≲ a∘(τh , τh) for all τh ∈ Kh .

The discrete inf-sup condition can be derived from (4.6) and the inverse inequality.

5 Numerical Results
In this section, we will report some numerical results to assess the accuracy and behavior of the stabilized
mixed finite element methods developed in Sections 3 and 4. Let λ = 0.3 and μ = 0.35. We use the uniform
triangulation Th of Ω.

Firstwe test our stabilizedmixedfinite elementmethods for the pure displacement problemon the square
Ω = (−1, 1)2 in 2D. Take

f (x1, x2) = (
−8(x1 + x2)((3x1x2 − 2)(x21 + x22) + 5(x1x2 − 1)2 − 2x21x22)
−8(x1 − x2)((3x1x2 + 2)(x21 + x22) − 5(x1x2 + 1)2 + 2x21x22)

) .

It can be verified that the exact displacement of problem (1.1)–(1.2) is

u(x1, x2) =
80
7 (
−x2(1 − x22)(1 − x21)2
x1(1 − x21)(1 − x22)2

) − 4(x1(1 − x
2
1)(1 − x22)2

x2(1 − x22)(1 − x21)2
) .

The exact stress can be computed by σ = 2με(u) + λ(tr ε(u))δ.
The element diagram in Figure 1 is mnemonic of the local degrees of freedom of Σ2,h in 2D. For the stabi-

lized Pdivk − P
−1
k−1 element, numerical errors ‖σ − σh‖H(div,A), ‖uh‖c and ‖u − uh‖0 with respect to h for k = 1, 2

are shown in Tables 1 and 2, from which we can see that all the three errors achieve optimal convergence
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τn

Figure 1. Element diagram for Σ2,h in 2D.

h ‖σ − σh‖H(div,A) order ‖uh‖c order ‖u − uh‖0 order

2−1 1.9436E+01 − 5.7136E+00 − 2.8981E+00 −
2−2 1.0703E+01 0.86 3.7894E+00 0.59 1.6073E+00 0.85
2−3 5.7982E+00 0.88 2.1600E+00 0.81 8.3356E-01 0.95
2−4 3.0580E+00 0.92 1.1484E+00 0.91 4.2521E-01 0.97
2−5 1.5780E+00 0.95 5.9220E-01 0.96 2.1527E-01 0.98
2−6 8.0346E-01 0.97 3.0101E-01 0.98 1.0848E-01 0.99
2−7 4.0590E-01 0.99 1.5187E-01 0.99 5.4494E-02 0.99

Table 1. Numerical errors for the stabilized P01 − P
−1
0 element in 2D.

h ‖σ − σh‖H(div,A) order ‖uh‖c order ‖u − uh‖0 order

1 1.1868E+01 − 5.0478E+00 − 2.4374E+00 −
2−1 4.6400E+00 1.35 1.7436E+00 1.53 7.1254E-01 1.77
2−2 1.4841E+00 1.64 4.6132E-01 1.92 1.8285E-01 1.96
2−3 4.2227E-01 1.81 1.1783E-01 1.97 4.6102E-02 1.99
2−4 1.1120E-01 1.92 2.9546E-02 2.00 1.1556E-02 2.00
2−5 2.8378E-02 1.97 7.3651E-03 2.00 2.8912E-03 2.00
2−6 7.1562E-03 1.99 1.8358E-03 2.00 7.2294E-04 2.00

Table 2. Numerical errors for the stabilized Pdiv2 − P
−1
1 element in 2D.

rates O(hk) numerically. These results agree with the theoretical result in Theorem 3.3. Numerical results
for the stabilized mixed finite element method (4.1)–(4.2) with k = 1 are listed in Table 3. We find that the
convergence rate of ‖σ − σh‖H(div,A) is O(h), which coincides with Theorem 4.3. It deserves to be mentioned
that the convergence rate of ‖u − uh‖0 in Table 3 is higher than the theoretical result in Theorem 4.3, but
still suboptimal. Numerical results for the stabilizedmixed finite element method (4.9)–(4.10) with k = 1 are
given in Table 4. It can be observed that both convergence rates of ‖σ − σh‖H(div,A) and ‖u − uh‖0 are O(h2),
as indicated by (4.11).

Next we take into account the pure displacement problem on the unit cube Ω = (0, 1)3 in 3D. The exact
solution is given by

u(x1, x2, x3) =(
24
25
26

) x1(1 − x1)x2(1 − x2)x3(1 − x3).

Then the exact stress σ and the load function f are derived from (1.1)–(1.2). From Tables 5 and 6, it is easy
to see that all the convergence rates of the errors ‖σ − σh‖H(div,A), ‖uh‖c and ‖u − uh‖0 for the stabilized
Pdivk − P

−1
k−1 with k = 1, 2 are optimal, i.e. O(hk) assured by Theorem 3.3. The numerical convergence rates
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h ‖σ − σh‖H(div,A) order ‖u − uh‖0 order

2−1 1.3570E+01 − 5.9057E+00 −
2−2 7.5576E+00 0.84 2.1407E+00 1.46
2−3 4.1592E+00 0.86 6.2487E-01 1.78
2−4 2.2977E+00 0.86 1.9626E-01 1.67
2−5 1.2391E+00 0.89 6.2250E-02 1.66
2−6 6.4969E-01 0.93 1.9087E-02 1.71
2−7 3.3399E-01 0.96 5.7719E-03 1.73

Table 3. Numerical errors for the stabilized (P01 + B
div
2 ) − P01 element in 2D.

h ‖σ − σh‖H(div,A) order ‖u − uh‖0 order

1 1.0966E+01 − 6.0260E+00 −
2−1 3.5092E+00 1.64 1.5579E+00 1.95
2−2 9.0380E-01 1.96 3.3148E-01 2.23
2−3 2.2504E-01 2.01 7.2219E-02 2.20
2−4 5.5922E-02 2.01 1.6506E-02 2.13
2−5 1.3981E-02 2.00 4.1182E-03 2.00
2−6 3.4746E-03 2.01 9.5159E-04 2.11

Table 4. Numerical errors for the stabilized Pdiv2 − P
0
1 element in 2D.

h ‖σ − σh‖H(div,A) order ‖uh‖c order ‖u − uh‖0 order

2−1 4.1723E+00 − 4.0747E-01 − 2.4720E-01 −
2−2 2.3595E+00 0.82 3.5554E-01 0.20 1.7403E-01 0.51
2−3 1.2849E+00 0.88 2.5527E-01 0.48 1.1168E-01 0.64
2−4 6.8023E-01 0.92 1.5243E-01 0.74 6.3889E-02 0.81
2−5 3.5167E-01 0.95 8.3310E-02 0.87 3.4309E-02 0.90

Table 5. Numerical errors for the stabilized P01 − P
−1
0 element in 3D.

h ‖σ − σh‖H(div,A) order ‖uh‖c order ‖u − uh‖0 order

2−1 1.4440E+00 − 1.7738E-01 − 8.3035E-02 −
2−2 3.8864E-01 1.89 5.2337E-02 1.76 2.2979E-02 1.85
2−3 9.9734E-02 1.96 1.3657E-02 1.94 5.9084E-03 1.96
2−4 2.5160E-02 1.99 3.4507E-03 1.98 1.4873E-03 1.99

Table 6. Numerical errors for the stabilized Pdiv2 − P
−1
1 element in 3D.

h ‖σ − σh‖H(div,A) order ‖u − uh‖0 order

2−1 1.4391E+00 − 2.3509E-01 −
2−2 3.8148E-01 1.92 5.4959E-02 2.10
2−3 9.6524E-02 1.98 1.1730E-02 2.23
2−4 2.4182E-02 2.00 2.6368E-03 2.15

Table 7. Numerical errors for the stabilized Pdiv2 − P
0
1 element in 3D.

h ‖σ − σh‖H(div,A) order ‖u − uh‖0 order

2−1 2.7531E-01 − 3.9149E-02 −
2−2 3.7035E-02 2.89 5.7416E-03 2.77
2−3 4.7120E-03 2.97 7.8312E-04 2.87

Table 8. Numerical errors for the stabilized Pdiv3 − P
0
2 element in 3D.
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of the errors ‖σ − σh‖H(div,A) and ‖u − uh‖0 for the stabilized Pdivk+1 − P
0
k element with k = 1, 2 are presented in

Tables 7 and8. Thenumerical results in these two tables confirm the optimal rate of convergence result (4.11).

Acknowledgment: This work was finished when L. Chen visited Peking University in the fall of 2015. He
would like to thank Peking University for the support and hospitality, as well as for their exciting research
atmosphere.

Funding: The first author was supported by NSF (grant DMS-1418934). The work of the second author was
supported by the NSFC (projects 11625101, 11271035, 91430213, 11421101). Thework of the third author
was supported by the NSFC (projects 11301396, 11671304) and the Natural Science Foundation of Zhejiang
Province (projects LY17A010010, LY15A010015, LY15A010016, LY14A010020).

References
[1] S. Adams and B. Cockburn, A mixed finite element method for elasticity in three dimensions, J. Sci. Comput. 25 (2005),

515–521.
[2] M. Amara and J. M. Thomas, Equilibrium finite elements for the linear elastic problem, Numer. Math. 33 (1979), 367–383.
[3] D. N. Arnold and G. Awanou, Rectangular mixed finite elements for elasticity,Math. Models Methods Appl. Sci. 15 (2005),

1417–1429.
[4] D. N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions,Math. Comp. 77

(2008), 1229–1251.
[5] D. N. Arnold, G. Awanou and R. Winther, Nonconforming tetrahedral mixed finite elements for elasticity,Math. Models

Methods Appl. Sci. 24 (2014), 783–796.
[6] D. N. Arnold, F. Brezzi and J. Douglas, Jr., PEERS: A new mixed finite element for plane elasticity, Japan J. Appl. Math. 1

(1984), 347–367.
[7] D. N. Arnold, J. Douglas, Jr. and C. P. Gupta, A family of higher order mixed finite element methods for plane elasticity,

Numer. Math. 45 (1984), 1–22.
[8] D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry,

Math. Comp. 76 (2007), 1699–1723.
[9] D. N. Arnold and J. J. Lee, Mixed methods for elastodynamics with weak symmetry, SIAM J. Numer. Anal. 52 (2014),

2743–2769.
[10] D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), 401–419.
[11] D. N. Arnold and R. Winther, Nonconforming mixed elements for elasticity,Math. Models Methods Appl. Sci. 13 (2003),

295–307.
[12] G. Awanou, Two remarks on rectangular mixed finite elements for elasticity, J. Sci. Comput. 50 (2012), 91–102.
[13] D. Boffi, Stability of higher order triangular Hood–Taylor methods for the stationary Stokes equations,Math. Models

Methods Appl. Sci. 4 (1994), 223–235.
[14] D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal. 34 (1997), 664–670.
[15] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal. 8 (2009),

95–121.
[16] D. Boffi, F. Brezzi and M. Fortin,Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44,

Springer, Berlin, 2013.
[17] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer,

New York, 2008.
[18] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,

Rev. Franc. Automat. Inform. Rech. Operat. Sér. Rouge 8 (1974), 129–151.
[19] F. Brezzi, M. Fortin and L. D. Marini, Mixed finite element methods with continuous stresses,Math. Models Methods Appl.

Sci. 3 (1993), 275–287.
[20] R. Bustinza, A note on the local discontinuous Galerkin method forlinear problems in elasticity, Sci. Ser. A Math. Sci. (N.S.)

13 (2006), 72–83.
[21] Z. Cai and X. Ye, A mixed nonconforming finite element for linear elasticity, Numer. Methods Partial Differential Equations

21 (2005), 1043–1051.
[22] G. Chen and X. Xie, A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses,

Comput. Methods Appl. Math. 16 (2016), 389–408.
[23] S.-C. Chen and Y.-N. Wang, Conforming rectangular mixed finite elements for elasticity, J. Sci. Comput. 47 (2011), 93–108.

Authenticated | xuehaihuang@gmail.com author's copy
Download Date | 11/11/16 2:42 PM



14 | L. Chen, J. Hu and X. Huang, Stabilized Mixed Finite Element Methods for Linear Elasticity

[24] Y. Chen, J. Huang, X. Huang and Y. Xu, On the local discontinuous Galerkin method for linear elasticity,Math. Probl. Eng.
2010 (2010), Article ID 759547.

[25] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978.
[26] B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry,Math.

Comp. 79 (2010), 1331–1349.
[27] B. Cockburn, D. Schötzau and J. Wang, Discontinuous Galerkin methods for incompressible elastic materials, Comput.

Methods Appl. Mech. Engrg. 195 (2006), 3184–3204.
[28] B. Cockburn and K. Shi, Superconvergent HDG methods for linear elasticity with weakly symmetric stresses, IMA J. Numer.

Anal. 33 (2013), 747–770.
[29] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Meth-

ods Appl. Mech. Engrg. 283 (2015), 1–21.
[30] B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, in: Stress Analysis, John Wiley

& Sons, New York (1965), 145–197.
[31] S. Gong, S. Wu and J. Xu, Mixed finite elements of any order in any dimension for linear elasticity with strongly symmetric

stress tensor, preprint (2015), http://arxiv.org/abs/1507.01752.
[32] J. Gopalakrishnan and J. Guzmán, Symmetric nonconforming mixed finite elements for linear elasticity, SIAM J. Numer.

Anal. 49 (2011), 1504–1520.
[33] J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble, IMA J. Numer. Anal. 32 (2012),

352–372.
[34] J. Guzmán, A unified analysis of several mixed methods for elasticity with weak stress symmetry, J. Sci. Comput. 44

(2010), 156–169.
[35] C. Harder, A. L. Madureira and F. Valentin, A hybrid-mixed method for elasticity, ESAIM Math. Model. Numer. Anal. 50

(2016), 311–336.
[36] J. Hu, A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elastic-

ity in the symmetric formulation, SIAM J. Numer. Anal. 53 (2015), 1438–1463.
[37] J. Hu, Finite element approximations of symmetric tensors on simplicial grids inℝn: The higher order case, J. Comput.

Math. 33 (2015), 283–296.
[38] J. Hu, H. Man and S. Zhang, A simple conforming mixed finite element for linear elasticity on rectangular grids in any

space dimension, J. Sci. Comput. 58 (2014), 367–379.
[39] J. Hu and Z.-C. Shi, Lower order rectangular nonconforming mixed finite elements for plane elasticity, SIAM J. Numer. Anal.

46 (2007), 88–102.
[40] J. Hu and S. Zhang, A family of conforming mixed finite elements for linear elasticity on triangular grids, preprint (2015),

http://arxiv.org/abs/1406.7457.
[41] J. Hu and S. Zhang, A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids, Sci. China Math.

58 (2015), 297–307.
[42] J. Hu and S. Zhang, Finite element approximations of symmetric tensors on simplicial grids inℝn: The lower order case,

Math. Models Methods Appl. Sci. 26 (2016), 1649–1669.
[43] J. Huang and X. Huang, The hp-version error analysis of a mixed DG method for linear elasticity, preprint (2016),

http://arxiv.org/abs/1608.04060.
[44] X. Huang, A reduced local discontinuous Galerkin method for nearly incompressible linear elasticity,Math. Probl. Eng.

2013 (2013), Article ID 546408.
[45] X. Huang and J. Huang, The compact discontinuous Galerkin method for nearly incompressible linear elasticity, J. Sci.

Comput. 56 (2013), 291–318.
[46] C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer.

Math. 30 (1978), 103–116.
[47] H.-Y. Man, J. Hu and Z.-C. Shi, Lower order rectangular nonconforming mixed finite element for the three-dimensional

elasticity problem,Math. Models Methods Appl. Sci. 19 (2009), 51–65.
[48] M. E. Morley, A family of mixed finite elements for linear elasticity, Numer. Math. 55 (1989), 633–666.
[49] W. Qiu and L. Demkowicz, Mixed hp-finite element method for linear elasticity with weakly imposed symmetry, Comput.

Methods Appl. Mech. Engrg. 198 (2009), 3682–3701.
[50] W. Qiu and L. Demkowicz, Mixed hp-finite element method for linear elasticity with weakly imposed symmetry: Stability

analysis, SIAM J. Numer. Anal. 49 (2011), 619–641.
[51] W. Qiu, J. Shen and K. Shi, An HDG method for linear elasticity with strong symmetric stresses, preprint (2013),

http://arxiv.org/abs/1312.1407.
[52] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions,Math.

Comp. 54 (1990), 483–493.
[53] R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), 513–538.
[54] C. Taylor and P. Hood, A numerical solution of the Navier–Stokes equations using the finite element technique, Comput. &

Fluids 1 (1973), 73–100.

Authenticated | xuehaihuang@gmail.com author's copy
Download Date | 11/11/16 2:42 PM

http://arxiv.org/abs/1507.01752
http://arxiv.org/abs/1406.7457
http://arxiv.org/abs/1608.04060
http://arxiv.org/abs/1312.1407


L. Chen, J. Hu and X. Huang, Stabilized Mixed Finite Element Methods for Linear Elasticity | 15

[55] C. Wang, J. Wang, R. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the
primal formulation, J. Comput. Appl. Math. 307 (2016), 346–366.

[56] V. B. Watwood, Jr. and B. J. Hartz, An equilibrium stress field model for finite element solutions of two-dimensional elasto-
static problems, Int. J. Solids Struct. 4 (1968), 857–873.

[57] X. Xie and J. Xu, New mixed finite elements for plane elasticity and Stokes equations, Sci. China Math. 54 (2011),
1499–1519.

[58] S.-Y. Yi, Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three
dimensions, Calcolo 42 (2005), 115–133.

[59] S.-Y. Yi, A new nonconforming mixed finite element method for linear elasticity,Math. Models Methods Appl. Sci. 16
(2006), 979–999.

Authenticated | xuehaihuang@gmail.com author's copy
Download Date | 11/11/16 2:42 PM


	Stabilized Mixed Finite Element Methods for Linear Elasticity on Simplicial Grids in $\mathbb R^n$
	1 Introduction
	2 Preliminaries
	3 A Stabilized Mixed Finite Element Method with Discontinuous Displacement
	4 Two Stabilized Mixed Finite Element Methods with Continuous Displacement
	5 Numerical Results


