
J Sci Comput
DOI 10.1007/s10915-015-0101-9

Postprocessing Mixed Finite Element Methods For
Solving Cahn–Hilliard Equation: Methods and Error
Analysis

Wansheng Wang1 · Long Chen2 · Jie Zhou3

Received: 16 December 2014 / Revised: 13 July 2015 / Accepted: 10 September 2015
© Springer Science+Business Media New York 2015

Abstract A postprocessing technique for mixed finite element methods for the Cahn–
Hilliard equation is developed and analyzed. Once the mixed finite element approximations
have been computed at a fixed time on a coarser space, the approximations are postprocessed
by solving two decoupled Poisson equations in an enriched finite element space (either on
a finer grid or a higher-order space) for which many fast Poisson solvers can be applied.
The nonlinear iteration is only applied to a much smaller size problem and the computa-
tional cost using Newton and direct solvers is negligible compared with the cost of the linear
problem. The analysis presented here shows that this technique remains the optimal rate of
convergence for both the concentration and the chemical potential approximations. The cor-
responding error estimate obtained in our paper, especially the negative norm error estimates,
are non-trivial and different with the existing results in the literatures.
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1 Introduction

The purpose of this paper is to study a postprocessing technique for mixed finite element
(MFE) methods for the Cahn–Hilliard equation

∂u

∂t
+ �(ε�u − φ(u)) = 0, x ∈ �, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ �, (1.2)

subject to the no flux boundary conditions

∂u

∂ν
= ∂

∂ν
(φ(u) − ε�u) = 0, x ∈ ∂�, t > 0, (1.3)

where � is a bounded domain in R
d(d = 2, 3) with a sufficiently smooth boundary ∂�, ν is

the outward unit normal vector along ∂�, ε > 0 is a phenomenological constant modeling
the effect of interfacial energy, and φ is the derivative of a smooth double equal well potential.
A typical example of φ is

φ(u) = �′(u); �(u) = 1

4
(u2 − 1)2. (1.4)

The differential equation (1.1) arises in continuum models of phase separation and spinodal
decomposition, c.f. [4,8,33,35]. The field variable u is a scaled concentration of one species
in a binary mixture.

Different numerical schemes have been proposed for solving Cahn–Hilliard equation. A
main themeof the study is on the energy stable timediscretization. Stabilization [37] or convex
splitting scheme [11,30,42] is general technique to obtain an energy stable discretization.
The energy stability for spectral methods is given in [26,37], for the local discontinuous
Garlerkin method in [44], for a non-conforming finite method in [48], and for the finite
difference scheme in [42]. We shall not explore more on the energy stability in this paper.

We are interested in efficient ways on enhancing the accuracy of numerical approxima-
tion to the Cahn–Hilliard equation. When the domain is rectangular, energy stable spectral
methods developed in [6,27,37] can be used with high order accuracy. For unstructured grids
of a general domain with possible complex geometry, finite element methods will be a better
choice. The main difficulty in finite element approximations of the Cahn–Hilliard equation
is that conforming finite element spaces for fourth order equations is not easy to construct
especially in three dimensions. Possible remedy is non-conforming elements [9,40,48] or dis-
continuous Galerkin methods [1,7,14,31,41,44]. Here we consider the mixed finite element
(MFE) approximation since it can give not only a numerical approximation to the concentra-
tion u but also a numerical approximation to the chemical potential w = φ(u) − ε�u. The
mixed finite element method for solving the Cahn–Hilliard equation is, to our best knowl-
edge, first studied by Elliott et al. in [9]. The stability and the convergence of MFE for the
Cahn–Hilliard equation are further investigated in [10,12,13].

We shall apply a postprocessing technique to improve the accuracy and computational
efficiency of MFE methods for Cahn–Hilliard equations (1.1)–(1.3). The basic idea of this
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postprocessing technique is to solve two linear elliptic problems in an enriched finite element
space (either on a finer grid or a higher-order space) once the time integration on the coarse
space is completed. The linear problem in the enriched space can be solved efficiently by fast
Poisson solvers, e.g., multigrid methods. The nonlinear iteration is only applied to a much
smaller size problem and the computational cost using Newton method and direct solvers
for inverting Jacobian matrix is negligible compared with the cost of the linear problem.
We note that the nonlinear multigrid method, e.g., [1,32,43] can also solve the nonlinear
system efficiently. Considering the fact that many fast Poisson solvers are available, the post-
processing method will thus be much easier to implement than nonlinear multigrid methods.
The analysis presented in this paper shows that this technique remains the optimal rate of
convergence for both the concentration and the chemical potential approximations.

The postprocessing techniquewe study herewas originally developed for spectralmethods
for parabolic equations in [23,24]. Later on it was extended to methods based on Chebyshev
and Legendre polynomial [15], spectral element methods [16,17], finite element methods
[17,25], and mixed finite element methods for Navier–Stokes equations [2,3,19,22]. The
analysis of fully discrete procedures can be developed along the same lines [20,21,47]. In
these works, theoretical analysis and numerical experiments show that the postprocessed
method is computationally more efficient than the method to which it is applied. On the
other hand, we observe that the postprocessing technique is mainly applied to second order
nonlinear evolutional equations like the Navier–Stokes equations and the reaction-diffusion
equations. In the original paper [23] in which the postprocessing method is introduced, the
postprocessing spectral method has been applied to fourth order problems like the Cahn–
Hilliard equation and theKuramoto–Sivashinsky equation. At thatmoment, either its analysis
or its development seemed to depend heavily on the properties of the Fourier modes. The
extension to finite element methods on unstructured grids is restricted to second order equa-
tions [17,25]. The analysis in [17,25] could be applied to fourth order equations provided a
conforming finite element space is used. As we mentioned before, however, a conforming
element for fourth order equations is not easy to construct.

In this paper, we shall extend the postprocessing technique toMFEmethods for the Cahn–
Hilliard equation. Unlike the postprocessing MFE applied to second order problems such as
Navier–Stokes equations, the analysis of postprocessing MFE for fourth order problems is
based on the coupled system of u and w which is much more complex than that for second
order problems. Although the postprocessingmethod can be applied to fourth order problems
and the mixed methods for fourth order problems are standard, the corresponding error
estimates obtained in our paper, especially the negative norm error estimates, are non-trivial.
We generalize the error estimate in the H−1 norm for the second order elliptic equations;
see, e.g. [29] and [28], to both H−1 and H−2 norm for the fourth order equations.

The postprocessing method can also be regarded as a two-grid method, where the post-
processed (or fine-grid) approximation is an improvement of the previously computed
(coarse-grid) approximation [45,46]. For the evolution problem, the difference between post-
processing methods and two-grid methods is that in the postprocessing method the fine grid
computations can be done only at the final time T while in the two-grid methods, e.g. [34],
the fine grid computation is applied at every time step.

The rest of the paper is as follows. In Sect. 2 we describe the postprocessing methods
and present the main result. In Sect. 3 we briefly review the derivation of the Cahn–Hilliard
equation and Sobolev spaces used in the analysis. In Sect. 4 we recall some properties of
MFE methods and collect some inequalities to be used later. We prove the main result in
Sect. 5 and present a numerical example which is only of academic value in Sect. 6. More
realistic numerical tests have been presented in [49]. Finally, we give a summary.
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2 Postprocessing Mixed Finite Element Methods

In this section we describe our methods and present the corresponding error estimate.
The Cahn–Hilliard equation (1.1) with boundary condition (1.3) can be written in the

mixed formulation as

∂u

∂t
− �w = 0, x ∈ �, t > 0, (2.1)

φ(u) − ε�u − w = 0, x ∈ �, t > 0, (2.2)
∂u

∂ν
= ∂w

∂ν
= 0, x ∈ ∂�, t > 0, (2.3)

with the initial value conditions (1.2) and w(x, 0) = φ(u0(x)) − ε�u0(x) for all x ∈ �.
The Cahn–Hilliard equation (1.1) arises from a gradient flow of the Ginzburg-Landau free
energy

E(u) =
∫

�

(
�(u) + ε

2
|∇u|2

)
dx .

The Cahn–Hilliard equation is frequently referred to as the H−1 gradient flow:

ut = −grad0E(u),

where the symbol “grad0” denotes a constrained gradient in a Hilbert space, defined by∫
�

u dx = constant. It is easy to verify the global mass conservation and energy dissipa-
tion of the model problem (1.1)–(1.3). Considering the mass conservation and u − ū =
u − 1

|�|
∫
�

u dx , we may consider functions with zero average. Therefore, we assume∫
�

u0(x) dx = 0. For the chemical potential w, similarly, we replace w − w̄ with w

in the following analysis. Due to the boundary condition, the natural Sobolev space is
Ḣ1 := {u ∈ H1,

∫
�

u dx = 0}. The weak formulation is: Find u ∈ Ḣ1, w ∈ Ḣ1, such that
(

∂u

∂t
, v

)
+ (∇w,∇v) = 0 for all v ∈ Ḣ1, (2.4)

ε(∇u,∇χ) + (φ(u) − w,χ) = 0 for all χ ∈ Ḣ1. (2.5)

2.1 Standard Mixed Finite Element Methods

Let Th, h ≥ 0, be a family of partitions of suitable domains�h , where the parameter h is the
maximum diameter of the elements in Th . For r ≥ 2, we consider the finite element space

Sh,r = {
vh ∈ C(�h)|vh|τ ∈ Pr−1, for all τ ∈ Th

}
,

wherePr−1 denotes the space of polynomials of degree at most r −1. Note that for the linear
finite element space, r = 2. The subspace Ṡh,r is defined by

Ṡh,r = {χh ∈ Sh,r : (χh, 1) = 0}.
Then the mixed finite element method for Cahn–Hillard equation reads: Find (uh, wh) :
[0, T ] → Ṡh,r × Ṡh,r such that

(
∂uh

∂t
, vh

)
+ (∇wh,∇vh) = 0 for all vh ∈ Ṡh,r , (2.6)

ε(∇uh,∇χh) + (φ(uh) − wh, χh) = 0 for all χh ∈ Ṡh,r , (2.7)
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with a suitable starting approximation uh(0) ∈ Ṡh,r . For simplicity we will take uh(0) as the
Galerkin projection of u0 in the analysis, although other choices are possible. Let us introduce
the standard L2-orthogonal projection Ph : L2 → Ṡh,r and the operator Ah : Ṡh,r → Ṡh,r

(Ahuh, vh) = (∇uh,∇vh) for all uh, vh ∈ Ṡh,r . (2.8)

Then (2.6)–(2.7) can be equivalently written as

uh,t + ε A2
huh + Ah Phφ(uh) = 0, t > 0. (2.9)

By definition, Ah is self-adjoint positive definite (SPD) on Ṡh,r . Its inverse will be denoted
by Gh and extended to L2 by Gh f = Gh Ph f for f ∈ L2. Then, vh = Gh f is equivalent to
Ahvh = Ph f . Note that Gh is also SPD on L2 and Ṡh,r . For the discrete chemical potential
wh in (2.6)-(2.7), we have wh = ε Ahuh + Phφ(uh) = −Ghuh,t . In [9], it has been shown
that uh(t) is bounded in H1 independent of t , and the following error estimate holds:

‖u(t) − uh(t)‖ + ‖w(t) − wh(t)‖ + ‖u(t) − uh(t)‖1 ≤ Chr , 0 ≤ t ≤ T . (2.10)

2.2 Postprocessing Mixed Finite Element Methods

Given a finite element space ṠH,r ⊂ Ḣ1, the semi-discrete mixed finite element approxima-
tion of (2.1)–(2.2) is defined as: Find (u H , wH ) : [0, T ] → ṠH,r × ṠH,r such that

(
∂u H

∂t
, vH

)
+ (∇wH ,∇vH ) = 0 for all vH ∈ ṠH,r , (2.11)

ε(∇u H ,∇χH ) + (φ(u H ) − wH , χH ) = 0 for all χH ∈ ṠH,r , (2.12)

with a suitable starting approximations u H (0) ∈ ṠH,r and wH (0) = PH φ(u H (0)) +
ε AH u H (0) ∈ ṠH,r .

We are interested in approximations at a certain time T > 0. The postprocessing method
is as follows:

(i) First, integrate (2.11)–(2.12) up to T to obtain the MFE approximations u H (T ) and
wH (T ).

(ii) Then solve the following two decoupled linear elliptic problems: Search for (uh, wh) ≡
(uh(T ), wh(T )) ∈ Ṡh,r̃ × Ṡh,r̃ satisfying

(
∇wh,∇vh

)
= −

(
∂u H

∂t
(T ), vh

)
for all vh ∈ Ṡh,r̃ , (2.13)

ε(∇uh,∇χh) = (wH (T ) − φ(u H (T )), χh) for all χh ∈ Ṡh,r̃ . (2.14)

The finite element space Ṡh,r̃ ⊃ ṠH,r can be chosen as either

1. the same-order finite element over a finer grid: Ṡh,r̃ = Ṡh,r with r̃ = r, h < H , or
2. a higher-order finite element over the same grid: Ṡh,r̃ = ṠH,r̃ with h = H , where r̃ is

defined by, for L2 norm error estimates

r̃ =
{

r + 1, if r = 3,
r + 2, if r ≥ 4,

and, for H1 norm error estimates

r̃ =
{

r + 1, if r = 2,
r + 2, if r ≥ 3.
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We present the error estimate below but defer the proof until Sect. 5.

Theorem 2.1 Fix T > 0, let (u, w) be the solution of (1.1)–(1.3), (u H , wH ) be the MFE
approximation obtained from (2.11)–(2.12), and (uh(T ), wh(T )) ∈ Ṡh,r̃ × Ṡh,r̃ be the post-
processed MFE approximation defined in (2.13)–(2.14). Suppose u ∈ C([0, T ], Ḣr ) ∩
C2((0, T ], L2) and w ∈ L2([0, T ], Ḣr ) ∩ C1((0, T ], L2). Then, for r ≥ 2, there exists
a positive constant C > 0 such that

‖w(T ) − wh(T )‖ ≤ Chr̃ + C Hr+δ(r,l)�H (l), l = 3, 4, (2.15)

‖w(T ) − wh(T )‖1 ≤ Chr̃−1 + C Hr+min{r−2,1}, (2.16)

‖u(T ) − uh(T )‖ ≤ Chr̃ + C Hr+δ(r,l)�H (l), l = 3, 4, (2.17)

‖u(T ) − uh(T )‖1 ≤ Chr̃−1 + C Hr+min{r−2,1}. (2.18)

Here and in the rest of the paper, δ(r, l) and �H (l) are defined, respectively, by

δ(r, l) =
{
min{r − 2, l}, if l = 0, 1, 2,
min{r − 2, l − 2}, if l = 3, 4,

(2.19)

and

�H (l) =
{
1 if l = 0, 1, 3,
| log(H)|, if l = 2, 4.

(2.20)

We observe that the postprocessing technique applied to the linear MFEmethod improves
the rate of convergence of the error in the H1 norm only but not in the L2 norm which is
standard for postprocessing methods (see, e.g., [18,22]). Especially, we can postprocess the
MFE approximation under the same-order finite element over a finer grid to obtain

• for linear finite element

‖w(T ) − wh(T )‖1 + ‖u(T ) − uh(T )‖1 ≤ C(h + H2);
• for quadratic finite element

‖w(T ) − wh(T )‖1 + ‖u(T ) − uh(T )‖1 ≤ C(h2 + H4).

This theorem suggests that to achieve the same convergence rate, the postprocessing MFE
methods can spend less computation time than the standard one by spending less nonlinear
iterations. For example, for linear or quadratic elements, we can chose a coarse grid with
H = h1/2.

We end this section by giving the essential idea of postprocessing procedure and a sketch
of the proof of Theorem 2.1. Let us introduce the Ritz projection Rh which will play a
prominent role in the understanding of the postprocessed method. For v ∈ Ḣ1, we define
Rhv ∈ Ṡh,r̃

(∇ Rhv,∇χh) = (∇v,∇χh) for all χh ∈ Ṡh,r̃ .

When applied to MFE approximation of Cahn–Hilliard equation, we have

Ah

(
wh(T ) − Rhw(T )

)
= − (u H (T ) − u(T ))t , (2.21)

Ah

(
uh(T ) − Rhu(T )

)
= 1

ε
((wH (T ) − w(T )) − (φ(u H (T )) − φ(u(T )))) . (2.22)

Therefore the norm of the error uh − Rhu, wh − Rhw will be bounded by a suitable negative
norm of the right hand side in (2.21)-(2.22). Take (2.21) as an example. By the splitting
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(u − u H )t = (u − RH u)t + (RH u − u H )t and the fact that the negative norm estimate
for (u − RH u)t is well known, the key of the proof is then the negative norm estimate of
(RH u − u H )t which will be given in Sect. 5.1. For the estimate of uh − Rhu, similarly,
negative norm estimate of wH − RH w and φ(u H ) − φ(u) is needed which is presented in
Sect. 5.2.

We notice the undesirable factor 1/ε in (2.22) which suggests that the parameter ε cannot
be too small. Especially the postprocessing may fail if one is interested in the solution in the
limit case, i.e., ε → 0.

3 The Cahn–Hilliard Equation

We define L2
0 = {v ∈ L2 : (v, 1) = 0}, and let P be the L2 orthogonal projection onto L2

0,
P f = f − f̄ . We define the linear operator A = −� with domain of definition, i.e.,

D(A) =
{
v ∈ H2 ∩ L2

0 : ∂v

∂ν
= 0 on ∂�

}
.

It is easy to verify A is a self-adjoint positive definite densely defined operator on L2
0. We

may write (1.1)–(1.3) as an abstract initial value problem

ut + ε A2u + APφ(u) = 0, t > 0, (3.1)

u(0) = u0. (3.2)

A priori bound in the H1 norm for the solution of (3.1)–(3.2) has been derived in [10].
Let W s,p(�), s ≥ 0, p ≥ 1, be the standard Sobolev space with the norm ‖ · ‖s,p . For

convenience, we denote by ‖ · ‖s and ‖ · ‖∞ the norms of the space Hs(�) = W s,2(�)

and L∞(�), respectively, and ‖ · ‖ for the usual norm in L2 = L2(�). Since A is self-
adjoint positive semidefinite, for real s, we can define the spaces Ḣ s = D(As/2) with norms
|v|s = ‖As/2v‖. It is well known that, for integer s ≥ 0, Ḣ s is a subspace of Hs ∩ L2

0 and
that the norms | · |s and ‖ · ‖s are equivalent on Ḣ s . In particular, we have Ḣ1 = H1 ∩ L2

0,
see [10].

We define G : L2
0 → Ḣ2 as the inverse of A and extend to L2 by G f = G P f for f ∈ L2.

Namely, v = G f if and only if Av = P f . It can be easily verified that G is self-adjoint and
positive definite on L2

0 and positive semidefinite on L2.
We recall the following embedding result: for p, q ∈ [1,∞), there exists a constant

C = C(�, p) such that

‖v‖0,q ≤ C‖v‖s,p for v ∈ W s,p(�) and
1

p
≥ 1

q
≥ 1

p
− s

d
; (3.3)

For q = ∞ the above inequality holds for 1
p ≥ 1

q > 1
p − s

d , and, furthermore, in this case v

is also a continuous function. From Hölder’s inequality, we have the following inequality

|( f, vχ)| ≤ ‖ f ‖‖v‖0,p‖χ‖0,q ,
1

p
+ 1

q
= 1

2
, p, q > 0. (3.4)
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4 Error Analysis of Standard Mixed Finite Element Methods

4.1 Preliminaries

In this paper we consider quasi-uniform meshes Th only. That is, we consider meshes Th for
which all elements are shape regular and of comparable size h. Then we have the following
inverse estimate (see, e.g. [36]): for all vh ∈ Sh,r ,

‖vh‖s,p ≤ Chl−s−d(1/q−1/p)‖vh‖l,q , 0 ≤ l ≤ s ≤ 2, 1 ≤ q ≤ p ≤ ∞. (4.1)

For simplicity, we will assume �h = �, i.e., � is triangulated exactly. Then the following
bounds hold (c.f. [25,39]): for 1 ≤ l ≤ r and v ∈ Hl

‖v − Phv‖ + ‖v − Rhv‖ + h‖v − Rhv‖1 ≤ Chl‖v‖l , (4.2)

and, for 0 ≤ s ≤ 2,

‖Gs/2(v − Phv)‖ + ‖Gs/2(v − Rhv)‖ ≤ Chl+δ(l,s)‖v‖l . (4.3)

Here recall that δ(l, s) is defined in (2.19).
For 1 ≤ p ≤ ∞, and for any v ∈ D(A) ∩ W r,p(�), we consider the standard interpolant

operator Ih : D(A) ∩ Hr → Ṡh,r . Under more specific assumption v ∈ Hr , the interpolant
Ih satisfies

‖v − Ihv‖ + h‖v − Ihv‖1 ≤ Chr‖v‖r . (4.4)

Our error estimates obtained in this paper will depend on the following constants

K (u, t) = ‖u(·, t)‖r + ‖ut (·, t)‖r + ‖utt (·, t)‖r , K (u) = max
0≤t≤T

K (u, t). (4.5)

4.2 Error Analysis

We recall some error estimates obtained in [9] in this subsection. We first introduce the
following error decomposition

uh − u = (uh − Rhu) + (Rhu − u) = θu + ρu, (4.6)

wh − w = (wh − Rhw) + (Rhw − w) = θw + ρw. (4.7)

Lemma 4.1 If (u, w) are sufficiently smooth then, for t ∈ [0, T ],
‖D j

t ρu‖ + h‖D j
t ρu‖1 ≤ Chr , j = 0, 1, 2, . . . , (4.8)

‖D j
t ρw‖ + h‖D j

t ρw‖1 ≤ Chr , j = 0, 1, 2, . . . , (4.9)

where C is independent of h and t and D j
t = (∂/∂t) j .

In the following lemma we will need the bound ‖(Rhu)t‖∞ ≤ C for h sufficiently small.
This can be obtained from

‖(Rhu)t‖∞ ≤ ‖(Rhu)t − Ihut‖∞ + ‖ut − Ihut‖∞ + ‖ut‖∞
≤ h−d/2‖(Rhu)t − Ihut‖ + Chr + ‖ut‖r

≤ C(hr + hr−d/2 + K (u)). (4.10)
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Lemma 4.2 Suppose (u, w) are sufficiently smooth. There exist constants C independent of
h, uh and wh such that if ‖uh(·)‖∞ is bounded independent of h then, ∀t ∈ [0, T ],

‖θu‖2 +
∫ t

0
‖θw‖2 ≤ Ch2r + ‖θu(0)‖2, (4.11)

‖θu‖21 + ‖θw‖2 +
∫ t

0

(‖θu,t‖2 + ‖θw‖21
) ≤ Ch2r + ‖θu(0)‖21 + ‖θw(0)‖2. (4.12)

Then we have the following a priori error analysis:

Theorem 4.3 If ‖uh(0) − u0‖ ≤ Chr , then

max
0≤t≤T

‖u(t) − uh(t)‖ +
(∫ T

0
‖w(t) − wh(t)‖dt

)1/2

≤ Chr . (4.13)

If ‖uh(0) − Rhu0‖1 ≤ Chr and ‖wh(0) − Rhw0‖ ≤ Chr ,then

max
0≤t≤T

‖w(t) − wh(t)‖ +
(∫ T

0
‖(u − uh)t (t)‖dt

)1/2

≤ Chr , (4.14)

max
0≤t≤T

‖u(t) − uh(t)‖1 +
(∫ T

0
‖(w − wh)t (t)‖1dt

)1/2

≤ Chr−1, (4.15)

5 Proof of the Main Results

In our analysis we shall frequently use the following relation, for v ∈ L2 and μ = 1, 2:

‖Gμ/2
H PH v‖ ≤ ‖Gμ/2v‖ + C Hμ‖v‖, (5.1)

‖Gμ/2v‖ ≤ ‖Gμ/2
H PH v‖ + C Hμ‖v‖. (5.2)

These inequalities are readily deduced from the estimates ‖Gμ/2 − Gμ/2
H PH ‖ ≤ C Hμ for

μ = 1, 2 (see, e.g., [25,38]).
As stated in Sect. 2, in order to obtain the error estimate for the postprocessing method

proposed here, we should give bounds for ‖Gμ/2
H PH (φ(v) − φ(ψ))‖, ‖u H − RH u‖ and

‖wH − RH w‖. For ‖Gμ/2
H PH (φ(v)−φ(ψ))‖, in view of (5.1), we need the following result.

Lemma 5.1 (Lemma 3 in [25]) Let v ∈ Hr ∩ L2
0 and ψ ∈ L2

0 ∩ L∞. Assume that F is a
smooth function. Then, there exists a constant C = C(‖v‖r , ‖ψ‖∞) such that for μ = 0, 1, 2,
we have that

‖Gμ/2(F(v) − F(ψ))‖ ≤ C
(‖Gμ/2(v − ψ)‖ + ‖v − ψ‖0,q‖v − ψ‖) . (5.3)

Here q = max{2, d/μ′}, where μ′ = μ − 1/2 if d/μ = 2; otherwise μ′ = μ.

Remark 5.1 In our application of Lemma 5.1, we will choose F to be either the function φ

or its derivative φ′, v to be the solution u of the Cahn–Hilliard equation, and ψ to be either
the corresponding finite element approximation solution u H or the Ritz projection RH u.
Obviously, these choices satisfy the assumptions of Lemma 5.1. For example, the bound of
‖u H ‖∞ has been proved in [9] and ‖RH u‖∞ ≤ C has been shown in [36]; see also (4.10).

In the following we will focus on the superconvergence estimate of ‖u H − RH u‖ and
‖wH − RH w‖.
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5.1 Superconvergence for the Concentration

In order to estimate θu = u H − RH u, we first derive the corresponding error equation. From
(2.11) we have for each χ ∈ ṠH,r

(θu,t , χ) + (∇θw,∇χ) = −((RH u)t , χ) − (∇ RH w,∇χ)

= −(ρu,t , χ) − (ut , χ) + (∇w,∇χ), (5.4)

where now ρu = RH u − u and θw = wH − RH w, and since ut = �w, ∂νw = 0 we have

(θu,t , χ) + (∇θw,∇χ) = −(ρu,t , χ) for all χ ∈ ṠH,r . (5.5)

From (2.2) and (2.12) we obtain

(θw, χ) − ε(∇θu,∇χ) = (φ(u H ) − φ(u), χ) − (ρw, χ) for all χ ∈ ṠH,r , (5.6)

where ρw = RH w − w. It follows from (5.5) and (5.6) that

θu,t + ε A2
H θu + AH PH (φ(u H ) − φ(RH u)) = TH , (5.7)

where TH is defined by

TH = AH PH ρw − AH PH (φ(RH u) − φ(u)) − PH ρu,t . (5.8)

As a consequence of the error equation (5.7), the following stability inequality can be
obtained.

Proposition 5.2 Fix T > 0. Let u be the solution of (1.1)–(1.3), let u H be its discrete
approximation via (2.11)–(2.12), and let RH u be the elliptic projection of u onto ṠH,r . Then,
there exists a positive constant Ks > 0 such that ∀t1 ≤ T , the following estimate holds:

max
0≤t≤t1

‖u H − RH u‖ ≤ Ks max
0≤t≤t1

∥∥∥∥
∫ t

0
e−ε(t−s)A2

H TH (s)ds

∥∥∥∥ , (5.9)

where TH (s) is given in (5.8).

Proof It follows from (5.7) that

θu(t) = e−εt A2
H PH θu(0) +

∫ t

0
e−ε(t−s)A2

H AH PH (φ(RH u) − φ(u H ))ds

+
∫ t

0
e−ε(t−s)A2

H TH (s)ds. (5.10)

We write the integrand of the second term on the right-hand side of (5.10) as

e−ε(t−s)A2
H AH PH (φ(RH u) − φ(u H )) = AH e−ε(t−s)A2

H PH (φ(RH u) − φ(u H )),

and use the mean-value theorem to estimate∥∥∥∥
∫ t

0
e−ε(t−s)A2

H AH PH (φ(RH u) − φ(u H ))ds

∥∥∥∥ ≤ C1/2√
ε

∫ t

0

‖PH (φ(RH u) − φ(u H ))‖√
t − s

ds

≤ K C1/2√
ε

∫ t

0

‖θu(s)‖√
t − s

ds. (5.11)

123



J Sci Comput

Then, taking θu(0) = 0 into consideration, we get

‖θu(t)‖ ≤ K C1/2√
ε

∫ t

0

‖θu(s)‖√
t − s

ds +
∫ t

0
e−ε(t−s)A2

H TH (s)ds. (5.12)

Application of the generalized Gronwall lemma allows us to conclude the proof. ��
We then estimate the right-hand side of (5.9).

Lemma 5.3 (Lemma 5 in [25]) For any f ∈ C([0, T ]; L2), the following estimate holds:
∀t ∈ [0, T ]∫ t

0
‖Aμ/2

H e−ε(t−s)A2
H PH f (s)‖ds ≤ C

εμ/4 �H (μ) max
0≤t≤T

‖ f (t)‖, μ = 3, 4. (5.13)

Consequently

max
0≤t≤t1

‖u H − RH u‖ ≤ C

εμ/4 �H (μ) max
0≤t≤T

‖Gμ/2
H TH ‖, μ = 3, 4.

We split the truncation error in negative norm as

‖Gμ/2
H TH (t)‖≤‖G(μ−2)/2

H PH [φ(RH u) − φ(u)]‖+‖Gμ/2
H PH ρu,t‖ + ‖G(μ−2)/2

H PH ρw‖.
(5.14)

and estimate the three terms on the right-hand side of (5.14). For the second and third terms,
we have the following lemma.

Lemma 5.4 There exists a constant C, that depends on K (u) given in (4.5), such that for
t ∈ [0, T ] the following bounds hold:

‖Gμ/2
H PH D j

t ρw(t)‖ ≤ C Hr+δ(r,μ), μ = 1, 2, j = 0, 1, (5.15)

‖Gμ/2
H PH D j

t ρu(t)‖ ≤ C Hr+δ(r,μ), μ = 1, 2, 3, 4, j = 0, 1, 2. (5.16)

Proof By (5.1) and (4.3), we have

‖Gμ/2
H PH D j

t ρw(t)‖ ≤ ‖Gμ/2D j
t ρw(t)‖ + C Hμ‖D j

t ρw(t)‖
≤ C H δ(r,μ)‖D j

t ρw(t)‖. (5.17)

Then (5.15) follows from the estimate (4.9).
Concerning (5.16), using the same arguments as for (5.15), we can prove the cases μ =

1, 2. For the cases μ = 3, 4, using

Gμ/2
H = G H G(μ−2)/2

H = (G H − G)G(μ−2)/2
H + GG(μ−2)/2

H

= (RH − I )GG(μ−2)/2
H + GG(μ−2)/2

H

and taking into account that G is bounded, we obtain (5.16). ��
We are now ready to give the estimate of ‖Gμ/2

H TH (t)‖.
Lemma 5.5 There exists a constant C, that depends on K (u) given in (4.5), such that for
t ∈ [0, T ] the following bounds hold for μ = 3, 4:

‖Gμ/2
H TH (t)‖ ≤ C Hr+δ(r,μ). (5.18)

123



J Sci Comput

Proof Due to (5.15) and (5.16), we only need to estimate the first term on the right-hand side
of (5.14). Using (5.1), we have

‖G(μ−2)/2
H PH [φ(RH u) − φ(u)]‖

≤ ‖G(μ−2)/2[φ(RH u) − φ(u)]‖ + C Hμ−2‖φ(RH u) − φ(u)‖. (5.19)

Then, applying Lemma 5.1, (4.2) and (4.3), we obtain

‖G(μ−2)/2
H PH [φ(RH u) − φ(u)]‖

≤ ‖G(μ−2)/2(RH u − u)‖ + ‖RH u − u‖0,q‖RH u − u‖ + C Hμ−2‖RH u − u‖
≤ C Hr+δ(r,μ) + C Hr‖RH u − u‖0,q . (5.20)

Here q = max{2, d/μ′}, where μ′ = μ − 2− 1/2 if d/(μ − 2) = 2; otherwise μ′ = μ − 2.
To finish the proof we use the error estimate [25]

‖RH u − u‖0,q = O(Hμ−2). (5.21)

��
From Lemma 5.3 and 5.5, we are in the position to formulate our main result in this

subsection.

Theorem 5.6 (Superconvergence for the concentration u) For μ = 3, 4, there exists positive
constant C = C(K (u)) such that

max
0≤t≤T

‖RH u(t) − u H (t)‖ ≤ C Hr+δ(r,μ)�H (μ). (5.22)

5.2 Superconvergence for the Chemical Potential

In this subsection we give the superconvergence estimate of ‖θw‖ = ‖wH − RH w‖, which
is more technical. Let us start by noticing that PH ρu,t = (RH u)t − PH ut satisfies

d

dt
RH u + AH RH w = PH ρu,t , (5.23)

and

A(2−μ)/2
H θw = −Gμ/2

H θu,t − Gμ/2
H ρu,t , μ = 1, 2. (5.24)

The second term on the right-hand side of (5.24) can be bounded by (5.16). Thus we only
need to bound ‖Gμ/2

H PH θu,t‖.
For this purpose, similar to the case ‖θu‖, we derive an error equation satisfied by θu,t .

Differentiating equation (5.7) we get

θu,t t + ε A2
H θu,t + AH PH [φ(u H ) − φ(RH u)]t = TH,t . (5.25)

Hence, by Duhamel’s principle

Gμ/2
H θu,t (t) = e−εt A2

H Gμ/2
H θu,t (0) +

∫ t

0
e−ε(t−s)A2

H A(2−μ)/2
H PH [φ(RH u) − φ(u H )]t ds

+
∫ t

0
e−ε(t−s)A2

H Gμ/2
H TH,t (s)ds, μ = 1, 2. (5.26)
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To obtain the bound of the second term on the right-hand side of (5.26), we write
[φ(RH u) − φ(u H )]t as

[φ(RH u) − φ(u H )]t = [φ′(RH u) − φ′(u H )](RH u)t + φ′(u H )[RH u − u H ]t

and estimate the first term by the following two lemmas.

Lemma 5.7 (Lemma 6.2 in [10]) Let ‖v‖1 and ‖ψ‖1 be bounded. Then

‖G1/2
H [(φ′(v) − φ′(ψ))z]‖ ≤ C‖v − ψ‖‖z‖1. (5.27)

Based on this lemma, we have the following result.

Lemma 5.8 There exists a constant C such that for μ = 1, 2,

‖Gμ/2
H [(φ′(RH u) − φ′(u H ))(RH u)t ]‖ ≤ C Hr+δ(r,l)�H (l), l = 3, 4. (5.28)

Proof Taking ‖(RH u)t‖1 ≤ ‖(RH u − u)t‖1 + ‖ut‖1 ≤ C(u) and the boundness of ‖u H ‖1,
which has been proved in [10], using Lemma 5.7, we have

‖G1/2
H [(φ′(RH u) − φ′(u H ))(RH u)t ]‖ ≤ C‖RH u − u H ‖‖(RH u)t‖1, (5.29)

which implies (5.28) holds for μ = 1.
We now turn to the caseμ = 2. From (5.1), using the fact ‖(RH u)t‖∞ and G are bounded,

we have

‖G H [(φ′(RH u) − φ′(u H ))(RH u)t ]‖
≤ ‖G[(φ′(RH u) − φ′(u H ))(RH u)t ]‖ + C H2‖(φ′(RH u) − φ′(u H ))(RH u)t‖
≤ C‖RH u − u H ‖ + C(K )H2‖RH u − u H ‖
≤ C Hr+δ(r,l)�H (l). (5.30)

This completes the proof. ��
To give the bound of the third term on the right-hand side of (5.26), we present the

following lemma.

Lemma 5.9 Assume ‖v‖r , ‖vt‖∞ and ‖vt‖r are bounded. Then for μ = 1, 2,

‖Gμ/2[φ′(v)z]‖ ≤ C‖Gμ/2z‖, (5.31)

‖Gμ/2[(φ′(v) − φ′(ψ))vt ]‖ ≤ C‖Gμ/2(v − ψ)‖ + C‖v − ψ‖0,q‖v − ψ‖, (5.32)

where q = max{2, d/μ′}, with μ′ = μ − 1/2 if d/μ = 2; otherwise μ′ = μ.

Proof Let us first take p such that

1

p
=

⎧⎨
⎩
1/2 − μ/d if d/2 > μ,

1/2 − (μ − 1/2)/d if d/2 = μ,

0 if d/2 < μ.

(5.33)

Then it is easy to verify 1/p + 1/q = 1/2.
Let us denote E = Gz and take χ ∈ C∞

0 (�). When μ = 1, we then get

|(Gμ/2[φ′(v)z], χ)| = |(φ′(v)z, Gμ/2χ)|
= |(∇E,∇((Gμ/2χ)φ′(v)))|
= |(∇E,∇(Gμ/2χ)φ′(v) + (Gμ/2χ)∇(φ′(v)))|
≤ C‖∇E‖‖χ‖ + C‖∇E‖‖Gμ/2χ‖0,p‖v‖1,q .
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Let us recall that with the choice of p, due to Sobolev’s inequality, we always have

‖Gμ/2χ‖0,p ≤ C‖χ‖.
Then we have

|(Gμ/2[φ′(v)z], χ)| ≤ C‖∇E‖‖χ‖ + C‖∇E‖‖Gμ/2χ‖0,p‖v‖1,q
≤ C‖∇E‖‖χ‖ + C(‖v‖r )‖∇E‖‖χ‖.

This implies

‖G1/2[φ′(v)z]‖ ≤ ‖G1/2z‖. (5.34)

Now consider μ = 2. In view of

�(φ′(v)(Gχ)) = (Gχ)�φ′(v) + 2∇(φ′(v)) · ∇(Gχ) + φ′(v)χ,

we have

|(G[φ′(v)z], χ)| = |(φ′(v)z, Gχ)| = |(E,�((Gχ)φ′(v)))|
≤ ‖E‖‖Gχ‖0,p‖�φ′(v)‖0,q + 2|(E,∇(φ′(v)) · ∇(Gχ))| + C‖E‖‖φ′(v)‖∞‖Gχ‖.

(5.35)

Since �φ′(v) = φ′′(v)�v + φ′′′(v)∇v · ∇v, ‖ · ‖μ,q ≤ C‖ · ‖r and ‖ · ‖0,2q ≤ C‖ · ‖r−1, we
have that

‖�φ′(v)‖0,q ≤ C
(
‖v‖2,q + ‖∇v‖1/2

L2q (�)2

)
≤ C‖v‖r .

We then can bound the first term on the right-hand side of (5.35) as follows:

‖E‖‖Gχ‖0,p‖�φ′(v)‖0,q ≤ C‖E‖‖χ‖‖v‖r . (5.36)

Using similar arguments, we obtain the following estimate for the second term on the
right-hand side of (5.35):

|(E,∇(φ′(v)) · ∇(Gχ))| ≤ C‖E‖‖v‖r‖χ‖. (5.37)

Thus, in view of (5.36) and (5.37), it follows that

‖G[φ′(v)z]‖ ≤ C‖Gz‖.
Using this result together with (5.34), we get (5.31).

Now we turn to the inequality (5.32). Observe first that φ is smooth and therefore φ(3) is
bounded. Then using the mean-value theorem and the fact that ‖vt‖∞ ≤ C , it follows that

‖Gμ/2[(φ′(v) − φ′(ψ))vt ]‖≤‖Gμ/2[φ′′(v)(v − ψ)vt ]‖+C‖v − ψ‖0,q‖v − ψ‖. (5.38)

For the first term on the right-hand side of (5.38), the arguments for (5.31) can be applied to
it, yielding

‖Gμ/2[φ′′(v)(v − ψ)vt ]‖ ≤ C‖Gμ/2(v − ψ)‖,
for μ = 1, 2. Substituting this into (5.38), we arrive at (5.32). ��

We then estimate ‖Gμ/2
H TH,t (t)‖.
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Lemma 5.10 There exists a constant C, that depends on K (u) which is given in (4.5), such
that for t ∈ [0, T ] the following bounds hold for μ = 3, 4:

‖Gμ/2
H TH,t (t)‖ ≤ C Hr+δ(r,μ). (5.39)

Proof Similar to (5.14), we have

‖Gμ/2
H TH,t (t)‖ ≤ ‖G(μ−2)/2

H PH [φ(RH u) − φ(u)]t‖ + ‖Gμ/2
H ρu,t t‖ + ‖G(μ−2)/2

H ρw,t‖.
(5.40)

Then thanks to (5.15) and (5.16), we only need to bound ‖G(μ−2)/2
H PH [φ(RH u) − φ(u)]t‖.

For this purpose we write

‖G(μ−2)/2
H PH [φ(RH u) − φ(u)]t‖ ≤ ‖G(μ−2)/2

H PH [(φ′(RH u) − φ′(u))(RH u − u)t ]‖
+‖G(μ−2)/2

H PH [(φ′(RH u) − φ′(u))ut ]‖
+‖G(μ−2)/2

H PH [φ′(u)(RH u − u)t ]‖
= I1 + I2 + I3. (5.41)

For I1, when μ = 3, from (5.27) we have

‖G1/2
H [(φ′(RH u) − φ′(u))(RH u − u)t ]‖ ≤ ‖RH u − u‖‖(RH u − u)t‖1

≤ C H2r−1. (5.42)

When μ = 4, we have

‖G H [(φ′(RH u) − φ′(u))(RH u − u)t ]‖
≤ ‖G[(φ′(RH u) − φ′(u))(RH u − u)t ]‖ + C H2‖(φ′(RH u) − φ′(u))(RH u − u)t‖
≤ C‖RH u − u‖L4‖(RH u − u)t‖L4 + C H2‖RH u − u‖L4‖(RH u − u)t‖L4

≤ C‖RH u − u‖1‖(RH u − u)t‖1 + C H2‖RH u − u‖1‖(RH u − u)t‖1
≤ C H2r−2 + C H2r . (5.43)

For I2 and I3, taking ‖(RH u)t‖∞ ≤ C and (4.8) into consideration, we have

I2 + I3

≤ ‖G(μ−2)/2[(φ′(RH u) − φ′(u))ut ]‖ + C Hμ−2‖[φ′(RH u) − φ′(u)]ut‖
+‖G(μ−2)/2[φ′(u)(RH u − u)t ]‖ + C Hμ−2‖φ′(u)[RH u − u]t‖

≤ ‖G(μ−2)/2[(φ′(RH u) − φ′(u))ut ]‖ + C Hr+μ−2 + ‖G(μ−2)/2[φ′(u)(RH u − u)t ]‖.
(5.44)

Since ‖u‖r , ‖ut‖∞ and ‖ut‖r are bounded, from (5.31) and (5.32), we have

‖G(μ−2)/2[(φ′(RH u) − φ′(u))ut ]‖ ≤ C‖G(μ−2)/2(RH u − u)‖
+C‖RH u − u‖0,q‖RH u − u‖

≤ C Hr+δ(r,μ), (5.45)

and

‖G(μ−2)/2[φ′(u)(RH u − u)t ]‖ ≤ C‖G(μ−2)/2(RH u − u)t‖ ≤ C Hr+δ(r,μ). (5.46)
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Combine (5.40), (5.15), (5.16), (5.44), (5.45) and (5.46) to obtain

‖Gμ/2
H TH,t (t)‖ ≤ C(K )Hr+δ(r,μ). (5.47)

��

Theorem 5.11 Fix T > 0. Let u be the solution of (1.1)-(1.3), let u H be its discrete approx-
imation via (2.11)–(2.12), and let RH u be the elliptic projection of u onto ṠH,r . Then, there
exists a positive constant C > 0 such that ∀t1 ≤ T , μ = 0, 1, 2, the following estimate
holds:

max
0≤t≤t1

‖Gμ/2
H θu,t‖ ≤ C Hr+δ(r,l)�H (l), l = 3, 4. (5.48)

Proof For the second term on the right-hand side of (5.26), we write [φ(RH u)−φ(u H )]t =
[φ′(RH u) − φ′(u H )](RH u)t + φ′(u H )[RH u − u H ]t , so that

∫ t

0
e−ε(t−s)A2

H A(2−μ)/2
H PH [φ(RH u) − φ(u H )]t ds

=
∫ t

0
e−ε(t−s)A2

H A(2−μ)/2
H PH [(φ′(RH u) − φ′(u H ))(RH u)t ]ds

+
∫ t

0
e−ε(t−s)A2

H A(2−μ)/2
H PH [φ′(u H )(RH u − u H )t ]ds

= I1 + I2. (5.49)

Here, by Lemma 5.3 and Lemma 5.8, we have

‖I1‖ ≤
∫ t

0

∥∥∥A(3−μ)/2
H e−ε(t−s)A2

H G1/2
H [(φ′(RH u) − φ′(u H ))(RH u)t ]

∥∥∥ ds

≤ C

ε(3−μ)/4
max
0≤t≤T

∥∥∥G1/2
H [(φ′(RH u) − φ′(u H ))(RH u)t ]

∥∥∥
≤ C Hr+δ(r,l)�H (l), l = 3 or 4. (5.50)

Then, taking into account that ‖θu,t (0)‖ = 0, we have

‖Gμ/2
H θu,t (t)‖ ≤ C Hr+δ(r,l)�H (l) + ‖I2‖ +

∥∥∥∥
∫ t

0
e−ε(t−s)A2

H Gμ/2
H TH,t (s)ds

∥∥∥∥
= C Hr+δ(r,l)�H (l) + ‖I2‖ +

∥∥∥∥
∫ t

0
A(l−μ)/2

H e−ε(t−s)A2
H Gl/2

H TH,t (s)ds

∥∥∥∥
≤ C Hr+δ(r,l)�H (l) + ‖I2‖ +

∫ t

0

∥∥∥A(l−μ)/2
H e−ε(t−s)A2

H Gl/2
H TH,t (s)

∥∥∥ ds.

In view of Lemma 5.3 and Lemma 5.10, the above inequality becomes

‖Gμ/2
H θu,t (t)‖ ≤ C Hr+δ(r,l)�H (l) + ‖I2‖ + C

εm/4 �H (m) max
0≤s≤t

∥∥∥Gl/2
H TH,t (s)

∥∥∥
≤ C Hr+δ(r,l)�H (l) + ‖I2‖ + C Hr+δ(r,l)�H (m), (5.51)

where m = l − μ.
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We consider the casesμ = 0 andμ = 1, 2 separately. First let us consider the caseμ = 0.
Then for I2 we argue as follows. Since ‖φ′(u H )[RH u − u H ]t‖ ≤ C‖θu,t‖, we obtain that

‖I2‖ ≤
∫ t

0

∥∥∥AH e−ε(t−s)A2
H Gμ/2

H [φ′(u H )θu,t (s)]
∥∥∥ ds

≤ C√
ε

∫ t

0

‖θu,t (s)‖√
t − s

ds. (5.52)

A standard application of the generalized Gronwall lemma leads to the inequality (5.48) for
the case μ = 0.

We now turn to the cases μ = 1, 2. From (5.1) and the fact that G and φ′ are bounded,
we have

‖G H [φ′(u H )θu,t (s)]‖ ≤ ‖G[φ′(u H )θu,t (s)]‖ + C H2‖φ′(u H )θu,t (s)‖
≤ C‖θu,t (s)‖ ≤ C Hr+δ(r,l)�H (l). (5.53)

Hence, Lemma 5.3 may be applied to yield

‖I2‖ ≤
∫ t

0

∥∥∥A(4−μ)/2
H e−ε(t−s)A2

H G H [φ′(u H )θu,t (s)]
∥∥∥ ds

≤ C

ε(4−μ)/2
max
0≤s≤t

‖G H [φ′(u H )θu,t (s)]‖
≤ C Hr+δ(r,l)�H (l). (5.54)

Substituting this into (5.51), we obtain the desired result for the cases μ = 1, 2. ��
We are ready to formulate our main result in this subsection.

Theorem 5.12 (Superconvergence for the chemical potential w) There exists positive con-
stant C = C(K (u)) such that for μ = 1, 2, l = 3, 4

max
0≤t≤T

‖RH w(t) − wH (t)‖2−μ ≤ C
(

Hr+δ(r,l)�H (l) + Hr+δ(r,μ)
)

. (5.55)

Proof From (2.11) and (5.23), we have A(2−μ)/2
H θw = −Gμ/2

H θu,t − Gμ/2
H ρu,t . Then (5.55)

is a direct consequence of (5.48) and (5.16). ��
As a consequence of the above analysis, we have the following corollary, which gives an

H1 error estimate of the chemical potential w and an L2 error estimate of ut .

Corollary 5.13 There exists positive constant C = C(K (u)) such that

‖ut − u H,t‖ + ‖w − wH ‖ + H‖w − wH ‖1 ≤ C Hr . (5.56)

Proof From Lemma 4.1 and Theorem 5.12, we have the desired estimate for the chemical
potential w. The L2 error estimate of ut is a direct consequence of (4.8) and (5.48). ��

It is convenient to give results providing negative norm estimate.

Theorem 5.14 There exists positive constant C = C(K (u)) such that for μ = 1, 2

‖Gμ/2(w − wH )‖ ≤ C
(

Hr+δ(r,l)�H (l) + Hr+δ(r,μ)
)

, l = 3, 4; (5.57)

‖Gμ/2D j
t (u − u H )‖ ≤ C

(
Hr+δ(r,l)�H (l) + Hr+δ(r,μ)

)
, l = 3, 4, j = 0, 1. (5.58)

123



J Sci Comput

Proof It follows from the splitting wH − w = wH − RH w + RH w − w and (4.3) that

‖Gμ/2(wH − w)‖ ≤ ‖Gμ/2(RH w − w)‖ + ‖Gμ/2(wH − RH w)‖
≤ C Hr+δ(r,μ) + ‖Gμ/2(wH − RH w)‖. (5.59)

Since G is bounded, we have ‖Gμ/2(wH − RH w)‖ = ‖G A(2−μ)/2(wH − RH w)‖ and use
(5.55) to get (5.57).

To prove (5.58), we also consider the splitting

u H − u = u H − RH u + RH u − u. (5.60)

Then from (4.3) and (4.8), we get

‖Gμ/2D j
t (u H − u)‖ ≤ ‖Gμ/2D j

t (u H − RH u)‖ + ‖Gμ/2D j
t (RH u − u)‖

≤ ‖Gμ/2D j
t (u H − RH u)‖ + C Hr+δ(r,μ). (5.61)

Now in the case j = 0, using the fact thatGμ/2 is bounded and the superconvergence estimate
(5.22), we have

‖Gμ/2(u H − u)‖ ≤ C‖u H − RH u‖ + C Hr+δ(r,μ)

≤ C
(

Hr+δ(r,l)�H (l) + Hr+δ(r,μ)
)

, l = 3, 4. (5.62)

For the case j = 1, it follows from (5.61), (5.2) and (5.48) that

‖Gμ/2(u H − u)t‖ ≤ ‖Gμ/2
H (u H − RH u)t‖ + C Hμ‖(u H − RH u)t‖ + C Hr+δ(r,μ)

≤ C
(

Hr+δ(r,l)�H (l) + Hr+δ(r,μ)
)

, l = 3, 4. (5.63)

This completes the proof. ��

In [29] and [28], the H−1, i.e., μ = 1, negative norm error estimates of the finite element
methodswere obtained for the nonstationaryNavier–Stokes equations and the incompressible
MHD equations, respectively. In this paper, we generalize their negative norm error estimates
to the fourth order problem and the case μ = 2.

5.3 Proof of Theorem 2.1

In this subsection, we give a detailed proof of our main result Theorem 2.1.

Proof of Theorem 2.1. We consider the splitting u−uh = u−Rhu+Rhu−uh andw−wh =
w − Rhw + Rhw − wh . The term u − Rhu and w − Rhw can be readily estimated by using
(4.8)–(4.9), so that,

‖w − Rhw‖ + h‖w − Rhw‖1 + ‖u − Rhu‖ + h‖u − Rhu‖1 ≤ Chr̃ . (5.64)

We will concentrate on the estimates of uh − Rhu and wh − Rhw. For μ = 1, 2,

A(2−μ)/2
h (wh − Rhw) = −Gμ/2

h

[
(u H − u)t

]
, (5.65)

A(2−μ)/2
h (uh − Rhu) = 1

ε
Gμ/2

h [wH − w + φ(u) − φ(u H )] . (5.66)
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Then from (5.65), by (5.1), (5.58) and the fact that H ≤ h we have

‖wh − Rhw‖2−μ = ‖Gμ/2
h (u H − u)t‖

≤ ‖Gμ/2(u H − u)t‖ + Chμ‖(u H − u)t‖
≤ C

(
Hr+δ(r,l)�H (l) + Hr+δ(r,μ)

)
+ Chμ Hr

≤ C
(

Hr+δ(r,l)�H (l) + Hr+δ(r,μ)
)

, l = 3, 4. (5.67)

Using this result together with (5.64), we get (2.15) and (2.16). ��

We now direct our attention to the proof of (2.17) and (2.18). From (5.66), we have

‖uh − Rhu‖2−μ ≤ C
(
‖Gμ/2

h (wH − w)‖ + ‖Gμ/2
h (φ(u H ) − φ(u))‖

)
. (5.68)

For the first term on the right-hand side of (5.68), in a similar way, using (5.1), (5.56) and
(5.57), we find

‖Gμ/2
h (wH − w)‖ ≤ ‖Gμ/2(wH − w)‖ + Chμ‖wH − w‖

≤ C
(

Hr+δ(r,l)�H (l) + Hr+δ(r,μ)
)

, l = 3, 4. (5.69)

For the second term on the right-hand side of (5.68), we have

‖Gμ/2
h (φ(u H ) − φ(u))‖

≤ ‖Gμ/2(φ(u H ) − φ(u))‖ + Chμ‖φ(u H ) − φ(u)‖
≤ C‖Gμ/2(u H − u)‖ + C‖u H − u‖0,q‖u H − u‖ + Chμ‖u H − u‖
≤ C

(
Hr+δ(r,l)�H (l) + Hr+δ(r,μ)

)
+ C‖u H − u‖0,q‖u H − u‖, l = 3, 4, (5.70)

where q is the value in Lemma 5.1. To estimate ‖u H − u‖0,q , we use the inverse estimate
(4.1), the fact that δ(r, l) = δ(r, l − 2) when l = 3, 4, and Theorem 5.6 to get

‖u H − RH u‖0,q ≤ C Hd/q−d/2‖u H − RH u‖ ≤ C K (u)Hr+δ(r,l−2)−d/p�H (l),

where d/q −d/2 = −d/p has been used. In view of (5.33), we have r + δ(r, l −2)−d/p ≥
δ(r, l − 2). This and (5.21) lead to

‖u − u H ‖0,q ≤ C K (u)Hmin{r+δ(r,l−2)−d/p,l−2}�H (l) ≤ C H δ(r,l−2)�H (l).

Hence, by (4.13), we have

‖u H − u‖0,q‖u H − u‖ ≤ C Hr+δ(r,l)�H (l). (5.71)

Substituting this inequality into (5.70) yields

‖Gμ/2
h (φ(u H ) − φ(u))‖ ≤ C

(
Hr+δ(r,l)�H (l) + Hr+δ(r,μ)

)
. (5.72)

Combine (5.64), (5.68), (5.69) and (5.72) to get (2.17) and (2.18). This completes the proof.
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6 Numerical Experiments

In this section, we present one numerical example in order to support the analysis developed
in this paper. Due to the limitation of space, here we only give an example for which the exact
solution is constructed. More examples involving practical applications have been presented
in the paper [49]. We implemented the schemes by using the MATLAB© software package
iFEM [5].

We consider the Cahn–Hilliard equation

∂u
∂t + �(ε�u − φ(u)) = f x ∈ �, t > 0,

u(x, 0) = u0(x) x ∈ �,
∂u
∂ν

= ∂
∂ν

(φ(u) − ε�u) = 0 x ∈ ∂�.

(6.1)

over the domain� = (0, 1)2, where φ takes the typical type (1.4). Let ε = 0.1, and the exact
solution be

u = e−t sin2(πx) sin2(πy).

Then functions f and u0(x) can be chosen to satisfy (6.1). Observe that our analysis can
be easily generalized to the case where f is a known function. After rewriting the above
equation as a mixed formulation, we apply MFE methods with linear element (P1) and
quadratic element (P2), respectively. For time discretization, we use the backward Euler
scheme (

un+1
h − un

h

�t
, vh

)
+

(
∇wn+1

h ,∇vh

)
= f for all vh ∈ Ṡh,r , (6.2)

ε
(
∇un+1

h ,∇χh

)
+

(
φ(un+1

h ) − wn+1
h , χh

)
= 0 for all χh ∈ Ṡh,r , (6.3)

with �t = 1.0e-5, where un
h and wn

h denote the approximations at tn = n�t , respectively.
This fully implicit scheme is energy-stable and uniquely solvable when �t ≤ 4ε (see [10]).
The errors at T = 0.01 for P1 and P2 mixed finite element approximation are presented in
Tables 1 and 2.

We then apply our postprocessed MFE methods. The numerical results are presented in
Tables 3 and 4. A comparison of Tables 1, 2, 3 and 4 confirms that the convergence order
matches our theoretical estimate for linear and quadratic elements.

Table 1 �t = 1.0e−5,
T = 0.01, P1 mixed finite
element approximation

h ||u − uh ||1 Ratio ||w − wh ||1 Ratio

1/16 2.805653e−01 1.798280

1/32 1.396404e−01 2.01 9.063605e−01 1.98

1/64 6.972192e−02 2.00 4.541101e−01 2.00

Table 2 �t = 1.0e−5, T =
0.01, P2 mixed finite element
approximation

h ||u − uh ||1 Ratio ||w − wh ||1 Ratio

1/16 1.149667e−02 8.782236e−02

1/32 2.900157e−03 3.96 2.225154e−02 3.95

1/64 7.273173e−04 3.99 5.588638e−03 3.98
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Table 3 �t = 1.0e−5, T = 0.01, P1 postprocessing mixed finite element approximation

H h ||u − uh ||1 Ratio ||w − wh ||1 Ratio

1/4 1/16 6.388851e−01 1.916974

1/8 1/64 1.921115e−01 3.32 5.069748e−01 3.78

1/16 1/256 5.060618e−02 3.79 1.284365e−01 3.96

1/32 1/1024 1.282033e−02 3.80 3.221215e−02 3.99

Table 4 �t = 1.0e−5, T =
0.01, P2 postprocessing mixed
finite element approximation

H h ||u − uh ||1 Ratio ||w − wh ||1 Ratio

1/4 1/16 5.986256e−02 9.686167e−02

1/8 1/64 4.980803e−03 12.02 6.285356e−03 15.01

1/16 1/256 3.343822e−04 14.90 3.975132e−04 15.81

7 Summary

In this paper, the postprocessing mixed finite element methods have been applied to solving
the Cahn–Hilliard equation, a fourth order nonlinear differential equation. The methods can
be described as: on the coarser mesh we first compute the mixed finite element approxi-
mations until a fixed time at which we need a higher accuracy solution, then at the fixed
time the approximations are postprocessed by solving two decoupled linear elliptic problems
on a finer grid (or higher-order space). The analysis presented here shows that this tech-
nique remains the optimal rate of convergence for both the concentration and the chemical
potential approximations. The negative norm error estimates, which are new and non-trivial,
are also obtained. A numerical example confirms the theoretical results and illustrates the
effectiveness of the postprocessing MFE methods.

References

1. Aristotelous, A.C., Karakshian, O.,Wise, S.M.: Amixed discontinuous Galerkin, convex splitting scheme
for amodifiedCahn-Hilliard equation and an efficient nonlinearmultigrid solver. Discret. Cont. Dyn. Syst.
18, 2211–2238 (2013)

2. Ayuso, B., Garcia-Archilla, B., Novo, J.: The postprocessed mixed finite element method for the Navier–
Stokes equations. SIAM J. Numer. Anal. 43, 1091–1111 (2005)

3. Ayuso, B., De Frutos, J., Novo, J.: Improving the accuracy of the mini-element approximation to Navier–
Stokes equations. IMA J. Numer. Anal. 27, 198–218 (2007)

4. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system I: interfacial free energy. J. Chem. Phys.
28, 258–267 (1958)

5. Chen, L.: iFEM: An integrated finite element methods package inMATLAB. Technical report, University
of California at Irvine (2009)

6. Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic
Cahn-Hilliard systems. Comm. Comput. Phys. 13, 1189–1208 (2013)

7. Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math.
Comput. 18, 113–126 (2005)

8. Elliott, C.M., Songmu, Zheng: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357
(1986)

9. Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation.
Numer. Math. 54, 575–590 (1989)

123



J Sci Comput

10. Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method
for the Cahn-Hilliard equation. Math. Comput. 58, 603–630 (1992)

11. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529,
39 (2011)

12. Feng, X., Prohl, A.: Analysis of a fully discrete finite element method for the phase field model and
approximation of its sharp interface limits. Math. Comput. 73, 541–567 (2004)

13. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation.
Numer. Math. 99, 47–84 (2004)

14. Feng, X., Karakashian, O.A.: Fully discrete dynamicmesh discontinuous Galerkin methods for the Cahn–
Hillard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)

15. de Frutos, J., Garcia-Archilla, B., Novo, J.: A postprocessedGalerkinmethodwithChebyshev or Legendre
polynomials. Numer. Math. 86, 419–442 (2000)

16. deFrutos, J.,Novo, J.:A spectral elementmethod for theNavier–Stokes equationswith improved accuracy.
SIAM J. Numer. Math. 38, 799–819 (2000)

17. de Frutos, J., Novo, J.: A postprocess based improvement of the spectral element method. Appl. Numer.
Math. 33, 217–223 (2000)

18. de Frutos, J., Novo, J.: Postprocessing the linear finite element method. SIAM J. Numer. Math. 40,
805–819 (2002)

19. de Frutos, J., Garcia-Archilla, B., Novo, J.: The postprocessed mixed finite element method for the
Navier–Stokes equations: improved error bounds. SIAM J. Numer. Math. 46, 201–230 (2007)

20. de Frutos, J., Garcia-Archilla, B., Novo, J.: Postprocessing finite element method for the Navier–Stokes
equations: the fully discrete case. SIAM J. Numer. Math. 47, 596–621 (2008)

21. de Frutos, J., Garcia-Archilla, B., Novo, J.: Nonlinear convection–diffusion problems: fully discrete
approximations and a posteriori error estimates. IMA J. Numer. Math. 30, 1402–1430 (2011)

22. de Frutos, J., Garcia-Archilla, B., Novo, J.: Static two-grid mixed finite element approximations to the
Navier–Stokes equations. J. Sci. Comput. 52, 619–637 (2012)

23. Garcia-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin method: a novel approach to approx-
imate inertial manifolds. SIAM J. Numer. Anal. 35, 941–942 (1998)

24. Garcia-Archilla, B., Novo, J., Titi, E.S.: An approximate inertial manifolds approach to postprocessing
the Galerkin method for the Navier–Stokes equations. Math. Comput. 68, 893–911 (1999)

25. Garcia-Archilla, B., Titi, E.S.: Postprocessing the Galerkin method: the finite element case. SIAM J.
Numer. Anal. 37, 470–499 (2000)

26. He, L.-P., Liu, Y.: A class of stable spectral methods for the Cahn–Hilliard equation. J. Comput. Phys.
228, 5101–5110 (2009)

27. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer.
Math. 57, 616–628 (2007)

28. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incom-
pressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)

29. Heywood, J.G.,Rannacher,R.: Finite element approximation of the nonstationaryNavier–Stokes problem,
IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

30. Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid
schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

31. Kay, D., Styles, V., Suli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard
equation. Appl. Numer. Math. 57, 616–628 (2007)

32. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput.
Phys. 193, 511–543 (2004)

33. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661
(2012)

34. Marion,M., Xu, J.: Error estimates on a new nonlinear Galerkinmethod based on two-grid finite elements.
SIAM J. Numer. Anal. 32(4), 1170–1184 (1995)

35. Nocick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermose, C.M., Feireisl, E. (eds.) Handbook of
Differential Equations, Evolutionary Equations, vol. 4. Elsevier, Amsterdam (2008)

36. Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in L∞ of the Ḣ1-projection into finite element
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