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Abstract. Superconvergence results and several gradient recovery methods of finite element
methods in flat spaces are generalized to the surface linear finite element method for the Laplace-
Beltrami equation on general surfaces with mildly structured triangular meshes. For a large class of
practically useful grids, the surface linear finite element solution is proven to be superclose to an inter-
polant of the exact solution of the Laplace-Beltrami equation and as a result various post-processing
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of the finite element solution. Numerical experiments are presented to confirm the theoretical results.
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1. Introduction. The Laplace-Beltrami operator is a generalization of the Lapl-
ace operator in flat spaces to manifolds. Many partial differential equations (PDEs) on
two dimensional Riemannian manifolds, such as the mean curvature flow [25], surface
diffusion flow [35], and Willmore flow [38] etc., are formulated using the Laplace-
Beltrami operator. These PDEs are frequently used in diverse applications such as
image processing, surface processing, fluid dynamics, weather forecast, climate mod-
eling, and so on [7, 18, 30, 36, 39]. In this paper, we study the discretization of the
Laplace-Beltrami operator by the surface linear finite element method [22]. We shall
prove a superconvergence result and use it to develop several post-processing schemes
which improve numerical approximations significantly.

Let S be a two dimensional, compact, and closed C3-hypersurface in R3, and
∂S = ∅. Let f be a given data satisfying

∫
S
f dσ = 0 where dσ is the surface

measure, and let u be the solution of the Laplace-Beltrami equation:

−∆Su = f onS, (1.1)

where ∆S is the Laplace-Beltrami operator on the surface S. We require
∫
S
udσ = 0

in order to guarantee the uniqueness of the solution to (1.1).
As an effective numerical method for solving PDEs, the finite element method

(FEM) plays an important role in modern scientific and engineering computing. In
particular, finite element methods for PDEs defined on manifolds have been studied
in the literatures; see [6, 16, 17, 21, 22, 23, 24, 28, 32, 34] and references therein.
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We briefly survey results related to our paper below. Dziuk [22] approximated the
surface S by a polyhedral surface Sh with triangular faces which avoids a local or
global parametrization of S, then discretized the equation (1.1) with the piecewise
linear finite element and solved it on Sh. He also proved asymptotic error estimates
in [22]. Recently, Demlow [16] defined higher-order analogues to the linear method
in [22] and proved a priori error estimates in the L2, H1, and corresponding point-wise
norms.

Using superconvergence to improve the accuracy of finite element approximations
has been an active research topic; see [1, 3, 10, 31, 40, 29]. Again we briefly survey
results related to our paper. Bank and Xu [3] developed superconvergence estimates
for piecewise linear finite element approximations on meshes in which most pairs
of adjacent triangles form O(h2) approximate parallelograms. Following the idea
in [3], Huang and Xu [29] investigated the superconvergence properties for quadratic
triangular elements on such mildly structured grids.

In this paper, we shall generalize theoretical results in [3] to the surface linear finite
element. Passing from flat spaces to surfaces, there are two main difficulties. First, the
surface S is approximated by a polyhedral surface Sh with a union of triangular faces
and thus an additional error to approximate the geometry is introduced. Second, in
general two triangles sharing a common edge are not in the same plane, so we cannot
use the techniques developed in [3] directly. To overcome these difficulties, we show
that if the surface S is C3 and the union of the triangular faces of Sh are shape-regular
and quasi-uniform of a diameter h, the geometry error from the polyhedral surface
approximation is O(h2). Then we show that the included angle between the unit
outward normal vectors of Sh on any two neighboring triangles is O(h). Under the
O(h2σ) irregular grids and C3 surface assumptions, we show in Theorem 3.5 that

‖∇Sh
uh −∇Sh

ūI‖0,Sh
≤ C1h

1+min{1,σ}
(
‖u‖3,S + ‖u‖2,∞,S

)
+ C2h

2 ‖f‖0,S , (1.2)

where uh is the finite element approximation of u on Sh and ūI is the linear interpo-
lation of ū, the extension of the exact solution u to Sh. In estimate (1.2), we have
included with C2h

2 ‖f‖0,S , the effect of the additional approximation error of the
geometry.

Gradient recovery is designed to recover a better approximation of the true gradi-
ent than the gradient of the finite element solution does [3, 4, 5, 8, 21, 40, 42]. It is used
to improve the numerical approximation and supply a posteriori error estimation for
adaptive procedure. Bank and Xu [3] introduced a gradient recovery algorithm using
the global L2-projection for O(h2) approximated parallelogram meshes and proved the
superconvergence of the recovered gradient. In [4], they developed a post-processing
gradient recovery scheme on general unstructured and shape regular meshes using
smoothing operators of the multigrid method. Together with Zheng, they successfully
generalized such method to high order finite element methods [5]. Xu and Zhang [40]
provided a general framework for the analysis of local recovery schemes including
simple and weighted averaging, local L2-projections, and local discrete least-squares
fitting (also known as Z-Z recovery [42]). These afore mentioned results are for planar
meshes. For surfaces meshes, Du and Ju [21] developed a gradient recovery method
for a finite volume approximation of linear convection-diffusion equations on spheres,
and demonstrate numerically the superconvergence of their method.

We shall prove the superconvergence of the simple and weighted averaging gra-
dient recovery methods on polyhedral surface meshes. Due to the curvature of the
surface, we cannot use directly the local L2-projection and local discrete least-squares
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fitting methods on polyhedral surface meshes. Therefore we project the patch Ωi onto
the tangent plane of S at xi and modify these local recovery methods accordingly.
We show that if the local patch Ωi of a vertex xi is O(h2)-symmetric on Sh, then

|(Gh∇Sh
ūI)(xi)−∇Su(xi)| ≤ Ch2 ‖u‖3,∞,P0(Ωi)

, (1.3)

where Gh is an appropriate defined recovery operator in section 4 and P0(Ωi) is the
projection of Ωi on S.

The recovery method using the global L2-projection Qh developed by Bank and
Xu [3] can be also generalized to the surface linear finite element method in a straight-
forward way. The analysis, however, is not a trivial generalization. Again the difficulty
is the error introduced by the surface approximation. Let wh = Qh∇Sh

uh and w̃h
be the lift of wh to the surface. Since the difference between the tangent gradient
operator ∇S on S and ∇Sh

on Sh is only O(h), using the technique in [3], we can
only get a first order approximation, i.e., ‖∇Su− w̃h‖0,S ≤ Ch. Using a perturbation

argument, we develop a new method to prove that if the mesh is O(h2σ) irregular:

‖∇Su− w̃h‖0,S ≤ C1h
1+min{1,σ} ‖u‖3,∞,S + C2h

2 ‖f‖0,S . (1.4)

Our proof confirms that the symmetry of the element patch of vertices is the source
of the superconvergence [37].

By the close relationship between FEM and finite volume methods (FVM), we can
use these global and local recovery methods to post-process the finite volume approx-
imation and get similar superconvergence results. In this way, we give a theoretical
justification of superconvergence observed numerically by Du and Ju [21].

We should mention that we assume all vertices of Sh lie on S. In practical
applications, the exact surface S is unknown and Sh is only an approximation of
S. We hope that when the distance is O(h2) between the vertices of Sh and S, the
same results obtained in this paper will still hold, which, of course, deserves a further
studying. Also in the construction of the last four recovery operators, we assume the
normal vectors of S is known, which may not be true. In our future work, we will
consider how to construct high order approximation of the normal vectors of S from
Sh.

The paper is organized as follows. In section 2, we present some important defi-
nitions and preliminaries. In section 3, we discuss the superconvergence between the
surface finite element solution and linear interpolation of the true solution. In section
4, we introduce several gradient recovery methods, and prove their better approxima-
tion property. We also generalize the results to FVM on surfaces. In Section 5, we
present numerical tests in support of our theoretical results.

We use x . y to indicate x ≤ Cy and x h y for x . y and y . x.

2. Preliminaries. In this section, at first, we introduce the notation about
Sobolev spaces defined on surfaces, and then present the weak form of the Laplace-
Beltrami equation (1.1) and a regularity result. After that, we discuss the Sobolev
spaces on polyhedral surfaces and the relationship between functions defined on the
surface and its polyhedral approximation. At the end of this section, we present the
surface linear finite element method and the corresponding error estimates.

2.1. Sobolev Spaces on Smooth Surfaces. Since S is a closed surface and
∂S = ∅, it partitions the space R3 into three distinct sets: points inside the surface,
points on the surface, and points outside the surface; denoted by Ω−, Ω0, and Ω+,
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respectively. For any x ∈ R3, let dist(x, S) = miny∈S |x− y| be the distance between
x and S, where | · | is the standard Euclidean distance. We can define a strip domain
U := {x ∈ R3 |dist(x, S) < δ}, where δ > 0 and is small enough such that we can
define a unique signed distance function d : U → R, satisfying the following properties:
d ∈ C3(U); d(x) < 0, for all x ∈ Ω− ∩ U ; d(x) = 0, for all x ∈ Ω0 ∩ U = S; d(x) > 0,
for all x ∈ Ω+ ∩ U , and |d(x)| = dist(x, S), for all x ∈ U . We shall view the surface
S as the zero level set of the distance function.

Let ∇ be the conventional gradient operator in R3. So ∇d(x) ∈ R3 is the gradient
of d(x) and H(x) := ∇2d(x) ∈ R3×3 is the Hessian matrix of d(x). For any x ∈ U , let
y be the closest point of x on S, i.e., |d(x)| = |x− y|. Since d(x) is the signed distance
function and S is its zero level set, it is easy to show that ∇d(x) is the unit outward
normal vector of S at y, namely, |∇d(x)| = 1. Then for any x ∈ U , let n(x) = ∇d(x),
we can define the following unique projection P0 : U → S

P0(x) := x− d(x)n(x). (2.1)

For x ∈ U , differentiation on the identity ∇d(x) · ∇d(x) = 1 implies that

H(x)∇d(x) = H(x)n(x) = 0.

Therefore zero is an eigenvalues of H(x) and n(x) is the corresponding eigenvector.
The other two eigenvalues of H(x) are denoted by κ1(x) and κ2(x). When x ∈ S,
κ1(x) and κ2(x) are the principal curvatures of S at x.

For v ∈ C1(S), since S is C3, we can extent v to C1(U) and still denote the
extension by v [33]. The tangential gradient of v on S can be written as:

∇Sv = ∇v − (∇v · n)n = (I − nnt)∇v = P∇v ∈ R3,

where P (x) = (I−nnt)(x) is the projection operator to the tangent plane at a point
x ∈ S and therefore P 2 = P . Notice that, we use the extension of v to define the
surface gradient. However it can be shown that ∇Sv depends only on the value of v
on S but not on the extension. Namely ∇S is an intrinsic operator.

Similarly, for a vector field v ∈ (C1(S))3, we can extend it to (C1(U))3 and define
the tangential divergence of v on S as:

∇S · v = ∇ · v − nt∇vn ∈ R.

The Laplace-Beltrami operator on S reads as follows

∆Sv = ∇S · (∇Sv) = ∆v − (∇v · n)(∇ · n)− nt∇2vn ∈ R,

provided v ∈ C2(S) and ∇2v is the Hessian matrix of v (suitably extended as a C2(U)
function).

Let α = (α1, α2, α3) ∈ Z3
+ be a vector of nonnegative integers, and |α| =

∑3
i=1 αi.

The |α|-th tangential derivatives of u on S, Dα
Su can be defined recursively from the

above definition of the tangential gradient. We introduce the Sobolev spaces

Wm
p (S) := {u ∈ Lp(S) |Dα

Su ∈ Lp(S), |α| ≤ m},

where 1 ≤ p ≤ ∞ and m is a nonnegative integer. For 1 ≤ p <∞, the space Wm
p (S)

is equipped with the norm

‖u‖m,p,S := (
∑
|α|≤m

‖Dα
Su‖

p
Lp(S))

1/p,
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and semi-norm

|u|m,p,S := (
∑
|α|=m

‖Dα
Su‖

p
Lp(S))

1/p,

with standard modification for p =∞.
For p = 2, we denote Wm

2 (S) by Hm(S) and the corresponding norm and semi-
norm by ‖u‖m,S = ‖u‖m,2,S and |u|m,S = |u|m,2,S , respectively.

2.2. The Laplace-Beltrami Equation and A Regularity Result. The vari-
ational formulation of the Laplace-Beltrami equation (1.1) is: find u ∈ H1(S) such
that ∫

S

∇Su · ∇Sv dσ =

∫
S

fv dσ, for all v ∈ H1(S). (2.2)

The following well-posedness and regularity results on (2.2) can be found in [16].
Lemma 2.1. Let f ∈ L2(S) satisfy

∫
S
f dσ = 0. Then there exists a unique weak

solution u to (2.2) satisfying
∫
S
udσ = 0, and

‖u‖2,S ≤ C ‖f‖0,S
holds for a constant C depending only on the surface S.

2.3. Sobolev Spaces on Polyhedral Surfaces. Let S be approximated by
a polyhedral surface Sh which is a union of triangular faces. We assume that these
triangular faces are shape-regular and quasi-uniform of a diameter h and their vertices
lie on S. Because Sh is C0,1, only H1(Sh) is well defined [22, 27]. Let Nh = {xi} be
the set of vertices of Sh, Th = {τh} the set of triangular faces, and Eh = {E} the set
of edges of Sh. For any τh ∈ Th, let nh be the unit outward normal vector of Sh on
τh. For vh ∈ C(Sh) and vh|τh ∈ C1(τh), we have

∇Sh
vh|τh := ∇vh − (∇vh · nh)nh = (I − nhn

t
h)∇vh = P h∇vh ∈ R3,

where P h = I − nhn
t
h ∈ R3×3. Obviously, ∇Sh

vh ∈ (L2(Sh))3.
Restricting the projection P0 : U → S to Sh, we get a continuous differentiable

bijection from Sh to S, still denoted by P0. For any τh ∈ Th, we can get a surface
triangle τ := P0(τh) and denote the set consisting of all surface triangles by TS .

We then establish the relationships between functions defined on S and Sh fol-
lowing [17]. Through the bijection map P0, a function v : S → R induces uniquely
a function v̄ : Sh → R, as v̄(x) = v(P0(x)), for all x ∈ Sh. For any τh ∈ Th and a
function v ∈ C1(P0(τh)), we have

∇Sh
v̄(x) = (P h(I − dH)P )(x)∇Sv(P0(x)), for all x ∈ τh. (2.3)

Conversely, a function vh : Sh → R induces uniquely a function ṽh : S → R, as
ṽh(x) = vh(P−1

0 (x)), for all x ∈ S. For any τh ∈ Th and a function vh ∈ C1(τh), let
τ = P0(τh), we then get

∇S ṽh(x) = (I − dH)−1(I − nhn
t

ntnh
)∇Sh

vh(P−1
0 (x)), for all x ∈ τ. (2.4)

Let dσh and dσ be the surface measures of Sh and S, respectively. They are
related by dσ = J(x)dσh with (see [17])

J(x) = (1− d(x)κ1(x))(1− d(x)κ2(x))n · nh, for all x ∈ τh.
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We need the following approximation result [22].
Lemma 2.2. For any τh ∈ Th, the following estimate holds:

‖d(x)‖∞,τh + ‖1− J‖∞,τh + h ‖n− nh‖∞,τh + h ‖P − P h‖∞,τh . h2, (2.5)

For the relationship between the smoothness of function v defined on S and it is
extension v̄ on Sh, we have the following results [16, 22].

Lemma 2.3. Let τh ∈ Th and τ = P0(τh). If v ∈ W 3,∞(τ) ∩ H3(τ), then the
following results hold:

‖v̄‖0,τh . ‖v‖0,τ . ‖v̄‖0,τh , (2.6)

|v̄|1,τh . |v|1,τ . |v̄|1,τh , (2.7)

|v̄|k,τh . ‖v‖k,τ , k = 2, 3, (2.8)

|v̄|k,∞,τh . ‖v‖k,∞,τ , k = 2, 3. (2.9)

2.4. Linear Surface Finite Element Method. Given a surface S and its
polyhedral approximation Sh. For a triangle τh ∈ Th, let {λi} be the barycentric
coordinates of τh. Let Vh be the continuous piecewise linear finite element space
on Sh, namely, for any vh ∈ Vh and τh ∈ Th, vh is continuous on Sh and vh|τh ∈
span{λ1, λ2, λ3}. We define the corresponding lifted spaces on S:

Ṽh = {ṽh | ṽh := vh ◦ P−1
0 , where vh ∈ Vh}.

Recall that the bijection P0 : Sh → S is defined in (2.1). For f ∈ L2(S), let

fh(x) = f̄(x)− 1

|Sh|

∫
Sh

f̄ dσh, (2.10)

where |Sh| is the area of Sh. Then
∫
Sh
fh(x) dσh = 0, and therefore there exists a

unique finite element solution uh ∈ Vh with
∫
Sh
uh dσh = 0 to the following equa-

tion [22]: ∫
Sh

∇Sh
uh · ∇Sh

vh dσh =

∫
Sh

fhvh dσh, for all vh ∈ Vh. (2.11)

By (2.3) and the fact P 2 = P , we can transform the equation (2.11) posed on Sh
to the surface S ∫

S

Ah∇S ũh · ∇S ṽh dσ =

∫
S

1

J
f̃hṽh dσ, (2.12)

where Ah = 1
JP (I − dH)P h(I − dH)P . Subtracting (2.12) from (2.2), we obtain

the error equation∫
S

(∇Su−Ah∇S ũh) · ∇S ṽh dσ =

∫
S

(f − 1

J
f̃h)ṽh dσ, for all ṽh ∈ Ṽh. (2.13)

From (2.13), one can obtain the following estimates [22].
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Theorem 2.4. When S is C2, one has the following results:∥∥∥∥f − 1

J
f̃h

∥∥∥∥
0,S

. h2 ‖f‖0,S , (2.14)

‖(Ah − I)P ‖∞,τh . h2, for any τh ∈ Th, (2.15)

and consequently the a priori error estimate:

‖u− ũh‖L2(S) + h |u− ũh|H1(S) . h2
(
‖u‖2,S + ‖f‖0,S

)
. (2.16)

3. Superconvergence. In this section, we generalize superconvergence results
in [3] from planar meshes to surface meshes. We consider the effect of the additional
discrete geometry error introduced by using a polyhedral surface Sh as an approxi-
mation of S.

Following [15] we introduce the following notations. For each edge E ∈ Eh, let
lE denote its length and let ΩE be the patch of E, consisting of two triangles τh
and τ ′h sharing the edge E; see Figure 3.1. For the element τh ∈ ΩE , θE denotes
the angle opposite to the edge E, lE+1 and lE−1 denote the lengths of other two
edges, and nh denotes the outwards normal of Sh on τh. All triangles are orientated
counterclockwise. The subscript E + 1 or E − 1 is used for the next or previous
edge in this orientation. Let tE be the unit tangent vector of E with counterclockwise
orientation and nE be the unit outward normal vector of E in the supporting plane of
τh. Recall that nh is the unit outward normal vector of Sh on τh, therefore nh ⊥ nE
and nh ⊥ tE .

An index ′ will be added for the corresponding quantity in τ ′h. Note that tE = −t′E
because of the orientation. Unlike the planar domain case, nE 6= −n′E in general. By
(2.5), however, we have

|nE + n′E | = |nh − n′h| . |nh − n|+ |n′h − n| . h. (3.1)

τh

τ ′
h

θE

θ′
ElE+1

lE−1

x1

x2

x3

x4

E

nh
n′

h

nE

n′
E

tE

xi xi1

xi2xi3

xi4

xi5 xi6

1

Fig. 3.1. The patch ΩE of the edge E.

For ΩE , we introduce the following definition which is first introduced in [9] and
called strong regular conditions there.

Definition 3.1. The patch ΩE is an O(h2) approximate parallelogram if it
satisfies

|−−−−−⇀x1x4 −−−−−−⇀x2x3| = O(h2), |−−−−−⇀x1x2 −−−−−−⇀x4x3| = O(h2).
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Notice that, the included angle of nh and n′h differ only by O(h), namely, τh and
τ ′h are “almost” on the same plane. Therefore we still call ΩE as an approximate
parallelogram following the terminology in [3].

Remark 3.1. The O(h2) condition can be relaxed to O(h1+ρ) for ρ ∈ (0, 1)
introduced in [40] and the analysis in our paper can be easily adapted to this case.

Definition 3.2 ([3, 15, 40]). Let Eh = E1 ⊕ E2 denote the set of edges in Th.
The triangulation Th is O(h2σ) irregular if for each E ∈ E1, ΩE forms an O(h2)
approximate parallelogram, while

∑
E∈E2 |ΩE | = O(h2σ).

When the triangulation Th is O(h2σ) irregular, we can split Th into two parts:

Th = T1,h ∪ T2,h, with Ti,h = {τ ∈ Th, τ ∈ ΩE , with E ∈ Ei}. (3.2)

We define the domain Ω̄i,h ≡
⋃

τh∈Ti,h
τ̄h, i = 1, 2. Then

Ω̄1,h ∪ Ω̄2,h = Sh, and |Ω2,h| = O(h2σ). (3.3)

For u ∈ C(S), recall that ū = u ◦ P0 ∈ C(Sh). We define two interpolations of ū
on Sh. First, let ūI ∈ Vh be the linear interpolation of ū on Sh, defined by

ūI(xi) = ū(xi), for all xi ∈ Nh,

where Nh be the vertex set of Sh. Let Wh be the continuous and piecewise quadratic
finite element space on Sh, namely, for any wh ∈ Wh and τh ∈ Th, wh is continuous
on Sh and wh|τh ∈ span{λ1, λ2, λ3, λ1λ2, λ1λ3, λ2λ3}. We define ūQ ∈ Wh to be the
quadratic interpolation of ū satisfying

ūQ(xi) = ū(xi), for all xi ∈ Nh, and

∫
E

ūQ =

∫
E

ū, for all E ∈ Eh.

We can lift ūI and ūQ onto S as uI = ūI ◦P−1
0 : S → R and uQ = ūQ ◦P−1

0 : S → R.
On the flat triangle τh, we have the following two important lemmas [15].
Lemma 3.3. Let ūI and ūQ be the linear and quadratic interpolations of ū defined

above. For all vh ∈ Vh, we have the local error expansion formula:∫
τh

∇Sh
(ū−ūI)·∇Sh

vh dσh =
∑
E∈∂τh

[
αE

(∫
E

∂2ūQ

∂t2
E

∂vh
∂tE

)
+ βE

(∫
E

∂2ūQ
∂tE∂nE

∂vh
∂tE

)]
,

where

αE =
1

12
cot θE(l2E+1 − l2E−1), βE =

1

3
cot θE |τh| .

Lemma 3.4. For any edge E ∈ Eh, we have

|αE |+ |α′E | = O(h2), |βE |+ |β′E | = O(h2); (3.4)

|αE − α′E | = O(h3), |βE − β′E | = O(h3), if E ∈ E1; (3.5)

∫
E

∂2ū

∂tE∂zE

∂vh
∂tE

. h−1 ‖u‖2,∞,S
∫
τh

|∇Sh
vh| ; (3.6)
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E

∂2ū

∂tE∂zE

∂vh
∂tE

.
∫
τh

(h−1
∣∣∇2

Sh
ū
∣∣+
∣∣∇3

Sh
ū
∣∣) |∇Sh

vh| ; (3.7)

∫
E

∂2(ū− ūQ)

∂tE∂zE

∂vh
∂tE

.
∫
τh

∣∣∇3
Sh
ū
∣∣ |∇Sh

vh| ; (3.8)

where zE is nE or tE.
Our main result is the following superconvergence between the surface finite ele-

ment solution and the linear interpolation of the extension of the true solution on the
polyhedral surface mesh.

Theorem 3.5. Suppose the triangulation Th is O(h2σ) irregular. Let u be the
solution of (1.1), and uh the linear finite element solution on Sh. If u ∈ H3(S) ∩
W 2
∞(S), then for all vh ∈ Vh, we have∫

Sh

∇Sh
(ū− ūI) · ∇Sh

vh dσh . h1+min{1,σ}
(
‖u‖3,S + ‖u‖2,∞,S

)
|vh|1,Sh

, (3.9)

and

‖∇Sh
uh −∇Sh

ūI‖0,Sh
. h1+min{1,σ}

(
‖u‖3,S + ‖u‖2,∞,S

)
+ h2 ‖f‖0,S . (3.10)

Proof. Using the basic identity in Lemma 3.3 we get

(∇Sh
(ū− ūI),∇Sh

vh) =
∑
τh∈Th

∑
E∈∂τh

[
αE

(∫
E

∂2ūQ

∂t2
E

∂vh
∂tE

)
+ βE

(∫
E

∂2ūQ
∂tE∂nE

∂vh
∂tE

)]
= I1 + I2 + I3,

where

Ii =
∑
E∈Ei

[
(αE − α′E)

∫
E

∂2ūQ

∂t2
E

∂vh
∂tE

+ (βE − β′E)

∫
E

∂2ū

∂tE∂nE

∂vh
∂tE

]
, i = 1, 2,

I3 =
∑
E∈Eh

[
β′E

∫
E

(
∂2ū

∂tE∂nE
+

∂2ū

∂tE∂n′E

)
∂vh
∂tE

+ βE

∫
E

∂2(ūQ − ū)

∂tE∂nE

∂vh
∂tE

+β′E

∫
E

∂2(ūQ − ū)

∂t′E∂n
′
E

∂vh
∂t′E

]
.

(3.11)

To estimate I1, we use Lemma 2.3, the estimates (3.5) and (3.7) to get

|I1| .
∑
E∈E1

[
|αE − α′E |

∫
τh

h−1
∣∣∇2

Sh
ūQ
∣∣ |∇Sh

vh|

+ |βE − β′E |
∫
τh

(h−1
∣∣∇2

Sh
ū
∣∣+
∣∣∇3

Sh
ū
∣∣) |∇Sh

vh|
]

.h2
∑

τh∈T1,h

∫
τh

(∣∣∇2
Sh
ū
∣∣+ h

∣∣∇3
Sh
ū
∣∣) |∇Sh

vh|

.h2 ‖u‖3,S |vh|1,Sh
.

(3.12)
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To estimate I2, we use Lemma 2.3, the estimates (3.4) and (3.6) to get

|I2| .
∑
E∈E2

h ‖u‖2,∞,S
∫

ΩE

|∇Sh
vh| . h1+σ ‖u‖2,∞,S |vh|1,Sh

.

To estimate I3, we use Lemma 2.3, (3.1), the estimates (3.4), (3.7) and (3.8) to
get

|I3| .
∑
E∈Eh

|β′E |
∫
E

∣∣∣∣∇Sh

∂ū

∂tE
· (nE + n′E)

∂vh
∂tE

∣∣∣∣+
∑
τh∈Th

h2

∫
τh

∣∣∇3
Sh
ū
∣∣ |∇Sh

vh|

.h2
∑
τh∈Th

(|ū|2,τh + h |ū|3,τh + |ū|3,τh) |vh|1,τh

.h2
∑
τ∈T
‖u‖3,τ |vh|1,Sh

.h2 ‖u‖3,S |vh|1,Sh
.

The inequality (3.9) then follows. We now prove (3.10) as∫
Sh

∇Sh
(uh − ūI) · ∇Sh

vh dσh

=

∫
Sh

∇Sh
(uh − ū) · ∇Sh

vh dσh +

∫
Sh

∇Sh
(ū− ūI) · ∇Sh

vh dσh

=

∫
S

(Ah∇S ũh −∇Su) · ∇S ṽh dσ +

∫
S

(∇Su−Ah∇Su) · ∇S ṽh dσ

+

∫
Sh

∇Sh
(ū− ūI) · ∇Sh

vh dσh

=I4 + I5 + I6.

(3.13)

The estimate of I6 is given by (3.9). Let C0 =
∫
S
ṽhdσ

|S| . From (2.13) and (2.15),

we can estimate I4 as∫
S

(Ah∇S ũh −∇Su) · ∇S ṽh dσ =

∫
S

(Ah∇S ũh −∇Su) · ∇S(ṽh − C0) dσ

=

∫
S

(
1

J
f̃h − f)(ṽh − C0) dσ . h2 ‖f‖0,S |ṽh|1,S . h2 ‖f‖0,S |vh|1,Sh

.

(3.14)

From (2.7) and (2.15), we can estimate I5 as∣∣∣∣∫
S

(∇Su−Ah∇Su) · ∇S ṽh dσ

∣∣∣∣ =

∣∣∣∣∫
S

(I −Ah)P∇Su · ∇S ṽh dσ

∣∣∣∣
. ‖(Ah − I)P ‖∞,S |u|1,S |ṽh|1,S . h2 |u|1,S |ṽh|1,S . h2 |u|1,S |vh|1,Sh

.

(3.15)

Combining (2.13), (2.15), (3.1), (3.9) and (3.15), we proved (3.10).
Using the equivalence of H1 norm of u and ū (c.f. Lemma 2.3), we obtain the

supercloseness between ũh and uI .
Corollary 3.6. Assume the same hypothesis in Theorem 3.5. Let ũh and uI be

the lifting of uh and ūI onto S, respectively. Then

‖∇S ũh −∇SuI‖0,S . h1+min{1,σ}
(
‖u‖3,S + ‖u‖2,∞,S

)
+ h2 ‖f‖0,S . (3.16)
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4. Gradient Recovery Schemes. In this section, we discuss how to generalize
the gradient recovery methods, including local and global schemes, from planar meshes
to polyhedral meshes.

4.1. Local Averaging Schemes on Surface Meshes. We first recall the local
averaging schemes in the planar case. Give an element patch Ωi ⊂ R2 around the
vertex xi, namely, Ω̄i =

⋃
xi∈τ̄h τ̄h, let {xij}mj=1 be the boundary vertices of Ωi which

are orientated counterclockwise. Let τj = 4xixijxi(j+1), j = 1, . . . ,m, and xi(m+1) =
xi1; see Figure 2 (a).

τh

τ ′
h

θE

θ′
ElE+1

lE−1

x1

x2

x3

x4

E

nh
n′

h

nE

n′
E

tE

xi xi1

xi2xi3

xi4

xi5 xi6

1

(a) the patch Ωi of xi on the plane

2

xi

xi1

xi2

xi3

xi4

xi5

xi6

(b) the patch Ωi of xi on a surface

Fig. 4.1. Local patches on planar meshes and surface meshes.

We consider the following two gradient recovery operators Gh applied to a finite
element function vh ∈ Vh:

1. Simple averaging: (Gh∇vh)(xi) =
1

m

m∑
j=1

∇vh|τj (xi).

2. Weighted averaging: (Gh∇vh)(xi) =

m∑
j=1

|τj |
|Ωi|
∇vh|τj (xi).

Theorem 4.1 ([40]). Assume every two adjacent triangles in patch Ωi form an
O(h2) approximate parallelogram and u ∈ W 3

∞(Ωi). Let uI be the nodal interpolation
of u and (Gh∇uI)(xi) be produced by either the simple averaging, or the weighted
averaging. Then

|(Gh∇uI)(xi)−∇u(xi)| . h2 ‖u‖3,∞,Ωi
. (4.1)

Theorem 4.1 can be found in [40]. In their proof, the authors utilized the result
that the barycenter of a triangle is the superconvergence point for the derivative of the
linear interpolation which is not true; see [10] (page 285). We shall extend Theorem
4.1 to polyhedral surface meshes and provide a correct proof.

Give an element patch Ωi ⊂ Sh of the vertex xi, see Figure 2 (b). Let Ω̃i =
P0(Ωi) ⊂ S be the patch lifted to the surface. For a finite element function vh ∈
Vh(Sh), a natural generalization of (Gh∇Sh

vh)(xi) on surface meshes is given below:

1. Simple averaging: (Gh∇Sh
vh)(xi) =

1

m

m∑
j=1

∇Sh
vh|τj (xi).
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2. Weighted averaging: (Gh∇Sh
vh)(xi) =

m∑
j=1

|τj |
|Ωi|
∇Sh

vh|τj (xi).

Here we simply change the conventional gradient operator ∇ in R2 to the gradient
operator ∇Sh

on polyhedral meshes.
In principle, the symmetry of the element patch of a vertex is the source of the

superconvergence [37]. We thus introduce the following concept. An element patch
Ωi of a vertex xi is called O(h2)-symmetry if for any boundary vertex xij of Ωi, there
exits another boundary vertex x′ij of Ωi, so that

xij − 2xi + x′ij = O(h2). (4.2)

which mean xij and x′ij is approximately symmetric about xi. Let n and nh|τj be
the unit outward normal vectors of S at xi and Sh at the triangle τj in the patch Ωi,
respectively. Since the C3 smoothness of S and the O(h2)-symmetry of patch Ωi ,
for any triangle τj in the patch Ωi, there exists another triangle τ ′j , so that their unit
outward normal vectors nh and n′h at xi satisfy

nh − 2n + n′h = O(h2). (4.3)

and their areas |τj | and
∣∣τ ′j∣∣ satisfy

|τj | −
∣∣τ ′j∣∣ = O(h3). (4.4)

Theorem 4.2. Let u ∈W 3
∞(S), ū = u◦P0 and ūI be the linear interpolation of ū

on Ωi; let (Gh∇Sh
ūI)(xi) be produced by either the simple averaging, or the weighted

averaging on surface meshes. If Ωi is O(h2)-symmetric, then

|(Gh∇Sh
ūI)(xi)−∇Su(xi)| . h2 ‖u‖3,∞,S . (4.5)

Proof. For the simple averaging, using the triangle inequality, substituting x = xi
into (2.3), and noting P 2 = P , we have

|(Gh∇Sh
ūI)(xi)−∇Su(xi)|

≤

∣∣∣∣∣∣ 1

m

m∑
j=1

(∇Sh
ūI −∇Sh

ū) |τj (xi)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

m

m∑
j=1

(
∇Sh

ū|τj − P∇Su
)

(xi)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m

m∑
j=1

(
∇Sh

ūI |τj −∇Sh
ū
)
|τj (xi)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

m

m∑
j=1

(
(P h|τj − P )∇Su

)
(xi)

∣∣∣∣∣∣
=I1 + I2.

We estimate the two terms as follows. First for I2, by P h = I −nhn
t
n, P = I −nnt,

and (4.3), we have

|I2| .

∣∣∣∣∣∣ 1

m

m∑
j=1

(
P h|τj − P

)
(xi)

∣∣∣∣∣∣ ‖u‖1,∞,S . h2 ‖u‖1,∞,S .

For I1, we use the following identity on the error expansion. For a triangle
τj = 4xixijxi(j+1) in Ωi and ū ∈W 3

∞(τj), we have the following identity [10]:

∇Sh
(ūI − ū)(x) =

1

2

3∑
k=1

d2
kū(x)∇Sh

λk(x)− 1

2

3∑
k=1

∇Sh
λk(x)

∫ 1

0

d3
kū(ςk)t2dt, (4.6)
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where x is a point in τ jh, dk = (x − xk)T∇Sh
, x1 = xi, x2 = xij , x3 = xi(j+1),

ςk = xk + t(x − xk), and λk is the barycenter coordinate of τj respect to the vertex
xk, k = 1, . . . , 3. Then by Lemma 2.3 and (4.6), we have

|I1|

=

∣∣∣∣∣∣ 1

m

m∑
j=1

[
1

2

3∑
k=1

d2
kū(xi)∇Sh

λk(xi)−
1

2

3∑
k=1

∇Sh
λk(xi)

∫ 1

0

d3
kū(xk + t(xi − xk))t2dt

]∣∣∣∣∣∣
.

∣∣∣∣∣∣ 1

m

m∑
j=1

[
1

2

3∑
k=1

d2
kū(xi)∇Sh

λk(xi)

]∣∣∣∣∣∣+ h2 ‖u‖3,∞,S

For any d2
kū(xi)∇Sh

λk(xi) in one element τj , by the O(h2)-symmetry and the gra-
dient formulas of barycentric coordinates, there exists another d2

k′ ū(xi)∇Sh
λk′(xi) in

another element τ ′j , so that

d2
kū(xi)∇Sh

λk(xi) + d2
k′ ū(xi)∇Sh

λk′(xi) = O(h2),

Then the conclusion (4.5) follows.
The weighted averaging case is proved similarly by using Lemma 2.3, (4.2), (4.3),

(4.4), and (4.6).
Remark 4.1. When the element patch Ωi is not O(h2)-symmetric, since Sh is

shape-regular and quasi-uniform, it will be at least O(h)-symmetric. So using the
same proof, we can get

|(Gh∇Sh
ūI)(xi)−∇Su(xi)| . h ‖u‖2,∞,S . (4.7)

4.2. Local Least-Squares Fitting on Tangent Planes. Let Ωi ⊂ Sh be the
element patch around xi. Let ni be the unit outward normal vector of S at xi and
Mi be the tangent plane of S at xi. Along the direction of ni, define the projection

P1(x) = x+ (xi − x,ni)ni ∈Mi, for any x ∈ Ωi. (4.8)

Then we can project Ωi onto Mi and get a planar patch Ω̄i = P1(Ωi). If Ωi is O(h2)-
symmetric, since S is C3, it is easy to show that Ω̄i has the same property by Taylor
expansion. In [21], the authors firstly projected the patch Ωi on the tangent plane
Mi of S at xi, then used simple averaging method to recover the gradient at xi. We
adopt this approach to develop several recovery schemes.

Let {x̄ij |x̄ij = P1(xij), j = 1,m} be the boundary vertices of the lifted patch
Ω̄i. Then we construct a local Cartesian coordinate system whose origin is xi, the
direction of z-axis is the direction of nz := ni, the direction of x-axis is the direction of
nx := (x̄i1−xi)/ |x̄i1 − xi|, and the direction of y-axis is the direction of ny := nz×nx.
Let x̄′j := ((x̄ij − xi) · nx, (x̄ij − xi) · ny), j = 1,m. We then get a patch Ω̄′i ⊂ R2

whose center is xO := (0, 0) and boundary vertices are {x̄′j}mj=1.
Let vh be a linear finite element function on Ωi. We define a linear finite element

function v̄′h on Ω̄′i by setting v̄′h(xO) = vh(xi) and v̄h(x̄′j) = vh(xij) for j = 1, · · · ,m.
We use the the following two least-square fitting schemes:
1. Local L2-projection. We seek linear functions pl ∈ P1(Ω̄′i) (l = 1, 2), such

that ∫
Ωi

[pl(x)− ∂lv̄′h(x)]q dx = 0, for all q ∈ P1(Ω̄′i), l = 1, 2. (4.9)
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2. Local discrete least-squares fitting proposed by Zienkiewicz-Zhu [42]. Let cj
be the barycenter of τj ∈ Ω̄′i. We seek linear functions pl ∈ P1(Ω̄′i) (l = 1, 2),
such that

m∑
j=1

[pl(cj)− ∂lv̄′h(cj)]q(cj) = 0, for all q ∈ P1(Ω̄′i), l = 1, 2, (4.10)

Finally, we get Gh∇Sh
vh ∈ Vh, the recovery gradient of vh, by setting

(Gh∇Sh
vh)(xi) = p1(xO)nx + p2(xO)ny.

Theorem 4.3. Let u ∈ W 3
∞(S), Ω̄i = P1(Ωi) and uM (P1) = u(P0); let uMI

be the linear interpolation of uM on Ω̄i and Gh be one of the four gradient recovery
operators defined on the tangent plane patches: the simple averaging, the weighted
averaging, local L2-projection (4.9) and local discrete least-squares fitting (4.10). If
Ωi is O(h2)-symmetric, then∣∣∇Su(xi)−Gh∇Miu

M
I (xi)

∣∣ . h2 ‖u‖3,∞,S . (4.11)

Proof. Since ∇Mi
uM (xi) = ∇u(xi)− (∇u(xi) · ni)ni = ∇Su(xi), we have∣∣∇Su(xi)−Gh∇Mi

uMI (xi)
∣∣ =

∣∣∇Mi
ū(xi)−Gh∇Mi

uMI (xi)
∣∣ ,

which transforms the surface patch problem into a plane patch problem.
When Gh is the simple or the weighted averaging, (4.11) is a special case of

Theorem 4.2. For the local L2-projection and local discrete least-squares fitting (ZZ),
following the results of the simple and the weighted averaging and the approach of
Theorem 3.1 in [40], we can prove (4.11).

Remark 4.2. Again if the patch is not O(h2) symmetric, we will have estimate∣∣∇Su(xi)−Gh∇Mi
uMI (xi)

∣∣ . h ‖u‖2,∞,S . (4.12)

Theorem 4.4. Let u be the solution of (2.2) and uh be the solution of (2.11). Let
Gh be one of the six recovery operators: the simple averaging, the weighted averaging
on the surface patches and on the tangent plane patches, respectively, and the local
L2-projection and the local discrete least-squares fitting (ZZ) defined on the tangent
plane patches. Set wh = Gh∇Sh

uh. If the triangulation Th is O(h2σ) irregular and
u ∈W 3

∞(S), then

‖∇Su− w̃h‖0,S . h1+min{1,σ} ‖u‖3,∞,S + h2 ‖f‖0,S .

Proof. Let ∇Su = (∇Su) ◦ P0. By the norm equivalence (2.7), we only need to
estimate

∥∥∇Su−Gh∇Sh
uh
∥∥

0,Sh
. We decompose

∇Su−Gh∇Sh
uh = ∇Su− (∇Su)I + (∇Su)I −Gh∇Sh

ūI +Gh(∇Sh
ūI −∇Sh

uh).

For the first term, by the standard approximation theory,∥∥∇Su− (∇Su)I
∥∥

0,Sh
. h2 ‖u‖3,S . (4.13)
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To control the second term, we shall split the O(h2σ) irregular Th into two parts,
slightly different than that in (3.2). We defineN1,h = {xi ∈ Nh| every two neighboring
triangles in Ωi forms an approximated parallelogram}, N2,h = Nh \ N1,h, and Ωi,h =
∪xk∈Ni,h

Ωk for i = 1, 2.
If we introduce Exi = {E ∈ Eh |xi is one of the end points of E}. Then xi ∈ N2,h

is equivalent to that there exists at least one edge E ∈ Exi
such that E ⊂ E2. By the

shape regularity of the mesh, we still have

|Ω2,h| . ∪E∈E2ΩE = O(h2σ).

By (4.5) and (4.11), in Ω1,h,

∥∥(∇Su)I −Gh∇Sh
ūI
∥∥

0,Ω1,h
≤

 ∑
τh∈T1,h

|τh|
∑

z∈Nh∩τ̄h
|Gh∇Sh

ūI(z)−∇Su(z)|2
1/2

. h2 ‖u‖3,∞,S |Ω1,h|1/2 . h2 ‖u‖3,∞,S .
(4.14)

On the other hand, by (4.7) and (4.12), in Ω2,h,∥∥(∇Su)I −Gh∇Sh
ūI
∥∥

0,Ω2,h
. h ‖u‖3,∞,S |Ω2,h|1/2 . h1+σ ‖u‖3,∞,S . (4.15)

Combining (4.14) with (4.15), we have∥∥(∇Su)I −∇Sh
ūI
∥∥

0,Sh
. h1+min{1,σ} ‖u‖3,∞,S . (4.16)

Since Gh is a linear bounded operator in L2 norm [40], by Theorem 3.5,

‖Gh(∇Sh
ūI −∇Sh

uh)‖0,Sh
. ‖∇Sh

(ūI − uh)‖0,Sh

. h1+min{1,σ}
(
‖u‖3,S + ‖u‖2,∞,S

)
+ h2 ‖f‖0,S . (4.17)

The conclusion then follows by applying (4.13), (4.16), and (4.17).

4.3. Global L2-projection. We discuss the post-processing operator using the
global L2-projection Qh : L2(Sh) 7→ Vh

(Qhv, wh) = (v, wh), for all wh ∈ Vh.

The global L2-projection of a vector function v ∈ (L2(Sh))3 is a vector function in
(Vh)3 whose k-th component is the global L2-projection of the k-th component of v.

For the purpose of analysis, we introduce a perturbation of Qh. Let ϕi ∈ Vh
be the nodal basis at the vertex xi. Set V = (v1, · · · , vN )t with vi = (v, ϕi) and
M = (mij), with mij = (ϕi, ϕj). The matrix M is known as the mass matrix. Then
the matrix realization of Qh will be

Qhv = (ϕ1, · · · , ϕN )M−1V.

For piecewise continuous function v, we then define V ′ = (v′1, · · · , v′N )t with v′i =
1
3

∑m
j=1 v|τj (xi)|τj |. Note that v′i is an approximation of vi as v′i =

∫
Ωi
v(xi)ϕi dσh.

We define Q′h, a perturbation of the global L2-projection, as :

Q′hv = (ϕi, · · · , ϕN )M−1V ′.
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Note that if v is piecewise constant on Th, then Qhv = Q′hv.
We first consider the error introduced by the in-exact evaluation of the integral.
Lemma 4.5. Suppose v ∈ W 2

∞(S) and the triangulation Th is O(h2σ) irregular.
Let v̄ = v ◦ P0, then

‖Qhv̄ −Q′hv̄‖0,Sh
. h1+min{1,σ} ‖v‖2,∞,S . (4.18)

Proof. By the definitions of Qh and Q′h, we have

‖Qhv̄ −Q′hv̄‖
2
0,Sh

=(V − V ′)tM−1MM−1(V − V ′) . h−2
N∑
i=1

(v̄i − v̄′i)2. (4.19)

We then apply the Taylor expansion to get

|v̄i − v̄′i|

=

∣∣∣∣∣∣
m∑
j=1

∫
τj

(v̄ − v̄(xi))ϕi dσh

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

∫
τj

[
∇Sh

v̄|τj (xi) · (x− xi) +
1

2
(x− xi) · ∇2

Sh
v̄|τj (xi + t(x− xi))(x− xi)

]
ϕi dσh

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
m∑
j=1

∫
τj

∇Sv(xi) · (x− xi)ϕi dσh

∣∣∣∣∣∣+

∣∣∣∣∣∣
m∑
j=1

∫
τj

(∇Sh
v̄|τj −∇Sv)(xi) · (x− xi)ϕi dσh

∣∣∣∣∣∣
+

∣∣∣∣∣∣
m∑
j=1

∫
τj

1

2
(x− xi) · ∇2

Sh
v̄|τj (xi + t(x− xi))(x− xi)ϕi dσh

∣∣∣∣∣∣
=I1 + I2 + I3.

(4.20)

We estimate the three terms as follows. First for I2, by (2.5) in Lemma 2.2, we have

I2 =

∣∣∣∣∣∣
m∑
j=1

∫
τj

(P h|τj − P )∇Sv(xi) · (x− xi)ϕi dσh

∣∣∣∣∣∣ . h4 ‖v‖1,∞,S . (4.21)

For I3, we have

I3 . h4 ‖v‖2,∞,P0(Ωi)
. (4.22)

For I1, since ∇S(xi) · (x − xi)ψi is a quadratic function, using three-points (middle
points of three edges) numerical integration formula, we have

I1 . ‖v‖1,∞,S

∣∣∣∣∣∣|Ωi|
m∑
j=1

|τj |
|Ωi|

(xij − xi)

∣∣∣∣∣∣ (4.23)

Then if Ωi is O(h2)-symmetric, by (4.2), (4.21), (4.22) and (4.23), we have

|v̄i − v̄′i| . h4(‖v‖1,∞,S + ‖v‖2,∞,S). (4.24)



SUPERCONVERGENCE AND GRADIENT RECOVERY ON SURFACES 17

Otherwise we only have

|v̄i − v̄′i| . h3(‖v‖1,∞,S + ‖v‖2,∞,S). (4.25)

We split the vertices of Th into two parts, Nh = N1,h ∪ N2,h as in Theorem 4.4.
Then we have |N1,h| = O(h−2) and |N2,h| = O(h−2+2σ) by the O(h2σ) irregularity of
Th, where |·| denotes the cardinality of a set. Then

‖Qhv̄ −Q′hv̄‖
2
0,Sh

.(h−2 |N1,h|h8 + h−2 |N2,h|h6)(‖v‖1,∞,S + ‖v‖2,∞,S)2

.(h4 + h2+2σ)(‖v‖1,∞,S + ‖v‖2,∞,S)2,

from which (4.18) is proved.

We then consider the error introduced by the geometry approximation.

Lemma 4.6. Suppose u ∈ W 1
∞(S) and the triangulation Th is O(h2σ) irregular.

Let ū = u ◦ P0 and ∇Su = (∇Su) ◦ P0, then

∥∥Q′h(∇Su−∇Sh
ū)
∥∥

0,Sh
. h1+min{1,σ} ‖u‖1,∞,S . (4.26)

Proof. By the definition of Q′h, the O(h2σ) irregular of Th, P h = I − nhn
t
n,

P = I−nnt and (4.3), we can follow the same proof pattern of (4.18) in Lemma 4.5,
to get

∥∥Q′h(∇Su−∇Sh
ū)
∥∥2

0,Sh

.h−2
N∑
i=1

 m∑
j=1

|τj |
(
∇Su− (∇Sh

ū)|τj
)

(xi)

2

=h−2
N∑
i=1

|Ωi| m∑
j=1

|τj |
|Ωi|

(
∇Su− (∇Sh

ū)|τj
)

(xi)

2

=h−2
N∑
i=1

|Ωi| m∑
j=1

|τj |
|Ωi|

(P − P h|τj )∇Su(xi)

2

.(h4 + h2+2σ) ‖u‖21,∞,S .

The conclusion (4.26) then follows.

Lemma 4.7. Suppose u ∈ W 3
∞(S) and the triangulation Th is O(h2σ) irregular.

Let ū = u ◦ P0 and ūI be the linear interpolation of ū on Sh, then

‖Q′h(∇Sh
ū−∇Sh

ūI)‖ . h1+min{1,σ} ‖u‖3,∞,S . (4.27)

Proof. By the definition of Q′h, the O(h2σ) irregular of Th and the identity (4.6),
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we can follow the same proof pattern of (4.18) in Lemma 4.5, to get

‖Q′h(∇Sh
ū−∇Sh

ūI)‖
2
0,Sh

.h−2
N∑
i=1

1

3

m∑
j=1

|τj | (∇Sh
ū−∇Sh

ūI) |τj (xi)

2

.h−2
N∑
i=1

1

3
|Ωi|

m∑
j=1

|τj |
|Ωi|

(∇Sh
ū−∇Sh

ūI) |τj (xi)

2

.(h4 + h2+2σ) ‖u‖23,∞,S

(4.28)

The conclusion (4.27) then follows.
Now we are in the position to present our main result on the global L2-projection.
Theorem 4.8. Let u ∈W 3

∞(S) be the solution of (2.2) and uh be the solution of
(2.11). Set wh = Qh∇Sh

uh. If the triangulation Th is O(h2σ) irregular, then

‖∇Su− w̃h‖0,S . h1+min{1,σ} ‖u‖3,∞,S + h2 ‖f‖0,S . (4.29)

Proof. Let ∇Su = (∇Su) ◦ P0. By the norm equivalence (2.7), we only need to
estimate

∥∥∇Su−Qh∇Sh
uh
∥∥

0,Sh
. We decompose

∇Su−Qh∇Sh
uh =(I −Qh)∇Su+ (Qh −Q′h)∇Su+Q′h(∇Su−∇Sh

ū)

+Q′h(∇Sh
ū−∇Sh

ūI) +Q′h(∇Sh
ūI −∇Sh

uh).

We bound the first term using the standard approximation property∥∥∇Su−Qh∇Su∥∥0,Sh
. h2 ‖u‖3,S , (4.30)

the second term by (4.18) in Lemma 4.5, the third term by (4.26) in Lemma 4.6, and
the fourth term by (4.27) in Lemma 4.7. For the last one, by (3.10) in Theorem 3.5
and the boundedness of Qh, we have

‖Q′h(∇Sh
ūI −∇Sh

uh)‖0,Sh
= ‖Qh(∇Sh

ūI −∇Sh
uh)‖0,Sh

. ‖∇Sh
ūI −∇Sh

uh‖0,Sh

.h1+min{1,σ}
(
‖u‖3,S + ‖u‖2,∞,S

)
+ h2 ‖f‖0,S .

Finally conclusion (4.29) is followed by the triangle inequality.

4.4. The Recovery Schemes of Finite Volume Methods. We discuss the
superconvergence between the approximations from FEM and FVM of the Laplace-
Beltrami equation (1.1).

Given a triangulation T , we construct a dual mesh B as follows: for each triangle
τ ∈ T , select a point cτ ∈ τ . The point cτ can coincide with one of the mid-points
of edges, but not the vertices of triangles (to avoid the degeneracy of the control
volume). In each triangle, we connect cτ to three mid-points on the edges of τ . This
will divide each triangle in T into three regions. For each vertex xi of T , we collect
all regions containing this vertex and define it as ωi.
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The vertex-centered finite volume method of (1.1) is: find uBh ∈ Vh such that

−
∫
∂ωi

∇Sh
uBh · nωi

ds =

∫
ωi

fh dσh, for all ωi, (4.31)

where nωi is the outward unit normal vector of ωi on the supporting plane of corre-
sponding triangles.

The following identity can be found in [2, 13, 26, 41]. For completeness, we
include a simple proof from [41] here.

Lemma 4.9. Let uh be a linear finite element function. One has

−
∫
∂ωi

∇Sh
uh · nωi

ds =
∑
τh⊂Ωi

∫
τh

∇Sh
uh · ∇Sh

ϕi dσh, (4.32)

where ϕi ∈ Vh is the hat basis function at xi. Therefore the stiffness matrix of finite
volume methods is the same as that from finite element methods.

Proof. Let us consider a triangle τh = 4xixjxk in Ωi orientated counterclockwise.
Let c be the interior point in τh of ωi and m1 and m2 the mid-points of xixj and
xixk, respectively. So segments m1c and cm2 are the parts of ∂ωi. By the divergence
theorem, the fact ∇Sh

uh is piecewise constant, and ϕi is linear on edges xixj and
xixk and vanished on xjxk, we have

−
(∫ c

m1

+

∫ m2

c

)
∇Sh

uh · nωi ds =

(∫ m1

xi

+

∫ xi

m2

)
∇Sh

uh · n ds

=
1

2

(∫ xj

xi

+

∫ xi

xk

)
∇Sh

uh · n ds =

∫
∂τh

ϕi∇Sh
uh · n ds =

∫
τh

∇Sh
uh · ∇Sh

ϕi dσh.

Theorem 4.10. Let uGh be the standard Galerkin approximation and uBh the
box (finite volume) approximation of the Laplace-Beltrami equation (1.1). Assume
f ∈ H1(S), then ∣∣uGh − uBh ∣∣1,Sh

≤ Ch2 ‖f‖1,S . (4.33)

Proof. Let V0,B be the piecewise constant space on B. We can define a mapping

Π∗h : Vh 7−→ V0,B, as Π∗hvh =
∑N
i=1 vh(xi)χωi , where χωi is the characteristic function

about ωi. Since we use barycenters as the vertices of control volumes, we have∫
τh

vh =

∫
τh

Π∗hvh.

Let fc be the L2 projection of fh(see (2.10)) into the piecewise constant function space
on Sh, then

(fh, vh −Π∗vh) = (fh − fc, vh −Π∗vh) ≤ ‖fh − fc‖0,Sh
‖vh −Π∗vh‖Sh

≤ Ch2 ‖f‖1,S |vh|1,Sh
.

Here we use average type Poincaré inequality for fh and vh on each τh. By Lemma
4.9 and (4.4), we have∫

Sh

∇Sh
uBh · ∇Sh

vh dσh = −
∑
ωi

∫
∂ωi

vh(xi)∇Sh
uBh · nωi

ds = (fh,Π
∗
hvh).
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Then for any vh ∈ Vh, we have∫
Sh

∇Sh
(uGh − uBh ) · ∇Sh

vh dσh =(fh, vh)−
∫
Sh

∇Sh
uBh · ∇Sh

vh dσh

=(fh, vh −Π∗hvh) ≤ Ch2 ‖f‖1,S |vh|1,Sh
.

The estimate (4.33) is obtained by taking vh = uGh − uBh .
So we reach to the conclusion that the gradient recovery methods for FEM can

also be used for FVM approximations and result superconvergence.

5. Numerical Tests. In this section, we present three numerical examples to
support our theoretical results. The first two are equations on a two-sphere and a
torus, for which structured grids can be easily constructed. The third is on a more
general surface triangulated into unstructured grids.

Let u be the true solution of the Laplace-Beltrami equation (1.1) on the surface
S, ū = u ◦ P0 and ∇Su = (∇Su) ◦ P0. Let uh be the surface linear finite element
approximation of u and ūI the linear interpolation of ū on Sh. For the easy of
computation, we report the following errors on discrete surface Sh:

EI = ‖∇Sh
ūI −∇Sh

uh‖0,Sh
,

Eh =
∥∥∇Su−Qh∇Sh

uh
∥∥

0,Sh
,

Ei =
∥∥∇Su−Gih∇Sh

uh
∥∥

0,Sh
, i = 1, . . . , 6,

where G1
h and G2

h represent the directly simple and weighted averaging recovery oper-
ators on Sh, respectively, and G3

h, G4
h, G5

h and G6
h represent the corresponding simple

averaging, weighted averaging, local L2-projection and local discrete least-squares fit-
ting (ZZ) recovery operators on the tangent plane, respectively. All the errors are
computed on the polyhedral surface Sh using the 9-th order quadrature rules. Our
numerical programs are based on the package iFEM [12].

Let {T ih}ki=1 be a sequence of meshes of a surface by uniform refinement and
E(T ih ) be the error associated to T ih . Since the mesh size hi−1 ≈ 2hi, we determine
the experimental order of convergence by

ln
E(T i−1

h )

E(T ih )
/ ln 2, i = 2, . . . , k.

Also instead of using h, we list number of degree of freedoms in the error tables.

5.1. Example 1 on the unit two-sphere. We consider the unit sphere whose
signed distance function is

d(x, y, z) =
√
x2 + y2 + z2 − 1. (5.1)

We choose f such that u(x, y, z) = xy is the true solution of the Laplace-Beltrami
equation (1.1) defined on the unit spherical surface S = {(x, y, z) ∈ R3 | d(x, y, z) = 0}.
The initial mesh T0 is the projection of an icosahedron on the unit two-sphere. Then
we obtain a sequence of meshes by the regular refinement of T0, that is each triangle is
divide into four conjugate small triangles by connecting mid-points of edges, and the
new nodes are projected to the surface. The corresponding results are given in Table
1 and the numerical approximation of u(x, y, z) = xy with 2562 degree of freedoms
(dofs) is shown in Fig. 5.1.
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Table 5.1
Example 1: Error table for surface linear finite element approximation and several gradient

recovery methods on the unit sphere.

N EI order Eh order E1 order E2 order
12 2.71e-01 0.00 1.41 0.00 1.50 0.00 1.50 0.00
42 1.14e-01 1.25 4.10e-01 1.78 8.17e-01 0.88 8.18e-01 0.88
162 3.66e-02 1.64 1.06e-01 1.95 2.63e-01 1.64 2.64e-01 1.63
642 1.05e-02 1.80 2.89e-02 1.88 7.20e-02 1.87 7.34e-02 1.85
2562 2.88e-03 1.87 8.19e-03 1.82 1.92e-02 1.91 2.01e-02 1.87
10242 7.75e-04 1.89 2.45e-03 1.74 5.18e-03 1.89 5.67e-03 1.83

N E3 order E4 order E5 order E6 order
12 1.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00
42 6.92e-01 1.12 6.92e-01 1.12 6.92e-01 1.12 6.92e-01 1.12
162 2.08e-01 1.73 2.09e-01 1.73 2.07e-01 1.74 2.07e-01 1.74
642 5.65e-02 1.88 5.81e-02 1.85 5.46e-02 1.92 5.44e-02 1.92
2562 1.52e-02 1.89 1.62e-02 1.84 1.40e-02 1.96 1.39e-02 1.97
10242 4.21e-03 1.86 4.71e-03 1.79 3.61e-03 1.96 3.54e-03 1.98
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Fig. 5.1. The numerical approximation of u(x, y, z) = xy with 2562 dofs on the unit two-sphere.

5.2. Example 2 on a torus. We consider a torus surface whose signed distance
function is

d(x, y, z) =

√
(4−

√
x2 + y2)2 + z2 − 1. (5.2)

We choose f such that u(x, y, z) = x− y is the true solution of the Laplace-Beltrami
equation (1.1) on this torus. Through the parametrization of the torus, we can get
a series of uniform meshes on its parameter space, and then map the mesh onto the
torus. The corresponding results are given in Table 2 and the numerical approximation
of u(x, y, z) = x− y with 3200 dofs is shown in Fig. 5.2.
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Table 5.2
Example 2: Error table for surface linear finite element approximation and several gradient

recovery methods on the torus.

N EI order Eh order E1 order E2 order
200 1.17 0.00 1.53 0.00 2.56 0.00 2.57 0.00
800 2.93e-01 2.00 3.75e-01 2.03 7.16e-01 1.84 7.20e-01 1.84
3200 7.33e-02 2.00 9.33e-02 2.01 1.84e-01 1.96 1.85e-01 1.96
12800 1.83e-02 2.00 2.33e-02 2.00 4.65e-02 1.99 4.67e-02 1.99
51200 4.58e-03 2.00 5.82e-03 2.00 1.16e-02 2.00 1.17e-02 2.00

N E3 order E4 order E5 order E6 order
200 1.72 0.00 1.72 0.00 1.77 0.00 1.80e 0.00
800 4.47e-01 1.94 4.48e-01 1.94 4.65e-01 1.93 4.72e-01 1.93
3200 1.13e-01 1.99 1.13e-01 1.98 1.18e-01 1.98 1.20e-01 1.98
12800 2.83e-02 2.00 2.84e-02 2.00 2.95e-02 2.00 3.00e-02 2.00
51200 7.07e-03 2.00 7.09e-03 2.00 7.39e-03 2.00 7.50e-03 2.00
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Fig. 5.2. The numerical approximation of u(x, y, z) = x− y with 3200 dofs on the torus.

5.3. Example 3 on a general surface. We consider the example from [22].
We solve the Laplace-Beltrami equation (1.1) on a general surface whose level set
function is

φ(x, y, z) = (x− z2)2 + y2 + z2 − 1. (5.3)

We choose f such that the true solution is u(x, y, z) = xy. We start from a crude mesh
with eighteen nodes to approximate this surface, then refine this mesh and project
the new nodes on the surface. We use the first-order projection algorithm in [17].
The corresponding results are given in Table 3 and the numerical approximation of
u(x, y, z) = xy with 1026 dofs is shown in Fig. 5.3.
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Table 5.3
Example 3: Error table for surface linear finite element approximation and several gradient

recovery methods on the general surface.

N EI order Eh order E1 order E2 order
18 5.54e-01 0.00 1.27 0.00 1.56 0.00 1.53 0.00
66 3.55e-01 0.64 6.85e-01 0.90 9.22e-01 0.76 9.43e-01 0.69
258 1.46e-01 1.29 2.51e-01 1.45 3.98e-01 1.21 4.11e-01 1.20
1026 4.47e-02 1.70 7.60e-02 1.72 1.33e-01 1.58 1.42e-01 1.54
4098 1.22e-02 1.87 2.30e-02 1.73 4.00e-02 1.74 4.46e-02 1.67

N E3 order E4 order E5 order E6 order
18 1.62 0.00 1.59 0.00 1.68 0.00 1.74 0.00
66 8.49e-01 0.93 8.79e-01 0.86 8.63e-01 0.96 8.90e-01 0.97
258 3.31e-01 1.36 3.43e-01 1.36 3.30e-01 1.39 3.44e-01 1.37
1026 1.06e-01 1.64 1.15e-01 1.58 1.02e-01 1.69 1.06e-01 1.70
4098 3.21e-02 1.73 3.68e-02 1.64 2.88e-02 1.83 2.97e-02 1.84
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Fig. 5.3. The numerical approximation of u(x, y, z) = xy with 1026 dofs on the general surface.

From the above numerical tests, we can see clearly the existence of superconver-
gence phenomena in the surface linear FEM. Like the planar case, the mesh quality
is a key factor for the superconvergence order. In Example 2, the meshes are almost
uniform, so its convergence order is the best possible among the three examples. In
future work, we shall develop mesh smoothing schemes on surfaces, such as meth-
ods based centroid Voronoi tessellation [19, 20] and optimal Delaunay triangulation
[14, 11] to improve the mesh quality.

The error of the global L2-projection recovery method seems better than local
recovery methods on Sh. Although the global L2-projection requires an inversion of a
mass matrix, it can be solved efficiently by preconditioned conjugate gradient method
since the mass matrix is well conditioned. It may need more computational time than
local methods. Among six local methods, the local recovery methods on the tangent
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plane are better than local averaging methods on Sh directly. In these three examples,
the errors are smaller by using local methods on tangential planes. The reason might
be that the outward normal vector of S at every vertex is exact on the tangent plane.
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