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Abstract
An adaptive modified weak Galerkin method (AmWG)
for an elliptic problem is studied in this article, in addi-
tion to its convergence and optimality. The modified weak
Galerkin bilinear form is simplified without the need of the
skeletal variable, and the approximation space is chosen
as the discontinuous polynomial space as in the discon-
tinuous Galerkin method. Upon a reliable residual-based
a posteriori error estimator, an adaptive algorithm is pro-
posed together with its convergence and quasi-optimality
proved for the lowest order case. The primary tool is to
bridge the connection between the modified weak Galerkin
method and the Crouzeix–Raviart nonconforming finite
element. Unlike the traditional convergence analysis for
methods with a discontinuous polynomial approximation
space, the convergence of AmWG is penalty parameter free.
Numerical results are presented to support the theoretical
results.
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1 INTRODUCTION

Consider the following model second-order elliptic problem
−∇ ⋅ (A∇u) = f in Ω,

u = 0 on !Ω, (1.1)

Numer Methods Partial Differential Eq. 2023;1–27. wileyonlinelibrary.com/journal/num © 2023 Wiley Periodicals LLC. 1

https://orcid.org/0000-0002-6674-1413
https://orcid.org/0000-0002-2059-5318
http://wileyonlinelibrary.com/journal/NUM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnum.23027&domain=pdf&date_stamp=2023-04-04


2 YINGYING ET AL.

whereΩ is a bounded polygonal or polyhedral domain in R" , " = 2, 3. Assume that an initial conform-
ing partition 0 of Ω exists and for all # ∈ 0, the coefficient A is assumed to be a piecewise constant
with respect to this partition.

Weak Galerkin (WG) is a novel numerical method for solving partial differential equations in which
classical differential operators (such as gradient, divergence, curl) are approximated in a weak sense.
WG method was initially introduced in [1-3] for the second-order elliptic problem. Since then, the
WG method has successfully found its way to many applications, for example, elliptic interface prob-
lems [4], Helmholtz equations [5-7], biharmonic equations [8, 9], Navier-Stokes equations [10, 11] and
so forth. In particular, Wang et al. [12] introduced a modified weak Galerkin (mWG) method for the
Poisson equation. The mWG method has been successfully applied to, such as parabolic problem [13],
Signorini and obstacle problem [14], and Stokes equations [15].

The solution to (1.1) may contain singularities. To approximate problem (1.1) efficiently, the gen-
eral practice is to adopt adaptivity by designing an adaptive finite element cycle through the help of
the a posteriori error estimators, a bulk marking strategy, and certain local refinement techniques.
As examples non-convergent adaptive algorithms [16] may fail to produce the desired approximation
even with additional iterations, the convergence analysis of an adaptive algorithm is of fundamental
importance for ensuring that the correct approximation is obtained. It theoretically guarantees that
the correct approximation will be obtained, especially if one wants to avoid the situation when more
computational resources may go wasted after iterative refinements.

The convergence theory of adaptive finite element methods is relatively mature, see [17] and the
references therein. Nevertheless, few research results exist for the a posterior error estimates for WG
methods. Chen et al. [18] presented the a posteriori error estimates for second-order elliptic problems;
Zhang and Chen [19] proposed a residual-type error estimator and proved global upper and lower
bounds of the WG method for second-order elliptic problems in a discrete H1-norm; Li et al. [20]
introduced a simple a posteriori error estimator which can be applied to general meshes such as hybrid,
polytopal and those with hanging nodes for second-order elliptic problems; Mu [21] presented an a
posteriori error estimate for the second-order elliptic interface problems; Zheng and Xie [22] discussed
a residual-based a posteriori error estimator for the Stokes problem. There are only a few research
results for a posteriori error estimates for mWG methods. Zhang and Lin [23] proposed an a posteriori
error estimator for the second-order elliptic problems. More recently, Tang et al. proposed an adaptive
mWG for H(curl)-elliptic problems in [24].

This article aims to prove the optimal convergence of an AmWG algorithm for the second-order
elliptic problem (1.1). Different from the mWG originally introduced in [12], we simplify the mWG
as follows: for a weak function v = {v0, vb}, the edge/face term is not independent anymore as we
choose vb = Qb{v0}, that is, vb is obtained through averaging the interior discontinuous variable v0 and
then projected through Qb to a one-degree-lower polynomial space. Compared with interior-penalty
discontinuous Galerkin (IPDG) (see e.g., [25]), the mWG is stable without choosing a sufficiently
large penalty parameter. This simplification (Qb{v0} opposed to {v0} in [12]) brings extra difficulty
to the analysis of convergence. The reason is that a simple port of the workflow presented in [26], by
decomposing the discontinuous approximation space into a continuous subspace and its orthogonal
complement, will introduce a penalty parameter that is not originally in the mWG discretization (cf.
[27]). To our best knowledge, there is no literature on the convergence of adaptive mWG methods with
the skeletal variable being one degree lower than the internal variable.

To conquer this difficulty, by introducing an interpolation operator I onto the Crouzeix–Raviart
type nonconforming finite element space Vnc( ), we bound the stabilization term and prove an a
posteriori error estimate in the discrete H1-norm. One main ingredient in the convergence analysis of
a standard adaptive procedure is the orthogonality of the error to the finite element space. However,
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YINGYING ET AL. 3

such an orthogonality does not hold for mWG approximations. Instead, a quasi-orthogonality result is
established. Hu and Xu [28] defined a canonical interpolation operator for the lowest Crouzeix–Raviart
type nonconforming finite element space and established the quasi-orthogonality property for both
the velocity and the pressure in the Stokes problem. The main observation is that the modified weak
gradient for a function v = {v0,Qb{v0}} is equal to the elementwise gradient of the interpolant ICR v0,
namely ∇wv = ∇hICR v0 and we can derive the desired quasi-orthogonality property for the lowest
order (P1-P0) mWG.

Another key component to establish the optimality of the adaptive algorithm is the localized dis-
crete upper bound for the a posteriori error estimator. By using a prolongation operator introduced
in [28], we are able to derive the discrete reliability and use it to prove the optimality of the convergence.

For the a posteriori error analysis of mWG approximations, we mainly follow Bonito and
Nochetto [26] and Chen et al. [18]. For the analysis of the convergence and the optimality of adaptive
procedure, we mainly use the Hu and Xu [28] and Huang and Xu [29]. We do not claim any orig-
inality on the proof of convergence and optimality. Instead, the main contribution of this article is
to bound the stabilization term by the element-wise residual and flux jump, as well as to establish a
quasi-orthogonality and a discrete upper bound which are important ingredients on the convergence
theory of adaptive finite element methods.

The rest of this article is organized as follows. In Section 2, the definitions of weak gradient and
discrete weak gradient are introduced, as well as the modified weak Galerkin finite element spaces and
the corresponding bilinear form a (⋅, ⋅). In Section 3, a residual-type error estimator is constructed,
and its reliability and efficiency are shown. In Section 4, we introduce an adaptive modified weak
Galerkin method (AmWG) and prove its convergence and optimality. Some numerical examples are
presented in Section 5 to verify the theoretical results.

2 NOTATION AND PRELIMINARY

The goal of this section is to present the modified weak Galerkin (mWG) formulation for (1.1). First, the
standard weak Galerkin method is reviewed, then an mWG finite element space and the discretization
thereof are introduced.

2.1 Weak Galerkin methods
Given a polygonal/polyhedral element K with boundary !K, the notation v = {v0, vb} defines a weak
function on K such that v0 ∈ L2(K) and vb ∈ L2(!K). Subsequently, the weak function space on K is
defined as

W(K) = {v = {v0, vb} ∶ v0 ∈ L2(K), vb ∈ L2(!K)}.

Let P"(K) be the set of polynomials on K with degree no more than " (" ⩾ 1). The discrete weak
gradient operator∇w,K,"(⋅) is defined for polynomial functions. With slight abuse of notation, when no
ambiguity arises, we shall denote ∇w,K(⋅) as ∇w(⋅), which should be clear from the context.

Definition 2.1 ([30, Definition 2.1]). The discrete weak gradient operator, denoted by
∇w,K," , is defined as the unique polynomial∇w,K,"v ∈ (P"−1(K))" satisfying the following
equation for v ∈ W(K)

(
∇w,K,"v, q

)
K = −(v0,∇ ⋅ q)K + ⟨vb, q ⋅ n⟩!K , ∀q ∈ (P"−1(K))" . (2.1)
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4 YINGYING ET AL.

In the definition above, n is the outward normal direction to !K, (v0,∇ ⋅ q)K = ∫K v0(∇ ⋅ q) dK is
the L2(K)-inner product of v0 and ∇ ⋅ q, and ⟨vb, q ⋅n⟩!K = ∫!K vb(q ⋅n) ds is the L2(!K)-inner produce
of vb and q ⋅ n. The differential operators involved are well-defined when restricted to one element. In
the context of the gradient operator defined across multiple elements in  , the elementwise gradient
∇h is introduced, that is, (∇hv)|K ∶= ∇(v|K) in element K ∈  .

In the rest of the article, we restrict ourselves to a shape-regular triangulation  of Ω.  denotes
the set of all the edges or faces in  , and  int is the set of all the interior edges or faces. Denote | ⋅ |
the "-dimensional Lebesgue measure. For # ∈  , its associated patch as $(#) = ⋃

#′∩#≠∅ #′. For a set ⊆  , its associated patch element patch is $() = ⋃
#∈ $(#).

Given a positive integer " ⩾ 1, the "th order weak Galerkin finite element space on  is defined
as follows:

VWG( ) ∶= {v = {v0, vb} ∶ v0|# ∈ P"(#), vb|e ∈ P"−1(e), e ∈  , # ∈  }, (2.2)

and the one with zero boundary condition:

VWG
0 ( ) = {v ∶ v ∈ VWG( ), vb = 0 on !Ω}. (2.3)

Note that vb is single-valued on each e.
For v = {v0, vb} ∈ VWG( ),w = {w0,wb} ∈ VWG( ), the discrete bilinear form for the variational

form of problem (1.1) is defined as

aWG(v,w) ∶=
∑
#∈

(A∇wv,∇ww)# +
∑
#∈

h−1
# ⟨Qbv0 − vb,Qbw0 − wb⟩!# , (2.4)

where the weak gradient∇w = ∇w,#,"−1, and Qb is the L2 projection from L2(e) to P"−1(e) on an e ∈  .
Again when it is clear from the context, we shall omit the degree of the polynomial involved in the
projection operator.

The weak Galerkin discretization is: to find a uh = {u0, ub} ∈ VWG
0 ( ) satisfying

aWG(uh, v) = (f , v0), ∀ v = {v0, vb} ∈ VWG
0 ( ). (2.5)

The WG discretization (2.5) is well-posed as aWG(⋅, ⋅) defines an inner product on the space VWG
0 ( ).

For completion and the convenience of our readers, we include a short argument here to show that

|||v|||1 = (aWG(v, v))1∕2, (2.6)

defines a norm in VWG
0 ( ). Assume that |||v|||1 = 0, then ∇wv|# = 0 on every element # ∈  and

Qbv0 = vb on every e ⊂ !#, then by definition (2.1)

0 = (∇wv,∇v0)# = −(v0,Δv0)# + ⟨vb,∇v0 ⋅ n⟩!#
= −(v0,Δv0)# + ⟨Qbv0,∇v0 ⋅ n⟩!#
= −(v0,Δv0)# + ⟨v0,∇v0 ⋅ n⟩!#
= (∇v0,∇v0)# ,

which implies∇v0 = 0 on #. As a result, v is constant on #. Moreover, Qbv0 = vb on each !#. Knowing
vb = 0 on !Ω. By an argument of continuation, v0 = vb = 0. Therefore, ||| ⋅ |||1 defines a norm and
aWG(⋅, ⋅) defines an inner product on the space VWG

0 ( ).
The proof above reveals that the boundary part vb can be set as a polynomial with degree one less

than that of the interior one v0 since its presence is only in ⟨vb,∇v0 ⋅ n⟩!# .
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YINGYING ET AL. 5

2.2 Modified weak Galerkin finite element
Let e ∈  int be the common edge/face shared by two elements #1, #2 ∈  , and denote by$(e) = #1∪#2.
We assume that globally each e is associated with a fixed unit normal vector ne. When " = 2, we
can get e’s tangential vector by te = ⟨ne,2,−ne,1⟩, which is obtained by rotating ne clockwise by '∕2.
Without loss of generality, the ne is assumed pointing from #1 to #2. Denote by n1 and n2 the outer
unit normal vectors with respect to #1 and #2, respectively. For a smooth enough scalar function w, we
define its average and jump on e by

{w}e = (w|#1 + w|#2)∕2, for e ∈  int;
⟦w⟧e = w|#1 − w|#2 , for e ∈  int;
⟦w⟧e = {w}e = w, for e ⊂ !Ω.

Similarly, for an admissible vector function w, we have

{w}e = (w|#1 + w|#2)∕2, for e ∈  int;
⟦w ⋅ ne⟧e = w|#1 ⋅ n1 + w|#2 ⋅ n2, for e ∈  int;
{w}e = w, ⟦w ⋅ ne⟧e = w ⋅ ne, for e ⊂ !Ω.

In the definitions above, w|# and w|#’s values on e are defined for those spaces which yield a
well-defined trace, respectively.

Specifically, in discretization (2.5), v0 is chosen to be in the discontinuous polynomial space

VDG( ) ∶= {v ∶ v|# ∈ P"(#), # ∈  },
and the edge/face term vb = Qb{v0}. Now a weak function is v = {v0,Qb{v0}}, which offers a contin-
uous embedding of VDG( ) → VWG( ) with respect to norm (2.6), which will be shown equivalent to
the modified IP norm associated with (2.10). The modified weak Galerkin finite element space for 
is then defined as

V( ) ∶= {v = {v0, vb} ∶ v0 ∈ VDG( ); vb = Qb{v0}, e ∈ }, (2.7)

and
V0( ) = {v ∶ v ∈ V( ), Qb{v0} = 0 on !Ω}. (2.8)

Remark 2.2. The original modified weak Galerkin function space was introduced in [12].
The edge/face term vb is chosen as {v0}|e ∈ P"(e) in [12], while vb ≡ Qb{v0} ∈ P"−1(e)
here to match the reduced-order weak Galerkin scheme in [30].

The definition of the weak gradient is modified accordingly as follows.
Definition 2.3. The modified weak gradient operator acting on any v ∈ V( ), denoted
by ∇w,# on # ∈  , is defined as the unique polynomial in (P"−1(#))" , " = 2, 3 such that
its inner product with any q ∈ (P"−1(#))" satisfies the following equation:

(∇w,#v , q)# = −(v0,∇ ⋅ q)# + ⟨Qb{v0}, q ⋅ n⟩!# . (2.9)

When the triangulation is clear from the context, we shall abbreviate the notation
∇w,# as ∇w.

Let e ∈  int be the common edge/face shared by #1, #2 ∈  . By using the mWG space (2.7) in the
WG bilinear form (2.4), one can simplify the stabilization term on e for v = {v0,Qb{v0}} ∈ V( )
and w = {w0,Qb{w0}} ∈ V( ), henceforth the same argument applies to other edges/faces.
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6 YINGYING ET AL.

⟨Qb(v0 − {v0}),Qb(w0 − {w0})⟩e

=
⟨

Qb

(
v0|#1 −

v0|#1 + v0|#2

2

)
,Qb

(
w0|#1 −

w0|#1 + w0|#2

2

)⟩

e

=
⟨

Qb

(v0|#1 − v0|#2

2

)
,Qb

(w0|#1 − w0|#2

2

)⟩

e

= 1
4 ⟨Qb⟦v0⟧,Qb⟦w0⟧⟩e.

Consequently, for v ,w ∈ V( ), the associated bilinear form is defined as
a (v ,w ) ∶=

∑
#∈

(A∇wv ,∇ww )# + 4
∑
#∈

h−1
# ⟨Qb(v0 − {v0}),Qb(w0 − {w0})⟩!#

=
∑
#∈

(A∇wv ,∇ww )# +
∑
#∈

h−1
# ⟨Qb⟦v0⟧,Qb⟦w0⟧⟩!# . (2.10)

A modified weak Galerkin (mWG) approximation is then to seek u ∈ V0( ) satisfying
a (u , v ) = (f , v0), ∀v ∈ V0( ). (2.11)

It is clear that the modified weak Galerkin finite element scheme (2.11) is also well-posed since the
problem is solved in a subspace (the embedding of the DG space) of the original WG space. If nonho-
mogeneous Dirichlet boundary condition u = g on !Ω is presented, u can be decomposed to the sum
of two parts, the first part satisfies the approximation problem above. For the second part, the bound-
ary contribution is {0,Qbg} which can be moved to the right-hand side in addition to the source term.
For other treatments of the boundary data such as interpolations, see, for example, [31].

Remark 2.4. In the classic IPDG formulation (see e.g., [26]), for v0,w0 ∈ VDG( ), the
bilinear form is

aIPDG (v0,w0) =
∑
#∈

(A∇hv0,∇hw0)# −
∑
e∈

⟨⟦v0⟧, {A∇hw0 ⋅ n}⟩e

−
∑
e∈

⟨⟦w0⟧, {A∇hv0 ⋅ n}⟩e +
∑
#∈

(h−1
# ⟨⟦v0⟧, ⟦w0⟧⟩!# . (2.12)

In comparison, in (2.10), using the definition of the weak gradient, several times of
the integration by parts, and the assumption that A is a piecewise constant, for v =
{v0,Qb{v0}},w = {w0,Qb{w0}} ∈ V( ), an equivalent bilinear form of (2.10) reads

a (v ,w ) =
∑
#∈

(A∇hv0,∇hw0)# −
∑
e∈

⟨⟦v0⟧, {A∇hw0 ⋅ n}⟩e

−
∑
e∈

⟨⟦w0⟧, {A∇wv ⋅ n}⟩e +
∑
#∈

h−1
# ⟨Qb⟦v0⟧,Qb⟦w0⟧⟩!# . (2.13)

The only difference is that one∇hv0 in (2.12) is replaced by∇wv in (2.13). This minor
change leads to a major improvement that the mWG (2.11) is automatically coercive and
continuous as the bilinear form a (⋅, ⋅) induces a norm. While in IPDG (2.12), the penalty
parameter ( being sufficiently large is a necessary condition to achieve the coercivity both
theoretically and numerically [32].

The following quantity is well-defined for H1
0(Ω) + V0( ) and defines a mesh dependent norm on

V0( ) (for similar results see, e.g., [30])

|||v |||2 ∶= a (v , v ) = ‖‖‖A1∕2∇wv ‖‖‖
2

 +
∑
#∈

h−1
#
‖‖‖Qb⟦v0⟧‖‖‖

2

!#
. (2.14)
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YINGYING ET AL. 7

We note that (2.14) defines a norm on V0( ) naturally, since V0( ) is a subspace of the bigger space
VWG

0 ( ) and |||v |||2 is equivalent to (2.6) restricted to this subspace; see (2.6) and the proof afterwards.
With slight abuse of notation, we are interested in estimating the following error using computable

quantities and designing a convergent adaptive algorithm to reduce its magnitude successively:

|||u − u |||2 ∶= ‖‖‖A1∕2(∇u − ∇wu )‖‖‖
2
+
∑
#∈

h−1
#
‖‖‖Qb⟦u − u0⟧‖‖‖

2

!#
. (2.15)

3 A POSTERIORI ERROR ANALYSIS

In this section, we shall prove the reliability and efficiency of a residual-type error estimator. For
# ∈  , we define the element-wise error estimator as

)2(∇wv , #) ∶= h2
#A−1

# ‖R(∇wv )‖2
0,#

+
∑
e⊂!#

h# ∫e

(
(Amax

e )−1J2
n,e(A∇wv ) + Amin

e J2
t,e(∇wv )

)
ds, (3.1)

where Amax
e ∶= max{A#1 ,A#2} and Amin

e ∶= min{A#1 ,A#2} for #1, #2 ∈ $(e). The element residual is
defined as

R(∇wv ) = f + ∇ ⋅ (A∇wv ) ,
and the normal jump of the weak flux is defined as

Jn,e(A∇wv ) ∶=
{

⟦A∇wv ⋅ ne⟧e, if e ∈  int

0, otherwise.
For the tangential jumps, when " = 2:

Jt,e(∇wv ) ∶=
{

⟦∇wv ⋅ te⟧e, if e ∈  int

0, otherwise,
and when " = 3

Jt,e(∇wv ) ∶=
{

⟦∇wv × ne⟧e, if e ∈  int

0, otherwise.

Then the error estimator for the set ⊆  is defined as

)2(∇wv ,) =
∑
#∈

)2(∇wv , #). (3.2)

In computing the error estimator, only the information of∇wv is used. Thus, we opt for a notation
of )(∇wv ,) instead of )(v ,). In Remark 4.1, some further explanation is given with regard to
this choice of the notation for the error estimator in the context of the convergence analysis.

3.1 A space decomposition
In this section, a space decomposition is first introduced to bridge the past result of the full degree
jump ⟦v0⟧ to Qb⟦v0⟧ with one less degree. Then, similar to [26], a partial orthogonality for the
mWG approximation u is introduced to enable the insertion of continuous interpolants to prove the
reliability.
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8 YINGYING ET AL.

For VDG( ) consisting of discontinuous polynomial of degree ":
Vc( ) ⊂ Vnc( ) ⊂ VDG( ), (3.3)

where Vc( ) ∶= VDG( ) ∩ H1
0(Ω) is the continuous Lagrange finite element space. Vnc( ) is a sub-

space of VDG( ) so that their quotient space is endowed with the induced topology of the seminorm
∑

e∈ h−1
#
‖‖‖Qb⟦⋅⟧‖‖‖

2

e
. When " = 1, Vnc( ) is simply the well-known Crouzeix–Raviart finite element

space [33]. When " ≥ 1, Vnc( ) is a generalization of the Crouzeix–Raviart type nonconforming
finite element space [34], which can be viewed a special case of nonconforming virtual element [35]
restricted on triangulations:

Vnc( ) ∶= VDG( ) ∩ H1,nc ( ) , (3.4)
where

H1,nc ( ) =
{

v ∈
∏
#∈

H1(#) ∶ ∫e
⟦v⟧q ds = 0 ∀q ∈ P"−1(e),∀e ∈ 

}
. (3.5)

Unlike the virtual element space, where the shape function may not be polynomials, it is shown
in [34, 36] that the space Vnc( ) can be obtained from Vc( ) by adding locally supported polynomial
bases. More specifically, in [34], the authors constructed a set of nodal basis for a strict subspace of
Vnc( ) while satisfying the continuity constraint (3.5). However, to serve the purpose of this article,
Vnc( ) is to bridge the proofs, it only suffices to know the existence of a set of unisolvent degrees of
freedom, while not explicitly construct the dual basis of it. We refer the reader to [35, Section 3.2] for
the degrees of freedom for general polytopes which includes the case of triangulations (" = 2, 3) in
this article.

When restricted a smaller subspace Vc( ) ⊂ VDG( ), the weak gradient coincides with the
piecewise gradient, and the stabilization is vanished which leads to the following partial orthogonality.

Lemma 3.1. Let u and u ∈ V0( ) be the solutions of (1.1) and (2.11), respectively, then

(A∇u − A∇wu ,∇vc) = 0, ∀vc ∈ Vc( ). (3.6)

Proof. It follows from vc ∈ H1
0(Ω) that (A∇u,∇vc) = (f , vc). In addition, ⟦vc⟧ = 0 for

functions when vc ∈ Vc( ) ⊂ H1
0(Ω), thus Qb⟦vc⟧ = 0 in a (⋅, ⋅), which further implies

∇wvc = ∇vc. Lastly since Vc( ) ∩ H1
0(Ω) ⊂ V0( ) implies that a (u , vc) = (f , vc) for

any vc ∈ Vc( ), as a result, (A∇wu,∇vc) = (f , vc) and the lemma follows. ▪

The following interpolation operator to the nonconforming space will play an important role in the
analysis.

Lemma 3.2. There exist an interpolation operator I ∶ VDG( ) → Vnc( ), which is
locally defined and a projection, as well as a constant depending only on the shape
regularity of # such that for all # ∈  the following inequality hold: for |a| = 0, 1,

‖‖‖Da(v − I v )‖‖‖
2

#
≲

∑
e∈ int($(#))

h1−2|a|
#

‖‖‖Qb⟦v ⟧‖‖‖
2

e
, ∀v ∈ VDG( ). (3.7)

Proof. The proof follows a similar argument as the one in [26, Lemma 6.6], and is
presented here for completion. Denote the set of the degrees of freedom functionals in
Vnc( ) as  = {+i(⋅)}i∈Λ, and the nodal bases set is {,i(x)} corresponding to  . Let
$i = supp ,i, where$i is either a single element # or$(e), then we consider the following
projection Πiv obtained through

(v − Πiv ,w)$i
= 0, ∀w ∈ Vnc($i) ∶= Π#∈$i P"(#) ∩ H1,nc ( ) , (3.8)
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YINGYING ET AL. 9

and then the interpolation is defined as:
I v (x) ∶=

∑
i∈Λ

+i (Πiv ),i(x). (3.9)

If v ∈ Vnc($i), we have locally Πiv = v on $i, thus +i (Πiv ) = +i (v ), and I is a
projection.

Moreover, v ∈ Vnc($i) implies that ∑e∈ int($i) h−1
# ||Qb⟦v ⟧||2e = 0, as well as

v − Πiv = 0 by (3.8), hence by a scaling argument and the equivalence of norms on a
finite-dimensional space, we have

∑
#∈$i

||Da(v − Πiv )||2# ≲
∑

e∈ int($i)
h1−2|a|
# ||Qb⟦v ⟧||2e , (3.10)

where we note that if a nodal basis ,i has support $i = #, both sides of the inequality
above will be 0, as the projection (3.8) modulo out the element bubbles.

Next, consider on a # ∈  , and all local degrees of freedom {+i(⋅)}N#
i=1 of which the

nodal basis having support $i overlaps with # ∪ !#, we have on #

v − I = (v − Π1v ) −
N#∑
i=1

+i(Π1v − Πiv ),i. (3.11)

On # ∪ !#, +i(v ) is either defined on e ⊂ !# (see [35, Section 3.2])

+i(v ) = 1
|e| ∫e

v p ds,∀p ∈ P"−1(e),

or defined on # (" ≥ 2)

+i(v ) = 1
|#| ∫# v p ds,∀p ∈ P"−2(#),

and in both cases, we have by a simple scaling argument and by (3.10)
‖‖‖+i(Π1v − Πiv )‖‖‖# ≲

‖‖‖Π1v − Πiv ‖‖‖# ≲
∑

e∈ int($i)
h# ||Qb⟦v0⟧||2e .

Lastly, combining the estimate above with (3.11), using the fact that ||,i||∞,# ≲ 1, and
estimate (3.10) yields the desired estimate. ▪

3.2 Reliability
In this section, the global reliability of the estimator in (3.2) is to be shown. The difference between
the weak gradient and classical gradient can be controlled by the jump term which becomes a handy
tool in our analysis.

Lemma 3.3. For v = {v0, vb} ∈ V( ), it holds for any ⊆ 
‖‖‖A1∕2

# (∇wv − ∇hv0)‖‖‖
2

 ≲
∑

e∈()
Amax

e h−1
# ||Qb⟦v0⟧||2e .

Proof. The proof follows from [23, Lemma 2.1] with coefficient added and a more local-
ized version is presented. On # ∈  , let q = ∇wv −∇hv0 ∈ Pl−1(#), applying integration
by parts on ∇hv0 and the weak gradient definition (2.9) on ∇wv , we have

∫# A#(∇wv − ∇hv0) ⋅ q dx = ∫!# (Qb{v0} − v0)A#q ⋅ n ds
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10 YINGYING ET AL.

= ∫!# Qb ({v0} − v0)A#q ⋅ n ds

=
∑
e⊂!#

± 1
2 ∫e

Qb⟦v0⟧A#q ⋅ n ds,

where the plus or minus sign depends on whether the outward normal for e ⊂ !# coincides
with the globally defined normal for this edge/face. Now by a standard trace inequality
and an inverse inequality, we have

‖‖‖A1∕2
# (∇wv − ∇hv0)‖‖‖

2

#

≲
∑
e⊂!#

A1∕2
# h−1∕2

# ‖Qb⟦v0⟧‖e A−1∕2
# h1∕2

# ‖A#q ⋅ n‖e

≲

(∑
e⊂!#

Amax
e h−1

# ‖Qb⟦v0⟧‖2
e

)1∕2
‖‖‖A1∕2

# (∇wv − ∇hv0)‖‖‖# ,

then the desired result follows by canceling a ‖‖‖A1∕2
# (∇wv −∇hv0)‖‖‖# and summing up the

element-wise estimate for every # ∈. ▪

Next we bound the stabilization term by the element-wise residual and the normal jump of the
weak flux. We note that in [22], though focusing on a different model problem, the h−1-weighted
solution jump can be used as the sole error estimator to guarantee reliability and efficiency up to data
oscillation. Nevertheless, the motivation here is to change the dependence of the error indicators on the
local mesh size h from h−1 to hs, s > 0, so that a contraction property of the estimator can be proved
in Section 4.2 without any saturation assumptions, which is one of the keys to show the convergence
of an adaptive algorithm.

Lemma 3.4. Let u be the weak solution of (1.1) and u = {u0, ub} ∈ V0( ) be the
solution to (2.11), we have

∑
e∈

Amax
e h−1

# ||Qb⟦u0⟧||2e ≲
(∑
#∈

h2
#A−1

# ‖R(∇wu )‖2
0,#

+
∑
e∈

h#(Amax
e )−1||Jn,e(A∇wu )||2e

)
, (3.12)

where the constant depends on the shape regularity of  .

Proof. For simplicity, we denote Ae ∶= Amax
e in the proof. Let that I u ∈ Vnc( ) be the

nonconforming interpolation defined in Lemma 3.2, using the definition of the modified
weak derivative (2.9) element-wisely, we have

∑
e∈

Aeh−1
# ||Qb⟦u0⟧||2e =

∑
e∈

Aeh−1
# ⟨Qb⟦u0⟧,Qb⟦u − I u ⟧⟩e

= (f , u − I u ) − (A∇wu ,∇w(u − I u ))
= (f , u − I u ) + (∇h ⋅ (A∇wu ), u − I u )
−
∑
#∈h

⟨(A∇wu ) ⋅ n, {u − I u }⟩!#
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YINGYING ET AL. 11

= (f + ∇h ⋅ (A∇wu ), u − I u )
−
∑
e∈

⟨⟦(A∇wu ) ⋅ n⟧, {u − I u }⟩e .

By the Cauchy–Schwarz inequality, we have
∑
e∈

Aeh−1
# ||Qb⟦u0⟧||2e

⩽
(∑
#∈

h2
#A−1

# ||f + ∇ ⋅ (A#∇wu )||2#
)1∕2(∑

#∈
h−2
# ||A1∕2

# (u − I u )||2#
)1∕2

+
(∑

e∈
h#A−1

e
‖‖‖⟦A∇wu ⋅ n⟧‖‖‖

2

e

)1∕2(∑
e∈

h−1
# Ae||u − I u ||2e

)1∕2

≲ )(∇wu ,  ) ⋅
(∑

e∈
h−1
# Ae||Qb⟦u0⟧||2e

)1∕2

,

lastly applying Lemma 3.2 yields the result. ▪

The proof of the upper bound mainly follows the paradigm in [18, 37, 38]. Without loss of
generality, the presentation is for " = 3. We shall use the Helmholtz decomposition of ∇u − ∇wu .

Theorem 3.5 (Upper Bound). Let u be the solution of (1.1) and u ∈ V0( ) be the
solution of (2.11), then

||A1∕2(∇u − ∇wu )||2 ⩽ CU)2(∇wu ,  ), (3.13)
where the constant CU depends on the shape regularity of  and the ratio of the coefficient
A across elements.

Proof. We first give an outline of our proof. The following Helmholtz decomposition (
[39, 40], see also [18, Lemma 4.2], Chapter I Theorem 3.4 and Remark 3.10 in [41])
commonly used for nonconforming elements is applied to ∇u − ∇wu :

∇u − ∇wu = ∇- + A−1∇ × !, (3.14)
where - ∈ H1

0(Ω), and ! ∈ H(curl;Ω). The decomposition satisfies
‖‖‖A1∕2(∇u − ∇wu )‖‖‖

2

 = ‖‖‖A1∕2∇-‖‖‖
2

 + ‖‖‖A−1∕2∇ × !‖‖‖
2

 . (3.15)

Moreover, ! can be chosen to be divergence-free so that it is piecewise H1-smooth (e.g.,
see [42, Appendix A]) such that

||A−1∕2!!|| ≲ ||A−1∕2∇ × !|| . (3.16)

1 For - in (3.14), we shall construct a quasi-interpolant to Vc( ) and use the orthogonal-
ity (3.6). This part is similar to the a posteriori error estimator of the conforming finite
element which can be controlled by the element-wise residual and normal jump of the
numerical flux.

2 For ! in (3.14), we shall construct a similar quasi-interpolant, but this time leads to
the jump of tangential derivatives. Comparing to results for WG [18], the element-wise
∇h × ∇wu will be bounded by the stabilization term.
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12 YINGYING ET AL.

A key result (Lemma 3.4) is applied here to bound the stabilization term by the
element-wise residual and the normal jump of the flux, where the quasi-interpolant to
Vnc( ) is used. As a result, we turn our focus onto the error without the stabilization as
follows
‖‖‖A1∕2(∇u − ∇wu )‖‖‖

2

 = (A(∇u − ∇wu ),∇-)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ℑC

+ (∇u − ∇wu ,∇ × !)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶ℑN

. (3.17)

Let - ∈ Vc( ) be the robust Clément-type quasi-interpolation (e.g., see [43]) for - such
that the following estimates holds,

A#‖- − - ‖2
# ≲ h2

#
‖‖‖A1∕2∇-‖‖‖

2

$(#)
,

and Amax
e ‖- − - ‖2

e ≲ h#‖‖‖A1∕2∇-‖‖‖
2

$(e)
. (3.18)

Using the partial orthogonality (3.6), integrating by parts for ℑC, Cauchy–Schwarz
inequality, and estimates in (3.18), we have

ℑC = (A(∇u − ∇wu ),∇(- − - ))
= − (∇h ⋅ A(∇u − ∇wu ),- − - ) +

∑
#∈

⟨(A(∇u − ∇wu ) ⋅ n,- − - ⟩ !#

= (f + ∇h ⋅ (A∇wu ),- − - ) −
∑
e∈

⟨⟦(A∇wu ) ⋅ n⟧,- − - ⟩e

≤
(∑
#∈

h2
#A−1

# ||f + ∇ ⋅ (A∇wu )||2#
)1∕2(∑

#∈
h−2
# A# ||- − - ||2#

)1∕2

+
(∑

e∈
A−1

e h#‖⟦A∇wu ⋅ n⟧‖2
e

)1∕2(∑
e∈

Aeh−1
# ||- − - ||2e

)1∕2

≲ )(∇wu ,  )||A1∕2∇-‖‖‖ ≤ )(∇wu ,  ) ‖‖‖A1∕2(∇u − ∇wu )‖‖‖ ,
where the constant depends on the shape-regularity of  .

For ℑN in (3.17), we need a robust Clément-type interpolation ! ∈ H(curl;Ω) (see
[42, Theorem 4.6]) satisfying:

A−1
# ‖! − ! ‖2

# ≲
∑
#⊂$(#)

h2
#
‖‖‖A−1∕2!!‖‖‖

2

#
,

and (Amin
e )−1‖! − ! ‖2

e ≲
∑
#⊂$(e)

h2
#
‖‖‖A1∕2!!‖‖‖

2

#
. (3.19)

It is straightforward to verify that, by the definition of the modified weak gradient (2.9)
and the fact that ∇ × ! ∈ H(div;Ω), we have

(
∇wu ,∇ × !

)
 = −

(
u0,∇h ⋅ (∇ × ! )

)
 +

∑
#∈

⟨Qb{u0},∇ × ! ⋅ n⟩!# = 0.

Consequently, as ∇u ∈ H(curl;Ω) and ! can be inserted to ℑN obtain the following:

ℑN = − (∇wu ,∇ × !) = −
(
∇wu ,∇ × (! − ! )

)
 . (3.20)

Upon an integration by parts, ∇h × (∇wu ) will appear in each element, in general, this
is not zero as ∇wu is computed in the sense of distribution. To handle this term, simply
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YINGYING ET AL. 13

notice that ∇h × (∇hu0) = 0 element-wise, by Lemmas 3.3 and 3.4, and an inverse
inequality

∑
#∈

h2
# ||A1∕2∇ × (∇wu )||2# =

∑
#∈

h2
# ||A1∕2∇ × (∇hu0 − ∇wu )||2#

≲ ||A1∕2(∇hu0 − ∇wu )||
≲ )(∇wu ,  ). (3.21)

Integrating by parts on (3.20), applying (3.21), we have
(
∇wu ,∇ × (! − ! )

)


=
(
∇ × (∇wu ), ! − !

)
 −

∑
e∈

⟨⟦n × ∇wu ⟧, ! − ! ⟩e

≤
(∑
#∈

h2
#A# ||∇ × (∇wu )||2#

)1∕2(∑
#∈

h−2
# A−1

# ||! − ! ||2#
)1∕2

+
(∑

e∈
h#Amin

e
‖‖‖⟦∇wu × n⟧‖‖‖

2

e

)1∕2(∑
e∈

h−1
# (Amin

e )−1||! − ! ||2e
)1∕2

≲ )(∇wu ,  )||A−1∕2!!|| .
Finally by (3.16), the reliability (3.13) follows. ▪

By Lemma 3.4 and Theorem 3.5, the upper bound of the error (2.15) follows.
Corollary 3.6. Let u be the solution of (1.1) and u ∈ V0( ) be the solution of (2.11),
then the error (2.15)

|||u − u |||2 ≲ )2(∇wu ,  ), (3.22)

where the constant depends on the shape regularity of  and the ratio of the coefficient
A across neighboring elements.

3.3 Efficiency
The standard bubble function technique is opted (see [44]) to derive the efficiency bound, while the tan-
gential jump part’s proof follows a standard argument of the a posteriori error estimation for standard
WG discretization in [18]. As the proofs are standard, we only present the results here.

For v ∈ V( ) and # ∈  , the oscillation is defined to be

osc2 (v , #) ∶= h2
# ||(I" − Qm)R(∇wv )||2# , (3.23)

where Qm denotes the L2 projection onto the set of either the piecewise Pm(#) on # ∈  , where
m = " − 2 if " ≥ 2 and m = 0 when " = 1.

For any subset ⊆  , we define

osc2 (v ,) ∶=
∑
#∈

osc2 (v , #). (3.24)

Note that, on # ∈  , using the properties of the L2-projection, the oscillation are dominated by the
estimator; namely,

osc2 (v , #) ⩽ )2 (v , #), for v ∈ V( ). (3.25)

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23027 by U
niversity O

f C
alifornia - Irvine, W

iley O
nline Library on [16/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



14 YINGYING ET AL.

Theorem 3.7 (Local lower bound). For all # ∈  , there holds

CL)(∇wu , #) ⩽ ||A1∕2(∇u − ∇wu )|| + osc2 (u ,  ), (3.26)
where the constant CL only depends on the shape regular of  .

4 AN ADAPTIVE MODIFIED WEAK GALERKIN METHOD

In this section, first we introduce an adaptive modified weak Galerkin method (AmWG). Next, a
quasi-orthogonality is proved and is further exploited to derive the convergence of AmWG. At last, we
shall present the discrete reliability and propose the quasi-optimality of the AmWG.

Henceforth, the polynomial degree is chosen to be " = 1, the reason for this is that we shall
borrow some classical results for Crouzeix–Raviart element to establish a penalty parameter-free
convergence. Notice that the penalty parameters in schemes based on discontinuous approximation
spaces are indispensable not only for the coercivity (Remark 2.4), but also for the convergence
of adaptive algorithms due to the lack of a direct orthogonality result (see e.g., [26]). For a sim-
ilar nonconforming method [45], one still needs to choose a sufficiently large penalty parameter
to prove the convergence. By bridging the connections between the lowest order WG method and
Crouzeix–Raviart element, we are able to show the convergence without the presence of a sufficiently
large penalty.

4.1 Algorithm
In the SOLVE step, given a function f ∈ L2(Ω) and a triangulation  , the exact discrete solution

is sought u = SOLVE( , f ). In this step, we assume that the discrete linear system associated with
problem (2.11) can be solved exactly.

In the ESTIMATE step, local error indicators {)(∇wu , #)}#∈ and the global estimator
)(∇wu ,  ) are calculated.

Algorithm 1. An adaptive modified weak Galerkin finite element (AmWG) cycle [uJ , J] =
AmWG(0, f , tol, 2)

Input: 0, f , tol, 2 ∈ (0, 1).
Output: J , uJ .

1: ) = 1, k = 0.
2: while ) ⩾ tol do
3: SOLVE: Solve (2.11) on k to get the solution uk;
4: ESTIMATE: Compute ) = )(3wuk, k);
5: MARK: Seek a minimum cardinalityk ⊆ k such that

)2(3wuk,k) ≥ 2)2(3wuk, k); (4.1)
6: REFINE: Bisect/quadsect elements ink and the neighboring elements to form a conform-

ing k+1;
7: k ← k + 1
8: end while
9: uJ = uk; J = k.
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YINGYING ET AL. 15

In the MARK step, a set of marked elements is obtained by the Dörfler marking strategy [46]
applied on the error indicators {)(∇wu , #)}#∈ on  obtained in the ESTIMATE step.

In the REFINE step, different from traditional DG approaches which allow hanging nodes
(e.g., [26]), the marked elements, as well as their neighbors, are refined using bisection (" = 2, 3) or
red-green refinement (" = 2) while preserving the conformity of the triangulation.

In the paragraphs hereafter, the notation 1 ⩽ 2 stands for that 2 is a refinement of 1 following
the marking strategy above, where 1, 2 ∈ (0), and here (0) denotes the set of triangulations
which are conforming (no hanging nodes), shape regular and refined from an initial triangulation 0.

While showing the lemmas related to the convergence of the AmWG, for  , ∗ ∈ (0) and  ⩽∗, the set of refined elements in  , which become new elements in ∗, is denoted as

→∗ ∶= {# ∈  ∶ # ∉ ∗} ⊂  .
Whenever the dependence of the weak gradient on two different meshes becomes relevant, the

weak gradient’s notation is changed accordingly to emphasize the mesh of the function defined on, for
example, the piecewisely defined weak gradient is ∇w,∗v for any v ∈ ∗. When its restriction to one
element # ∈  is of interest, ∇w,#v is used.

Remark 4.1. The reason why we opt for a notation )(∇wv ,), not )(v ,) is as fol-
lows. As in the context of the convergence analysis, this chosen notation has a more
consistent meaning when considering two meshes: one is refined from the other. Note that
for two nested triangulation  ⩽ ∗, the weak gradient of a coarse function v ∈ V( ) on
the fine mesh ∗ is different with the weak gradient on the coarse grid  . To be specific,
on #∗ ⊂ # ∈  with #∗ ∉  , ∇w,#∗v is different from (∇w,#v )|#∗ . We note that this is
different from that of the piecewise gradient ∇h.

4.2 Reduction of error estimator
By " = 1, the error estimator defined in (3.1) can be split as

)2(∇wv , #) ∶= F(f , #) + )̃2(∇wv , #), (4.2)

where
F(f , #) ∶= h2

#A−1
# ||f ||20,# ;

and
)̃2(∇wv , #) ∶=

∑
e⊂!#

h# ∫e

(
(Amax

e )−1J2
n,e(A∇wv ) + Amin

e J2
t,e(∇wv )

)
ds.

For any subset ⊂  , define

F(f ,) =
∑
#∈

F(f , #); )̃2(v ,) =
∑
#∈

)̃2(v , #).

The next lemma shows the reduction of the error estimator after the mesh is refined. On a refined
mesh, the effect of changing the finite element function for )̃2(v ,  ) is as follows.

Lemma 4.2. For  , ∗ ∈ (0) with  ⩽ ∗, for any 5 ∈ (0, 1), v ∈ V( ), and v∗ ∈
V(∗), there exists a constant CE depending on the shape regularity ∗ such that

)̃2(∇w,∗v∗, ∗)
⩽ (1 + 5))̃2(∇w,#v , ∗) + CE(1 + 5−1)||A1∕2(∇w,∗v∗ − ∇w,#v )||2∗ . (4.3)

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23027 by U
niversity O

f C
alifornia - Irvine, W

iley O
nline Library on [16/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



16 YINGYING ET AL.

We can also get the contraction of )̃2(∇w,#u ,  ) if the weak flux of the solution remains invariant
and is interpolated into a finer mesh refined using the Dörfler marking strategy.

Lemma 4.3. For  , ∗ ∈ (0) with  ⩽ ∗. Let u ∈ V0( ) be the solution to (2.11).
For 6 ∈ (0, 1) defined in Lemma 4.5, we have

)̃2(∇w,#u , ∗) ⩽ )̃2(∇w,#u ,  ) − 6)̃2(∇w,#u ,→∗). (4.4)
Here we skip the proof of Lemmas 4.2 and 4.3, since the corresponding techniques are quite

standard and can be found, for example, in [47].
Hereafter the following short notations are adopted: on k, ∇w,k denotes the weak gradient, and ∇k

denotes the piecewise gradient ∇h, for quantities involving two levels of meshes, the subscript follows
that of the coarse one.

7k = ||A1∕2(∇u − ∇w,kuk )||2;
Ek = ||A1∕2(∇w,kuk − ∇w,k+1uk+1)||2;
Rk = k→k+1 ;

)k = )(∇w,kuk , k); )Rk = )(∇w,kuk ,k→k+1);

)̃k = )̃(∇w,kuk , k); )̃Rk
= )̃(∇w,kuk ,k→k+1);

Fk = F(f , k); FRk = F(f ,k→k+1).

The following lemma summarizes the contraction of )̃2(⋅, ⋅) by using Lemmas 4.2 and 4.3.
Lemma 4.4. For the two consecutive triangulation k ≤ k+1 in the AmWG cycle (1), and
any 5 ∈ (0, 1), there exists a constant 8 > 0 depending on the shape regularity k+1 such
that

)̃2
k+1 ⩽ (1 + 5)()̃2

k − 6)̃2
Rk
) + Ek∕8. (4.5)

Proof. Let  = k and ∗ = k+1 in Lemmas 4.2 and 4.3, respectively. Then the desired
result (4.5) follows from letting 8−1 = CE(1 + 5−1). ▪

For the contraction of F(⋅, ⋅), there is no extra 5 factor as an artifact of Young’s inequality, and this
will play a key role in proving the convergence without any penalty parameter on the stabilization.

Lemma 4.5. Let k+1 be the refinement of k produced in Algorithm 1. There exists a
constant 6 ∈ (0, 1) satisfying

Fk+1 ⩽ Fk − 6FRk . (4.6)

Proof. For any # ∈  ⧵ ∗, we only need to consider the case where # is subdivided into
#1
∗ , #2

∗ ∈ ∗ with h"#1
∗
= h"#2

∗
= 1

2 h"#∗(" = 2, 3), we have

Fk+1 =
∑
#∈k+1

h2
k+1A−1

k+1||f ||20,#

=
∑

#∈k+1∩k

h2
k+1A−1

k+1||f ||20,# +
∑

#∈k+1⧵k

h2
k+1A−1

k+1||f ||20,#

⩽
∑
#∈k

h2
kA−1

k ||f ||20,# −
∑

#∈k⧵k+1

h2
kA−1

k ||f ||20,#
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YINGYING ET AL. 17

+
∑

#∈k⧵k+1

2−1∕"h2
kA−1

k ||f ||20,#

= Fk − 6FRk ,

where 6 ∶= 1 − 2−1∕" ∈ (0, 1). ▪

The following lemma summarizes the contraction of error estimator )2(⋅, ⋅) by using Lemmas 4.4
and 4.5.

Lemma 4.6. There exist constants 5 ∈ (0, 1) and 8 > 0 such that

)2
k+1 ⩽ (1 + 5)(1 − 26))2

k − 5Fk + 56FRk + Ek∕8, (4.7)

where the parameters 2 and 6 are given in the marking strategy (4.1), Lemmas 4.5 and
4.4, respectively.

Proof. Making use of the simplified notation of )(⋅, ⋅) in (4.2), Lemmas 4.5 and 4.4, we
have

)2
k+1 = )̃2

k+1 + Fk+1

⩽ (1 + 5)
(
)̃2

k − 6)̃2
Rk

)
+ Fk − FRk + Ek∕8

⩽ (1 + 5)
(
)2

k − 6)2
Rk

)
− 5(Fk − 6FRk ) + Ek∕8. (4.8)

By (4.1) and k+1 being refined at least once from k, we have )2
Rk

⩾ 2)2
k . In conjunction

with (4.8), we obtain

)2
k+1 ⩽ (1 + 5)(1 − 26))2

k − 5Fk + 56FRk + Ek∕8,

which completes the proof. ▪

4.3 Quasi-orthogonality
In this section, we will show the contraction property of the energy error by using similar arguments
in [28].

First, a canonical interpolation operator ICR is defined any v ∈ H1
0(Ω): ICR v ∈ Vnc( ) satisfies

∫e
ICR v = ∫e

v, ∀e ∈  , (4.9)

and the interpolation admits the following estimate:
‖‖‖v − ICR v‖‖‖# ≲ h# ||∇v||# , ∀# ∈  , (4.10)

where the constant depends only on the shape regularity of #.
Lemma 4.7. Assume that " is a constant vector on each element # ∈  , we have

(∇hv," ) = (∇hICR v," ) . (4.11)

Proof. Note that " is a constant vector on each # ∈  , ∇ ⋅ (" |#) = 0. By applying
integration by parts, we will get the desired result. ▪
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18 YINGYING ET AL.

For v0 ∈ VDG( ), it is embedded into V( ) by (v0,Qb{v0}). Denote the interpolant ICR for Vnc( )
satisfying

∫e
ICR v0 = ∫e

Qb{v0}, ∀e ∈  . (4.12)

Lemma 4.8. For any v0 ∈ VDG( ) and v = {v0,Qb{v0}} ∈ V( ), the interpolation
defined in (4.12) satisfies

∇w,#v = ∇hICR v0. (4.13)

Proof. For any constant vector " , using the definition (2.3) leads to
(∇w,#v ," )# = (v0,∇ ⋅ " ) + ⟨Qb{v0}," ⋅ n⟩!#

= ⟨ICR v ," ⋅ n⟩!#
= (∇hICR v0," )# .

As ∇w,#v ,∇hICR v0 are constant on each element # ∈  , we get (4.13). ▪

Lemma 4.9 (Quasi-orthogonality). Let u ∈ H1
0(Ω) is the weak solution of (1.1). Let k+1

be the refinement of k produced in Algorithm 1, uk = {uk
0, uk

b} ∈ V0(k) and uk+1 =
{uk+1

0 , uk+1
b } ∈ V0(k+1) be the solutions to mWG discretization (2.11), respectively. For

any positive constant 9 ∈ (0, 1), we have

(1 − 9)7k+1 ⩽ 7k − Ek + (C1FRk )∕9, (4.14)
with constant C1 depending on the shape regularity of k+1.

Proof. Let v = u−uk
0. Notice that∇w,k+1uk+1−∇w,kuk is a piecewise constant on # ∈ k+1,

we have
(A(∇u − ∇w,k+1uk+1),∇w,k+1uk+1 − ∇w,kuk)k+1

= (A∇k+1ICR
k+1v,∇w,k+1uk+1 − ∇w,kuk)k+1 .

As Qb⟦ICR
k+1v⟧ek+1 = 0, ∀ek+1 ∈ k+1, we get

(A∇w,k+1uk+1,∇hICR
k+1v)k+1 = (f ,∇hICR

k+1v),

and
(A∇w,kuk,∇hICR

k+1v)k+1 = (A∇w,kuk,∇kICR
k (ICR

k+1v))k+1

= (f ,∇kICR
k (ICR

k+1v))k+1 .

For any # ∈ k ∩ k+1, we have ICR
k v|# = ICR

k+1v|# , then
(A∇k+1ICR

k+1v,∇w,k+1uk+1 − ∇w,kuk)k+1 = 0.
Applying Lemmas 4.7,4.8, the triangle inequality, Lemma 3.3, and Lemma 3.4 leads to

(A∇k+1ICR
k+1v,∇w,k+1uk+1 − ∇w,kuk)k+1

= (f , (I − ICR
k )ICR

k+1v)k+1

⩽
∑

#∈k+1⧵k

hk+1||f ||#k+1 ⋅ h−1
k+1||(I − ICR

k )ICR
k+1v||#k+1
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YINGYING ET AL. 19

≲
∑

#∈k⧵k+1

hk||f ||#k ⋅ ||∇k+1ICR
k+1v||k+1

⩽
√

C1F1∕2
Rk

⋅ 7k+1. (4.15)

It follows the Young’s inequality and (4.15) that

7k+1 = 7k − Ek − 2(A(∇u − ∇w,k+1uk+1),∇w,k+1uk+1 − ∇w,kuk)k+1

⩽ 7k − Ek + 97k+1 + 9)k+1 + (C1FRk )∕9. ▪

4.4 Convergence of AmWG
In the following theorem, the convergence of Algorithm 1 is proved. The main idea is to use the negative
term on the right to cancel the positive terms, and to use the reduction factor 6 ∈ (0, 1) in (4.6) and (4.7).

Theorem 4.10. Given a marking parameter 2 ∈ (0, 1) and an initial mesh 0. Let u
be the solution of (1.1), {k, uk, )(∇wuk, k)}k≥0 be a sequence of meshes, finite element
approximations and error estimators produced by Algorithm 1 with " = 1, then there exist
constants : ∈ (0, 1), 8 > 0, C2 > 0 depending only on the shape regularity of 0, the
marking parameter 2, and 9, such that if

0 < 9 < min
(
8(1 − (1 + 5)(1 − 26))

CU
, 1
)
,

then
(1 − 9)7k+1 + 8)2

k+1 + C2Fk+1 ⩽ :
(
(1 − 9)7k + 8)2

k + C2Fk
)
,

where the constant CU is given by Theorem 3.5.

Proof. By adding 8)2
k+1 to both sides of (4.14), then applying Lemma 4.6, we have

(1 − 9)7k+1 + 8)2
k+1

⩽ 7k + 8(1 + 5)(1 − 26))2
k + (568 + C1∕9)FRk − 85Fk, (4.16)

for any constant 9 ∈ (0, 1). Let C2 > 0 be a to-be-determined constant, by adding C2Fk+1
in the both sides of (4.16) and applying Lemma 4.5, we obtain

(1 − 9)7k+1 + 8)2
k+1 + C2Fk+1

⩽ 7k + 8(1 + 5)(1 − 26))2
k + (568 + C1∕9 − 6C2)FRk + (C2 − 85)Fk. (4.17)

The inequality above (4.17) along with a sufficiently large C2 satisfying

568 + C1∕9 − 6C2 ⩽ 0, (4.18)

combining Theorem 3.5 with (4.17), yields

(1 − 9)7k+1 + 8)2
k+1 + C2Fk+1

⩽ 7k + 8(1 + 5)(1 − 26))2
k + (C2 − 85)Fk

⩽ :1(1 − 9)7k + (CU − CU:1(1 − 9) + 8(1 + 5)(1 − 26)) )2
k + (C2 − 85)Fk,

according to
8:1 = CU − CU:1(1 − 9) + 8(1 + 5)(1 − 26),
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20 YINGYING ET AL.

choose
:1 = CU + 8(1 + 5)(1 − 26)

CU + 8 − CU9
.

Choosing 5 satisfies (1 + 5)(1 − 26)(1 + 9∕8) ∈ (0, 1) and the requirement 0 < 9 <
min

(
8(1−(1+5 )(1−26))

CU
, 1
)

lead to :1 ∈ (0, 1). By (4.18), we obtain C2 − 85 > 0. Now letting
:2 = (C2 − 85)∕C2 results :2 ∈ (0, 1), and

(1 − 9)7k+1 + 8)2
k+1 + C2Fk+1 ⩽ :1(1 − 9)7k + 8:1)2

k + C2:2Fk.

We complete the proof by setting : = max{:1, :2} ∈ (0, 1). ▪

By recursion, the decay of the error plus the estimator is as follows.
Corollary 4.11. Under the hypotheses of Theorem 4.10, then we have

(1 − 9)7k+1 + 8)2
k+1 + C2Fk+1 ⩽ C0:k,

where the constant 8, 9 are given in Theorem 4.10, and C0 = (1 − 9)e0 + 8)2
0 + C2F0. As

a result, The AmWG in Algorithm 1 will terminate in finite steps.

4.5 Discrete reliability
In this section, we prove the discrete reliability. Let k+1 be a refinement from k, we recall the
projection operator Jk+1 ∶ Vnc(k) → Vnc(k+1) (see [28, Section 5]).

Lemma 4.12 ([28, Lemma 5.1]). For any vk ∈ Vnc(k), it holds that

||∇k+1(Jk+1vk − vk)|| ≲
(∑
#∈Rk

∑
e⊂!#

h# ||Jt,e(∇kvk)||2e
)1∕2

. (4.19)

Remark 4.13. Lemma 4.12 was presented in [28] for Stokes problem with a vector func-
tion in the Crouzeix–Raviart space, with a bound using ||⟦(∇kvk)te]⟧||e on an edge (2D).
However, since the proof only relies on the scaling of the nodal basis function, and a
partition of unity property of the basis on an edge, both of which holds in 3D tetrahe-
dral nodal basis associated with faces, the result holds for scalar functions by choosing
only 1 non-trivial component in the vectorial result, and acknowledging the fact that
||⟦∇kvk × ne⟧||e = ||⟦Proje(∇kvk)⟧||e if e is a face on !#.
Lemma 4.14. The following discrete reliability holds with constant C"r depending on the
shape regularity of the mesh

Ek ⩽ C"r)2
Rk
. (4.20)

Proof. By Lemmas 4.7 and 4.8, we obtain

Ek = ||A1∕2(∇w,k+1uk+1 − ∇w,kuk)||2k+1

= (A(∇w,k+1uk+1 − ∇w,kuk),∇k+1ICR
k+1uk+1

0 − ∇kICR
k uk

0)k+1

= (A(∇w,k+1uk+1 − ∇w,kuk),∇k+1ICR
k+1uk+1

0 − ∇k+1Jk+1ICR
k uk

0)k+1

+ (A(∇w,k+1uk+1 − ∇w,kuk),∇k+1Jk+1ICR
k uk

0 − ∇kICR
k uk

0)k+1 . (4.21)
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YINGYING ET AL. 21

For the first term on the right-hand side of the equation above, denote vCR
k+1 = ICR

k+1uk+1
0 −

Jk+1ICR
k uk

0, it follows from Qb⟦vCR
k+1⟧ek+1 = 0, ∀ek+1 ∈ k+1 that

(A∇w,k+1uk+1,∇k+1vCR
k+1)k+1 = (f , vCR

k+1),

and (∇k+1vCR
k+1,")# = (∇kICR

k vCR
k+1,")# for a constant vector # on ∀# ∈ k ⧵ k+1

(A∇w,kuk,∇k+1vCR
k+1)k+1 = (A∇w,kuk,∇kICR

k vCR
k+1)k = (f , ICR

k vCR
k+1).

Combining both further implies
(
A(∇w,k+1uk+1 − ∇w,kuk),∇kvCR

k
)
k+1

= (f , (I − ICR
k )vCR

k+1)

≲ F1∕2
Rk

⋅ ||A1∕2∇k+1(I
CR
k+1uk+1

0 − Jk+1ICR
k uk)||k+1

⩽ F1∕2
Rk

||A1∕2(∇w,k+1uk+1 − ∇w,kuk)||k+1

+ ||A1∕2(∇k+1Jk+1ICR
k uk

0 − ∇kICR
k uk

0)||k+1). (4.22)

For the second term in (4.21), together with Lemma 4.8, applying the Cauchy–Schwarz
inequality implies

(A(∇w,k+1uk+1 − ∇w,kuk),∇k+1Jk+1ICR
k uk

0 − ∇kICR
k uk

0)k+1

⩽ ||A1∕2(∇w,k+1uk+1 − ∇w,kuk)||k+1

⋅ ||A1∕2(∇k+1Jk+1ICR
k uk

0 − ∇kICR
k uk

0)||k+1 . (4.23)

After inserting (4.22) and (4.23) into (4.21), using the Young’s inequality implies

Ek ≲ FRk + ||A1∕2∇k+1(Jk+1ICR
k uk

0 − ICR
k uk

0)||2k+1
. (4.24)

At last, using Lemma 4.12 leads to the desired result. ▪

4.6 The optimality of the AmWG
In this section, the optimality of the AmWG Algorithm 1 will be shown. First a Céa-type lemma can
be obtained as follows.

Lemma 4.15. There exists a constant C3 depending only on the shape regularity of 
such that

||A1∕2(∇u − ∇wu )||2 + F(f ,  )
⩽ C4 inf

v ∈V( )
(||A1∕2(∇u − ∇wv )||2 + F(f ,  )) . (4.25)

Proof. The application of Strang’s lemma [48] yields

||A1∕2(∇u − ∇wu )||2
= ||A1∕2(∇u − ∇ ICR u0)||2
≲ ||A1∕2(∇u − ∇ ICR v0)||2
+ sup

v ∈V( )
(A∇u,∇ ICR v0) − (f , ICR v0)

||∇ ICR v0||
. (4.26)
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22 YINGYING ET AL.

We need to define the following higher order conforming finite element space

Vc( ) ∶= {v ∈ H1
0(Ω), v|# ∈ (P3(K))" , " = 2, 3,∀# ∈  }, (4.27)

there exists an interpolation Υ ∶ Vnc( ) → Vc( ) with following properties (see [28,
Section 6])

∫e
(w − Υ w ) ⋅ ceds = 0, ∀ce ∈ P1(e),

∫#(w − Υ w )dx = 0,
(4.28)

for w ∈ Vnc( ), edge/face e and # ∈  . We also have

||w − Υ w || + h# ||∇Υ w || ≲ h# ||∇hw ||0,$(#). (4.29)

For any v = {v0, vb} ∈ V ( ), the following decomposition holds:

(A∇u,∇ ICR v0) − (f , ICR v0)

= (A∇u − A∇ ICR u0,∇ (ICR v0 − Υ ICR v0))

− (f , ICR v0 − Υ ICR v0)) + (A∇ ICR u0,∇ (ICR v0 − Υ ICR v0)),

By the properties (4.28) and (4.29), we have

(A∇u,∇ ICR v0) − (f , ICR v )
≲ ||∇ ICR v0|| ⋅ ||A1∕2(∇u − ∇ ICR v0)|| + F1∕2(f ,  ) ⋅ ||∇ ICR v0||. (4.30)

After inserting (4.30) into (4.26), we use Young’s inequality to have the desired result
(4.25). ▪

Let TN be the set of all partitions  which is refined from 0 and # ⩽ N. For a given partition , we introduce the following semi-norm:

|u, f |2s = sup
N>s

Ns inf ∈TN

(
inf

v ∈V( )||A
1∕2(∇u − ∇wv )||2 + F(f ,  )

)
, (4.31)

and the approximation class is then defined as follows, for s > 0:

As ∶= {(u, f ) ∶ |u, f |s < +∞}. (4.32)

In this case, we recall all ingredients needed for the optimality of the adaptive procedure:

(1) Quasi-orthogonality in Lemma 4.9:

(A(∇u − ∇w,k+1uk+1),∇w,k+1uk+1 − ∇w,kuk)k+1 ⩽
√

C1F1∕2
Rk

⋅ 7k+1;

(2) Discrete Reliability in Lemma 4.14:

Ek ⩽ C"r)2
Rk
;

(3) The lower bound when the polynomial degree " = 1:

CL)(∇wu ,  )2 ⩽ ||A1∕2(∇u − ∇wu )||2 + F(f ,  ).
Thanks to these preparations, following [29], the optimality result is as follows:
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Theorem 4.16. Let u be the solution of (1.1), {N , uN , )(∇wuk, N)}N≥0 be a sequence of
meshes, finite element approximations and error estimators produced by Algorithm 1. For
(u, f ) ∈ As with

2 ∈
(

0, min(1,CL)
min(1,CL) + C1 + 1

)
, (4.33)

then it holds that

||A1∕2(∇u − ∇wuN )||2N
+ F(f , N) ≲ |u, f |2s (#N − #0)−2s. (4.34)

5 NUMERICAL EXPERIMENTS

In this section, with the aid of the MATLAB software package iFEM [49], we implement the following
numerical experiments to verify the convergence and quasi-optimality of the Algorithm 4.1.

Example 5.1. In this example, we choose a square domain Ω = (−1, 1)2 and coefficient
A = I, the exact solution of (1.1) is u(x, y) = y(x2−1)(y2−1)

x2+y2+0.01 .

On the left of Figure 1 shows the initial mesh 0 for Example 5.1; on the right of Figure 1 shows
the refined mesh after k = 18 iterations for the Example 5.1 with 2 = 0.5.

Figure 2 shows the rate of ln #k versus ln ||A1∕2(∇u−∇wuk )||k with different marking parameters
2 = 0.3, 0.5, and 0.7, where #k and uk represent the number of elements and the corresponding
solution, respectively, gotten from the Algorithm 4.1.

Example 5.2. In this example, we choose the L-shape domain Ω = (−1, 1)2∕([0, 1) ×
(−1, 0]) and coefficient A = I, the exact solution of (1.1) is u(x, y) = r2∕3 sin( 22

3 ).
On the left of Figure 3 shows the initial mesh 0 for Example 5.2; on the right of Figure 3 shows

the refined mesh after k = 20 iterations for the Example 5.2 with 2 = 0.7.
Figure 4 shows the rate of ln #k versus ln ||A1∕2(∇u−∇wuk )||k with different marking parameters

2 = 0.3, 0.5, and 0.7, where #k and uk represent the number of elements and the corresponding
solution, respectively, gotten from the Algorithm 4.1.

The right one of Figures 1 and 3 show that the mesh is locally refined. And the curves in Figures 2
and 4 indicate that the convergence and the quasi-optimality of the Algorithm 4.1, namely

||A1∕2(∇u − ∇wuk )||k ≤ C(#k)−1∕2.

FIGURE 1 The initial mesh (left); adaptively refined mesh after k = 18 iterations (right) for Example 5.1.
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103 104

100

101

Number of unknowns
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Rate of convergence is CN−0.5

CN−0.5

adaptive refiniment(θ=0.3)
adaptive refiniment(θ=0.5)
adaptive refiniment(θ=0.7)

FIGURE 2 Quasi-optimality of the adaptive mesh refinements with marking parameters 2 = 0.3, 0.5, 0.7.

FIGURE 3 The initial mesh (left); adaptively refined mesh after k = 20 iterations (right) for Example 5.2.
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FIGURE 4 Quasi-optimality of the adaptive mesh refinements with marking parameters 2 = 0.3, 0.5, 0.7.
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