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1. Introduction

These are the notes from the summer school in Göttingen sponsored by NATO Advanced
Study Institute on Higher-Dimensional Geometry over Finite Fields that took place in
2007. The aim was to give a short introduction on zeta functions over finite fields, focus-
ing on moment zeta functions and zeta functions of affine toric hypersurfaces. Along the
way, both concrete examples and open problems are presented to illustrate the general
theory. For simplicity, we have kept the original lecture style of the notes. It is a pleasure
to thank Phong Le for taking the notes and for his help in typing up the notes.

2. Zeta Functions over Finite Fields

Definitions and Examples

Let p be a prime,q = pa andFq be the finite field ofq elements. For the affine lineA1,
we haveA1(Fq) = Fq and#A1(Fq) = q.

Fix an algebraic closureFq. Frobq : Fq 7→ Fq, defined byFrobq(x) = xq. For
k ∈ Z>0,

Fqk = Fix
(

Frobkq |Fq
)
, A1(Fq) = Fq =

∞⋃
k=1

Fqk .

Given a geometric pointx ∈ Fq, the orbit{x, xq, . . . , xqdeg(x)−1} of x underFrobq
is called the closed point ofA1 containingx. The length of the orbit is called the degree of
the closed point. We may correspond this uniquely to the monic irreducible polynomial
(t − x)(t − xq) . . . (t − xqdeg(x)−1

). Let |A1| denote the set of closed points ofA1 over
Fq. Similarly, let|A1|k denote the set of closed points ofA1 of degreek. Hence

|A1| =
∞⊔
k=1

|A1|k.



Example 2.1 The zeta function ofA1 overFq is

Z(A1, T ) = exp
(∑∞

k=1
Tk

k #A1(Fqk)
)

= exp
(∑∞

k=1
Tk

k q
k
)

= 1
1−qT ∈ Q(T ).

The reciprocal pole is a Weilq-number. There is also a product decomposition

Z(A1, T ) =
∞∏
k=1

1
(1− T k)#|A1|k

.

More generally, letX be quasi-projective overFq, or a scheme of finite type over
Fq. By birational equivalence and induction, one can often (but not always) assume that
X is a hypersurface{f(x1, . . . , xn) = 0|xi ∈ Fq}. Consider the Frobenius action on
X(Fq). Let |X| be the set of all closed points ofX and|X|k be the set of closed points
onX of degreek. As in the previous case, we have

X(Fq) =
∞⊔
k=1

X(Fqk), |X| =
∞⊔
k=1

|X|k.

Definition 2.2 The zeta functions ofX is

Z(X,T ) = exp

( ∞∑
k=1

T k

k
#X(Fqk)

)

=
∞∏
k=1

1
(1− T k)#|X|k

∈ 1 + TZ[[T ]].

Question 2.3What doesZ(X,T ) look like?

The answer was proposed by André Weil in his celebrated Weil conjectures. More pre-
cisely, Dwork [7] proved thatZ(X,T ) is a rational function. Deligne [6] proved that the
reciprocal zeros and poles ofZ(X,T ) are Weilq−numbers.

Moment Zeta Functions

Let f : X 7→ Y/Fq. One has

X(Fq) =
⊔

y∈Y (Fq)

f−1(y)(Fq).

Similarly
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Figure 1. f−1(y)

X(Fq) =
⊔

y∈Y (Fq)

f−1(y)(Fq).

From this we get

#X(Fqk) =
∑

y∈Y (F
qk

)

#f−1(y)(Fqk)

for k = 1, 2, 3, . . .. This number is known as the first moment off overFqk .

Definition 2.4 For d ∈ Z>0, thed-th moment off overFqk is

Md(f ⊗ Fqk) =
∑

y∈Y (F
qk

)

#f−1(y)(Fqdk)

k = 1, 2, 3, . . .

Definition 2.5 Thed-th moment zeta function off overFq is

Zd(f, T ) = exp
(∑∞

k=1
Tk

k Md(f ⊗ Fqk)
)

=
∏
y∈|Y | Z

(
f−1(y)⊗F

qdeg(y) Fqd×deg(y) , T deg(y)
)
∈ 1 + TZ[[T ]].

GeometricallyMd(f ⊗ Fqk) can be thought of as certain point counting along the
fibres of f . Note thatMd(f, k) will increase asd increases. Figure 2 illustrates this.
The sequence of moment zeta functionsZd(f, T ) measures the arithmetic variation of
rational points along the fibres off . It naturally arises from the study of Dwork’s unit
root conjecture [28].

Question 2.6

1. For a givenf , what isZd(f, T )?
2. How doesZd(f, T ) vary withd?
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Figure 2. f−1(y)(Fqd )

As d increases the area where we count points will also increase.

f : X
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Figure 3. f : X 7→ X1 × . . .×Xn

Partial Zeta Functions

Assumef : X 7→ X1 × . . .×Xn defined byx 7→ (f1(x), . . . , fn(x)) is an embedding.
There are many ways to satisfy this property. For example the addition of the identity
functionfn : X 7→ X will assuref is an embedding.

Let d1, . . . , dn ∈ Z>0. Fork = 1, 2, 3, . . ., let

Md1,...,dn(f ⊗ Fqk) :=
#{x ∈ X(Fq)|f1(x) ∈ X1(Fqd1k), . . . , fn(x) ∈ Xn(Fqdnk)} <∞

Definition 2.7 Define the partial zeta function off overFq to be

Zd1,...,dn(f, T ) = exp

( ∞∑
k=1

T k

k
Md1,...,dn(f ⊗ Fqk)

)
.

The partial zeta function measures the distribution of rational points ofX independently
along the fibres of then-tuple of morphisms(f1, · · · , fn).

Example 2.8 If f1 : X 7→ X1 andf2 = Id : X 7→ X, thenZ1,d(f, T ) = Zd(f1, T ).

Thus, partial zeta functions are generalizations of moment zeta functions.

Question 2.9



1. What isZd1,...,dn(f, T )?
2. How doesZd1,...,dn(f, T ) vary as{d1, . . . , dn} varies?

We have

Theorem 2.10 ([26])The partial zeta functionZd1,...,dn(f, T ) is a rational function.
Furthermore, its reciprocal zeros and poles are Weilq-numbers.

3. General Properties ofZ(f, T ).

Trace Formula

By Grothendieck [14],Z(X,T ) can be expressed in terms ofl-adic cohomology. More
precisely, letX = X ⊗Fq Fq. Then,

Theorem 3.1 There are finite dimensional vector spacesHi
c(X) with invertible linear

action byFrobq such that

Z(X,T ) =
2dim(X)∏
i=0

det(I − Frob−1
q T |Hi

c(X))(−1)i−1
,

where

Hi
c(X) =

{
Hi
c(X,Ql), l 6= p,prime

Hrig,c(X,Qp), l = p.

This is used to show thatZ(X,T ) ∈ Q(T ). One should note:

1. Z(X,T ) is independent of the choice ofl.
2. det(I − Frob−1

q T |Hi
c(X)) may depend on the choice ofl due to possible can-

cellation. The conjectural independence onl is still open in general.

Riemann Hypothesis

Fix an embedding ofQl ↪→ C. Let bi = dimHi
c(X). Consider the factorization

det(I − Frob−1
q T |Hi

c(X)) =
bi∏
j=1

(1− αijT ), αij ∈ C.

Theαij ’s are Weilq-numbers, that is,

1. Theαij ’s are algebraic integers overQ.
2. Forσ ∈ Gal(Q/Q), |αij | = |σ(αij)| =

√
qωij for some integerωij , called the

weight ofαij with 0 ≤ ωij ≤ i,∀j = 1, . . . bi.

Thel 6= p case was proved by Deligne [6] and thel = p case by Kedlaya [19].



Slopes (p-adic Riemann Hypothesis)

Consider an embeddingQl ↪→ Cp. Then what is theordq(αij) ∈ Q≥0? This is referred
to as the slope ofαij .

By Riemann Hypothesis,

αijαij = qωij ,

0 ≤ ordq(αij) ≤ ordq(αijαij) = ωij ≤ i,

Further, Deligne’s integrality theorem implies that

i− dim(X) ≤ ordq(αij).

Question 3.2GivenX/Fq, the following questions arise:

1. What isbi,l := bi?
2. What isωij?
3. What is the slopeordq(αij)?

Example 3.3 If X is a smooth projective variety overFq, then:

1. Hi
c(X) is pure of weighti, i.e.ωij = i for 1 ≤ j ≤ bi. Thusbi,l is independent

of l.
2. The q-adic Newton polygon (NP) ofdet(I − Frob−1

q T |Hi
c(X)) ∈ Z[[T ]] lies

above the Hodge polygon ofHi
c(X). This was conjectured by Katz [17] and

proven by Mazur [20] and Ogus [2]. We will discuss this more later.

4. Moment Zeta Functions

Let f : X → Y/Fq. Ford ∈ Z>0, recall thed-th moment off ⊗ Fqk is

Md(f ⊗ Fqk) =
∑

y∈Y (F
qk

)

#f−1(y)(Fqdk).

Question 4.1

1. How doesMd(f ⊗ Fqk) vary ask varies?
2. How doesMd(f ⊗ Fqk) vary withd?
3. How doesMd(f ⊗ Fqk) vary with bothd andk?

Definition 4.2 Define thed-th moment zeta function off to be

Zd(f, T ) = exp

( ∞∑
k=1

T k

k
Md(f ⊗ Fqk)

)
.



Observe ford = 1 we haveZ1(f, T ) = Z(X,T ). Recall thatZd(f, T ) ∈ Q(T ) and
its reciprocal zeros and poles are Weilq-numbers. This follows from the following more
precise cohomological formula.

Theorem 4.3 Let l 6= p. Let Fi = Rif!Ql be thei-th relative l-adic cohomology with
compact support. Letσd,j,i = Symd−jFi ⊗

∧j
Fi. ThenZd(f, T ) =

2dim(X/Y )∏
i=0

d∏
j=0

2dim(Y )∏
k=0

det
(
I − Frob−1

q T |Hk
c (Y , σd,j,i)

)(−1)i+j+k−1(j−1)

Proof For anl-adic sheafF on Y , let L(F, T ) denote the L-function ofF. The trace
formula in [14] applies to the L-functionL(F, T ):

L(F, T ) =
2dim(Y )∏
i=0

det(I − Frob−1
q T |Hi

c(Ȳ ,F))(−1)i−1
.

Thed-th Adams operation of a sheafF can be written as the virtual sheaf [23]

[F]d =
∑
j≥0

(−1)j(j − 1)

[
Symd−jF⊗

j∧
F

]
.

It follows that

Zd(f, T ) =
∏
y∈|Y | Z

(
f−1(y)⊗F

qdeg(y) Fqdeg(y)d , T deg(y)
)

=
∏
y∈|Y |

∏
i≥0 det

(
I − (Frob−1

qdeg(y))dT deg(y)|Fiy
)(−1)i−1

=
∏
i≥0

∏
y∈|Y | det

(
I − T deg(y)(Frob−1

qdeg(y))|[Fiy]d
)(−1)i−1

=
∏
i≥0 L([Fi]d/Y, T )(−1)i

=
∏
i≥0

∏
j≥0 L (σd,j,i, T )(−1)i+j(j−1)

=
∏
k

∏
i≥0

∏
j≥0 det

(
I − TFrob−1

q |Hk
c (Y , σd,j,i, T )

)(−1)i+j+k−1(j−1)
.

�
To use this formula, one needs to know:

1. The total degree ofZd(f, T ): number of zeros + number of poles.
2. The high weight trivial factor which gives the main term.
3. The vanishing of nontrivial high weight term which gives a good error bound.

Note:

1. There is an explicit upper bound for the total degree ofZd(f, T ), which grows
exponentially ind, see [9].

2. There exists a total degree bound of the formc1dc2 which is a polynomial ind.
However, the constantc1 is not yet known to be effective ifdimY ≥ 2, see [9].

Question 4.4How do we makec1 effective?



Example: Artin-Schreier hypersurfaces

Let

g(x1, . . . , xn, y1, . . . , yn′) ∈ Fq[x1, . . . , xn, y1, . . . , yn′ ].

We may also rewrite this asg = gm + gm−1 + . . . + g0, wheregi is the homogeneous
part of degreei andgm 6= 0.

Consider:

X : {xp0 − x0 = g(x1, . . . , xn, y1, . . . , yn′)} ↪→ A
n+n′+1

Y : An
′

f : X 7→ Y, (x0, x1, . . . , xn, y1, . . . , yn′) 7→ (y1, . . . , yn′)

One may then ask:

Md(f) = #{xi ∈ Fqd , yi ∈ Fq|x
p
0 − x0 = g(x, y)} =?

Ideally for niceg, one hopes:

Md(f) = qdn+n′ +O(q(dn+n′)/2)

Theorem 4.5 (Deligne, [5])Assume thatg is a Deligne polynomial of degreem, i.e., the
leading formgm is a smooth projective hypersurface inPn+n′ andp - m. Then

|M1(f)− qn+n′ | ≤ (p− 1)(m− 1)n+n′q
n+n′

2 .

Ford > 1, a similar estimate can be obtained in some cases.
Assumef−1(y) is a Deligne polynomial of degreem for all y ∈ An′(Fq). Then,

applying Deligne’s estimate fibre by fibre, one deduces

#f−1(y)(Fqd) = qdn + Ey(d),

|Ey(d)| ≤ (p− 1)(m− 1)nq
dn
2 ,

whereEy(d) is some error term. From this, we get

Md(f) =
∑
y∈An′ (Fq) #f−1(y)(Fqd)

= qdn+n′ +
∑
y∈An′ (Fq)Ey(d)

Thus, we get the “trivial" estimate:

|Md(f)− qdn+n′ | ≤ (p− 1)(m− 1)nq
dn
2 +n′

Ideally, one would hope to replacen′ by n′/2 in the above error bound.
If one applies the Katz type estimate via monodromy calculation as in [18], one gets√

q savings in good cases, i.e., with error termO(q
dn
2 +n′− 1

2 ). This is still far from the

expected error boundO(q
dn+n′

2 ) if n′ ≥ 2.



Definition 4.6 Thed-th fibered sum ofg is

d⊕
Y

g = g(x11, . . . , x1n, y1, . . . , yn′) + . . .+ g(xd1, . . . , xdn, y1, . . . , yn′).

Observe theyi values remain the same while thexij values vary.

Theorem 4.7 (Fu-Wan, [9]) Assume
⊕d

Y g is a Deligne polynomial of degreem. Then

1. |Md(f)− qdn+n′ | ≤ (p− 1)(m− 1)dn+n′q
dn+n′

2

2. |Md(f)− qdn+n′ | ≤ c(p, n, n′)d3(m+1)n−1q
dn+n′

2

The constantc is not known to be effective ifn′ ≥ 2.

If p does not divided, then
⊕d

Y g is a Deligne polynomial for a genericg of degree
m. Thus, the assumption is satisfied for manyg if p does not divided. However, ifp | d,
there are no suchg.

Question 4.8 If p|d, what would be the best estimateMd(f)?

Example: Toric Calabi-Yau hypersurfaces

This geometric example is studied in a joint work with A. Rojas-Leon [21]. Letn ≥ 2.
We consider

X : {x1 + . . .+ xn +
1

x1 . . . xn
− y = 0} ↪→ G

n
m × A1,

Y = A
1,

f : (x1, · · · , xn, y) −→ y.

Fory 6= (n+ 1)ζ, with ζn+1 = 1, we have

f−1(y) : x1 + . . .+ xn +
1

x1 . . . xn
− y = 0

is an affine Calabi-Yau hypersurface inGnm.
Forn = 2, we have an elliptic curve. Forn = 3, we have a K3 surface. Forn = 4,

we have a Calabi-Yau 3-fold. Recall

Md(f) =
∑
y∈Fq

#f−1(y)(Fqd).

Ford = 1, we haveM1(f) = #X(Fq) = (q − 1)n. For everyy ∈ Fq, we have



#f−1(y)(Fqd) =
(qd − 1)n − (−1)n

qd
+ Ey(d),

whereEy(d) is some error term with|Ey(d)| ≤ nqd(n−1)/2. Thus,

Md(f) = q
(qd − 1)n − (−1)n

qd
+
∑
y∈Fq

Ey(d).

From this, we obtain the “trivial" estimate

|Md(f)− (qd − 1)n − (−1)n

qd−1
| ≤ nqd(n−1)/2+1.

Theorem 4.9 (Rojas-Leon and Wan, [21])If p - (n+ 1), then

1. |Md(f) −
(

(qd−1)n−(−1)n

qd−1 + 1
2 (1 + (−1)d)qd(n−1)/2+1

)
≤ Dqd(n−1)/2+ 1

2

whereD is an explicit constant depending only onn andd.
2. The purity decomposition ofZd(f, T ) is determined.

Question 4.10How doMd(f) andZd(f, T ) vary withd?

5. Zeta Functions of Fibres

We continue with the previous example.

Example 5.1 For y ∈ Fq, let

f−1(y) = x1 + . . .+ xn +
1

x1 . . . xn
− y = 0 ↪→ G

n
m.

This is singular wheny ∈ {(n+ 1)ζ|ζn+1 = 1}. This family forms the mirror family of

{xn+1
0 + . . .+ xn+1

n − yx0 . . . xn = 0}.

Let p - (n+ 1), y ∈ Fq \ {(n+ 1)ζ|ζn+1 = 1}. Then

Z(f−1(y)/Fq, T ) = Z

({
(qk − 1)n − (−1)n

qk

}∞
k=1

, T

)
Py(T )(−1)n ,

wherePy(T ) ∈ 1 + TZ[T ] of degreen, pure of weight(n− 1). Write

Py(T ) = (1− α1(y)T ) . . . (1− αn(y)T ), |αi(y)| =
√
qn−1.

Then we get the following:

Corollary 5.2

|#f−1(y)(Fq)−
(q − 1)n − (−1)n

q
| ≤ n

√
qn−1.



The star decomposition in [22][27] implies

Theorem 5.3 There is a nonzero polynomialHp(y) ∈ Fp[y] such that ifHp(y) 6= 0 for
somey ∈ Fq, thenordq(αi(y)) = i− 1 for 1 ≤ i ≤ n.

Equivalently, this family of polynomialsf−1(y) is generically ordinary. An alterna-
tive proof can be found in Yu [31].

Moment Zeta Functions

Ford > 0, recall

Md(f) =
∑
y∈Fq

#f−1(y)(Fqd),

Md(f ⊗ Fqk) =
∑
y∈F

qk

#f−1(y)(Fqdk), k = 1, 2, 3, . . . ,

Zd(f, T ) = exp

( ∞∑
k=1

T k

k
Md(f ⊗ Fqk)

)
∈ Q(T ).

Let

Sd(T ) =
[n−2

2 ]∏
k=0

1− qdkT
1− qdk+1T

n−1∏
i=0

(1− qdi+1T )(−1)i+1( n
i+1).

Theorem 5.4 (Rojas-Leon and Wan, [21])Assume that(n+ 1) divides(q − 1). Then,
the d-th moment zeta function for the above one parameter toric CY familyf has the
following factorization

Zd(f, T )(−1)n−1
= Pd(T )

(
Qd(T )
P (d, T )

)n+1

Ad(T )Sd(T ).

We now explain each of the above factors. First,Pd(T ) is the non-trivial factor which
has the form

Pd(T ) =
∏

a+b=d,0≤b≤n

Pa,b(T )(−1)b−1(b−1),

and eachPa,b(T ) is a polynomial in1 + TZ[T ], pure of weightd(n − 1) + 1, whose
degreer is given explicitly and which satisfies the functional equation

Pa,b(T ) = ±T rq(d(n−1)+1)r/2Pa,b(1/qd(n−1)+1T ).



Second,P (d, T ) ∈ 1 + TZ[T ] is thed-th Adams operation of the “non-trivial" factor
in the zeta function of a singular fibreXt, wheret = (n + 1)ζn+1 and ζn+1

n+1 = 1. It
is a polynomial of degree(n − 1) whose weights are completely determined. Third, the
quasi-trivial factorQd(T ) coming from a finite singularity has the form

Qd(T ) =
∏

a+b=d,0≤b≤n

Qa,b(T )(−1)b−1(b−1),

whereQa,b(T ) is a polynomial whose degreeDn,a,b and the weights of its roots are
given. Finally, the trivial factorAd(T ) is given by:

Ad(T ) = (1− q
d(n−1)

2 T )(1− q
d(n−1)

2 +1T )(1− q
d(n−2)

2 +1T ) if n andd are even.

Ad(T ) = (1− q
d(n−2)

2 +1T ) if n is even andd is odd.

Ad(T ) = (1− q
d(n−1)

2 T ) if n andd are odd.

Ad(T ) = (1− q
d(n−1)

2 +1T )−1 if n is odd andd is even.

Corollary 5.5 Letn = 2 andf : {x1 + x2 + 1
x1x2

− y = 0} 7→ y with p - 3. Then,

Zd(f, T )−1 = Ad(T )
Rd(T )

Rd−2(qT )
,

whereAd(T ) is a trivial factor andRd(T ) ∈ 1 + TZ[T ] is a non-trivial factor which is
pure of weightd+ 1 and degree2(d− 1).

For alld ≤ 1,Rd(T ) = 1.R2(T ) is a polynomial of degree2 and weight3. This suggests
thatR2(T ) comes from a rigid Calabi-Yau variety. In general,Rd(T ) is of weightd+ 1
and degree2(d− 1).

As always, we may ask what are the slopes ofRd(T )?
The above one parameter family of Calabi-Yau hypersurfaces is the only higher

dimensional example for which the moment zeta functions are determined so far. It shows
that the calculation of the moment zeta function can be quite complicated in general. A
related example is the one parameter family of higher dimensional Kloosterman sums,
see [10][11] for the L-function of higher symmetric power which gives the main piece of
the moment zeta function.

l-adic Moment Zeta Function (l 6= p)

Fix a primel 6= p. Givenα ∈ Z∗l andd1 ≡ d2 mod (l − 1)lk−1 for somek, then
αd1 ≡ αd2 mod lk.

By rationality ofZ(f−1(y), T ) it follows that

#f−1(y)(Fqd) =
∑
i

αi(y)d −
∑
j

βj(y)d

for somel-adic algebraic integersαi(y) andβj(y). Consider

Md(f) =
∑

y∈Y (Fq)

#f−1(y)(Fqd).



This can be rewritten as

=
∑

y∈Y (Fq)

∑
i

αi(y)d −
∑
j

βj(y)d

 .

We may take someDl(f) ∈ Z>0 such that ifd1 ≡ d2 mod Dl(f)lk−1 then

1. Md1(f) ≡Md2(f) mod lk.
2. Zd1(f, T ) ≡ Zd2(f, T ) mod lk ∈ 1 + TZ[[T ]].

Definition 5.6 Thel-adic weight space is defined to be

Wl(f) = (Z/Dl(f)Z)× Zl.

Lets = (s1, s2) ∈Wl(f). Take a sequence ofdi ∈ Z>0 such that

1. di →∞ in C,
2. di ≡ s1 mod Dl(f),
3. di → s2 ∈ Zl.

With this we may define thel-adic moment zeta function

ζs(f, T ) = lim
i→∞

Zdi(f, T ) ∈ 1 + TZl[[T ]].

This function is analytic in thel-adic open unit disk|T |l < 1.

Question 5.7 Is ζs(f, T ) analytic on|T |l ≤ 1? What about in|T |l <∞?

EmbedZ in Wl(f) in the following way:

Z ↪→Wl(f),

d 7→ (d, d).

Proposition 5.8 If d ∈ Z>0 ↪→Wl(f), thenζd(f, T ) = Zd(f, T ) ∈ Q(T ).

Question 5.9What ifs ∈ Wl(f) \ Z? This is open even whenf is a non-trivial family
of elliptic curves overFp.

p-adic Moment Zeta Functions (l = p)

As in thel-adic case, one has ap-adic continuous result.
If d1 ≡ d2 mod Dp(f)pk−1, d1 ≥ d2 ≥ cfk for somek and sufficiently large

constantcf , then

Md1(f) ≡Md2(f) mod pk.

Also, define in the same way as above



ζs,p(f, T ) = lim
i→∞

Zdi(f, T ) ∈ 1 + TZp[[T ]].

As before consider the embedding:

Z ↪→Wp(f),

d 7→ (d, d).

The following result was conjectured by Dwork [8].

Theorem 5.10 (Wan, [23][24][25])If s = d ∈ Z ↪→ Wp(f), thenζd,p(f, T ) is p-adic
meromorphic in|T |p <∞.

Furthermore, we have

Theorem 5.11 ([25])Assume thep-rank≤ 1. Then for eachs ∈ Wp(f), ζs,p(f, T ) is
p-adic meromorphic in|T |p <∞.

This can be extended a little further as suggested by Coleman.

Theorem 5.12 (Grosse-Klönne, [13])Assume thep-rank ≤ 1. For s = (s1, s2) with
s1 ∈ Z/Dp(f) ands2 ∈ Zp/pε (small denominator), thenζs,p(f, T ) is p-adic meromor-
phic in |T |p <∞.

Question 5.13In the cases ∈Wp(f)−Z andp-rank> 1, it is unknown ifζs,p(f, T ) is
p-adic meromorphic, even on the closed unit disk|T |p ≤ 1.

6. Moment Zeta Functions overZ

Consider

f : X 7→ Y/Z[
1
N

].

Thed-th moment zeta function off is:

ζd(f, s) =
∏
p-N

Zd(f ⊗ Fp, p−s).

Is thisC-meromorphic ins ∈ C? Is ζd(f, s) or its special valuesp-adic continuous in
some sense? If so, itsp-adic limit ζs(f)(s ∈ Zp) is ap-adic zeta function off .

Example 6.1 Consider the map

f : {x1 + x2 +
1

x1x2
− y = 0} 7→ y.

Then



f : X
f1

//

fi ((

fn !!CCCCCCCCC
X1

Xi

Xn

Figure 4. f : X 7→ X1 × . . .×Xn

Zd(f ⊗ Fp, T )−1 = Ad(T )
Rd(f ⊗ Fp, T )

Rd−2(f ⊗ Fp, pT )

whereAd(T ) is a trivial factor andRd is a non-trivial factor of degree2(d − 1) and
weightd+ 1.

Rd(T )↔ f⊗d = {x11 + x12 +
1

x11x12
= . . . = xd1 + xd2 +

1
xd1xd2

}

Example 6.2 For d = 2, we have

x1 + x2 +
1

x1x2
= y1 + y2 +

1
y1y2

.

As Matthias Schuett observed during the workshop,R2(T ) ↔ the unique new form of
weight4 and level9.

Conjecture 6.3
∏
pRd (f ⊗ Fp, p−s) is meromorphic ins ∈ C for all d.

This conjecture is known to be true ifd ≤ 2. It should be realistic to prove the
conjecture for all positive integersd.

7. l-adic Partial Zeta Functions

We now consider the system of maps whereX 7→ X1 × . . .×Xn is an embedding (See
Figure 4).

This allows us to define the partial zeta function

Zd1,...,dn(f, T ) = exp

( ∞∑
k=1

T k

k
#{x ∈ X(Fq)|fi(x) ∈ Xi(Fqdik)}

)
∈ Q(T ).

Question 7.1 Is there anyp-adic or l-adic continuity result as{d1, . . . , dn} variesp-
adically or l-adically?



Example 7.2 Consider the surface and three projection maps:

f : x1 + x2 +
1

x2x2
− x3 = 0

f1
//

f2
RRR

((RR

f3 ""EEEEEEE
x1

x2

x3

Thus

Md1,d2,d3(f) = #{(x1, x2, x3)|x1 + x2 +
1

x1x2
− x3 = 0, xi ∈ Fqdi , i = 1, 2, 3}.

Is there a continuity result as{d1, d2, d3} vary?

8. Zeta Functions of Toric Affine Hypersurfaces

Let4 ⊂ Rn be ann-dimensional integral polytope. Letf ∈ Fq[x±1
1 , . . . , x±1

n ] with

f =
∑

u∈4∩Zn
auX

u, au ∈ Fq

such that4(f) = 4. That is,au 6= 0 for eachu which is a vertex of4.

Question 8.1Consider the toric affine hypersurface

Uf : {f(x1, . . . , xn) = 0} ↪→ G
n
m.

1. #Uf (Fq) =?
2. Z(Uf , T ) =?

Definition 8.2

1. If 4′ ⊂ 4 is a face of4, define

f4
′

=
∑

u∈4′∩Zn
auX

u.

2. f is4-regular if for every face4′ (of any dimension) of4, the system

f4
′

= x1
∂f4

′

∂x1
= . . . = xn

∂f4
′

∂xn
= 0

has no common zeros inGnm(Fq).

Theorem 8.3 (GKZ, [12])
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Figure 5. C(4)

1. There is a nonzero polynomialdisc4 ∈ Z[au|u ∈ 4 ∩ Zn] such thatf is 4-
regular if and only ifdisc4(f) 6= 0 in Fq. In other words,disc4 is an integer
coefficient polynomial that will determine4-regularity.

2. 4(disc4) is determined. This is referred to as the secondary polytope.

Question 8.4For whichp, disc4 ⊗ Fp 6= 0?

Definition 8.5 LetC(4) be the cone inRn+1 generated by0 and(1,4)

1. Define

W4(k) = #{(k, k4) ∩ Zn+1}, k = 0, 1, . . .

The Hodge numbers of∆ are defined by

h4(k) = W4(k)−
(
n+ 1

1

)
W4(k − 1) +

(
n+ 2

2

)
W4(k − 2)− . . . ,

h4(k) = 0, if k ≥ n+ 1.

2. deg(4) = d(4) = n!V ol(4) =
∑n
k=0 h4(k).

Theorem 8.6 (Adolphson-Sperber [1], Denef-Loesser [4])Assumef/Fq is4-regular.
Then

1. Z(Uf , T ) =
∏n−1
i=0 (1− qiT )(−1)n−i( n

i+1)Pf (T )(−1)n with Pf (T ) ∈ 1 + TZ[T ]
is of degreed(4)− 1.

2. Pf (T ) =
∏d(4−1)
i=1 (1− αi(f)T ), |αi(f)| ≤ √qn−1. In particular,

|#Uf (Fq)−
(q − 1)n − (−1)n

q
| ≤ (d(4)− 1)

√
q
n−1

.

The precise weights of theαi(f)’s were also determined by Denef-Loesser.

Question 8.7For i = 1, 2, . . . , d(4)− 1, what isordq(αi(f)) =?
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9. Newton and Hodge Polygons

Write

Pf (T ) = 1 + c1T + c2T
2 + . . . .

The q-adic Newton polygon ofPf (T ) is the lower convex closure inR2 of the points
(k, ordq(ck)), (k = 0, 1, . . . , d(4)− 1). Denote this Newton polygon byNP (f). Note
thatNP (f) = NP (f ⊗ Fqk) for all k.

Proposition 9.1 Leths denote the horizontal length of the slopes side inNP (f). Then,
Pf (T ) has exactlyhs reciprocal zerosαi(f) such thatordq(αi(f)) = s for eachs ∈
Q≥0.

Definition 9.2 The Hodge polygon of4, denoted byHP (∆), is the polygon inR2 with
a side of slopek − 1 with horizontal lengthh4(k) for 1 ≤ k ≤ n and vertices

(0, 0),

(
k∑

m=1

h4(m),
k∑

m=1

(m− 1)h4(m)

)
, k = 1, 2, . . . , n.

Theorem 9.3 (Adolphson-Sperber [1])The q-adic Newton polygon lies above the
Hodge polygon, i,e.NP (f) ≥ HP (4). In addition, the endpoints of the two coincide.

Definition 9.4 If NP (f) = HP (∆), thenf is called ordinary.



Question 9.5When isf ordinary? One hopes this is often.

Let

Mp(4) = {f ∈ Fp[x±1
1 , · · · , x±1

n ]|4(f) = 4, f 4− regular}.

Theorem 9.6 (Grothendieck, [18])There exists a generic Newton polygon, denoted by
GNP (∆, p), such that

GNP (4, p) = inf{NP (f)|f ∈Mp(4)}

Hence for anyf ∈Mp(4),

NP (f) ≥ GNP (4, p) ≥ HP (4),

where the first inequality is an equality for mostf (genericf ).

Question 9.7Given4, for whichp, isGNP (4, p) = HP (4)? In other words, when
is f generically ordinary?

This suggests the following conjecture.

Conjecture 9.8 (Adolphson-Sperber [1])For eachp� 0,GNP (4, p) = HP (∆).

This is false in general. Some counterexamples can be found in [22].

Definition 9.9

1. S(4) =the semigroupC(4) ∩ Zn+1.
S1(4) = the semigroup generated by(1,4) ∩ Zn+1.

2. Define the exponents of4 as

I(4) = inf{D > 0|Du ∈ S1(4),∀u ∈ S(4)}
I∞(4) = inf{D > 0|Du ∈ S1(4),∀u ∈ S(4), u� 0}

Conjecture 9.10 If p ≡ 1 mod I(4) or if p ≡ 1 mod I∞(4) for p� 0, then

1. disc4 ⊗ Fp 6= 0,
2. GNP (4, p) = HP (4).

Part (2) is a weaker version of the conjecture in [22].

10. Generic Ordinarity

Toric Hypersurface

Let4 ⊂ Rn be an-dimensional integral polytope andp a prime. Letd(4) = n!V ol(4).
Define

Mp(4) = {f ∈ Fp[x±1
1 , . . . , x±1

n ]|4(f) = 4, f 4− regular}.
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Figure 7. NP ≥ HP

For eachf ∈ Mp(4), letNP (f) be the Newton polygon of the interesting factor
Pf (T ) of the zeta functionZ(Uf , T ). Note that changing the ground field will not change
the Newton polygon. Recall that

NP (f) ≥ GNP (4, p) ≥ HP (4).

Note thatNP (f) is defined in a completely arithmetic fashion and is dependent on
the coefficients of the polynomialf . On the other hand,GNP (4, p) is independent of
coefficients whileHP (4) is obtained combinatorially. IfGNP (4, p) = HP (4), we
refer top as ordinary for4.

Conjecture 10.1 (Adolphson-Sperber)For any4, p is ordinary for allp� 0.

This conjecture is too strong as Example 10.2 illustrates.

Example 10.2Letf = a0 + a1x1 + . . .+ anxn + an+1x1x2 . . . xn and

4 = Conv((0, . . . , 0), (1, . . . , 0), . . . , (0, . . . , 1), (1, 1, . . . , 1)).

Therefored(4) = n for n ≥ 2. Furthermore,∆ is an empty simplex, i.e., a simplex with
no lattice points other than vertices. It follows that

1. p is ordinary for4 if and only ifp ≡ 1 mod (n− 1). This implies
2. If n ≥ 4, then the Adolphson-Sperber conjecture is false.
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Figure 8. Piecewise projection down

Convex Triangulation

Definition 10.3

1. A triangulation of4 is a decomposition

4 =
m⋃
i=1

4i,

such that each4i is a simplex,4i ∩4j is a common face for both4i and4j .
2. The triangulation is calledconvexif there is a piecewise linear functionφ : 4 7→
R such that

(a) φ is convex i.e.φ( 1
2x+ 1

2x
′) ≤ 1

2φ(x) + 1
2φ(x′), for all x, x′ ∈ 4.

(b) The domains of linearity ofφ are precisely then-dimensional simplices4i
for 1 ≤ i ≤ m.

Examples of convex triangulations include the star decomposition, the hyperplane
decomposition and the collasping decomposition [27].

Basic Decomposition Theorem

The decomposition methods in [22][27] generalize to prove the following decomposition
theorem.

Theorem 10.4

1. Let4 = ∪mi=14i be a convex integral triangulation of4. If p is ordinary for
each4i, 1 ≤ i ≤ m, thenp is ordinary for4.

2. If 4 is a simplex andp ≡ 1 mod d(4), thenp is ordinary.

Corollary 10.5 If p ≡ 1 mod (lcm(d(41), . . . , d(4m))), thenp is ordinary.

Example 10.6LetA be the convex closure of(−1,−1), (1, 0) and(0, 1) in R2. The star
decomposition in Figure 9 is convex and integral.



More generally,

Example 10.7Considerf : {x1 + x2 + . . . + xn + 1/x1x2 . . . xn − y = 0} overFp.
This is generically ordinary for allp. The proof uses the same star decomposition.

Example 10.8Let4 = {(d, 0, . . . , 0), (0, d, 0, . . . , 0), . . . , (0, . . . , d), (0, . . . , 0)}. We
may make a parallel hyperplane cut as in Figure 10. This will maked(4i) = 1 for each
piece4i of the decomposition, see [22]. This proves that the universal family of affine
(or projective) hypersurfaces of degreed and n variables overFp is also generically
ordinary for everyp. The projective hypersurface (complete intersection) case was first
proved by Illusie [15].

Corollary 10.9 If n = dim(4) = 2, thenp is ordinary for4 for all p.

Corollary 10.10 If n = dim(4) = 3, thenp is ordinary forp > 6V ol(4).

This corollary is proven by showing stability of thep-action on the weight. This is a
different argument than by provingd(4i) = 1 argument.

Definition 10.11 Let4 be ann-dimensional integral convex polytope inRn. Assume
that0 (origin) is in the interior of4. Given such a situation, define4∗ ⊂ Rn by:

4∗ = {(x1, . . . , xn) ∈ Rn|
n∑
i=1

xiyi ≥ −1, ∀(y1, . . . , yn) ∈ 4}

Observe4∗ is also a convex polytope inRn, though it may not have integral vertices.
Also observe(4∗)∗ = 4.

Definition 10.124 is called reflexive if4∗ is also integral.

Corollary 10.13 If n = dim(4) = 4 and if4 is reflexive thenp is ordinary for4 for
all p > 12V ol(∆).

•????????
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Figure 9. Star decomposition ofA
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Figure 10. Parallel Hyperplane Decomposition into simplices

Slope Zeta Function

The concept of slope zeta functions was developed for arithmetic mirror symmetry as we
will describe here. More information can be found in [29][30].

Let (X,Y ) be a mirror pair overFq. Candelas, de la Ossa and Rodriques-Villegas in
[3] desired a possible mirror relation of the type

Z(X,T ) =
1

Z(Y, T )

for 3 dimensional Calabi-Yau varieties. This is not true. If this were the case then∑ T k

k
#X(Fq) =

∑ T k

k
(−#Y (Fq)).

Therefore

#X(Fq) = −#Y (Fq),

which is impossible for largeq on nonempty varieties.
The question is then to modify the zeta function suitably so that the desired mirror

relation holds. The slope zeta function was introduced for this purpose.

Definition 10.14 WriteZ(X,T ) =
∏
i(1− αiT )±1 ∈ Cp(T ).

1. The slope zeta function ofX is defined to be the following two variable function:

S(X,U, T ) =
∏
i

(1− Uordq(αi)T )±1.

2. If f : X 7→ Y defined overFq (a nice family) then the slope zeta function off is
the generic one amongS(f−1(y), U, T ) from all y ∈ Y , denoted byS(f, U, T ).

Conjecture 10.15LetX be a3-dimensional Calabi-Yau variety overQ. Assume thatX
has a mirror overQ. Then the generic family containingX as a member is generically
ordinary for all p� 0.



This conjecture implies the following

Conjecture 10.16 (Arithmetic Mirror Conjecture) Let {f, g} be two generic mirror
families of a3-dimensional Calabi-Yau variety overQ. Then for allp� 0,

S(f ⊗ Fp, U, T ) =
1

S(g ⊗ Fp, U, T )
.

References

[1] A. Adolphson and S. Sperber.Exponential sums and Newton polyhedra: Cohomology and estimates.
Ann. Math., 130 (1989), 367-406.

[2] P. Berthelot and A. Ogus,Notes on Crystalline Cohomology,Princeton University Press, 1978.
[3] P. Candelas, X. de la Ossa, F. Rodriques-Villegas,Calabi-Yau manifolds over finitef fields II,Fields

Instit. of Commun., 38(2003).
[4] J. Denef and F. Loesser, Weights of exponential sums, intersection cohomology, and Newton polyhedra,

Invent. Math., 106(1991), no.2, 275-294.
[5] P. Deligne,Applications de la Formule des Traces aux Sommes Trigonométriques,in Cohomologie Étale

(SGA4 1
2

), 168-232, Lecture Notes in Math. 569, Springer-Verlag 1977.
[6] P. Deligne,La Conjecture de Weil II,Publ. Math. IHES 52 (1980), 137-252.
[7] B. Dwork, On the rationality of the zeta function of an algebraic variety,Amer. J. Math., 82(1960),

631-648.
[8] B. Dwork, Normalized period matrices II,Ann. Math., 98(1973), 1-57.
[9] L. Fu and D. Wan,Moment L-functions, partial L-functions and partial exponential sums,Math. Ann.,

328(2004), 193-228.
[10] L. Fu and D. Wan,L-functions for symmetric products of Kloosterman sums,J. Reine Angew. Math.,

589(2005), 79-103.
[11] L. Fu and D. Wan,Trivial factors for L-functions of symmetric products of Kloosterman sheaves,Finite

Fields & Appl., to appear.
[12] I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky,Discriminatns, Resultants and Multidimensional

Determinants,Birkhüser Boston, Inc., Boston, MA, 1994.
[13] E. Grosse-Klönne,On families of pure slope L-functions,Documenta Math., 8(2003), 1-42.
[14] A. Grothendick,Formule de Lefschetz et rationalité des fonctions L,Séminaire Bourbaki, exposé 279,

1964/65.
[15] L. Illusie. Ordinarité des intersections complétes générales,Grothendieck Festschrift, Vol. II (1990).

375-405.
[16] N. Katz,On a theorem of Ax,Amer. J. Math., 93(1971), 485-499.
[17] N. Katz,Slope filtration of F-crystals,Astérisque 63(1979), 113-164.
[18] N. Katz,Frobenius-Schur indicator and the ubiquity of Brock-Granville quadratic excess,Finite Fields

& Appl., 7(2001), 45-69.
[19] K. Kedlaya,Fourier transforms and p-adic “Weil II",Compositio Mathematica, 142(2006), 1426-1450.
[20] B. Mazur,Frobenius and the Hodge filtration,Bull. Amer. Math. Soc., 78(1972), 653-667.
[21] A. Rojas-Leon and D. Wan,Moment zeta functions for toric Calabi-Yau hypersurfaces,Communications

in Number Theory and Physics, Vol 1, No. 3, 2007.
[22] D. Wan,Newton polygons of zeta functions and L functions,Ann. of Math, Vol. 2, No. 2(1993), 249-293.
[23] D. Wan,Dwork’s conjecture on unit root zeta functions,Ann. Math., 150(1999), 867-927.
[24] D. Wan,Higher rank case of Dwork’s conjecture,J. Amer. Math. Soc., 13(2000), 807-852.
[25] D. Wan,Rank one case of Dwork’s conjecture,J. Amer. Math. Soc., 13(2000), 853-908.
[26] D. Wan,Rationality of partial zeta functions,Indagationes Math., New Ser., 14(2003), 285-292.
[27] D. Wan, Variations ofp-adic Newton polygons for L-functions of exponential sums,Asian J. Math.,

Vol.8, 3(2004), 427-474.
[28] D. Wan,Geometric moment zeta functions,Geometric Aspects of Dwork Theory, Walter de Gruyter,

2004 , Vol II, 1113-1129.
[29] D. Wan,Arithmetic mirror symmetry,Pure Appl. Math. Q., 1(2005), 369-378.



[30] D. Wan,Mirror symmetry for zeta functions,Mirror Symmetry V, AMS/IP Studies in Advanced Mathe-
matics, Vol.38, (2007), 159-184.

[31] J-D. Yu,Variation of the unit roots along the Dwork family of Calabi-Yau varieties,preprint, 2007.


