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1. Introduction

These are the notes from the summer school in Géttingen sponsored by NATO Advanced
Study Institute on Higher-Dimensional Geometry over Finite Fields that took place in
2007. The aim was to give a short introduction on zeta functions over finite fields, focus-
ing on moment zeta functions and zeta functions of affine toric hypersurfaces. Along the
way, both concrete examples and open problems are presented to illustrate the general
theory. For simplicity, we have kept the original lecture style of the notes. Itis a pleasure
to thank Phong Le for taking the notes and for his help in typing up the notes.

2. Zeta Functions over Finite Fields
Definitions and Examples

Let p be a primeg = p® andF, be the finite field of; elements. For the affine ling!,
we haveA'(F,) = F, and#A'(F,) =¢q.

Fix an algebraic closurg,. Frob, : F, — F,, defined byFrob,(z) = 7. For
k € Zo,

Fy = Fix (Frobf[F, ), A'(F,) = F, = | Fyr.

deg(xz)—1

Given a geometric point € F,, the orbit{z,z,..., x4 } of z underFrob,
is called the closed point @' containingz. The length of the orbit is called the degree of
the closed point. We may correspond this uniquely to the monic irreducible polynomial
(t—2)(t —29)...(t — 297", Let |A!| denote the set of closed pointsif over
FF,. Similarly, let|A'|, denote the set of closed points/f of degreek. Hence

Al =] IA .
k=1



Example 2.1 The zeta function of! overF, is

Z(ALT) = exp (L5, S #ALF )

k
e (5, )

= lfqu € Q( )

The reciprocal pole is a Weil-number. There is also a product decomposition

S 1
1 _
Z(AY,T) = k]l TR

More generally, letX be quasi-projective ovef,, or a scheme of finite type over
F,. By birational equivalence and induction, one can often (but not always) assume that
X is a hypersurfacé f(z1,...,x,) = Olz; € F,}. Consider the Frobenius action on
X(F,). Let| X| be the set of all closed points &f and| X |, be the set of closed points
on X of degreek. As in the previous case, we have

I
8

X(Fy) X(Fgr), [X|= |_| [ X5

k

1

Definition 2.2 The zeta functions of is

Z(X,T) = exp (Z ?#X(Fqk)>

k=1

=11 =g Ti)#mk e 1+ TZ[T].
k=1

Question 2.3What doesZ (X, T') look like?

The answer was proposed by André Weil in his celebrated Weil conjectures. More pre-
cisely, Dwork [7] proved thaZ (X, T') is a rational function. Deligne [6] proved that the
reciprocal zeros and poles gf X, T') are Weilg—numbers.

Moment Zeta Functions

Letf: X — Y/F,. One has

Similarly
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Figure 1. f~1(y)

X(Fq) = |_| fﬁl(y)(]Fq)'

yeY (Fq)
From this we get
#XFp)= > #f'W(Fp)
yeY (F k)
fork =1,2,3,.... This number is known as the first momentfobverF .

Definition 2.4 For d € Z-¢, thed-th moment off overF . is

My(f@Fg) = > #F ' (y)(Fyur)

y€Y (F 1)
k=1,2,3,...

Definition 2.5 Thed-th moment zeta function gfoverkF, is

0o k
Zaf,T) = exp (L32, S Ma(f @ F )
= HyE\Y| Z (f_l(y) ®]qucg(y) ]quxdeg(y)7Tdeg(y)> c 1 J'_ TZ[[T]].

GeometricallyM,(f @ F x) can be thought of as certain point counting along the
fibres of f. Note thatMy(f, k) will increase asd increases. Figure 2 illustrates this.
The sequence of moment zeta functidhg f, ') measures the arithmetic variation of
rational points along the fibres gf It naturally arises from the study of Dwork’s unit
root conjecture [28].

Question 2.6

1. Foragivenf, whatisZ,(f,T)?
2. How doesZ,(f,T') vary withd?



Figure 2. f~!(y)(F,a)
As d increases the area where we count points will also increase.
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Figure3. f: X — X1 X ... X X,

Partial Zeta Functions

Assumef : X — X3 x ... x X, defined byz — (f1(x),..., fn(x)) is an embedding.
There are many ways to satisfy this property. For example the addition of the identity
function f,, : X — X will assuref is an embedding.

Letdy,...,d, € Z~q.Fork =1,2,3,..., let

..... dn (f @Fgr) =
#{ZL‘EX( )‘fl( )EXl(]qulk),...7fn( ) (F dnk)}<00

Definition 2.7 Define the partial zeta function gfoverF, to be

a. (f;T exp<z —My,,..a,(f®F, >>

The partial zeta function measures the distribution of rational poinis imfdependently
along the fibres of the-tuple of morphismg f1,- -, f).

Example 2.81f f1 : X — X;andfo =1d: X — X, thenZ, 4(f,T) = Za(f1,T).
Thus, partial zeta functions are generalizations of moment zeta functions.

Question 2.9



1. What iSZdl,...,dn (f, T)7
2. HowdoesZ,, . q4,(f,T) vary as{d,....d,} varies?

We have

Theorem 2.10 ([26]) The partial zeta functiorZy, . 4, (f,T) is a rational function.
Furthermore, its reciprocal zeros and poles are Weilumbers.

3. General Properties ofZ(f,T).
Trace Formula

By Grothendieck [14]Z(X, T') can be expressed in termsieddic cohomology. More
precisely, letX = X ®g, F,. Then,

Theorem 3.1 There are finite dimensional vector spadé$(X ) with invertible linear
action byFrob, such that

2dim(X) _
Z(X,T)= [] det(I —Frob, 'T|Hi(X))"V"",
=0

where

i H{X,Qu), 1#p,prime
H.(X)= ¢
C( ) { Hrig,c(X;Qp)vl =p
This is used to show th&f(X,T) € Q(T). One should note:

1. Z(X,T) is independent of the choice bf
2. det(I — Frob;lT\Hg'(X)) may depend on the choice bflue to possible can-
cellation. The conjectural independencelas still open in general.

Riemann Hypothesis

Fix an embedding of; — C. Letb; = dimH’(X). Consider the factorization

det(I — Frob, 'T|H}(X)) = [ [ (1 = i;T), aij € C.

b
j=1
Thea;;'s are Weilg-numbers, that is,

1. Theay;’s are algebraic integers over.
2. Foro € Gal(Q/Q), |asj| = |o(ayj)| = \/q*~ for some integew;;, called the
WE|ght OfOéz'j with 0 < Wij < Z,V] =1,... b;.

Thel # p case was proved by Deligne [6] and the p case by Kedlaya [19].



Slopes g-adic Riemann Hypothesis)

Consider an embedding, — C,. Then what is therd,(«;;) € Q>¢? This is referred
to as the slope af;;.
By Riemann Hypothesis,

o
Q0 = q v,

0 <ordg(ay;) < ordg(eyjon;) = wij <1,

Further, Deligne’s integrality theorem implies that

i — dim(X) < ordg(ay;).

Question 3.2Given X /F,, the following questions arise:

1. Whatisb; ; := b;?
2. What iSu)qjj?
3. What is the sloperd,(«;;)?

Example 3.31f X is a smooth projective variety ovey, then:

1. H{(X) is pure of weight, i.e.w;; = i for 1 < j < b;. Thusb;; is independent
ofl.

2. The g-adic Newton polygon (NP) afet(/ — Frob;1T|H§(X)) € Z[[T]] lies
above the Hodge polygon df’(X). This was conjectured by Katz [17] and
proven by Mazur [20] and Ogus [2]. We will discuss this more later.

4. Moment Zeta Functions

Let f: X — Y/F,. Ford € Z, recall thed-th moment off ® F . is

My(f@Fg) = > #[ ' (y)(Fqur).
yEY (F 1)
Question 4.1

1. How doesMy(f ® F ) vary ask varies?
2. How doesM(f ® Fx) vary withd?
3. How doesM(f ® IFx) vary with bothd and k?

Definition 4.2 Define thed-th moment zeta function ¢fto be

> k
Za(f,T) = exp <Z %Md(f ® Fqk)> :
k=1



Observe ford = 1 we haveZ,(f,T) = Z(X,T). Recall thatZ,(f,T) € Q(T') and
its reciprocal zeros and poles are Weihumbers. This follows from the following more
precise cohomological formula.

Theorem 4.3Let! # p. LetF* = R'f,Q; be thei-th relativel-adic cohomology with
compact support. Let, ; ; = Sym? g @ N’ §'. ThenZ,(f,T) =

2dim(X/Y) 4 2dim(Y)

[T II II det (2 Frob, ' THEV.00,0) 0 07
=0 j=0 k=0

Proof For ani-adic sheaf§ onY, let L(F,T) denote the L-function of. The trace
formula in [14] applies to the L-functiof (5, T'):

2dim(Y) »
LET)= [] det(I —Frob, 'T|HI(Y,5) V""",

=0

Thed-th Adams operation of a shegfcan be written as the virtual sheaf [23]

3= (-1 —-1) [Symd—jm A5

7>0

It follows that

Z(f,T) = Hye\Y| (fil(y) ®queg(y) F jacewa, Tdcg(y))
_ S\ (=1)
= Hyem Hizo det (I - (Fmqulcgw))deeg(y) H%)
N Vi
=1l et ([ — Y (Frob ..
=0 [yery| d T — Tdes(®) (T bq 1g(y) %Z d
=ILiso L([§14/Y, T)(_l)i
it (i
= Hizo szo L (Ud,j,ia T)(_l) u=b
=[x [Liso 1150 det (I - TFTOb;1|H§(77 04 T))

i—1

(—1)FHIEREL ()

O
To use this formula, one needs to know:

1. The total degree of;(f, T): number of zeros + number of poles.
2. The high weight trivial factor which gives the main term.
3. The vanishing of nontrivial high weight term which gives a good error bound.

1. There is an explicit upper bound for the total degre& gff, T'), which grows
exponentially ind, see [9].

2. There exists a total degree bound of the feqri‘> which is a polynomial ind.
However, the constamt is not yet known to be effective dimY > 2, see [9].

Question 4.4How do we make; effective?



Example: Artin-Schreier hypersurfaces

Let

g(xla"'vxnvyla"'vyn’) 6Fq[‘rla"'7xnvy17"'7yn’]‘

We may also rewrite this ag= g,, + gm—1 + - .. + go, Whereg; is the homogeneous
part of degree andg,, # 0.
Consider:

X {338—370 :g(xla"'axn7y1a"'ayn’)} (_)A"Jr"/—i_l
Y i A"
f: X'—’Ya($075517~-~733na3/17~-~7yn')‘—> (ylv'-~7yn’)

One may then ask:
My(f) = #{xi € Fya,y; € Folaf — xo = g(z,y)} =7
Ideally for niceg, one hopes:
My(f) = g™t + O(qg\)/2)

Theorem 4.5 (Deligne, [5])Assume thag is a Deligne polynomial of degree, i.e., the
leading formyg,,, is @ smooth projective hypersurfacelfi™ andp t m. Then

’ n+n’
2

IMy(f) = ¢""™| < (p—1)(m —1)"*"q

Ford > 1, a similar estimate can be obtained in some cases.
Assumef~!(y) is a Deligne polynomial of degree for all y € A™ (F,). Then,
applying Deligne’s estimate fibre by fibre, one deduces

#F W) ([Fga) = ¢ + Ey(d),

dn
[Ey(d)] < (p—1)(m—1)"¢>,
whereE, (d) is some error term. From this, we get

Md(f) = ZyeA/n’(]Fq) #f_l(y)(qu)
= g™+ 3 e v, By(d)

Thus, we get the “trivial" estimate:

/

|Ma(f) — g™ | < (p—1)(m —1)"g T+

Ideally, one would hope to replaecé by »n’/2 in the above error bound.
If one applies the Katz type estimate via mogodromy calculation as in [18], one gets
/g savings in good cases, i.e., with error tefrg = +" ~2). This is still far from the

dn+n’

expected error boun@ (¢~ z ) if n’ > 2.



Definition 4.6 Thed-th fibered sum of is

d

@g:g(xllv“wxlnaylvuwyn’)+"'+g(xd17~"7xdn7y1w~'ayn/)~
Y

Observe they; values remain the same while thg values vary.

Theorem 4.7 (Fu-Wan, [9]) Assum@i g is a Deligne polynomial of degree. Then

dn+n/

L [Mal ) = | < (p= 1)(m — 1)t/ g =5
2. [Ma(f) = g™ | < clp,myn' a1 g 5

The constant is not known to be effectivenf > 2.

If p does not dividel, then@f, g is a Deligne polynomial for a genericof degree
m. Thus, the assumption is satisfied for many p does not dividel. However, ifp | d,
there are no such.

Question 4.8If p|d, what would be the best estimaté;(f)?

Example: Toric Calabi-Yau hypersurfaces

This geometric example is studied in a joint work with A. Rojas-Leon [21].7Lé&t 2.
We consider

1
X:{x1+...+xn+x77y:0}<—>((}:;xAl,

1...Tp

Y = Al

f:(xla"'axnvy) Y.

Fory # (n +1)¢, with ("' =1, we have

1
fYy) x4+ g+ —— —y=0
L1...Tp

is an affine Calabi-Yau hypersurface@®y, .
Forn = 2, we have an elliptic curve. Far = 3, we have a K3 surface. Far= 4,
we have a Calabi-Yau 3-fold. Recall

Ma(f) =Y #F7 (1)(Fga).

y€F,

Ford =1, we haveM; (f) = #X (F,) = (¢ — 1)". For everyy € F,, we have



(¢~ 1) — (-1)"
qd

#I7H(Y)(Fga) = + Ey(d),

whereE, (d) is some error term withe, (d)| < ng¥"~1/2. Thus,

M) = N = ED s )

9 IS

From this, we obtain the “trivial" estimate

d _ 1) — (=1)"
PR

Theorem 4.9 (Rojas-Leon and Wan, [21])If p t (n + 1), then

d_1\yn_(_1)" 1
1. |[My(f) — ((q 1q)d_1( 1) +%(1+(_1)d)qd(n—l)/2+1> < Dgln=D/2+3
whereD is an explicit constant depending only arandd.
2. The purity decomposition &f,;(f,T') is determined.

Question 4.10How doMy(f) and Zy(f, T') vary withd?

5. Zeta Functions of Fibres

We continue with the previous example.

Example 5.1Fory € IF, let

i) =a1+ ...+, +

—y=0—G.
T1...ZTn y m

This is singular whery € {(n + 1)¢|¢" T = 1}. This family forms the mirror family of
{;1:6“'1 +o 2™ —yzy .2, =0}

Letpt (n+1),y € F, \ {(n+1)C|c™+! = 1}. Then

257/ = 2 ({ (@ -1 = D" }Oo_ T) BT,

q

whereP,(T') € 1+ TZ[T)] of degreen, pure of weight(n — 1). Write

Py(T) =1 =ar()T)...(1 = an(@)T), lai(y)| = Vg1
Then we get the following:

Corollary 5.2

# 7 (y) (Fy) — | < ny/gnL.



The star decomposition in [22][27] implies

Theorem 5.3 There is a nonzero polynomiél,(y) € F,[y] such that ifH,(y) # 0 for
somey € F,, thenord,(ci(y)) =i —1forl <i <n.

Equivalently, this family of polynomialg —*(y) is generically ordinary. An alterna-
tive proof can be found in Yu [31].

Moment Zeta Functions

Ford > 0, recall

Ma(f) =Y #F (1)(Fga),

y€F,

My(f@Fgp)= > #f () (Fga), b =1,2,3,...,

YEF 1

>k
Z4(f.T) = exp (Z M e F)) € QD).
k=1

Let
e R~ (=D (1)
Sa(T) = 1— g )T ),
d( ) kl;[O 1—qdk+lT l-:O( q )

Theorem 5.4 (Rojas-Leon and Wan, [21])Assume thatn + 1) divides(¢ — 1). Then,
the d-th moment zeta function for the above one parameter toric CY fafrilgs the
following factorization

Qa(T)
P(d,T)

. n+1
Za(f,T)D =Pd<T>< ) A4(T)S(T).

We now explain each of the above factors. Fifdt(7") is the non-trivial factor which
has the form

PaT)= [ Paam©CD,
a+b=d,0<b<n

and eachP, ,(T') is a polynomial inl + TZ[T], pure of weightd(n — 1) + 1, whose
degreer is given explicitly and which satisfies the functional equation

P(LJ)(T) _ iTrq(d(n71)+l)T/2Pa7b(1/qd(n71)+1T).



SecondP(d,T) € 1+ TZ[T] is thed-th Adams operation of the “non-trivial" factor

in the zeta function of a singular fib&;, wheret = (n + 1){,+1 and (,’jjfll =11t

is a polynomial of degreén — 1) whose weights are completely determined. Third, the
quasi-trivial factor@,(7") coming from a finite singularity has the form

QuT)= J[  Qus(mV" 00,

a+b=d,0<b<n

where @, ,(T') is a polynomial whose degreB,, ., and the weights of its roots are
given Finally, the trivial factorAd( ) is given by:

AyT) = (1 - ¢ T)(1 - ¢" T2 H1T) (1 — ¢"“5 21T if n andd are even.
AyT) = (1-q¢"F 2)“T) |f n is even and is odd.
Ay(T) = (1 — ¢™ 52 T) if n andd are odd.
Ay(T) = (1 — ¢™2+1T) 1 if nis odd andd is even.
Corollary 5.5 Letn = 2and f : {z1 + 22 + ;- —y =0} — y withp { 3. Then,
_ Rd(T)
Zy(f, 7)™t = Ag(T)—2—,
a(f,T) al )Rd,g(qT)

whereA,(T) is a trivial factor andR4(T') € 1 + TZ[T] is a non-trivial factor which is
pure of weightl 4+ 1 and degree(d — 1).

Foralld <1, R4(T) = 1. Ro(T) is a polynomial of degre2and weigh8. This suggests
that Ry (T') comes from a rigid Calabi-Yau variety. In gener@);(7T') is of weightd + 1
and degre@(d — 1).

As always, we may ask what are the slope&gfT")?

The above one parameter family of Calabi-Yau hypersurfaces is the only higher
dimensional example for which the moment zeta functions are determined so far. It shows
that the calculation of the moment zeta function can be quite complicated in general. A
related example is the one parameter family of higher dimensional Kloosterman sums,
see [10][11] for the L-function of higher symmetric power which gives the main piece of
the moment zeta function.

[-adic Moment Zeta Functiori €& p)
Fix a primel # p. Givena € Z; andd; = d mod (I — 1)I*=1 for somek, then

a® = o2 mod ¥,
By rationality of Z(f~1(y), T') it follows that

#I W) (Fga) =D ai(y) =D 8i(w)*
i J
for somel-adic algebraic integers; (y) and3;(y). Consider

My(f)= > #f ' W) (Fg).

yeY (Fq)



This can be rewritten as
= > D aw=> 8w |-
yeY (Fq) i J

We may take som®;(f) € Zq such that ifd; = dy mod D;(f)I*~! then

1. Mg, (f) = Mg, (f) mod I*.
2. Z4,(f,T) = Za,(f,T) mod I¥ € 1+ TZ[[T]].

Definition 5.6 Thel-adic weight space is defined to be
Wi(f) = (Z/Di(f)Z) x Z.

Lets = (s1, s2) € Wi(f). Take a sequence df € Z~( such that

1. di—>OOin(C,
2. d; = s; mod Dy(f),
3. d; — s € 7.

With this we may define thieadic moment zeta function
This function is analytic in thé-adic open unit diskT'|; < 1.

Question 5.71s (,(f, T') analytic on|T'|; < 1? What about infT|; < co?

EmbedZ in W;(f) in the following way:

Z — Wi(f),

d— (d,d).
Proposition 5.81f d € Z~o — W(f), thenlu(f,T) = Z4(f,T) € Q(T).

Question 5.9What ifs € Wi (f) \ Z? This is open even whehis a non-trivial family
of elliptic curves oveft,.

p-adic Moment Zeta Functions £ p)
As in thel-adic case, one haspaadic continuous result.

If di = dy mod Dp(f)pk—l,dl > dy > cyk for somek and sufficiently large
constanty, then

Mdl (f) = Mdz(f) modpk.

Also, define in the same way as above



Cop(fsT) = lim Z4,(f,T) € 1+ TZ,[[T])
As before consider the embedding:

L — Wp(f),

d— (d,d).
The following result was conjectured by Dwork [8].

Theorem 5.10 (Wan, [23][24][25])If s = d € Z — W,(f), then(y,(f,T) is p-adic
meromorphic inT|, < oo.

Furthermore, we have

Theorem 5.11 ([25]) Assume the-rank < 1. Then for eacts € W,(f), (s, (f,T) is
p-adic meromorphic in7’|, < co.

This can be extended a little further as suggested by Coleman.

Theorem 5.12 (Grosse-Kldnne, [13]Assume the-rank < 1. For s = (s1, s2) with
s1 € Z/D,(f) andssy € Z,,/p° (small denominator), thegy ,,(f, T') is p-adic meromor-
phic in |T|, < co.

Question 5.13In the cases € W,(f) — Z andp-rank > 1, itis unknown if¢, ,,(f, T) is
p-adic meromorphic, even on the closed unit diBk, < 1.
6. Moment Zeta Functions overz
Consider

fiX e Y/ZlL]

N — -— .
N

Thed-th moment zeta function of is:

Caf,s) =] Zalf ®Fp.p™*).

ptN

Is this C-meromorphic ins € C? Is{4(f, s) or its special valueg-adic continuous in
some sense? If so, itsadic limit (;(f)(s € Z,) is ap-adic zeta function of.

Example 6.1 Consider the map
1
fArit e+ —— —y=0}—y.
1T

Then



Figured. f: X — X1 X ... X X,

Ry(f ®@F,,T)
Ri_o(f @Fp, pT)

Za(f ©F,, T)~' = Aq(T)

where A,4(T) is a trivial factor and R, is a non-trivial factor of degre@(d — 1) and
weightd + 1.

Ry(T) < f®d ={z11 +z12+

=...=241 +Zg42 +
11212 Td1Td2

Example 6.2 For d = 2, we have

1 1
1 +xog+——=Yy1 +yY2+ —.
T1x2 Y1Yy2

As Matthias Schuett observed during the workshBp(T") < the unique new form of
weight4 and leveld.

Conjecture 6.3 [, Rq (f ® Fp, p~*) is meromorphic irs € C for all d.

This conjecture is known to be true df < 2. It should be realistic to prove the
conjecture for all positive integerk

7. l-adic Partial Zeta Functions
We now consider the system of maps whare— X; x ... x X, is an embedding (See

Figure 4).
This allows us to define the partial zeta function

ok
Zayan (/) = exp (Z T#r e XE)) € XAquio}) e Q(T).
k=1

Question 7.11s there anyp-adic or l-adic continuity result agdy,...,d,} variesp-
adically orl-adically?



Example 7.2 Consider the surface and three projection maps:

f1

—r3= (0 — 1

T2X2 %
T2
f3

I3

froi+xo+

Thus

—x3=0,z; Gqui Z:1,2,3}

Mdl»d27d3(f) = #{($17x27$3)|$1 + 2+
X1To

Is there a continuity result a&d; , d», d3 } vary?

8. Zeta Functions of Toric Affine Hypersurfaces

Let A C R” be ann-dimensional integral polytope. Lgte F, [xlﬂ, oo, with

f= Z au X", a, € Fy

uEANZL™
such thatA(f) = A. Thatis,a,, # 0 for eachu which is a vertex ofA.

Question 8.1 Consider the toric affine hypersurface

Ur :{f(z1,...,2,) =0} — G,

L #Us(Fy) =7
2. Z(Uys,T) =7
Definition 8.2

1. If A’ c Ais aface ofA\, define

A=) auxm

ueEN'NL"
2. fis A-regular if for every face)\’ (of any dimension) of\, the system

afrs afA’_O

fA/ _

= =...=XZ
0x1 " dxy,
has no common zeros @, (F,,).

Theorem 8.3 (GKZ, [12])



Figure 5. C'(A)

1. There is a nonzero polynomidisca € Zlay|u € A N Z"] such thatf is A-
regular if and only ifdisca (f) # 0 in Fy. In other wordsdisc is an integer
coefficient polynomial that will determin&-regularity.

2. A(disca) is determined. This is referred to as the secondary polytope.

Question 8.4For whichp, disca ® F,, # 0?

Definition 8.5 LetC(A\) be the cone iiR"*! generated by and (1, A)
1. Define

Wa(k) = #{(k,kAN)YNZ" ™Y} k=0,1,...

The Hodge numbers df are defined by

ha (k) = Wa (k) — ("jl)m(/@qn <”;2>WA(1€—2)_...,

ha(k) = 0,if k> n+ 1.
2. deg(A) = d(D) =nlVol(A) =37y ha(k).

Theorem 8.6 (Adolphson-Sperber [1], Denef-Loesser [4Assumé /F, is A-regular.
Then

1 Z(Up,T) = [1'5 (1 = ¢T) 0" () P(T) D" with Pp(T) € 1+ TZ[T)
is of degreei(A) — 1.

2. Py(T) =TI V(1 — u(/)T), |ai(f)] < /7" ". In particular,

— 1) (1
q

U () —

| < (d(A) = 1)y

The precise weights of the (f)’s were also determined by Denef-Loesser.

Question 8.7Fori =1,2,...,d(A) — 1, what isord, (o, (f)) =?



Figure 6. Newton Polygon
9. Newton and Hodge Polygons
Write
Pi(T)=1+e1T 4T+ ...

The g-adic Newton polygon of?;(T') is the lower convex closure iR? of the points
(k,ordg(ck)), (k=0,1,...,d(A) — 1). Denote this Newton polygon by P(f). Note
that NP(f) = NP(f @ F ) for all k.

Proposition 9.1 Leth; denote the horizontal length of the slopside inN P(f). Then,
P;(T) has exactlyh reciprocal zerosy;(f) such thatord,(a;(f)) = s for eachs €

Q>o.

Definition 9.2 The Hodge polygon of\, denoted by P(A), is the polygon irR? with
a side of slopé — 1 with horizontal lengthh A (k) for 1 < k < n and vertices

k k
(0,0), <Z ha(m), Y (m - 1)hA(m)> k=1,2,...,n.

m=1 m=1

Theorem 9.3 (Adolphson-Sperber [1])The ¢-adic Newton polygon lies above the
Hodge polygon, i,eN P(f) > HP(A). In addition, the endpoints of the two coincide.

Definition 9.4 If NP(f) = HP(A), thenf is called ordinary.



Question 9.5When isf ordinary? One hopes this is often.

Let
M,(»)=A{f€ E[mlﬂ, .- -,m#“A(f) = A, f A —regular}.

Theorem 9.6 (Grothendieck, [18]) There exists a generic Newton polygon, denoted by
GNP(A,p), such that

GNP(A,p) = inf{NP(f)|f € M,(2)}
Hence for anyf € M,(A),
NP(f) > GNP(A,p) > HP(A),
where the first inequality is an equality for mgstgenericy).

Question 9.7 Given A, for whichp, is GNP(A,p) = HP(A)? In other words, when
is f generically ordinary?

This suggests the following conjecture.
Conjecture 9.8 (Adolphson-Sperber [1])For eachp > 0, GNP(A,p) = HP(A).
This is false in general. Some counterexamples can be found in [22].

Definition 9.9

1. S(A) =the semigrou(A) N Z" L,
S1(A) = the semigroup generated By, /) N Z" 1.
2. Define the exponents of as

I(A) =inf{D > 0|Du € S1(L),Vu € S(A)}
Io(A) =inf{D > 0|Du € S1(L),Vu € S(A),u > 0}

Conjecture 9.101f p = 1 mod I(A) or if p = 1 mod I (A) for p > 0, then

1. disca ® F, # 0,
2. GNP(A,p) = HP(A).

Part (2) is a weaker version of the conjecture in [22].

10. Generic Ordinarity
Toric Hypersurface

Let A C R™ be an-dimensional integral polytope apda prime. Letd(A) = nlVol(A).
Define

My(A) ={f €Fplai,...,a; " IA(f) = &, f A —regular}.

) n



NP

HP

Figure 7. NP > HP

For eachf € M,(A), let NP(f) be the Newton polygon of the interesting factor
P (T) of the zeta functior (U, T'). Note that changing the ground field will not change
the Newton polygon. Recall that

NP(f) > GNP(A,p) > HP(A).

Note thatN P(f) is defined in a completely arithmetic fashion and is dependent on
the coefficients of the polynomigl. On the other hand7 N P(A, p) is independent of
coefficients whileH P(A) is obtained combinatorially. &GN P(A,p) = HP(A), we
refer top as ordinary forA.

Conjecture 10.1 (Adolphson-Sperber)For any A, p is ordinary for all p > 0.
This conjecture is too strong as Example 10.2 illustrates.
Example 10.2Let f = ag + a121 + ... + an®y + api17122 ... 2, @nd
A = Conv((0,...,0),(1,...,0),...,(0,...,1),(1,1,...,1)).

Therefored(A) = n for n > 2. Furthermore A is an empty simplex, i.e., a simplex with
no lattice points other than vertices. It follows that

1. pis ordinary for A if and only ifp = 1 mod (n — 1). This implies
2. If n > 4, then the Adolphson-Sperber conjecture is false.



1 P2 ¢3

Figure 8. Piecewise projection down
Convex Triangulation

Definition 10.3

1. Atriangulation ofA is a decomposition

such that eacld\; is a simplex/\; N AA; is a common face for both; and A;.
2. The triangulation is calledonvexif there is a piecewise linear functign: A —
R such that

(@) pis convexiep(iz + La') < Lg(z) + Io(2'), forallz, 2’ € A.
(b) The domains of linearity o are precisely the-dimensional simpliceg\;
forl <i<m.

Examples of convex triangulations include the star decomposition, the hyperplane
decomposition and the collasping decomposition [27].

Basic Decomposition Theorem

The decomposition methods in [22][27] generalize to prove the following decomposition
theorem.

Theorem 10.4

1. LetA = U2, A, be a convex integral triangulation ak. If p is ordinary for
each/;, 1 < i < m, thenp is ordinary for A.
2. If Ais a simplex angh = 1 mod d(A), thenp is ordinary.

Corollary 10.5 If p = 1 mod (Iem(d(A4), ... ,d(Ay))), thenp is ordinary.

Example 10.6Let A be the convex closure 6£1, —1), (1,0) and(0, 1) in R%. The star
decomposition in Figure 9 is convex and integral.



More generally,

Example 10.7Considerf : {z1 + z2 + ... + 2, + 1/z122 ... 2, —y = 0} OverF,.
This is generically ordinary for alp. The proof uses the same star decomposition.

Example 10.8Let A = {(d,0,...,0),(0,d,0,...,0),...,(0,...,d),(0,...,0)}. We
may make a parallel hyperplane cut as in Figure 10. This will m&l&;) = 1 for each
piece/\; of the decomposition, see [22]. This proves that the universal family of affine
(or projective) hypersurfaces of degrdeand » variables overF, is also generically
ordinary for everyp. The projective hypersurface (complete intersection) case was first
proved by lllusie [15].

Corollary 10.9 If n = dim(A) = 2, thenp is ordinary for A for all p.

Corollary 10.10 If n = dim(A) = 3, thenp is ordinary forp > 6Vol(A).

This corollary is proven by showing stability of theaction on the weight. This is a
different argument than by proving A;) = 1 argument.

Definition 10.11 Let A be ann-dimensional integral convex polytope Ri*. Assume
that0 (origin) is in the interior of A. Given such a situation, defink®* C R™ by:
A ={(z1,. ) ERYD aiy > =1, V(y1,. . yn) € A}
=1
Observe/\* is also a convex polytope iR™, though it may not have integral vertices.
Also observg A*)* = A,
Definition 10.12 A is called reflexive ifA* is also integral.

Corollary 10.13 If n = dim(A) = 4 and if A is reflexive ther is ordinary for A for
all p > 12Vol(A).

N

Figure 9. Star decomposition oft



Figure 10. Parallel Hyperplane Decomposition into simplices
Slope Zeta Function

The concept of slope zeta functions was developed for arithmetic mirror symmetry as we
will describe here. More information can be found in [29][30].

Let (X,Y") be a mirror pair oveF,. Candelas, de la Ossa and Rodriques-Villegas in
[3] desired a possible mirror relation of the type

1

2(X.1) = Z(Y,T)

for 3 dimensional Calabi-Yau varieties. This is not true. If this were the case then

k k
SO HX(E) = 3 (Y (E,).
Therefore

#X(Fy) = —#Y (Fy),

which is impossible for large on nonempty varieties.

The question is then to modify the zeta function suitably so that the desired mirror
relation holds. The slope zeta function was introduced for this purpose.
Definition 10.14 Write Z (X, T) = [[;,(1 — v T)*! € C,(T).

1. The slope zeta function &f is defined to be the following two variable function:

S(X,U,T) = [J(1 - verdatedm)*1,
2. If f: X — Y defined ovef, (a nice family) then the slope zeta functionfas
the generic one amongj(f~1(y), U, T) from ally € Y, denoted bys(f, U, T').

Conjecture 10.15Let X be a3-dimensional Calabi-Yau variety ov&. Assume thak’
has a mirror overQ. Then the generic family containing as a member is generically
ordinary for allp > 0.



This conjecture implies the following

Conjecture 10.16 (Arithmetic Mirror Conjecture) Let {f, g} be two generic mirror
families of a3-dimensional Calabi-Yau variety ovér. Then for allp > 0,

1

S(foF,UT) = SGeF, U,T)
V2 )
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