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Nature of equilibria and effects of drug treatments in some
simple viral population dynamical models
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We examine some simple mathematical models which have been recently employed to
predict the evolution of population dynamical systems involving virus particles. They
include: (1) A general two-component antibody-viral system; (2) A simplified two-
component model for HIV-1 dynamics (3) An HIV-1 three-component model including
virions and (4) A four-component HIV-1 dynamical model which includes both latently
and actively infected cells. For each system we find equilibrium points and analyse
their local stability properties in order to obtain a global phase portrait. Analytical
methods are complemented with numerical solutions. In all four models there are at
most two equilibrium points for physically meaningful values of the variables. As the
viral growth rate parameter increases through a critical value, a transcritical bifurcation
occurs. One critical point (P1) is always found at zero viral or infected cell levels and
non-zero antibody or uninfected cell levels. For parameter values in their usual ranges,
Py is either an asymptotically stable node or a saddle point. When the critical point P,
occurs at biologically meaningful values, it is either an asymptotically stable node or an
asymptotically stable spiral point. For all three HIV-1 models, the values of the parameters
at which P, makes a transition to physically meaningful values are precisely those at which
Py changes from an asymptotically stable node to an unstable saddle point. The global
pictures for all four models are similar and examples are represented graphically. No limit-
cycle solutions were found in any of the models for parameter values in their usual ranges.
In the four-component HIV-1 model, the effects of varying each parameter are found and
conditions under which P, changes from spiral point to node are investigated numerically.
The effects of reverse transcriptase inhibitors and protease inhibitors, two classes of drugs
used to treat HIV-1 infection, are examined in the three-component model for early HIV-1
dynamics.

1. Introduction

The importance of dynamical mathematical models of viral-antibody systems has been
emphasized recently in many theoretical studies of the growth of HIV-1 populations in
infected hosts. The models employed vary from reduced two-component models such as
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those employed by Bonhoeffer et al. (1997), to more complete three-component models
(Herz et al., 1996) and four-component models (McLean et al., 1991; Phillips, 1996;
Nowak & Bangham, 1996; Perelson et al., 1996, 1997, Tuckwell & Le Corfec, 1998).
One important application (see Section 6 of this article) has been to ascertain the effects
of various drug treatments, such as reverse transcriptase inhibitors and protease inhibitors
(Kirschner & Webb, 1996; Wein et al., 1997, 1998).

Most of the above studies involve the numerical solution of systems of non-linear
ordinary differential equations. However, a useful supplement to such a numerical
approach is the analysis of the nature of the various equilibrium points for various ranges
of values of the parameters. Such analysis provides insight into the nature of solutions
without numerical solution. In this note we summarize the results of such an analysis for
some simple models of viral-immune system population dynamics. These results are also
useful in the synthesis and analysis of spatial epidemic network models in which viral or
other noxious particles are transmitted between individuals within a population (Tuckwell
et al., 1998, 2000).

We shall perform a partly analytical investigation of models with up to four
components, deemed by some authors appropriate for early dynamics. However, despite
the above and more recent mathematical models, there is still uncertainty as to the
mechanisms underlying the time course of the variable of primary interest, namely the
viral load. During the initial stages of HIV infection, the viral load in plasma increases,
reaches a maximum, and then decresaes. Phillips (1996) supposed that the decline is due
to a limited number of cells susceptible to HIV infection. However, Stafford et al. (2000)
developed models of primary HIV-1 infection, and compared the results with data on
infected patients. The data were consistent with a target-cell-limited model until shortly
after the peak in viremia, but in some patients, not during the subsequent fall and recovery
in virus concentration. It was suggested that some additional process, perhaps mediated by
CDS8+ T cells, is important in at least some patients. Cogent mathematical investigations
of the effects of drug treatments, especially in the long term, require models which can
satisfactorily predict the time course of both viral load and CD4+ T-cell numbers in the
absence of treatment. Such models seem to require more variables than those considered
in the present article. For example, Wein et al. (1997, 1998), in their quest for optimal
drug regimes, introduced extra variables for wild-type and mutant virus strains and for
long-lived infected CD4+ T-cells. In our analysis of the three-component HIV-1 model
under chemotherapy we only consider one viral strain and only have one compartment for
uninfected cells. With this restricted model we are able to find exact outcomes for various
combinations of reverse transcriptase and protease inhibitors. We do not include (cf. Fraser
et al., 2000) any drug that produces T-cell activation, such as interleukin-2; these authors
have demonstrated that greater doses of such a drug may sometimes give rise to a negative
result.

2. General two-component effector-virus system

The following is a very simple model (Anderson & May, 1991) which may be considered
to be a paradigm system for many virus-effector populations. Although it omits details of
the immune response, it captures the essence of immune system attack on disease-causing
particles, thus providing some insight into the properties of more complicated realistic
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models. Let a(¢) and v(¢) be the numbers or densities of effectors and virus, respectively,
at time ¢. In this model, effectors (here defined as any agent which acts to eliminate a virus)
are produced at a rate s, assumed constant, die at a per capita rate u, and are produced at a
rate eav by interaction with the viral population. Hence

da
— =s5— . 1
” s — pua+ €av (1)

Viral particles have an intrinsic per virion production rate r and are removed at rate yav
by effectors so that

d
d_lt) =rv—yav. )

All the parameters are non-negative as are the variables a and v. In the system (1) and (2),
for any value of s, there are two critical points (steady state solutions) at P; = (i, O) and

Py = (5, B5T).

The nature of P

The eigenvalues associated with Py are A1 = —pand Ay =71 — 2 Ifs =0,theni; = —u
and Ay = r so that the critical point is an unstable saddle point. If s # 0, then P is an
unstable saddle point if sy < ru and an asymptotically stable node if sy > ru.

The nature of P,

The eigenvalues associated with P, are

1
Ao = —_{VS + \/(73)2 +4r2(ys) — 4,ur3}.
2r

If s = O the eigenvalues are A} = —i,/r and Ay = i ,/ur , so that P, is a center.
If sy > pr, then A} < 0 < A7 so that P is an unstable saddle point.
If sy < ur, then there are two distinct possibilities.

(a) (?}’32 [ur — ys] < 1- In this case, the eigenvalues are distinct and negative, which
makes P, an asymptotically stable node.

(b) (;‘;2)2 [ur — ys] > 1. The eigenvalues are then a complex conjugate pair with a
negative real part. Hence P, is an asymptotically stable spiral point.

Note that for the singular case, in which ur = ys, the nature of P, will have to be
determined by consideration of non-linear effects of the system.

Discussion and phase portrait

CASE 1 Firstly we observe that if sy > ur, the point P, occurs at negative v and is hence
is not at a biologically relevant value. There is then just one meaningful critical point P;
on the g-axis and this is an asymptotically stable node. Thus no matter where solutions
start in the non-negative quadrant, they approach P; with zero virions and with a(c0) = ﬁ
effectors.
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CASE 2 When sy < ur, there is an unstable saddle point on the a-axis at P; together
with an equilibrium point P, in the positive quadrant which is either an asymptotically
stable node or an asymptotically stable spiral point. Then whenever the initial value v(0)
is positive, regardless of whether a(0) is positive or zero, the system ends up at P;. Thus
in such cases it is impossible to end up with zero virions; an equilibrium is approached
with £ effectors and L;{Z virions. If s is relatively small, the solutions undergo damped
oscillations on their approach to P; if s is large enough solutions show no oscillatory
behavior and proceed directly to P;.

Note that at the critical value sy = ru where there is a change of stability of P; and
P,, the two critical points coincide, both being located at (-f:, 0) with P, emerging as the
asymptotically stable steady state for -f; < ;’; Thus, there is a transcritical bifurcation, with
P, emerging as £ decreases below Z. The distinction between the two cases of either one
or two equilibria can be most clearly understood by noting that they arise whens/u > r/y
and s/ < r/y respectively. These are relations between the relative strength of effector
persistence (s/u) and the corresponding quantity for virions (r/y). If s is very small and
positive the predator-prey case of periodic solutions is manifest by the oscillatory nature
of the solutions. However, as is expanded on elsewhere (Tuckwell & Wan, 2000), in no
case for the two-component virus—antibody model for one individual, are there limit cycle
solutions.

The various possibilities for this model are sketched in Figure 1. In the top part, with
sy > ur, the paths all end up at the asymptotically stable node on the a-axis. In the middle
and bottom figures we have sy < pur, and solutions either spiral towards the positive
critical point (middle part) or approach the critical point, now a node, along a line parallel
to the v-axis.

3. Two-component model for HIV-1 dynamics

We will consider more complete models for HIV-1 population dynamics below but first
analyse a simplified model introduced by Bonhoeffer et al. (1997). Here there are two
components: x, the number of uninfected CD4+ T-cells and y, the number of infected such
cells. Then the following two equations describe the evolution of the system:

dx

—(g_—_s—,ux—kxy, 3)
d

d—f = kxy — ay, )

where again all parameters and variables are non-negative. Again s is the assumed constant
rate of production of CD4+ T-cells, p is their per capita death rate, kxy is the rate of
infection of CD4+ T-cells by virus, and ey is the rate of disappearance of infected cells.
The viral variable has been omitted for simplicity as it is here assumed to be linearly related
to y.

It can be seen that (3) and (4) are of the same form as (1) and (2) but with sign changes
which alter the character of the solutions. The critical points are P; = (':T’ 0) and P, =

(%, Sk;,f‘“ ) For all meaningful parameter values (s > 0), the first point P always occurs

at biologically meaningful values. However, P, is only at meaningful values if sk > aj-
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F1G. 1. Examples of phase portraits for the Anderson-May two-component model for viral-antibody dynamics.
Top part. Here there is just one critical point—a stable node Pj. All solutions end up at Py regardless of the initial
values. The viral population is driven to extinction. Parameter values: A = 1.5,u = l,e = L,r = 1,y = 1,
which puts P; at (0, 3/2). Middle part. There are two critical points but only the one in the positive quadrant is
stable and this is a spiral point. Parameter values: A = 2, 0 = 2,€ = 1,r = 2,y = 0-5, putting the two critical
points at (0, 1) and (3/2, 4). Bottom figure. There are two critical points, but again only one is asymptotically
stable and a node. Parameter values: A = 3, o = 10, € = 0-2,r = 1, y = 3 with equilibrium points (0, 0-3) and
(5,1/3)-

The nature of P

The associated eigenvalues are —u and sk—pe Thysif s = 0, both eigenvalues are negative
and P; = (0, 0) is an asymptotically stable node.

If s > O there are the following cases. If sk < po, both eigenvalues are negative and
P; is an asymptotically stable node. If sk > e, one eigenvalue is negative and the other is
positive so that Py is a saddle point (unstable). At the critical value sk = o when a change
of stability of the uninfected state P; as well as the endemically infected state P occurs, we
have P, = (%, Sk;,;”‘ )= (ﬁ 0) = P so that the two states coincide. Hence, at the critical
value sk = po, there is a transcritical bifurcation with the endemically infected state P,
emerging for sk > . (This is the two-component counterpart of the four component case
analysed by Perelson ef al. (1993) where he coined the term endemically infected state for
P>.) With dy/dt = 0 for y = 0, the unrealistic state P> (When sk < o) cannot be reached
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from any initial state in the first quadrant. Hence, we only need to be concerned with the
stability of P, for sk > apu.

The nature of P,

For P, the associated eigenvalues are

ks 42 o
Ma= |1 1 (1-22
127 0n \/ ks( ks)

In those cases where P» is biologically meaningful (sk > au), we have 0 < 1 — %sﬂ <1
and there are two possibilities.

(a) %[ks —au] > 1- Then the eigenvalues are complex conjugates with negative real

part, making P, an asymptotically stable spiral point
(b) (‘,‘(‘;‘)22 [ks — ap] < 1- In this case the eigenvalues are both real and negative so that
P; is an asymptotically stable node.

Discussion and phase portrait

CASE 1 sk < apu. Here there is one biologically meaningful critical point P; on the
x-axis (since y cannot be negative). Then for any non-negative s this critical point is
an asymptotically stable node. Trajectory analysis shows that solutions which start in
the positive quadrant must remain there. Thus for any combination of initial numbers of
uninfected (x) and infected CD4+ T-cells, the infected cell population is eventually totally
eliminated.

CASE 2 sk > au. There are two critical points. P; is on the x-axis and P, is in the
non-negative quadrant. When sk > apu, P; is always an unstable saddle point and P» is
either an asymptotically stable spiral point (case (a) above), or an asymptotically stable
node (case (b)). For any initial values the solution eventually approaches the equilibrium
point Py, either with damped oscillatory motion or by direct approach; thus eventually
there is present an equilibrium mixture of both uninfected and infected cells. The various
possibilities are similar in qualitative detail to those shown in Figure 1.

4. Three-component early HIV-1 model with virions

A more complete model of human immunodeficiency virus type 1 (HIV-1) dynamics
considers in addition to the uninfected and infected CD4+ T-cells, x and y respectively,
the number of virions in plasma, v. The following three equations are a slightly modified
version of those in Herz et al. (1996):

dx

E:s—ux—kvx 5
d

?1% — kvx —ay 6)
d

v =cy —yv—kux. @)

dr
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The third equation in the last mentioned reference does not contain the term —kvx to
account for the fact that when a virus infects a CD4+ T-cell, v decreases at the same time
as x decreases. Without this we have just

d
T=o-r (74)

Here c is the rate at which infected cells emit virions.
For (5),(6) and either (7) or (7A) we find a critical point at P; =

i
w
model with (7) we find a second critical point at P, = (% g - k(Zf 5 s(z;") —£).

On the other hand for the model with (7A), the second critical point is at
Pp=(F. - Y e B). To see how great a difference there is between the
model with (7) and that with (7A), we compute the coordinates of the critical points with
the following representative parameter values which we refer to as standard. These values

and those of the next section are taken from Phillips (1996):

,0,0). For the

s = 0-272 /day/mm?>,

w = 0-00136 /day/mm?3,

k = 0-00027 /day /(virion/mm?),
a = 0-33 /day/mm?,

¢ = 50 virion/CD4/day and

y = 2-0 /day.

This gives P, = (49-21,0-6214,15-43) and P, = (48-89,0-6228, 15-57). Thus
omission of the term kvx in the viral equation leads to only very small changes in the
coordinates of the critical point P, in the vicinity of standard parameter values. For certain
parameter values, however, the position of P, can be physically meaningful for one choice
and not for the other.

The nature of P

If s = 0, the equilibrium point P; is at the origin and is an asymptotically stable node. In
general the associated eigenvalues for (7) are A; = —u and

1
o3 = 5{—(a +y +kx1)i\/(a+y+kx1)2 —4[ay + kx1(a —c)]}

where x; = s/u. The nature of this critical point varies as follows. It is a saddle point if
ay < I‘S(—CIIQ When the latter inequality is reversed, it is an asymptotically stable node. It

cannot be a spiral point as the quantity under the square root sign can be rewritten i’% +
[(y + kf — a]z, making the eigenvalues always real. For the typical parameter values given

in the previous paragraph, ay = 0-66 and ks(ft—”“) = 2.68, so P; = (200, 0,0) is then a
saddle point.
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The nature of Py

Linearizing about Py = (x2, y2, v2) by putting x’ = x —x2,y’ =y — y2, v’ = v — v2, we
obtain the following system:

dx/

I = —(u + kvo)x’ — kxov’

d 14

%— = kvpx’ — ay + kxav'

d I

d—l; = —kvox' + ¢y — (v +kx)v’.

The eigenvalues satisfy the following cubic:
MBror+aa+e?=0
where

oc=a+y+u+kl(xy+v2)

8 =a(u+kvp) + u(y +kxz) +kyvy = (a+ y)(u + kv2) + pkxz
2= aykvy

so that the eigenvalues may be accurately found by numerical solution. For the standard
set of parameters given above, it is found that the eigenvalues are A} = —2-3438, 123 =
—0-0025 + 0-0342; so that P, is an asymptotically stable spiral point. More generally,
for any given set of positive input parameter values, the coefﬁments o, 8 and €2 are all
positive. In addition it is straightforward to verify that o6 — €2 is always posmve The
Routh-Hurwitz necessary and sufficient criteria (of o > 0, €2 > 0and 08 — €% > 0) for
all three roots of the cubic equation for A to have a negative real part are satisfied. Hence
P, is always asymptotically stable.

Effects of variations in s

When s is varied from 50% below the standard value to 50% above it, and the other
parameters are kept at their standard values, the equilibrium point P, remains an
asymptotically stable spiral point. This is also the case when s is decreased to the critical

value
ayu

= kec—a)
at which P, becomes unphysical and when s is increased by as much as a factor of 10.
When s is decreased below s., solutions approach the asymptotically stable node at Py
where there are zero virions and zero infected cells.

Effects of variations in the remaining parameters

On varying the remaining five parameters (a, ¢, v, k, i) one at a time to 50% above and
below their standard values, while keeping all the remaining parameters at their standard
values, the nature of P, remained unchanged as an asymptotically stable spiral point.
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FIG.2. Computed solutions for the 3-component HIV-1 model using the standard parameter set, a = 033,12 =
0272, & = 0-00136, k = 0-00027, y = 2,¢ = 50 and x(0) = 200, y(0) = 0 and v(0) = 4 x 10~7, where
x,y,varein mm™3. a. The virion density for the first 50 days, showing a primary peak of about 3000 mm™3 at
about 27 days after initial infection. b. The time course of the virion density over days 50-2000, showing peaks of
diminishing amplitude as solutions approach the asymptotically spiral point P;. c. Phase diagram of the solution
in which uninfected CD4+ T-cell density is plotted against virion density for the first 2000 days.

Discussion and phase portrait

The behavior of solutions in the three-component HIV-1 model is similar to that for the
two-component model. There are at most two critical points and one of these (P2) may
occur at unphysical values of the variables y and v. We note that the condition that P,
occurs at physical values, i.e. ay < ﬁii;“z, is precisely the necessary and sufficient
condition for P; to be an unstable saddle point; otherwise P, is at physically unmeaningful
values and Pj is an asymptotically stable node. The computed solution for the standard
parameter values given above is shown in Figure 2. Part a of this figure shows the virion
density for the first 50 days after infection whereas part b shows the behavior for later times.
The damped oscillations of virion density are apparent as P, is approached, although it is
pointed out that the model is only designed to represent the early response period.

For parameter values varying over considerable ranges about the standard values,
numerical computations indicate that there are two main types of behavior for the solutions.
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CASE (1). P; is an asymptotically stable node and P, is at unphysical values with y
and v both negative. Analysis of direction fields shows that solutions which start in the
positive octant remain there. Thus, no matter where solutions start in the (x, y, v) positive
octant, they approach the equilibrium point Py with zero infected cells, zero virions and %
uninfected activated CD4+- T-cells.

CASE (2). P; is an unstable saddle point and P», at physical values is an asymptotically
stable spiral point. The latter may be ascertained by using perturbation analysis and is the
case for the standard set of parameters and all variations of them which put P, at physical
values. In this case all solutions show damped oscillations as they approach P;. For any
given set of positive input parameter values, the two critical points coalesce at (%, 0, O)
at the critical value ayu = ks(c — a) (that is, s = s¢). As ks(c — a) increases above
ay i, P, emerges as the asymptotically stable steady state for ks(c — a) > ayu, and P;
becomes unstable. Thus there is a transcritical bifurcation with the endemically infected
state emerging for s > s.

5. Four-component HIV-1 dynamical model with latently infected CD4-+ T-cells

The following system has been employed (Tuckwell & Le Corfec, 1998) as the basis for a
stochastic differential equation model for early HIV-1 dynamics. It differs from the system
employed by Phillips (1996), which was in turn adopted from McLean et al. (1991), only
in that it includes in the virus equation a term for the interaction of virus and uninfected
CD4+ T-cells. We have

%:s—ux—kux (8)
(é—i} = (- p)kvx +az —ay )
dz
Fri pkvx — (o + )z (10)
dv
E:cy—yv——kvx- (11)

The variables are: x, the number of (activated) uninfected CD4+ T-cells; y, the number
of actively infected (i.e. virus-producing) such cells; z, the number of latently (i.e. not yet
producing virus) infected cells; and v, the number of virions. These quantities may refer
to whole blood (about 5 x 10% mm?) or be given for 1 mm?3 of plasma. The parameters are
as follows:

s is the rate of arrival (or production) of uninfected CD4+ T-cells in plasma;
w is their death rate per cell;

k is the interaction parameter for virus-activated CD4+ T-cell reactions;

p is the fraction of uninfected cells that upon infection become latent;

« is the rate per cell at which latently infected cells become actively infected;
a is the death rate per cell of actively infected CD4+ T-cells;

¢ is the net rate of virion production per actively infected cell; and

y is the death rate of free virus particles.
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Standard parameters, in addition to those given for the three-component model, are
o = 0-036 /day/mm3, and p = 0-1, these also being taken from Phillips (1996).

Setting the four derivatives (8)—(11) to zero, we obtain two equilibrium points. The first
is P, = (% 0,0, 0) and we let the second be P, = (x2, y2, 22, v2)- Then,

oy = 1[ ya(o + ) ]
k[ (c—a)a+pn)—cpp
_ p(s — puxz)
()

22
y2 = (0 +pu— pu)—
ap

s — uxy
vy = P
With the standard parameter values, we have P; = (200,0,0,0) and P, =
(49-3947, 0-6184, 0-5482, 15-3580). These values agree with those obtained for very large
¢t by numerical solution of (8)—(11).

When linearized about Py, the system (8)—(11) yields

i —ux — kv
d
2= _ay+az+ (1 - phiv

dr
d
d—j = —(a¢ + w)z+ pkiv

dv
— —cy— kv,
o =y kv
where k; = ks/u- The first of the four eigenvalues is A; = —p and the remaining three
are the roots of
M4 A+ BA+C =0,
where,

A=a+pu+a+y+k
B=(a+p)a+y+k)+aly+k)—>1A—p)ck
C=ala+w(y+k)—[a+pdld—p)ck]

For the standard values of the parameters this gives A; = —0-00136, A = —2-165, A3 =
0-7645, A4 = 1-4007 and P is a saddle point. It has been found by numerical solution
that the remaining equilibrium point P, is an asymptotically stable spiral point. This is
illustrated in Figure 3. In the upper part of the figure, virion density is shown as a function
of time for various values of the initial density (x(0)) of uninfected CD4+ T-cells. In the
lower part is shown a phase portrait for the variables x () and v(¢), showing clearly how

solutions spiral towards the critical point P;.
More generally, for any set of positive input parameter values, P; = ( £,0,0, 0) is the
only realizable critical point if
ya(a +a)
(c—a)la+ pn) —cpu

k1 < kxpy =
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FIG.3. In the top part are shown virion density versus time curves in the four-component HIV-1 model for
various initial densities of CD4+ T-cells as indicated alongside the corresponding solutions. Parameter values are
given in the text. In the lower part, a phase portrait is shown for the variables (x, v), namely uninfected activated
CD4+ T-cell density versus HIV-1 virion density. Solutions travel towards the spiral point Py giving rise to small
secondary peaks of viral load.

since y7, z2 and vy are all negative in this range of values of k1. By rewriting k1 < kx2 as
[a + u(l — p)lck < ale + w)(y + k1),

the coefficient C in the cubic equation for A is seen to be positive for this range of k1. At
the same time the identity

(m+a)aly +k1) — (1= p)cki] = a(u+a)(y +k1) — [+ p(l — p)lcki + (1 — p)ack;
implies
AB—C =(@a+y +k)l@+w)’ + (@ +p@+y +k)
+a(y + k1) — (1 — p)ckil + (n + @) pcky > 0.
Since A is always positive (for any set of positive parameter values), it follows from the
Routh-Hurwitz criteria (A > 0, C > 0 and AB — C > 0), that the three roots of the cubic
equation for A all have negative real parts (with the remaining eigenvalue A1 already having

been found to be —u). Hence the critical point P; is asymptotically stable whenever it is
the only physically realizable critical point.
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At the critical value, £ = x», the two critical points P; and P, coincide at (i, 0,0, 0).
It is deduced from numerical solutions for the fourth order system of ODEs (8)—(12) that
if I% > xp, then P, is either an asymptotically stable node or an asymptotically stable
spiral point. In that case we again have a transcritical bifurcation at ﬁ = xo with P,
emerging as the asymptotically stable steady state as £ increases beyond x;. The situation
is similar to that of another four-component model considered by Perelson et al. (1993).
That model corresponds to the present one with p = 1 but with the additional feature of
logistic growth of the uninfected CD4+ T-cells. In that model P, was found to be unstable
in some parameter regimes. We expect that the stability of P, is similar in our model and
report the results of numerical experiments for different ranges of values of the various
parameters.

Effects of varying the parameters

Setting the parameters at the above standard values but putting ¢ = 100 as in Phillips
(1996), P; is unchanged and P, = (24-615, 0-7202, 0-638, 35-889).The natures of P;
and P, are unchanged, but the peak virion density is about 4500/mm3 at about 23 days
after exposure to the virus. This may be compared with the maximum value of v of about
1440/mm? at about 44 days when ¢ = 50.

Relative to this standard set, i.e. s = 0-272, u = 0-00136, k = 0-00027,a = 0-33, ¢ =
100, y = 2-0, = 0-036, p = 0-1 we have varied each parameter in turn to 50% above
and below its standard values. These ranges may be conservative for some parameters—
see Perelson et al. (1996) for the standard deviations of some. The results of varying each
parameter are as follows.

Increases in s, k and ¢ and decreases in , a and y increased the magnitude of the peak
virion level dramatically and shifted the time of peak to smaller values (with converse
effects for changes in the opposite direction). For such changes, the smallest time to peak
of 14 days occurred with u reduced to 50% of standard value, the maximum being about
10600 virus particles per mm3. With the changed values of s, u, k or ¢, whether up or down
by 50%, the point P, remained a spiral point. However, when either a or y were decreased
by 50%, the nature of P, changed to an asymptotically stable node. Furthermore, as k was
increased to several times its standard value, the peak for v grew and occurred faster until
at five times the standard value, P, became an asymptotically stable node; the peak then
occurred at 7-5 days.

Changes in the parameters o and p had less significant effects with P, remaining a
spiral point. Changes in « to 50% above or below the standard value resulted in practically
no change in either the maximum virion level nor its time of occurence; corresponding
changes in p had similar, but slightly greater, effects.

6. Effects of certain drug treatments

Mathematical models for viral population dynamics can be used to analyse the effects of
drug treatments through the changes in parameters induced by the drugs. In the treatment of
HIV-1 infected patients, we will concentrate attention on the effects of reverse transcriptase
inhibitors and of protease inhibitors. The first class of drugs, typified by AZT (zidovudine),
disables the process of infection of CD4+ T-cells by the virus; the second class block the
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production of new infectious virus by already infected cells so that only non-infectious
virions are generated. These same two drug treatments were considered in a 10-component
model by Wein ez al. (1997). Subsequently, Wein et al. (1998) analysed the transient and
steady-state behaviors of a mathematical model of HIV-1 dynamics in vivo in order to
predict whether combinations of antiretroviral agents could eradicate HIV-1 or maintain
viral loads at low levels. They included two cell types (CD4+ T cells and a long-lived
pool of cells), two strains of virus (drug-sensitive wild type and drug-resistant mutant)
and two types of antiretroviral agents (reverse transcriptase and protease inhibitors). The
present mathematical model is similar but only includes one viral and only a plasma
compartment, resulting in a more straightforward analysis which complements that of Wein
et al. (1998) and of Ferguson et al. (1999). Thus we will only consider the effects of the
same combination treatment in the three-component model of HIV-1 dynamics given by
equations (5)—(7). The reverse transcriptase inhibitor changes the infection rate from k to
(1 — r)k, where r is the effciency of the drug, being the fraction of infections that are
blocked. The value of r will generally depend upon the dose schedule and hence be a
function of time. Here we assume that r is constant. The protease inhibitor divides the
viral population into infectious virions, whose density we let be v; and non-infectious
particles, with density vy;. Suppose now that the drug treatment commences at f = fo.
Then for ¢ < #o the model equations are simply (5)—(7) with v replaced by v;. For ¢ > o
we have, letting the fraction of newly produced virus particles rendered non-infectious by
the protease inhibitor be g,

dx
-d7:s—,ux—(1—r)kv1x (12)
d
9 (1 —r)kvix —ay (13)
dr
dv
EI- =0 —-q)cy—yvi— ({1 —=r)kvix (14)
d
Z;W = gcy — yuni. (15)

The first three equations are independent of the fourth so it suffices to consider the reduced
three-component system (x, y, v7). At any equilibrium point we will always have

- gcy*
NI — )
=y

where asterisks denote equilibrium values.
The critical point P is still at (%, 0, 0) and this is an attractor if

A =r1-q)c—al < %’i (16)
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TABLE 1
Critical values of the efficiency

q, of the protease inhibitor, for
various values of the efficiency
r of the reverse transcriptase

inhibitor
r = 0-00 g = 07490
r =025 q = 0-6675
r =050 q = 0-5045
r =075 g = 0-0156
r=1.0 qg=0

whereas it is a saddle point if this inequality is reversed. The point P; has coordinates

. ay
2T Ak — e —a)
A YI
Y2 = T A=kl —q)c —al
o _MU—g)c—al _ n
L2 ay a-nk

As before, the condition that P, be at unphysical values coincides with that for P; to be
an attractor. Relative to the non-treatment values, x* is increased, whereas y* and v;‘ are
decreased, which are desired outcomes. However, one may make the viral load vanish with
treatments which are less than 100% efficient—it is sufficient that the inequality (16) be
satisfied because then solutions tend to P; where v; = 0, no matter what the values of
(x(t0), ¥(t0), v1 (t)). It is useful to rearrange (16) to give a critical value of g (efficiency
of the protease inhibitor) for extinction of the virus for a given value of r (efficiency of the
reverse transcriptase inhibitor). This gives

a Yy
1=y 2E
e c[ +kk(1—r)]

so that if ¢ is greater than g, the virus will be extinguished. These critical values are listed
in Table 1 for the standard parameter set.

Thus one can see that even in the absence of a reverse transcriptase inhibitor (r = 0),
the virus is extinguished if ¢ > 0-75, and that even if both of the drugs are only 50%
efficient, the virus may be eliminated. Of course these remarks only apply if the three-
component model employed here is valid.

7. Conclusions and discussion

We have investigated a general two-component virus-antibody dynamical system and
models for early HIV-1 population dynamics which incorporate either two, three or four
components. Such models have proven useful in understanding the clinical time course of
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HIV-1 infection and with modifications have been used to investigate various regimes of
drug therapy. In each model there are always two critical (equilibrium) points, one of which
may not be at biologically meaningful values of the dynamical variables. The behavior of
solutions is broadly only of two types; either the critical point Py at zero virion density
is an attractor and all solutions end up at Py; or Pp is an unstable saddle point and all
solutions end up at the other critical point,P,, which may be a spiral point or a node,
at non-zero virion levels. There is in fact a transcritical bifurcation as parameters pass
through critical values. For the three-component HIV-1 model, which includes uninfected
CD4+ T-cells, infected cells and virions, the parameter values which divide the two kinds
of behavior are found analytically. If ay < ksc=a) 'then P; is an unstable saddle point
and P, is either a node or spiral point. Otherwise, P, is at unphysical values and P is
an asymptotically stable node or spiral point. In these systems, which are only weakly
non-linear, we have not found any periodic solutions in the absence of additional forcing
terms. Perelson ef al. (1993) had also found an absence of periodic solutions for the usual
parameter ranges, but demonstrated the occurrence of a Hopf bifurcation at parameter
values beyond such ranges. For the 4-component HIV-1 dynamical model, which includes
both latently and actively infected CD4+ T-cells, we have obtained expressions for the
positions of the critical points and investigated solution properties for various parameter
values. The properties of the solutions of the more complicated 4-component model are not
very qualitatively different from those of the simpler 2- and 3-component models, despite
the fact that the additional parameters in the 4-component model have clear biological
interpretations. We have illustrated the effects of treatment with certain classes of drugs,
in particular reverse transcriptase inhibitors and protease inhibitors, by using the three-
component HIV-1 model. We have seen that in this framework the virus could be eliminated
with various values for the efficiencies of the two treatments. However, it is again pointed
out that the model is only supposed to be a reasonable representation for the early period
after HIV-1 infection. As pointed out by Ferguson et al. (1999), additional factors need to
be accounted for in the quest for satisfactory long-term therapy.
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