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Abstract

Elaborate feedback regulatory processes are thought to make biological de-

velopment robust, i.e., resistant to changes induced by genetic or environmental

perturbations. How this might be done is still not completely understood. Pre-

vious numerical simulations on reaction-diffusion models of Dpp gradients in

Drosophila wing imaginal disc have showed that feedback (of the Hill function

type) on (signaling) receptors and/or non-(signaling) receptors are of limited

effectiveness in promoting robustness. Spatial nonuniformity of the feedback

processes has also been shown theoretically to lead to serious shape distortion

and a principal cause for ineffectiveness. Through mathematical modeling and

analysis, the present paper shows that the spatially uniform nonlocal feedback

mechanisms typically modify gradient shape through a shape parameter (that

does not change with location). This in turn enables us to uncover new multi-

feedback instrument for effective promotion of robust signaling gradients.
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1 Introduction

At some (early) stage of embryonic development of a biological organism, one or

more proteins (known as morphogens or ligands) responsible for cell differentiation

RESEARCH ARTICLE

Developmental Dynamics 
DOI 10.1002/dvdy.160

 
 
 
Accepted Articles are accepted, unedited articles for future issues, temporarily published online 
in advance of the final edited version. 
© 2020 Wiley Periodicals, Inc. 
Received: Dec 02, 2019;  2019; Accepted: Jan 16, 2020 
                          This article is protected by copyright. All rights reserved.



De
ve

lo
pm

en
ta

l D
yn

am
ic

s

are synthesized and transported away from their sources to be bound to relevant

cell receptors at different locations to form signaling morphogen-receptor complexes,

known as a signaling (spatial) gradients. Such signaling gradients convey positional

information for cells to adopt differential fates to result in tissue patterns. This process

of cell differentiation is well established in developmental biology. For example, the

morphogenDecapentaplegic (Dpp) involved in the development of the Drosophila wing

imaginal disc is synthesized in a narrow region at the boundary between the anterior

and posterior compartments of the disc. Dpp molecules produced are transported

away from the localized source and flow out of the disc upon reaching its edge. Some

Dppmolecules bind reversibly with the cell-surface signaling receptorThickvein (Tkv)

to form a spatial gradient of signaling morphogen concentration over the span of the

wing imaginal disc. Graded differences in receptor occupancy at different locations

underlie the signaling differences that ultimately lead cells down different paths of

development [1, 2, 3, 4, 5]. Simple models of this process of gradient formation have

been shown theoretically to produce a unique signaling gradient that is monotone

and asymptotically stable with respect to small (one time) perturbations (see [6, 7]

for example).

For normal biological development, it is important that signaling morphogen gra-

dients not be easily altered by (sustained) genetic or epigenetic effects on the con-

stitution of the biological organism [8]. Experiments (carried out by S. Zhou in

A.D. Lander’s lab (see also [9])) have shown that Dpp synthesis rate doubles when

the ambient temperature is increased by 59◦. With such an increase in Dpp syn-
thesis rate, the simple models developed in [6, 7, 10] would predict an enhanced

or (more commonly called) "aberrant" (or "abnormal") signaling gradient quantita-

tively and qualitatively different from that under the (lower) normal ambient tem-

perature. Yet development of the wing imaginal disc generally does not change sig-

nificantly with temperature changes of such magnitude. The insensitivity of system

output to sustained alterations in input or system characteristics so necessary for

normal development is often termed robustness of biological development. How this

robustness requirement is met has been the subject of a number of recent studies

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Evidence exists that regulatory feedback processes play a role in rendering biolog-

ical developments robust, i.e., a signaling gradient resistant to changes expected to

be induced by genetic or environmental perturbations [23, 24]. How this might be ac-

complished is still not completely understood. Among the first attempt to determine

mechanisms for attaining robust developments, a negative feedback on receptor syn-

thesis rate was investigated in [25]. A Hill function type negative feedback was incor-

porated into the basic morphogen gradient model of [7] to reduce the synthesis rate of

Tkv by an amount that depends on the aberrant signaling morphogen concentration.

Some numerical simulations of the model show that robustness of the signaling gra-

dient (and hence the corresponding development) with respect to a sustained genetic

or epigenetic perturbation is not achieved for any of the 106 combinations of system
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parameter values in a parameter space of 6-dimensions. A subsequent theoretical

analysis delineated and confirmed the ineffectiveness of this negative feedback mech-

anism [26]. Briefly, a Hill type negative feedback reduces the receptor synthesis rate

nonuniformly, disproportionately more so at locations of high signaling morphogen

concentration. Such reduction generally leads to a modified gradient of different slope

and convexity from the normal (wild-type) gradient. The theoretical results suggest

that a spatially uniform negative feedback responding to some overall measure of

abnormality or aberrancy (such as the average impact of the local changes on the

system) may be more effective [26]. This suggestion has led to the initiation of a new

general approach to attain robust development by way of feedback mechanisms that

are spatially uniform [20]-[22],[27].

With a view that most feedback mechanisms have the ultimate effect of reduc-

ing the morphogen available for binding with signaling receptors, a proof-of-concept

prototype model for a spatially uniform negative feedback on morphogen synthesis

rate was first investigated in [27]. The findings in that preliminary effort provided

the impetus to investigate in [22] the efficacy of spatial uniformity in other known

feedback mechanisms. In this paper, we refine the models for modifying an aberrant

signaling morphogen gradient (toward the original wild-type gradient) investigated in

[22, 27] by modeling explicitly one of the processes known to reduce the availability of

unbound morphogen molecules. Among the different ways to reduce Dpp concentra-

tion is their binding with other protein molecules to form morphogen complexes that

do not signal for cell differentiation [28]. Such (non-signaling) companion proteins

are known to exist for Dpp and other BMP family ligands. They include Notum [29],

Nog (noggin) [30]-[32], Chd (chordin) [33, 34], Dally (division abnormally delayed)

[35, 36], FST (follistatin) [37]-[40], Sog (short gastrulation) [41, 42], and various he-

paran sulfate proteoglycans [43]. Collectively, they are called non-receptors since they

bind with morphogens such as Dpp but the resulting bound morphogen complexes

have no role in cell differentiation.

Effects of non-receptors was modeled and analyzed in [44] where we extend the

simple wing disc morphogen model of [6, 7] to include a fixed concentration of cell-

surface non-receptor (induced instantaneously at the onset of the genetic or epigenetic

perturbations at time ). This simplest model offered the first theoretical glimpse

into the inhibiting effects of non-receptors on the formation and properties of steady

state signaling morphogen-receptor gradients. Subsequently, large scale computa-

tional studies of non-receptors synthesized at a prescribed (perturbations-induced)

fixed rate at time  to absorb excessive Dpp concentration were performed in [25].

Extensive numerical simulations spanning a 6-dimensional parameter space showed

that less than 9% of gradients are of appropriate size and shape but with a mean

robustness index (a numerical value to be defined in a later section as a measure of

the deviation of the aberrant gradient from the wild type) more than doubling the

threshold value defined to be acceptably close to the wild-type gradient prior to the

perturbations. Most gradients generated are not biologically realistic for cell differ-

This article is protected by copyright. All rights reserved.



De
ve

lo
pm

en
ta

l D
yn

am
ic

s

entiation (for reasons such as high receptor occupancy throughout the wing imaginal

disc away from its distal edge). These observations have been validated theoretically

in [17, 26, 45]. Adding negative feedback on receptor synthesis rate to a modest con-

centration of non-receptors was found in [25] to result in a slightly broader range of

robust gradients that are biologically useful and robustness cannot be attained with

higher non-receptor synthesis rates (than the receptor synthesis rate) with any level

of negative feedback on receptor synthesis rate. Additional negative feedback on the

prescribed non-receptor synthesis would only further degrade the aberrant gradient.

The theoretical results of [26] on a Hill function type feedback on receptor synthesis

suggest that a spatially uniform feedback mechanism may avoid the effect of shape

distortion associated with spatially nonuniform feedback. A (nonlocal) robustness-

index based feedback mechanism has been developed in [22, 27] to provide a spatially

uniform feedback process. More details and support (including known examples) for

such feedback mechanisms will be deferred to a later section on our specific nonlo-

cal spatially uniform feedback. We note here only that the improvements associated

with the new feedback process applied to receptor synthesis rate (and a few other bi-

ological processes, such as the binding rate, and receptor-mediated degradation rate)

were found insufficient for robust signaling [22]. However, the investigation enabled

us to uncover unexpected benefits of appropriate multi-feedback mechanisms that

are much more efficient in promoting robust signaling gradients. In relation to the

numerical simulations of [25], we report in this paper one specific application of the

multi-feedback combination to show how aberrancy induced positive feedback on non-

receptor synthesis rate may be combined with a similar negative feedback on receptor

synthesis for a very effective strategy for promoting robust signaling in biologically

realistic ranges of system parameter values. We do this by examining a set of models

that are the counterparts of those investigated in [25] but now with our new spatially

uniform feedback instrument instead of the Hill function type previously employed.

One significant feature of our approach is that the new models admit explicit exact

solutions for biologically realistic gradients so that our results are theoretically con-

clusive and do not rely on numerical simulations. How non-receptors may or may not

promote robust signaling can be seen explicitly from the mathematical expressions

in terms of known functions for the signaling gradient concentration of the different

models.

2 A Simple Extracellular Model of Dpp Gradient

Formation

To understand better the results of numerical simulations of [25], we re-examine the

same three approaches to robust signaling there but now by way of a spatially uniform

feedback. For this purpose, we work with the normalized form of the one-dimensional

extracellular model of the Dpp gradient formation of [7]. To simplify the analysis

This article is protected by copyright. All rights reserved.
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without sacrificing any of the essential characteristics of the biological processes in-

volved, we may take the wild-type Dpp synthesis rate ( ) to be uniform in the

direction along the boundary  = −min between the anterior and posterior com-

partments of the wing imaginal disc. Here,  is distance in direction perpendicular

to the between-compartment boundary with  spanning [−min max], max being

the edge of the posterior compartment. With Dpp synthesized at a uniform rate in a

narrow strip −min    0, we idealize the synthesis rate by

( ) = ̄(−) (1)

where  = max. We also take the wild-type receptor synthesis rate ( )

to be uniform throughout the posterior compartment with a steady state receptor

concentration of

0 =
( )


=

̄


=

Uniform  Synthesis Rate

 Degradation Rate Constant
(2)

prior to the onset of Dpp synthesis at  = 0. Just as (the normalized) distance  in

direction normal to the compartment boundary measured in units of the maximum

distal width max of the posterior compartment, we also normalize the physical time

 by setting  = 2
max where  is the uniform diffusion coefficient.

Normal development of wing imaginal disc and other biological organisms may

be altered by an enhanced morphogen synthesis rate stimulated by sustained genetic

or epigenetic changes (in contrast to a one time perturbation of an existing steady

state), starting at some time  ≥ 0. For example, Dpp synthesis rate in Drosophila
imaginal disc has been shown to double when the ambient temperature is increased

by 59◦ (shown by S. Zhou while in A.D. Lander’s Lab). At a state of low re-

ceptor occupancy (LRO), basic models for signaling gradient formation would have

the corresponding steady state aberrant (abnormal) signaling ligand concentration

increasing proportionately (see (19)-(20) below) and its shape altered (and hence the

cell fate at each spatial location as well) [7, 16]. Without the restriction of low re-

ceptor occupancy, these and other models also have also the steady state aberrant

signaling gradient magnitude increased with synthesis rate, though not necessarily

proportionately [7, 16, 17, 26].

Natural biological developments however are mostly unaffected by sustained en-

vironmental perturbations that these models would have altered them. To inves-

tigate possible mechanisms for managing (down-regulating) possible aberrant de-

velopments induced by genetic or epigenetic perturbations, we introduce an excess

(amplification) factor  ≥ 1 and work with a more general ligand synthesis rate

( ) = ̄(−) instead of (1). The basic extracellular model for Dpp gradi-
ent formation of [7] then consists of the following three normalized differential equa-

tions for the normalized concentrations of free Dpp concentration ( ), Dpp-Tkv

complexes concentration (or signaling Dpp gradient for short) ( ), and the unoc-

cupied Tkv concentration ( ), all measured in units of the steady state receptor

This article is protected by copyright. All rights reserved.
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concentration 0 introduced in (2):




=

2

2
− 0 + 0 +  (3)




= 0 − (0 + 0)




=  − 0 + 0 −  (4)

where the quantities 0 0 and 0 are (per unit morphogen concentration) binding

rate, receptor-mediated degradation rate and dissociation rate, all normalized by

2
max. In the absence of feedback, the normalized Dpp and Tkv synthesis rates,

 and , are given by

 =
0

2
max

= ̄(−)  =
̄0

2
max

=


2
max

≡  (5)

where ̄ is a dimensionless morphogen synthesis rate (prior to exogenous pertur-

bations) and  is the ligand synthesis amplification factor with  = 1 for the wild

type.

The three differential equations are supplemented by the boundary conditions

 = −: 


= 0  = 1:  = 0 (6)

all for   0, and the initial conditions

 = 0:  =  = 0  = 1 (7)

The initial-boundary value problem (IBVP) defined by (3)-(7) and its modified forms

have been analyzed as mathematical models for ligand activities and tissue pattern

formation in several of the references cited (e.g., [7, 25, 26]). Some basic results

from [7] are summarized below for comparison with the new results on the effects of

non-receptors to be analyzed herein.

2.1 Time Independent Steady State

Given that both the ligand and receptor synthesis rates are time independent, it has

been shown in [7] that the extracellular model system (3)-(7) has a unique steady

state,

{̄() ̄() ̄()} = lim
→∞

{( ) ( ) ( )} (8)

that is asymptotically stable with respect to small (one time) perturbations. With

the three dependent variable not changing with time in steady state, the governing

IBVP may be reduced to the following well-posed two-point boundary value problem

(BVP) for ̄() [7]:

̄00 −
0̄

0 + 0̄
+ ̄(−) = 0 (9)

This article is protected by copyright. All rights reserved.
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̄0(−) = 0 ̄(1) = 0 (10)

with

̄() =
̄()

0 + 0̄()
 ̄() =

0

0 + 0̄()
(11)

where

0 =
0 + 0

0
 0 =

0


 (12)

We note again that the excess factor  is a constant for the level of abnormality in

the ligand synthesis rate with  = 1 for the wild-type development.

For the signaling gradient to induce a distinct biological tissue pattern, it should

not be nearly uniform over a significant spatial span of the solution domain (− 1)
as there would not be a pattern over that span. For this reason, the free morphogen

concentration ̄() associated with a biologically realistic gradient system cannot be

so large that

0̄ À 0 (  1) (13)

or (with 0 ¿ 0) ̄ À 0 away from the edge  = 1 For the unlikely event that

the condition (13) should be met, we would have

̄() =
̄()

0 + 0̄()
' 1

0
=



0

uniform in  except for a boundary layer adjacent to the edge  = 1. While 0̄() =

(0) is not the only requirement for a biologically realistic gradient system, we

formulate it as a necessary condition for systems worthy of examination.

Criterion 1 For a morphogen gradient system to induce a biological meaningful pat-

tern, the free morphogen concentration ̄ be (00) = (0) or smaller.

2.2 Low Receptor Occupancy

At the other extreme, when the free morphogen concentration ̄() is sufficiently low

over the span of the solution interval (0 1) so that

0̄ = 0̄ ¿ 0 (14)

we may neglect terms involving 0̄ in (9)-(11) to get an approximate set of solutions

{() () ()} determined by the initial value problem (IVP)

00 − 20 + ̄(−) = 0 (15)

0(−) = 0 (1) = 0 (16)

This article is protected by copyright. All rights reserved.
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with

() =
()

0
 () = 1 (17a)

and

20 =
0

0
=

00

0 + 0
(18)

The exact solution for () ≡ 1() obtained previously in [7] is

1() =

(
̄
20
{1− cosh(0)

cosh(0(1+))
cosh(0(+ ))} (− ≤  ≤ 0)

̄
20

sinh(0)

cosh(0(1+))
sinh(0(1− )) (0 ≤  ≤ 1)  (19)

with

̄() ' () = 1() =
1()

0
 ̄() ' 1 (20)

It would be natural to characterize a morphogen system with (14) to be in a state

of low receptor occupancy (LRO) since there are few free ligand available to occupy

the signaling receptors. However, if we have also 0 À 1, the expression for () in

the signaling range of 0 ≤   1 is effectively a boundary layer adjacent to the edge

of the ligand production region, steep near  = 0 and dropping sharply to ̄
2
0

(which is rather small) away from that boundary. Generally, the bound (signaling)

morphogen gradient ̄() ' () should change gradually if it is to lead to a distinct

biological pattern. To limit our discussion to these biologically meaningful gradient

systems, we adopt the following definition for a gradient system in a steady state of

LRO:

Definition 2 A morphogen system is in a steady state of low receptor occupancy

(LRO) if the condition (14) is satisfied and 0 = (1).

With the adoption of this definition, we may then restrict our attention mainly

to LRO systems that give rise to distinctive biological tissue patterns. For such

systems, the bound and free ligand concentrations change only gradually over their

spatial span [0 max].

For gradient systems for which neither (14) nor (13) is met, the following condition

provides a criterion for eliminating a group of gradient systems that is not biologically

realistic and not of interest herein:

Criterion 3 A gradient system is not biologically meaningful if 0 À 1

While Criterion 1 eliminates signaling gradients that are pretty much flat and

with signaling receptors saturated away from the edge  = 1, Criterion 3 eliminates

signaling gradients that are also pretty much flat but with signaling receptors sparsely

occupied away from ligand synthesis region.

This article is protected by copyright. All rights reserved.
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2.3 Root-Mean-Square Signaling Differential

We wish to make use of the extracellular model summarized in the preceding sub-

sections to gain more insight into the results from numerical simulations obtained in

[25] and to investigate more effective feedback mechanisms to ensure robust devel-

opment. We do this by working with a spatially uniform feedback to complement

the conventional Hill function approach in modeling feedback processes. For this

purpose, we need to have a quantitative measure of robustness that quantifies suc-

cinctly deviation from the wild-type development. One such measure,designated as

the root-mean-square signaling differential robustness index (henceforth the  ro-

bustness index for short, or simply robustness index when there is no ambiguity)

used in [16], is given below and applied to illustrate its effectiveness in measuring the

aberrancy of a signaling gradient. This index is simpler to analyze compared to the

root-mean-square displacement differential robustness index  (previously denoted

by  in [25]) which was also used earlier in [16] and will be examined in later sections

of this paper.

The (signal) robustness index  is the (normalized) root mean square of the

deviation of the aberrant signaling gradient ( ) from wild-type signaling gradient

1( ):

() =
1

 − 

s
1

( − )
2

Z 



[( )− 1( )]2 (21)

where 0 ≤ ()  () ≤ 1(− ) and − ≤    ≤ 1. The quantities 
,  and  may be chosen away from the extremities to minimize the exaggerated

effects of outliers. For a system in steady state with

̄1() = lim
→∞

1( ) ̄() = lim
→∞

( ) (22)

() tends to a constant ̄ with

̄ = lim
→∞

() =
1

 − 

s
1

( − )
2

Z 



[̄()− ̄1()]2 (23)

In subsequent developments, we set  = 0 since the region of ligand synthesis

[− 0) is not expected to contribute significantly to signaling. We also take  = 1
so that (1 ) = 1(1 ) = 0. For the case of low receptor occupancy, we take 
to be 1(0), the explicit LRO approximation of the steady state wild-type signaling

gradient concentration value ̄1(0), known from (19) and (20) to be

 = 1(0) =
̄

0
2
0

sinh(0) sinh(0)

cosh(0(1 + ))
' ̄1(0) (24)

Having ̄() and ̄1() (by any numerical software for BVP of ODE), it is straightfor-

ward to evaluate the integral (23) to obtain ̄ to see whether or not the aberrancy of

the signaling gradient (when distorted by exogenous perturbations) is still acceptable.
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2.4 Approximate Robustness Index for LRO State

For a morphogen system in a state of LRO, we have from (19)-(20) the following

approximate steady state solutions for the distorted signaling gradients, () of the

(environmentally or genetically) perturbed system:

() ∼ 1() =
̄

0
2
0

sinh(0) sinh(0(1− ))

cosh(0(1 + ))
 (0 ≤  ≤ 1) (25)

where 20 = 00 ' 0 since 0 ¿ 0 for our model of the wing imaginal disc [?]. The

parameter  is the excess (amplification) factor of the ligand synthesis rate. Then the

LRO approximation of ̄ (with  = 1,  = 0), denoted by , is given by

̄ ∼  =
− 1
sinh(0)

sZ 1

0

[sinh(0(1− ))]2

=
− 1
sinh(0)

s
1

2

µ
sinh(20)

20
− 1
¶
≡ (− 1)(0) (26)

To be concrete and to make use of the finding of Zhou on the effect of a 59◦
temperature change, we are mainly concerned with the empirically observed case of

 = 2 in the subsequent development.

For a gradient system with 0 = 02 0 = 0001  = 1 0 = 10  = 01 and

̄ = 005 (corresponding to ̄ = 0002  ̄ = 004   = 10−72 sec ,

max = 001 ) with  = ̄0 = 025 in Table 2 of [7], the steady state is in LRO

state. For this case, the approximate solution for ̄ given by (26) is 03938 while

the actual solution for ̄ computed from an accurate numerical solution for the BVP

for ̄2() gives 03943 for a percentage error of less than 001%. If ligand synthesis

rate is increased 20 times to ̄ = 004  , the percentage error of the low receptor

occupancy approximation is still less than 1%. These comparisons serve to validate

the numerical simulation code developed for exact numerical solutions of our model.

(Consistent with the subsequent ease of analysis for the LRO, we have adopted the

simplifying approximation 0 ' 00 in the computation for both ̄ and  in this

paper since 0 ¿ 0.)

Our main interest however is in the use of the robustness index to induce an appro-

priate feedback mechanism for attaining robustness of signaling morphogen gradients.

When an enhanced ligand system is not in a state of low receptor occupancy, the use

of the approximate signaling robustness index based on the approximate solution (25)

may not be sufficiently accurate. For these cases, numerical solutions of ̄() and

the corresponding value for ̄ should be used instead of () and 0. If needed,

their calculations by available mathematical software such Mathematica, Matlab or

Maple should be straightforward.

This article is protected by copyright. All rights reserved.
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3 Feedback on Receptor Synthesis Rate

Excessive ligand concentration is known to down-regulate its own signaling receptor

synthesis. In particular, Decapentaplegic (Dpp) represses the synthesis of its own

receptor Tkv [4]. Another example is Wingless (Wg) repressing its signaling recep-

tor DFz2 [46]. The down-regulation of Tkv by aberrant signaling Dpp gradient was

modeled by a negative feedback of the Hill function type in [25] and was found to be

ineffective as a mechanism for promoting robust development of the wing imaginal

disc. A theoretical analysis of the model in [26] confirms the results of the numerical

experiment and shows that the spatially nonuniform feedback distorts the shape of

the output gradient as the feedback mechanism works to reduce its aberrancy. The

observation suggests that a spatially uniform feedback mechanism may be more effec-

tive for ensuring robustness. We consider in [22] the originally (normalized) spatially

uniform receptor synthesis rate ̄ being down-regulated to () by a negative feed-

back factor 2() that is a function of the signaling robustness index () in the

form

() = 2()̄ =
̄

1 +  [(− )]
 (27)

where the parameter  corresponds to a possible time delay and {} are two pa-
rameters to be chosen for appropriate feedback strength and sensitivity, respectively,

similar to those for a Hill’s function.

It should be noted that the feedback process in (27) at any location does not de-

pend on the aberrancy of the signaling gradient at that location, only on an average

measure () of the excess over the span of the wing disc. Since it is not sensitive

to the local environment of individual cell, it is less likely to contribute to the shape

distortion of the resulting gradients. Such a spatially uniform feedback mechanism

obviously requires some disc-wide cooperation among cells. There are at least two

possible examples of mechanisms that could create such spatial coordination, partic-

ularly in the wing disc.

One of these was described in the two papers by N. Barkai et al. [47, 48]. These

papers describe an “expander-repressor scaling mechanism” in which Dpp represses an

expander which then diffuses back into the wing disc and expands the Dpp gradient.

In the model, the expander freely diffuses everywhere, which is why it is able to adjust

Dpp decay uniformly across the disc. It is similar to (27) in that some aspect of Dpp

gradient robustness is being controlled by Dpp through a mechanism that is spatially

uniform and is an example of how non-spatial feedback might be triggered by changes

to a morphogen gradient.

The other is the work of Yu et al. in [49] where the Fat/Dachsous pathway coor-

dinates Dpp signaling over wide spatial ranges for cell growth. This is a completely

different mechanism from the one developed in [47, 48]; but it has the same fea-

ture that cells end up cooperating over large spatial scales. The work shows another

mechanism that allows an entire disc to respond to local perturbations.

This article is protected by copyright. All rights reserved.
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Together with additional comments on such a non-local feedback mechanism in

[22], the specific examples above provide concrete evidence supporting the possibil-

ity of spatially uniform non-local feedback processes such as (27) and those to be

introduced in subsequent developments. For the investigation of the effects of our

particular type of negative feedback on the receptor synthesis rate, we are interested

in the modified signaling gradient (starting at  = 0) and the corresponding robust-

ness index of the IBVP (3) - (7) but now for an enhanced ligand synthesis rate

 = ̄(−) (28)

with an excess factor   1 and a down-regulated receptor synthesis rate given by (27).

In the presence of the feedback, the three aberrant gradients of the new IBVP are

to be denoted by {( ) ( ) ( )} ≡ {( ; ) ( ; ) ( ; )} which
reduce to {( ) ( ) ( )} of the model without feedback (when  = 0). The
corresponding robustness index is determined by

() =
1



sZ 1

0

[( )− 1( )]2 (29)

Unlike the situation in (21), ( ) = ( ; ) now depends on ().

As a consequence, (29) is an integral equation to be solved for the unknown

() concurrently with the solution of the IBVP (3)-(7) with ̄ replaced by () =

2()̄. Such solutions have been obtained in [21, 20] and will not be pursued herein.

Instead, we will focus on the corresponding steady state behavior with low receptor

occupancy.

3.1 Time Independent Steady State with Feedback

It has been shown in [7] that the extracellular model system without feedback has

a unique steady state. We are interested here also in the corresponding steady

state for the case with the spatially uniform non-local feedback on the signaling

receptor synthesis rate ̄ of the type characterized by (27). We denote the corre-

sponding time independent steady state aberrant gradients by
©
̄() ̄() ̄()

ª ≡©
̄(; ) ̄(; ) ̄(; )

ª
and the steady state robustness index ̄ determined by

̄ = lim
→∞

() =
1



sZ 1

0

[̄()− ̄1()]2 (30)

with  appropriately taken to be 1(0), the LRO approximation for
£
̄1(0; )

¤
=0

=£
̄(0; 0)

¤
=1
. (Note that ̄ is positive unless  = 0 and  = 1.)

With ( ) = 0, the governing equations and boundary conditions for our

extracellular model with feedback can again be reduced to a BVP for ̄ alone:

̄00 −
̄20̄

0 + 0̄
+ ̄(−) = 0 (31)
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̄0(−) = 0 ̄(1) = 0 (32)

where 0 and 0 as defined in (12) and

̄2(̄) =
1

1 + ̄


 (33)

The corresponding signaling ligand and unoccupied receptor concentrations are given

in terms of ̄ by

̄() =
̄2̄()

0 + 0̄()
 ̄() =

̄20

0 + 0̄()
 (34)

respectively. The solution for ̄() with ̄ as an unknown parameter is then used

in (30) for the determination of ̄.

Existence of a unique, non-negative, monotone decreasing solution for (31)-(32)

can be proved by the method used in [7]. Sample solutions of the BVP and the

signaling gradient ̄() = ̄(; ) for   0 (with
£
̄()

¤
=0

= ̄(; 0) = ̄()

without feedback) have been calculated and analyzed in [22]. Here, we complement

these results by showing the existence and uniqueness of a positive robustness index

̄ for the particular feedback problem. The method may be used to establish similar

results for problems that include the effects of non-receptors in later sections.

To be concrete, we take  = 1,  = 0 and  = 0 henceforth so that

̄ =
1



sZ 1

0

[̄(; )− ̄1()]2 ≡ (̄) (35)

As indicated previously, we take  to be given by (24). We now work with (35) to

show first that for a fixed positive , ̄(; ) is a decreasing function of ̄ and then

use the result in



̄

=
1

2

Z 1

0

[̄(; )− ̄1()]
̄(; )

̄

 (36)

to establish the existence, uniqueness and positivity of ̄. For simplicity, we do this

for the  = 1 case.

Upon differentiating all relations in the BVP for ̄() = ̄(; ) partially with

respect to ̄, we obtain

−00 + ̄20

(0 + 0̄)
2
 − ̄40̄

0 + 0̄
= 0 (37)

0(−; ) = 0 (1; ) = 0 (38)
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where

(; ) = −̄(; )
̄

= −̄()
̄



Clearly, (; ) ≡ 0 is a lower solution of the BVP for (; ) given

−00 +
̄20

(0 + 0̄)
2
 − ̄40̄

0 + 0̄
= − ̄4̄

0 + 0̄
≤ 0

and by the conditions in (38) are also satisfied by (; ) ≡ 0. As an upper solution,
we take

(; ) =
0

0
̄

½µ
 +

1

2

¶
− − 1

2
2
¾
≡ 0

0
()

so that the boundary conditions for () are satisfied with (; ) ≥ 0 for all  in
[− 1]. The function (), the re-scaled (; ), was shown in [7] to be an upper

solution for ̄() so that () ≥ ̄(). With 0 = (10−1) while  1 + ̄ and

1 + 0̄0 are (1) quantities, we have

−00 +
̄20

(0 + 0̄)
2
 − ̄40

0 + 0̄
=

0

0
̄ +

̄2

0 + 0̄

½


1 + 0̄0
− 0̄

1 + ̄

¾
≥ 0

Then the monotone method in [50, 51, 52] implies that (; ) exists, is unique and

non-negative so that

−(; ) ≤ ̄(; )

̄

µ
=

̄()

̄

¶
≤ 0 (39)

The development above leads to the following lemma on the non-positivity of the

marginal value ̃(; )̄:

Lemma 4 ̄(; )̄ ≤ 0
Proof. Upon differentiating the expression for ̄() = ̄(; ) in (34) partially with

respect to ̄ we obtain

̄()

̄

=
̄2()0

(0 + 0̄)
2

̄()

̄

− ̄4̄

0 + 0̄
≤ 0

in view of the second inequality of (39).

Proposition 5 A positive solution of ̄ = (̄) exists and is unique.

Proof. Together with ̄(; )  0, Lemma 4 implies ̄ ≤ 0 as long as ̄(; ) 
̄1() (see (36)) It follows that a solution exists for ̄ = (̄). It is unique since

(̄) is monotone decreasing. It is positive since (̄) is nonnegative so that ̄

is bounded below for ̄ ≥ 0

This article is protected by copyright. All rights reserved.



De
ve

lo
pm

en
ta

l D
yn

am
ic

s

3.2 Low Receptor Occupancy

The LRO approximation for morphogen systems has been found useful for an under-

standing of the effects of various feedback mechanisms. The steady state approxi-

mation for the present feedback process has been obtained in [22]. The results are

summarized below for reference later in the study of the effects of multi-feedback

system involving non-receptors on robustness. In a state of low receptor occupancy

prior to and after ligand synthesis enhancement so that

0̄ ¿ 0 (40)

(including the special case where  = 0 and  = 1 so that ̄() reduces to ̄1() =

[̄( 0)]=1), ̄() may be approximated by () with

() =

(
̄
2
{1− cosh()

cosh((1+))
cosh((+ ))} (− ≤  ≤ 0)

̄
2

sinh()

cosh((1+))
sinh((1− )) (0 ≤  ≤ 1)  (41)

where

2 = ̄2()
0

0
 (42)

and  is the LRO approximation of ̄ calculated from (30) using () and 1( 0)

for ̄() and ̄1() = [̄( 0)]=1, respectively (see [22]). The LOR solution ()

is expected to be an accurate approximation of the exact solution ̄() and reduces

to the LRO wild-type ligand concentration 1() when  = 0 and  = 1.

The corresponding LOR signaling gradient and free receptor concentration are

given by

̄() = ̄( ) ' () =
()

0
 ̄() ' ̄2() (43)

with

() =
̄

0

sinh()

cosh((1 + ))
sinh((1− )) (0 ≤  ≤ 1) (44)

It should be noted that the dissociation rate constant is usually much smaller than

the degradation rate constant with 00 = (10−2) To simplify our discussion, we
have adopted the simplifying approximation 0 = (0 + 0)0 ' 00 so that

0

0
' 0 ≡ 20 2 =

20
1 + 

(45)

as in [22].

For   1 the yet unknown LOR robustness index  is to be determined by the

LRO approximation of (30)

̄ ∼  =
1

1(0)

sZ 1

0

[()−1()]2 ≡ () (46)
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Given (19), (20) and (44), the right hand side depends on  through (); hence

(46) is an equation for 
¡' ̄

¢
:

() = 0

where

() ≡ 2 sinh2 (0) 
2
 − 2

µ
sinh(2)

2
− 1
¶
−
µ
sinh(20)

20
− 1
¶

(47)

+2

½
sinh( + 0)

 + 0
− sinh( − 0)

 − 0

¾


with

 = 
sinh() cosh(0(1 + ))

sinh(0) cosh((1 + )
 2 =

0

1 + 
 (48)

Even without an explicit solution for () = 0, we see from (46) that  is

necessarily positive when   1 and therewith 0  ̄2()  1 It follows from

(0) =
̄

0

sinh()

cosh((1 + ))
sinh()

that the order of magnitude of (0 ) = (0) is not changed in any significant

way by the presence of the adopted feedback. With 20 ' 0 = (10), 2 = ̄2()
2
0

and 0   ¿ 1, we can work with the approximate expression estimate

(0)

1(0)
=

sinh()

sinh(0)

sinh()

sinh(0)

cosh(0(1 + ))

cosh((1 + ))

=
1− −2 + (−2)
1− −20 + (−20)

' 1√
1 + 

(49)

to get
(0)

1(0)
= 

µ
√

1 + 

¶


with   02 for a robust gradient. Note that the ratio is smallest when the positive

integer  is 1.

In addition, the negative feedback (27) also leads to a less convex modified ectopic

signaling gradient since   0 whenever   0. We summarize the development

above by the following observation:

Conclusion 6 When both the wild-type and ectopic gradients are in a state of LRO,

the negative feedback mechanism (27) on receptor synthesis rate is not particularly

effective for promoting robust development.
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3.3 Numerical Solution for the General Case

In order to confirm the usefulness of the LOR solution for the problem, we have re-

configured the integro-differential equation problem for ̄ as a BVP for a system of

ODE and solved it by any BVP solver (e.g., bvp4c in Matlab). Numerical results are

reported below for a system characterized by the parameter values shown in Table I

with  = 1.

Table I Some Sample Solutions

max = 001  min = 0001  0 = 001 sec   = 1

 = 2× 10−4 sec   = 0001 sec   = 10
−6 sec   = 2

 = 10−7 2 sec  ̄ = 0002  sec  ̄ = 004  sec 

 ̄  ̄(0; ) (0) ̄1(0) 1(0)

0 03943 03938 01154 01169 00580 00584

05 03750 03736 01080 01096 00580 00584

1 03573 03565 01022 01062 00580 00584

2 03284 03284 00941 00959 00580 00584

4 02862 02872 00839 00857 00580 00584

The biological implication of the resulting robustness index is not particularly

gratifying. The values of  and ̄ shown in Table I differ by less than 1% for all

five values of . Their values for  = 1 are well above the acceptable level of 02

for a robust signaling gradient, a rather modest requirement set arbitrarily in [25])

for robustness. This is hardly surprising given the estimate for the amplitude of the

explicit solution (0) for the LRO approximation of ̄(0) in (49) being independent

of feedback. Comparing the accurate numerical solution for ̄1(0) and ̄(0 0) with

̄(0) = ̄(0 ) reported in Table I shows that the latter is much closer to ̄(0) than

̄1(0). More specifically, ̄(0) and ̄(0) are roughly double the magnitude of ̄1(0),

confirming the ineffectiveness of the feedback ̄2() for  = 1.

The LOR solution () also shows that increasing the value of the parameter

 to larger than 1 would further distort the shape of the gradient and ameliorate the

amplitude reduction of the ectopic gradient through the terms involving hyperbolic

functions with increasingly smaller . Accurate numerical solutions for the general

case (not in a state of LRO) in Table I are qualitatively similar to the LRO results

with the robustness index decreasing rather gradually as  increases. Figure 1 shows

graphs of ̄( ) for  = 0 1 2 and 4 for comparison with ̄1() to further illustrate

these observations. Note that for all the graphs in the figure, the labels are generically

̄(;    ) with  =  =  = 0 for Figure 1 (since these parameters do not appear

until later sections) and ̄(;  0 0 0) ≡ ̄( )

It is necessary then to look elsewhere for a more effective feedback instrument to

attain robust development with respect to an aberrant Dpp synthesis rate. There are
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a number of different such mechanisms available for this purpose [22]. In the next

few sections, we will focus on only one of these, namely, the role of non-receptors on

robust development to gain insight to the findings for model 3 in [25] and to help

develop a more effective feedback strategy for promoting robust signaling gradients,

hence robust biological development.

As we routinely work with normalized quantities, we give below for subsequent

references the normalized parameters corresponding to the actual biological parameter

values listed under Table I above to be used for computing various solutions:

0 = 02  = 10 0 = 0001  = 01  = 005 (50)

The normalized value of receptor synthesis rate does not appear explicitly in the

dimensionless BVP for the steady state solution, (31)-(34). It is involved in various

normalized quantities such as  and will not be given here.

Figure 1: Spatially uniform negative feedback on receptor synthesis rate.

4 Effects of Non-receptors

The existence of inhibiting non-receptors and the associated feedback process are

well documented for the BMP family ligands that includes the Dpp ligand of interest

here (see [19, 31] and elsewhere). Known non-receptor type inhibitors include noggin,

chordin, dally, follistatin, sog and various heparan sulfate proteoglycans. They are

ubiquitous during wing imaginal disc and other biological developments (see [30],[32]-

[33],[36]-[38],[40, 41] and references cited earlier). For the purpose of establishing ro-

bust signaling Dpp gradients, we are interested in the effects of relevant non-receptors

as an inhibiting agent on such gradients. The impact of non-receptors on the (time

independent) steady state of a signaling gradient has been investigated theoretically

by analysis and numerical simulations in [17, 18, 25, 44, 45]. To the extent that

inhibitors for promoting robust gradients are expected to be induced by sustained

exogenous perturbations (as it would be a part of the wild-type development oth-

erwise), the introduction of non-receptors in these models may be interpreted as a

non-receptor synthesis rate of the form

 = ̄(− ) (51)

where   0 is the instant of the onset of genetic or epigenetic perturbations. In

this section, we examine the consequences of non-receptors generated in this way

principally to delineate similar results obtained in [25] for (51) in the presence of

a negative feedback on receptor synthesis rate. The usefulness of non-receptors for

promoting signaling gradient robustness will be investigated for a robustness index

induced feedback mechanism on non-receptor synthesis rate in the next section.
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To examine how the introduction of non-receptors affects the robustness of the

signalling gradient as measured by the robustness index, we take as a reference level

of non-receptor concentration 0 = ̄ with

 =
0

0
=

̄

̄
 ̄ =

2
max



½
̄

0

¾
=



2
max

(52)

where  is the degradation rate constant for the unoccupied non-receptors. Similar

to signaling receptors, (normalized) free (cell surface bound) non-receptor concen-

tration ( ) is also bound reversibly to Dpp ligand (to form normalized bound

non-receptors of concentration ( )),

{ } = 1

0

{[ ] [ ]} (53)

with a normalized binding rate constant 1 (for binding between Dpp and non-

receptors of concentration [ ]), non-receptor-mediated degradation rate constant 1
(for degradation of Dpp-non-receptor complexes [ ]), dissociation rate constant 1
(for dissociation rate of Dpp-non-receptor complexes) and free non-receptor degrada-

tion rate constant  (for degradation of unoccupied non-receptors):

{1 1 1 } = 2
max


{0 deg   } (54)

with 1 ¿ 1 so that 1 ' 11.

In terms of these normalized quantities, we have the following IBVP for the five

normalized unknowns     and  [45]:




=

2

2
−0+0−1+1+̄(−) {1 + (− 1)(− )}  (55)




= 0 − (0 + 0)




= ̄ − 0 + 0 −  (56)




= 1 − (1 + 1)




= ̄(− )− 1 + 1 −  (57)

with the end conditions

 = − : 


= 0  = 1 :  = 0 (58)

for   0, and (for   0) the initial conditions

 = 0 :  =  =  =  = 0  = 1 (−    1) (59)
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As before, the parameter  ≥ 1 is a measure of the excess (amplification) of

the enhanced Dpp synthesis rate induced by a sustained exogenous perturbation

initiated at   0. In this section, our first goal is to investigate whether the presence

of a sufficiently high non-receptor synthesis rate may make the eventual signaling

morphogen gradient [] insensitive to an enhanced Dpp synthesis rate. Since we

are interested in the steady state behavior for large , the initial conditions (59) will

not have a substantive role in our analysis.

4.1 Time-Independent Synthesis Rates

When all synthesis rates for ligands, receptors and non-receptors are time-invariant,

the solution of the new five-component model is expected to tend to a steady state de-

noted by
©
̄() ̄() ̄() ̄() ̄()

ª
(as abbreviations for {̄(;)  ̄(;)}

when appropriate). For this steady state solution, we have ( ) = 0 so that the

last four equations in (56) and (57) can be solved for ̄() ̄() ̄() and ̄()

in terms of ̄() to get (11) and

̄() =
̄()

1 + 1̄()
 ̄() =

1

1 + 1̄()
 (60)

with

1 =
1 + 1

1
 {01} =

½
deg



deg



¾
=

½
0



1



¾
 (61)

where deg and deg are the receptor- and non-receptor-mediated degradation rate

constant, respectively, of bound Dpp complexes. The results are then used to obtain

from the steady state version of (55),

̄00 − 0̄ ̄ + 0̄ − 1̄̄ + 1̄ + ̄(−) = 0 (62)

and (58) a BVP for ̄() = ̄(;) alone:

̄00 −
0̄

0 + 0̄
− 1̄

1 + 1̄
+ ̄(−) = 0 (63)

̄0(−) = 0 ̄(1) = 0 (64)

Evidently, ̄() varies with  (and occasionally written as ̄(;)) which reduces to

̄() of the basic model for  = 0, i.e., ̄() = [̄()]=0 = ̄(; 0). Even if  = 1,

̄1(;) is different from the solution ̄1() = ̄1(; 0), the free ligand concentration

in the wild-type development without non-receptors (corresponding to  =∞).

4.2 Low Receptor and Non-receptor Occupancy (LRNO)

For the signaling gradient to provide positional information that differentiates cell

fates, the normalized concentration  = []0 should not be nearly uniform (with
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a steep gradient adjacent to the absorbing edge or the ligand synthesis region). Po-

sitional indifference except for a steep gradient near the imaginal disc edge is not

likely to occur if free ligand concentration is sufficiently low so that 0 + 0̄ ' 0
and 1 + 1̄ ' 1. A gradient system is said to be in a state of low receptor and

non-receptor occupancy (LRNO) if

0 + 0̄ ' 0, 1 + 1̄ ' 1 and 1  0   = (1) (65)

The gradient system is biologically differentiating if it is in a state of LRNO.

When the system is in a state of LRNO, the ODE (63) can be linearized with the

corresponding approximate solution denoted by {() () () () ()}.
The relevant BVP has been reduced to a single ODE for ̄() ' ():

00 − 2 + ̄(−) = 0 0(−) = () = 0 (66)

where

2 =
0

0
+

1

1
' 0 + 1 (67)

Its solution has been obtained in [25, 45] and elsewhere. With 0 ¿ 0 and 1 ¿ 1,

we neglect (as in [22]) the effect of the dissociation rates and write () as

() =

(
̄
2


{1− cosh()

cosh((1+))
cosh((+ ))} (− ≤  ≤ 0)

̄
2


sinh()

cosh((1+))
sinh((1− )) (0 ≤  ≤ 1)  (68)

with 20 ' 0 
2
1 ' 1 and

2 = 20 + 21 ' 0 + 1 (69)

The corresponding signaling gradient is ̄() ' () with

() =
0̄

0
2


sinh()

cosh((1 + )))
sinh((1− )) ( ≥ 0) (70)

(keeping in mind 0 = (0 + 0) 0 ' 00) and

(0) =
(0)

0
=

0̄

0
2


sinh() sinh())

cosh((1 + ))
(71)

Note that () depends on  through  .

For 1 & 0 ( 0) so that 
2
 = 20  1, we have

sinh() sinh())

cosh((1 + ))
∼ 1
2

¡
1− −2

¢
( = 0 )

and
(0)

1(0)
' 

1 + 10

1− −2

1− −20
  = 0

p
1 + 10 (72)
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where 1(0) = [(0)]=0 (' ̄1(0; 0)). For 1 = 0 and  = (1), we have (with

0   ¿ 1)

̄(0) ' (0) ' 

1 + 

̄

0
 (73)

indicating that the amplitude of the aberrant signaling morphogen concentration (at

 = 0) is reduced (approximately) to the wild-type concentration with  = 1 for

the empirically observable case of  = 2 (the amplification for Dpp synthesis rate

associated with an increase of 59◦ in ambient temperature). However, this does

not mean that the aberrant gradient is reduced to the wild type since the shape

parameter 2 = 0(1 + ) would be 20 so that the slope and convexity of the

aberrant signaling gradient would be changed substantially.

More generally, the aberrant concentration ̄(0) ' (0) may be kept to the

wild-type level with a sufficiently high non-receptor synthesis rate so that 1+10 ≥
. However, for a given 10 ratio, the required level of  increases with  resulting

in at least two effects that cause a distortion of signaling gradient shape and thereby

work against the desired reduction of aberrancy of the signaling gradient. First,

the ratio (1− −2)  (1− −20) is significantly larger than 1 for larger  and a
larger  is needed to reduce the amplitude of the gradient (than that for 1+10 =

). Second, the aberrant gradient shape would be distorted even more severely by a

larger  since the gradient shape parameter 2 increases linearly with . Since the

quantitative effects from a particular non-receptor synthesis rate can only be seen

from the corresponding value of the (LRNO approximation of the) robustness index,

denoted by , the dependence of  on  will be calculated in the next subsection.

Here, we settle for the following relatively conservative observation:

Conclusion 7 For gradient systems in a steady state of low receptor and non-receptor

occupancy with 10 = (1), the amplitude of their aberrant signaling gradient in-

duced by the empirically observed synthesis rate amplification factor of  = 2 could

be kept close to the wild-type amplitude (around  = 0) by a moderate non-receptor

synthesis rate of  ' 1 (as shown by the exact (numerical) solutions without the

LRNO approximation in Figure 2).

4.3 The LRNO Approximation of Robustness Index

As the presence of a fixed non-receptor concentration works both for and against

robust development, whether or not the net effect is positive can only be seen from

(the LRNO approximation  of) our adopted measure of robustness ̄. From (46),

we have

 =
1

1(0)

sZ 1

0

[()−1()]2 (74)

or

() = 0 (75)
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where (·) is (·) as defined in (47) but with  and  replaced by  and

 =


1 + 10

sinh() cosh(0(1 + ))

sinh(0) cosh((1 + ))
 (76)

respectively.

Note that unlike its counterpart (46), the right hand side of (74) is independent of

 so that it can be evaluated to get  (without having to solve a nonlinear equation

as we had to do for ). Upon writing (74) as

sinh2 (0) 
2
 =

Z 1

0

[(;)]2 ≡ () (77)

where

(;) =  sinh ((1− ))− sinh (0(1− )) 

it is straightforward to evaluate the integral in (77) to obtain

2() = 2

µ
sinh(2)

2
− 1
¶
+

µ
sinh(20)

20
− 1
¶

(78)

−2
½
sinh( + 0)

 + 0
− sinh( − 0)

 − 0

¾


Plotting () shows that 2 is a convex function of  with a positive minimum

at some minimum point min  0. Note that the convexity of  can also be seen

analytically from the following properties of (;) for any  in [0 1):

) (; 0) = (− 1) sinh (0(1− ))  0 (0 ≤   1)

) lim
→∞

[(;)] = − sinh (0(1− ))  0 (0 ≤   1)

and, with 2 ≥ 20 À 1,

) (;) monotone decreasing with increasing .

As a consequence, we have the following negative result similar to the corresponding

finding in [25]:

Proposition 8 The robustness of a signaling gradient in a steady state of LRNO

deteriorates with increasing  for   min.

For the illustrating example of Table I, the optimal ratio min that gives the

smallest  is for min
∼= 1092 with min ∼= 00670 which is insignificantly below  =

00693 for  = 1. However, both are significantly below  = 01365 for  = 2

(even if the latter is still below robustness threshold). Beyond an optimal level of ,

continuing increase in non-receptor synthesis rate would reduce the aberrant gradient
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concentration below the wild-type gradient ̄1() and worsen the corresponding shape

difference, eventually to an unacceptable level of robustness.

Superficially, this suggests that there is no need to consider  values higher than

min for a given problem, with min ' 1 giving rise to an acceptable level of gradient
shape distortion (as measured by our signal robustness index ̄). However, min may

have to be larger for another problem for which there is a need for a larger amplitude

reduction factor 1 + 10. For example,  would need to be 3 or larger for the

same problem with the larger ligand synthesis amplification factor (aberrancy)  = 4

(see (72) or (73)). This suggests that the induced non-receptor synthesis should be

an increasing function () of the excess factor . A larger  value would induce a

much more severe (and probably unacceptable) signaling gradient shape distortion as

seen from (70) and (69). These observations strongly suggest the following conclusion

consistent with the simulation results of [25]:

Conclusion 9 A non-receptor synthesis rate in the form of (51) and (55) does not

offer a biologically realistic mechanism for down-regulating aberrant signaling except

for moderate aberrancy so that min ' 1. In the latter case, robustness is sensitive

to any further increase in non-receptor concentration.

Accurate numerical results for the exact solution (without the LRNO approxima-

tion) ̄() and ̄ have been obtained for different (uniform) non-receptor synthesis

rates (as characterized by the parameter ) with additional parameters associated

with the non-receptors assigned the following values in the illustrating example (also

examined in [45]):

deg = deg  =   = 10   = 10

It is evident from the results reported in Table II that  and (0) = (0;) '
̄(0;) are quite accurate approximations of the corresponding numerical solutions

for ̄() and ̄(0) = ̄(0;) of the new model for (51). As such, the effects of

non-receptors are pretty much delineated by the LRNO solution.

Table II

(1 = 02 1 = 10 1 = 001  = 10  = 005  = 2)

 ̄  ̄2(0 ) 2(0;) ̄1(0 0) 1(0 0)

0 03943 03938 011517 01169 005790 00584

1 00714 00693 007398 00739 005790 00584

2 01298 01365 005597 00555 005790 00584

From either the computed LRNO solution or the numerical solutions for the origi-

nal nonlinear BVP, we see that a moderate presence of non-receptors would generally

bring ̄() =
£
̄(;  )

¤
=0

closer to ̄1() but generally renders ̄() steeper and

more convex than ̄1() as shown in Figure 2. (Note that the notation ̄(; 0  1 0)
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in Figure 2 corresponds to ̄() = ̄(;).) The observations and conclusions above

strongly suggest that the inhibiting mechanism (51) is not a realistic robustness pro-

moting mechanism. It is examined here not only to elucidate the findings by numerical

simulations in [25] but also, with the help of the explicit analytical solution, to elim-

inate it as a strategy for promoting signaling gradient robustness. This tentative

conclusion will be further strengthened by the developments in the next two subsec-

tions.

Figure 2: Effects of Non-receptors

4.4 Addition of a Negative Feedback on Receptor Synthesis

The LRNO solution (70) shows that the distortion of the slope and convexity of

aberrant signaling gradient by non-receptors is in the opposite direction relative to

that induced by the feedback on signaling receptor synthesis rate given

2 = 20 + 21  20 
20

1 + 
= 2 

It would seem that we may be able to take advantage of this observation through a

two-inhibitor model with receptor and non-receptor synthesis rates of the form (27)

and (51), respectively, to more effectively promote robust gradients. The LRNO solu-

tion for such a model, denoted by ̄(;  ) ≡ ̄() ' () is straightforward

with

̄(;  ) ≡ ̄() ∼ () =
̄2()

0
() (79)

=
̄

0
2
 (1 + )

sinh()

cosh((1 + ))
sinh((1− ))

for 0 ≤  ≤ 1 where  is the LRNO approximation for the robustness index ̄

for the present model, and

2 =
20

1 + 
+ 21 '

0

1 + 
+ 1 (80)

It is evident from the expression for 2 that its numerical value for a given

gradient system is not substantially different from 2 ' 0 + 1 for  = (1) since

   =  (10−1) for  = (1). This observation is confirmed by accurate

numerical solutions for the new model (with and without the LRNO approximation)

reported in Table III for the same sample problem as in Table I and II. The results

show that there is not an appreciable reduction in the robustness index with   0

for  = 1. The minimal effect of the signaling gradient itself is illustrated in Figure

3 for ̄(;  ). These observations are recorded as:
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Conclusion 10 In the presence of non-receptors (as an inhibiting agent for an aber-

rant signaling gradient) in the form of the synthesis rate (51) and (55), the (steady

state limit of a) spatially uniform non-local negative feedback (27) on receptor syn-

thesis rate reduces the signaling gradient concentration and ameliorates the distortion

of signaling gradient shape but not appreciably and only for  ≤ 1. For  ≥ 2,

the robustness index ̄ '  actually deteriorates with the addition of the negative

feedback on receptor synthesis rate.

Similar to the case without the negative feedback on receptor synthesis, the results

in Table III also show that too high a non-receptor-to-receptor synthesis rate ratio

( ≥ 2 in our example) would cause an excessive reduction of signal morphogen con-
centration and too severe a shape distortion to result in an unacceptable robustness

index. For  ≥ 2 (needed for   2), the addition of feedback on receptor synthesis
rate is actually deleterious to robust development for the illustrating example. The

slight reduction of the shape distortion parameter 2 for a positive , does not com-

pensate for the considerably larger reduction of the amplitude reduction factor (that

drives the amplitude of the signaling gradient at  = 0 to well below the concentra-

tion of the wild-type gradient at the same location). The corresponding graphs of

̄() = ̄(;  ) for different  and  in Figure 3 clearly show why the robustness

index ̄ may eventually deteriorate with increasing .

To confirm, we have from

 =
1

1(0)

sZ 1

0

[()−1()]2 (81)

the equation for determining ,

() = 0 (82)

where (·) is (·) as defined in (47) but with  and  replaced by  (with 

taken to be 1 in (27) as before) and

 =


1 + (1 + )10

sinh() cosh(0(1 + ))

sinh(0) cosh((1 + ))
 (83)

respectively. Solutions for some typical  calculated from (82) are shown in Table

III to confirm the observations made above and re-affirm Conclusion 9.

Table III

(0 = 1 = 02 0 = 1 = 10  = 1  = 10; 0 = 0001 1 = 001  = 005  = 2)
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  ̄  ̄(0) (0) ̄1(0)

0 0 03943 03938 011517 01169 00579

0 1 03557 03565 010222 01062 00579

0 2 03269 03284 009407 00959 00579

1 0 00714 00693 007398 00739 00579

1 1 00619 00612 007550 00710 00579

1 2 00560 00566 006894 00688 00579

2 0 01298 01365 005597 00555 00579

2 1 01471 01547 005778 00497 00579

2 2 01683 01766 004463 00449 00579

Figure 3: Effects of Negative Feedback on Receptor Synthesis for   0

4.5 Root-Mean-Square Displacement Differential

With  and  both depending on , the relation (82) is now a highly nonlinear

equation for  . Still, the expression for the new shape distortion factor  in (80)

shows clearly that it is not possible for the negative feedback on receptor synthesis

rate to reduce the shape distortion to an acceptable level if the non-receptor to recep-

tor ratio  should be much higher than 1. That this is not reflected in the computed

values of  in Table III suggests that the signaling robustness index  is by itself

not always an adequate measure of robustness. For this reason, we have also intro-

duced in [25, 16] its companion robust index  (denoted by  in [25]) that measures

the root-mean-square displacement differential of the ectopic signaling gradient.

Let () and 1() be the location where the aberrant and wild-type gradients

attains the value , respectively, i.e., ̄() = ̄1(1) = . In steady state, the dis-

placement robustness index ̄ is defined by

̄ =
1

 − 

s
1

 − 

Z 



[()− 1()]2 (84)

To minimize the effects of outliers, we may limit the range of  to be the interval

( ) with 0 ≤    ≤ ̄(0). (We may take  = ̄(0)10 and  = 9̄(0)10 for

instance.)

For gradients in a steady state of LRNO, the dependence of displacement ∆ =

() − 1() on any feedback for a non-negative range of  and 1 is through the

expression

 = 1− 1


sinh−1

µ




¶
 1 = 1− 1

0
sinh−1

µ


0

¶
where 2 is 

2
 with  replaced by  (the LRNO approximation for ̄) and

 =
̄

2

02

sinh()

cosh((1 + ))
 0 =

̄

0
2
0

sinh(0)

cosh(0(1 + ))


This article is protected by copyright. All rights reserved.



De
ve

lo
pm

en
ta

l D
yn

am
ic

s

The LRNO approximation of ̄ is then

̄ '  =
1

 − 

s
1

 − 

Z 



∙
1

0
sinh−1

µ


0

¶
− 1


sinh−1

µ




¶¸2
 (85)

With 20 À 1 we may, to a good first approximation, work with the asymptotic

values of these expressions to get

∆ = 0 + 1 ln () (86)

where

0 =
1


ln

µ

2

¶
− 1

0
ln

µ
0
2

¶
 1 =

µ
1

0
− 1



¶
 (87)

It follows that

̄ '  ' 0 =
1

 − 

s
1

 − 

Z 



[0 + 1 ln ()]
2


=
1

 − 

r
1

 − 
[20+ 201{ln ()− 1}+ 21 ({ln ()}2 − 2({ln()− 1})]

For sample calculations, we take  = (0) and  = (1) ≈ 0 so that

0 =

q
20 + 201{ln ()− 1}+ 21 ({ln ()}2 − 2{ln()− 1}) (88)

For more moderate values of 0 = 1 (with 0 =
√
0 = (3)), we would work

with the exact inverse functions

() = 1− 1


ln (())  1() = 1− 1

0
ln (0()) (89)

in (85) where

() =



+

sµ




¶2
+ 1

and 0() is () with  replaced by 0. Table IV reports some typical results for

the illustrating example of Tables I - III by the exact inverses (89):

Table IV

(0 = 1 = 02 0 = 1 = 10  = 1  = 10 0 = 0001 1 = 001  = 005  = 2)

 0 0 0 1 1 1 2 2 2

 0 1 2 0 1 2 0 1 2

 03938 03565 03284 00693 00612 00566 01365 01547 01766

 01987 02095 02159 00576 00575 00581 01454 01579 01737
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With robustness measured by the new robustness index, the results for the illus-

trative example computed from the LRNO solution in Table IV now show clearly how

 deteriorates with increasing  even for typical values of  around min (while 
deteriorates with increasing  only for   min). They further strengthen Conclusion

9 and complement it with the following (instead of Conclusion 10):

Conclusion 11 In the presence of the non-receptor inhibiting agent of the form (51)

and (55), the (steady state limit of a) negative spatially uniform non-local feedback

(27) on receptor synthesis rate more readily exacerbates the aberrancy of the signaling

gradient concentration when measured by the displacement robustness index .

Given the different (and sometimes opposite) ways how the negative feedback on

receptor synthesis rate impacts the two robustness indices of an aberrant gradient

for  ≥ 0, we should generally measure robustness by calculating both robustness
indices before reaching any conclusion about the robustness of the signaling gradient.

5 Feedback on Non-receptor Synthesis Rates

5.1 The Model

Non-receptors as an inhibiting agent for down-regulating an aberrant gradient in

the form (51) led to Conclusions 9 - 11 because the required synthesis rate has the

consequence of increasing the shape distortion parameter severely for   1 (which

is needed for aberrancy factor   2). This would not be the case if the level of

feedback depends on deviation from the wild-type gradient as measured by (one of

the robustness indices. For this purpose, we consider a positive feedback on non-

receptor synthesis rate  that also depends on the signaling robustness index of the

form

 = ̄ [ + 
(− )](− ) (90)

where the parameter  and  characterize the strength and sensitivity of the feedback

and the parameter  pertains to a possible time delay on the effect of feedback (and

  0 is again the instant of onset of the genetic or epigenetic perturbations). The

model in the previous section corresponds to  = 1 and  = 0 while the case  = 0

and   0 offers a positive feedback for stimulating a non-receptor synthesis rate com-

mensurate with the aberrancy measured by the robustness index . The subsequent

development of the theory for this new feedback process is similar if the signaling

robustness index  is replaced by the corresponding displacement robustness index

 as defined in (84).

Anticipating a limiting time-independent steady state of signaling gradient, we

expect

 → ̄
£
 + ̄



¤
= ̄ ̄

2
( ) (  0) (91)
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as the system approaches a time independent steady state. To maximize the effect of

̄ in the feedback (91), the parameter  will be set to 1 thereafter (similar to setting

 = 1 in the feedback on receptor synthesis rate (27)). For that reason, the parameter

 will not be displayed explicitly as a parameter of ̄2 in (91) and elsewhere. Given

Conclusion 9 and the fact that an instantaneously induced fixed synthesis rate is

rather unrealistic, we limit our discussion for the  = 0 case. An aberrancy dependent

positive feedback on non-receptor synthesis is also more consistent with experimental

observations reported in references cited in the last section.

Upon modifying the model of Sec. 3 with the feedback on the receptor synthesis

rate (27) to include the feedback (90), we reduce the new steady state problem to the

following BVP for ̄() = ̄(;    ):

̄00 −
̄20̄

0 + 0̄
− 

̄21̄

1 + 1̄
+ ̄(−) = 0 (92)

̄0(−) = 0 ̄(1) = 0 (93)

Correspondingly, the various remaining gradients are given by

̄() =
̄2̄

0 + 0̄
 ̄() =

̄20

0 + 0̄
(94)

̄() =
̄2 ̄

1 + 1̄
 ̄() =

̄21

1 + 1̄
(95)

with ̄() = ̄(;    ) etc. For a particular wing imaginal disc, it is clear

from the model that the robustness of its development depends on the strength of the

feedback on receptor synthesis rate characterized by the parameter  and the strength

of the non-receptor synthesis rate characterized by the parameters  and .

5.2 Low Receptor and Non-receptor Occupancy

When both receptors and non-receptors are in a state of low occupancy, we may

linearize the ODE (92) to get for ̄() ' ()

00 − 2 + ̄(−) = 0 (96)

subject to the two end conditions (93) with

2 = 2 + 2 = ̄2()
2
0 + ̄2()

2
1

' 0

1 + 
+ 1 ( + )  (97)

where  is the LRNO approximation of ̄ for the present model and we have

made the highly accurate approximations 20 = 0 and 21 = 1 consistent with the

simplification made in the earlier sections and in [22].

This article is protected by copyright. All rights reserved.



De
ve

lo
pm

en
ta

l D
yn

am
ic

s

The exact solution for () ≡ (;    ) is given by

() =

(
̄
2


{1− cosh( )

cosh( (1+))
cosh((+ ))} (− ≤  ≤ 0)

̄
2


sinh()

cosh( (1+))
sinh((1− )) (0 ≤  ≤ 1) (98)

In the range 0 ≤  ≤ 1, we have

̄() ' () =
̄2()

0
()

=
̄2()̄

0
2


sinh()

cosh((1 + ))
sinh((1− )) (99)

where 2 is as given in (97). From the expression

0̄(0) ' ̄2()(0)

=
̄

2

̄2() sinh()

cosh((1 + )))
sinh()

we obtain

̄(0) ' (0)

' ̄0 (1− −2)

1 +  (1 + ) ( + ) (10)
(100)

given  ¿  for both  = 0 and 1. Correspondingly, we have

̄(0)

̄1(0)
' (0)

1(0)
∼ (1− −2)(1− −20)
1 +  (1 + ) ( + ) (10)

(1) (101)

It is evident from (100)-(101) that, in the presence of non-receptors, a spatially

uniform non-local positive feedback of the type (90) with   0 or   0 (with  = 1)

reduces the magnitude of the signaling gradient (toward the wild type gradient) but

also induces a shape change relative to that without any feedback. While this effect on

the gradient shape counters that of the negative feedback on receptor synthesis, it may

over-compensate the latter if the magnitude of  should be too large relative to what is

needed to restore the signaling gradient to the corresponding wild-type gradient. With

 = 0, the non-receptor synthesis rate needed to achieve robustness can be adjusted

by the level of aberrancy of the signaling gradient through the feedback strength

parameter , hence more likely to be successful in keeping the aberrant signaling

gradient close to the wild-type gradient prior to the exogenous perturbations.

The net results of the different effects due to a positive feedback on non-receptor

synthesis rate with  = 0 and   0 is reflected in the LRNO robustness index

 =
1

1(0)

sZ 1

0

[()−1()]2 (102)
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or

() = 0 (103)

where (·) is (·) as defined in (47) but with  and  replaced by  (with 

and  both taken to be 1) and

 =


1 + (1 + ) ( + )10

sinh() cosh(0(1 + ))

sinh(0) cosh((1 + ))
 (104)

respectively. With  and  both depending on  , the relation (103) is now a

highly nonlinear equation for  .

5.3 Robustness Dependent Positive Feedback on Non-receptor

Synthesis

Given Conclusion 9, we are interested here in a positive feedback on non-receptor

synthesis that is robustness index dependent. The LRNO results for such a feedback

alone is obtained from those of the previous section by setting  = 0 and  = 0. The

signaling morphogen concentration
£
̄(0)

¤
==0

, denoted by ̄() ' (), is

given by

̄() ' () =


0
() ( ≥ 0) (105)

=
̄0

1 + 10

sinh()

cosh((1 + ))
sinh((1− ))

where  = [ ]==0 is the LRNO approximation of the robustness index and

2 = 20 + 2 = 0 + 1  (106)

The signaling ligand concentration at  = 0 is

̄(0) ' (0) =
̄

0



1 + 10

where

 =
sinh() sinh()

cosh((1 + ))


For the example used throughout this paper, we have 10 = 1 and therewith

2 = 0(1 + ) (107)

For 0 À 1 (but 0 = (1) as in our illustrative example)

̄(0)

̄1(0)
' (0)

1(0)
'  (1− −2)

(1 + ) (1− −20)
 (108)
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The LRNO approximation of the relative magnitude ̄(0)̄1(0) depends on the

robustness index through the shape distortion parameter  and the amplitude re-

duction factor 1 + 10. The LRNO approximation  of the (signaling)

robustness index is determined by

() = 0 (109)

where (·) is (·) as defined in (47) but with  and  replaced by  (with  and

 both taken to be 1) and

 =


1 + 

sinh() cosh(0(1 + ))

sinh(0) cosh((1 + ))
(110)

' 

1 + 

1− −2

1− −20
( ≥ 0 À 1)

respectively (having specialized to the case 1 = 0).

The following observations are immediate from (110):

• The amplitude reduction factor 1 +  is considerably smaller than the

corresponding factor for the model with the non-receptor synthesis rate (51)

when  is () for the latter model (or () in the feedback (91)) since 
is expected to be considerably less than unity.

• The shape distortion parameter  is considerably smaller than the correspond-
ing parameter  so that the shape of ̄() ' () is less steep and less

convex than ̄() ' ().

By the first observation, the reduction of the signaling differential robustness

index ̄ '  for  = 0 (and  = 1) is expected to be considerably more

modest than the corresponding reduction of ̄ '  for  = 1 (and  = 0). In

particular, it barely meets the conservative threshold of  ≤ 02 with  = 01972

for  = 2 for our illustrative example. This is understandable given the amplitude

reduction factor is now (1 + )
−1
(for  = 0) instead of (1 + )−1 (for  = 1

and  = 0) with (1 + ) = 1 for  = 2 and  = 1. We need  = (1),

i.e.,  = (5), for the reduction to be comparable to the  = 1 (and  = 0) case.

On the other hand, the shape distortion (for  = 0 and  = 1) is now less severe

with 2 = 0 (1 + 10)  0 (1 + 10) since   1 for some degree of

robustness. The actual benefit (or cost) for a  = 0 and  = 1 feedback on non-

receptor synthesis rest on the net effect from the two opposite bulleted impacts above

on the two robustness indices.

While this net effect may be case specific, it should be evident from the expression

(107) that the impact of any increase in the synthesis rate ratio  is much less than

full (as it would be for the synthesis rate (51)) as only a fraction  of  is felt by

the gradient system. Moreover, that fraction would be further reduced by the impact
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of the increase in  on reducing the robustness index. In other words, the impact

of any increase in  is doubly palliated (as long as the robustness index is less than

unity), thereby reducing its effect on the shape distortion parameter  . In this

sense, non-receptors as an inhibiting agent introduced through the feedback (91) is

stable, at least more so than through (51). This enables us to assert the following

conclusion:

Conclusion 12 The feedback (91) with  = 0 is more stable and biologically realistic

than   0 (and  = 0) for down-regulating the aberrant signaling gradient.

Remark 13 For   0, the addition of   0 would further decrease the amplitude

reduction factor to (1 + ( + ))
−1. However, the gain is offset by a more severe

shape distortion resulting from 2 = 0 {1 + ( + )}  0 {1 + }.

5.4 An Effective Multi-Feedback Instrument for Robust De-

velopment

With    ≥ 0  1 ≥ , the shape distortion induced by the feedback (91)

with  = 0 is opposite to that by the negative feedback (33) on the receptor synthesis

rate. Acting alone, the latter feedback has no impact on the amplitude reduction

factor. Administering concurrently with the positive feedback on non-receptor, the

two mitigating effects on shape distortion should help to lower the robustness index of

the aberrant signaling gradient due to each feedback acting alone. To take advantage

of this observation, we specialize the general results of Subsection 5.2 to the case

 = 0 so that the positive feedback on non-receptor is robustness dependent. The

signaling morphogen concentration
£
̄(0)

¤
=0
, to be denoted by ̄() ' (),

is given by

̄() ' () =
̄2()

0
() ( ≥ 0) (111)

=
̄0

1 +  (1 + )10

sinh()

cosh((1 + ))
sinh((1− ))

where  = [ ]=0 is the LRNO approximation of the robustness index and

2 = 2 + 2 =
0

1 + 
+ 1 (112)

5.4.1 The LRNO signaling morphogen concentration (0)

The LRNO signaling morphogen concentration at  = 0 is then given by

(0) =
̄0

1 +  (1 + )10
 (113)

This article is protected by copyright. All rights reserved.



De
ve

lo
pm

en
ta

l D
yn

am
ic

s

where

 =
sinh() sinh()

cosh((1 + ))
 (114)

For the example used throughout this paper, we have 10 = 1 and therewith£
2

¤
=0

= 0

µ
1

1 + 
+ 

1

0

¶
≡ 2 (115)

and
̄(0)

̄1(0)
∼  (1− −2)
(1 +  (1 + )10) (1− −20)

 (116)

It is evident from (116) that the amplitude reduction factor is now larger than

that for  = 0 so that it has the effect of reducing ̄(0)  ̄(0). At the same time,

we have 2  2 which reduces the shape distortion caused by   0. Together,

they enable us to conclude:

Conclusion 14 Concurrent applications of the positive feedback on non-receptor syn-

thesis (91) with  = 0 and a (moderate strength) negative feedback on receptor syn-

thesis rate ̄2(̄)̄ promote more effectively robustness of a signaling gradient than

either feedback acting alone.

For a sufficiently large value of   0, 2 may be reduced to nearly 20 so that

the resulting aberrant gradient shape would approach that of the wild type. With

2
∼= 20 for  in the range that renders

(1 + )

µ
1− 

1

0

¶
∼= 1, (117)

we have

(0) ' ̄

0

µ
1− 

1

0

¶
sinh(0) sinh(0)

cosh(0(1 + ))
(118)

=
̄

0 (1 + )

sinh(0) sinh(0)

cosh(0(1 + ))


Whether the resulting aberrant signaling gradient is sufficiently close to the wild type

can only be read from the corresponding two robustness indices.

5.4.2 The LRNO Robustness Index

The LRNO approximation of the differential signaling robustness index  is deter-

mined by

() = 0 (119)
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where (·) is (·) as defined in (47) but with  and  replaced by  (with 

and  both taken to be 1) and

 =


1 +  (1 + )

sinh() cosh(0(1 + ))

sinh(0) cosh((1 + ))
(120)

' 

1 +  (1 + )

1− −2

1− −20
 (121)

respectively (having specialized to the case 1 = 0). The relations (119) and (120)

also apply to the corresponding differential displacement robustness index  if we

replace  in ̄2, ̄2 , 
2
,  and  by .

One effect from the addition of a negative feedback on signaling receptor synthesis

rate is to increase the amplitude reduction factor to 1 + (1 + )10 and

thereby decreases the "amplitude" of () (see (113). Generally, this effect should

reduce . However, it is not difficult to see that

Lemma 15  does not tend to 0 as →∞.

Proof. Assuming the opposite so that  → 0 as →∞, there are three possibil-
ities pertaining to the magnitude of :

i)  → 0 with

()→ 1()

It follows that  → 0  0 as given in (26) contradicting the assertion to the

contrary.

ii) There exists a positive  such that  →   0 and

() =
̄

0

sinh()

cosh((1 + ))
sinh((1− ))

with

2 =
20

1 +
 20

It follows that () is generally not 1() and   0 as →∞, contradicting
the assertion to the contrary.

iii)  → ∞ but 2 → , then we have 1 +  (1 + )10 →
1 +1  1 and 2 → 0  20 so that  must again be positive in the limit

as →∞ and we again arrive at a contradiction.

As a consequence of the lemma above, we have the following observations on the

robustness index:

• For a fixed value of  (and  = 0),  must eventually reach a minimum and
begin to increase with further increase in  tending to a finite limit ∞. Since
the limit ∞ depends on the value of , the specific two-feedback mechanism
is said to be stable (but not asymptotically stable).
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• For any moderate value of  (and  = 0) to result in a corresponding  ,

the following inequalities on the shape distortion parameter and the amplitude

reduction factor hold

) 20

µ
1

1 + 
+ 

¶
 20 (1 + ) = 2 

) 1 +  (1 + )
1

0
 1 + 10 

Hence, the addition of a moderate strength negative feedback on receptor syn-

thesis rate should bring the aberrant signaling gradient closer to the wild type

so that    .

• For a fixed moderate value of  so that   1, a sufficiently large value

of , say 1, would render

1

1 + 
+  ≈ 1

and keep the gradient shape close to the wild-type gradient shape. Increasing 

well beyond 1 would reduce the shape parameter of the modified gradient well

below unity, thereby would distort the gradient unduly in the opposite direction

and work against robustness.

These results provide a specific realization of how an appropriate two-feedback

combination of receptor and non-receptor synthesis rates may enhance both aberrant

signaling ligand concentration reduction and shape-change amelioration:

Conclusion 16 A multi-feedback instrument of the type (27) and (91) with  = 0 is

both effective and stable for down-regulating the aberrant signaling gradient without

distorting unacceptably the slope and convexity of the wild-type signaling gradient.

The development above applies also to the displacement differential robustness

index . As such the same qualitative conclusion may also be said about both in-

dices. And both should be examined for robust signaling since they measure different

features of the signaling gradient. Table V gives the two indices for the illustrative

example for a range of  and  showing the benefits of an appropriate combination

of the multi-feedback instrument.

Table V
0 = 1 = 02 0 = 1 = 10  = 1  = 10

0 = 0001 1 = 001  = 005  = 2  = 0
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0
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01987

02539

01514

01972

01249

01421

00949




1
03565

02095

02263

01526

01769

01239

01289

00930




2
03284

02159

02073

01521

01626

01223

01194

00911




4
02872

02187

01815

01483

01431

01180

01059

00872




Remark 17 Similar to the  = 0 case, the addition of   0 to the present two-

feedback system (of   0 and   0) would be a two edge sword: a further reduction of

the amplitude reduction factor on the one hand, and an increase of the shape distortion

factor 2 the other hand. The former does not always promote robustness as it

may down-regulate the signaling gradient to a level substantially below the wild-type

gradient.

Figure 4: Positive Feedback on Non-receptor Synthesis Only ( =  = 0)

Figure 5: Feedback on Receptor and Non-receptor Synthesis (  0  = 0)

6 Concluding Remarks

When an abnormal genetic or epigenetic perturbation interrupts an ongoing biological

development, one or more agents that counteract the unwelcome effects of the induced

signaling distortion need to be activated by the onset of abnormal development to

down-regulate the aberrancy. This means the existence of some kind of feedback

process in order to promote robust signaling. Feedback has long been seen as a mech-

anism for attaining robust biological development and specific feedback loops have

been identified in the morphogen literature such as [13, 23, 29, 19, 24] and others.

Though the conventional Hill function type (theoretical) negative feedback on recep-

tor synthesis rate proves to be ineffective for this purpose [17, 26, 25], we have shown

in [22] that a multi-feedback strategies involving direct (robustness index induced)

reduction of morphogen synthesis rates are capable of promoting robust signaling.

To the extent that feedback mechanisms may not down-regulate morphogen synthe-

sis rate directly, we need to determine a more realistic multi-feedback mechanism for

robust signaling.

Among the possible mechanisms for achieving robust signaling that are biologi-

cally meaningful and realistic, the potential of non-receptors down-regulating signal-

ing (and hence promoting robust development) has already been established theoret-

ically in [17, 18]. While numerical simulations in [25] show that Hill function type

feedback involving non-receptors often results in gradient systems that are either still
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unacceptably aberrant or biologically unrealistic, we show in this paper that a biolog-

ically realistic multi-feedback strategy involving a positive feedback on non-receptors

and another known feedback process (such as a negative feedback on receptor syn-

thesis rate) exists and is effective in promoting signaling gradient robustness. The

result also suggests that other combinations of known feedback processes should be

explored.

Understanding how robust signaling can be attained by multi-feedback mecha-

nisms is important not only to shed light on the reliability of developing signaling

gradient systems, but also to help explain the ubiquitous presence of the many elab-

orate regulatory schemes in morphogen systems.
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Figure 1:  Spatially uniform negative feedback on receptor synthesis rate. 
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Figure 2:  Effects of non-receptors 
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Figure 3:  Effects of negative feedback on receptor synthesis rate for Z > 0. 
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Figure 4:  Positive feedback on non-receptor synthesis rate only (c = η = 0). 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

Figure 5:  Feedback on receptor and non-receptor synthesis rates (c > 0, η = 0). 
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