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Abstract
Chlamydia trachomatis is an important bacterial pathogen that has an unusual devel-
opmental switch from a dividing form (reticulate body or RB) to an infectious form
(elementary body or EB). RBs replicate by binary fission within an infected host cell,
but there is a delay before RBs convert into EBs for spread to a new host cell. We
developed stochastic optimal control models of the Chlamydia developmental cycle
to examine factors that control the number of EBs produced. These factors included
the probability and timing of conversion, and the duration of the developmental cycle
before the host cell lyses. Our mathematical analysis shows that the observed delay
in RB-to-EB conversion is important for maximizing EB production by the end of the
intracellular infection.

Keywords Chlamydia · Infectious disease · Birth and death processes · Optimal
control · Stochastic optimization

Mathematics Subject Classification Primary 60H10 · 49J15; Secondary 93E20 ·
92B05

1 Introduction

1.1 Chlamydia trachomatis and Its Development Cycle

Chlamydia trachomatis is a major cause of genital and eye infections in humans (Bat-
teiger and Tan 2019). There were an estimated 131million new cases ofC. trachomatis
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i) ii) iii)

vi) v) iv)

Fig. 1 (i) The elementary body (EB) binds the host cell and (ii) enters within a membrane-bound com-
partment called the chlamydial inclusion. (iii) The EB converts into a replicating form called the reticulate
body (RB), (iv) which divides repeatedly by binary fission. (v) About halfway through the 48-h intracellular
infection, RBs begin to convert into EBs in an asynchronous manner. (vi) The developmental cycle ends
when the host cell lyses and EBs are released to infect new host cells. RBs that have not yet converted are
not infectious. Figure from Wan and Enciso (2017) (Color figure online)

genital infection in 2012, making it the most common cause of sexually transmitted
bacterial infection (Newman 2015). This pathogen also causes trachoma, which is the
world’s leading cause of preventable blindness. 21 million people are estimated to
have active trachoma (Taylor et al. 2014) of which 1.9 million individuals are blind
or have severe visual impairment (World Health Organization 2020). Trachoma has
been targeted for elimination by the World Health Organization.

C. trachomatis replicates by means of an unusual 2-day developmental cycle that
takes place within a human, or other eukaryotic, host cell (Fig. 1) (Abdelrahman and
Belland 2005; Lee et al. 2018;Moulder 1991). Unlike most bacteria, Chlamydia exists
in two distinct morphological forms, each with a specialized function. The infectious
form, called an elementary body (EB), binds and enters a host cell. However, the EB
cannot divide and instead converts into a reticulate body (RB), which is the repli-
cating form of the bacterium. Within a membrane-bound compartment known as the
chlamydial inclusion, the RB divides repeatedly by binary fission, which expands the
RB population. Then after a period of no conversion (a conversion holiday), individual
RBs each convert into an EB. This conversion event occurs asynchronously, so that
some RBs are converting into EBs, while others continue to divide. Thus, at late times
in the intracellular infection, the inclusion contains a mixture of RBs, EBs, divid-
ing RBs, and intermediate bodies (IBs), which are RBs in the process of converting
into EBs. This mix of chlamydial forms is released into the extracellular space when
the host cell lyses. RB-to-EB conversion is a critical step in the developmental cycle
because RBs are not infectious, and only EBs can spread the infection to a new host
cell.

Until recently, these developmental events of the intracellular Chlamydia infection
had not been quantified. Conventional electron microscopy of a Chlamydia-infected
cell analyzes a section through the inclusion, and thus reveals the relative pro-
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portions, but not accurate numbers, for each developmental form Belland (2003),
Hackstadt et al. (1997) and Shaw (2000). Using a novel three-dimensional electron
microscopy approach known as serial block-face scanning electron microscopy (Denk
andHorstmann 2004; Leighton 1981), the labs of Tan and Sütterlin recently performed
a comprehensive analysis of the chlamydial inclusion. This study quantified the chang-
ing number of RBs and EBs in the inclusion over the course of the developmental cycle
(Lee et al. 2018). This analysis also provided extensive quantitative data on RB repli-
cation and RB-to-EB conversion because it was able to identify and quantify RBs
undergoing replication (dividing RBs; referred to as DBs in this study) or conversion
(IBs).

This study confirmed the delayed and asynchronous nature ofRB-to-EBconversion,
and alsomeasured a 6-fold decrease in averageRB size as theRBpopulation expanded.
Taking into account the correlation between small RB size and the onset of RB-to-EB
conversion, Lee et al. proposed a size control mechanism in which RBs reduce in
size through replication, and cannot convert into an EB until they are below a size
threshold (Lee et al. 2018). They also showed that a mathematical model based on this
size control mechanism, and utilizing measured and calculated parameter values and
Gamma distributions, replicated growth curves for the developmental cycle.

In the current report, we have used the extensive data from the Lee et al. study
to conduct a theoretical investigation of the Chlamydia developmental cycle. This
analysis reveals that the dynamics of the developmental cycle, with delayed conversion
fromRBs to EBs, is a successful strategy for the bacterium tomaximize the production
of infectious progeny and, thus, the spread of the intracellular infection to a new host
cell.

1.2 Maximum Spread of Infection and Selective Pressure

With a high RB-to-EB conversion rate (relative to RB proliferation rate), allowing
more RBs to divide at an early stage would generate more RBs for later conversion
to more infectious EBs to be discharged when the host cell lyses. With its initial
conversion holiday, the Chlamydia development cycle would increase the terminal
EB population for a larger spread of the bacterial infection. In a Darwinian world
of natural selection, maximizing terminal EB strategy would be seen as the bacterial
response to the pressure of competitive species survival.

To assess the validity of this posit, a two-form deterministic model (the PT-Model)
that captures the essential features of the developmental cycle for the RB and EB
populations was formulated and analyzed in Wan and Enciso (2017) for a particular
chlamydial inclusion. With the (per unit RB) conversion rate u(t) as the control, the
model seeks the optimal u(t) that maximizes the EB population at the terminal time
T when the host cell lyses. For the biologically relevant conversion capacity range,
optimal maximizing strategy of this PT-Model does in fact start with a conversion
holiday. The small size threshold for conversion eligibility, not stipulated in themodel,
is seen as an instrument for inducing this initial period of no conversion.

In reality, the lysis time of an infected cell varies, but has not been quantified
empirically. Data collected in Lee et al. (2018) and elsewhere also show variability of
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in other developmental features. Probabilistic models would be needed to address the
observed stochasticity. Two such models (the WS-Model of Sect. 3 and the RT-Model
of Sect. 4), are formulated and analyzed in this paper for this purpose. Both are based
on a birth and death process model (the BD-Model) of Sect. 2. The optimal strategy
for maximizing the mean terminal EB population will be shown to also require a
conversion holiday at the start, again supporting our posit for this case of infected
cells embedded in an uncertain environment. As in the PT-Model of Wan and Enciso
(2017), there is no stipulated enablingmechanism such as a size-threshold requirement
for conversion eligibility to dictate an initial period of no conversion in the optimal
maximizing strategy; rather, the conversion holiday in the development cycle generated
by the WS-Model and the RT-Model are natural consequences of maximizing the
terminal (mean) EB population.

1.3 Post Conversion Holiday RB Growth

To keep the modeling and analysis manageable, the four relevant (PT-, BD-, WS- and
RT-) models are for two (lumped) forms (RB and EB) of the Chlamydia population
(unlike the four-form GD-Model for RB, DB, IB and EB in Lee et al. 2018). Without
multiple divisions to reach the conversion eligibility threshold size, these two-form
models are not sufficiently fine-grained for matching the reported data beyond the
conversion holiday phase of the bacterial growth. (For that reason, no attempt will
be made to validate our models by comparing numerical solution with available data
herein.) Quite the contrary, we note in Sect. 6 a qualitative difference between predic-
tions by our two form optimal control models and the available data after the initiation
of RB-to-EB conversion. More specifically, data collected in Lee et al. (2018) show a
continual growth of the RB population after the initiation of RB-to-EB conversion at
least for a period. In contrast, the three (PT-, WS- and RT-) models show an immedi-
ate and continual decline of the expected RB population after the onset of RB-to-EB
conversion. We conclude this paper by a brief description of how this deficiency is
remedied by a four-form model (designated as the MP-Model).

1.4 A Summary of Relevant Models

For clarity, a brief description of the relevant models discussed herein can be found in
“Appendix A”.

2 A Birth and Death Process Model (The BD-Model)

2.1 The Kolmogorov Equations

We begin by modeling RB proliferation (birth) and RB-to-EB conversion (death) of
the Chlamydia developmental cycle as a birth and death process to capture the basic
activities for the bacteria to proliferate and spread infection . Denote by Rt and Et

the random variable for the size of RB and EB population, respectively, at time t . Let
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Pk(t) and Q j (t) be the probability of Rt and Et be of size k and j , respectively, at
time t . With assumptions similar to those for various birth and death models (such
as stationarity, independent increments and a sufficiently short elapsed time δt for no
more than one division or conversion), we have the following relations for Pk(t + δt)
and Q j (t + δt):

Pk(t +δt) = {1 − k(λD + λC )δt} Pk(t)+ (k+1)λCδt Pk+1(t)+ (k−1)λDδt Pk−1(t)

and

Q j (t + δt) = {1 − λCδt P1(t) − 2λCδt P2(t) − 3λCδt P3(t) − · · ·} Q j (t)

+ λCδt {P1(t) + 2P2(t) + 3P3(t) + · · ·} Q j−1(t)

except for negligibly small terms relative to terms proportional to δt . In these two
relations, λCδt and λDδt are the probability of one conversion and one duplication,
respectively, during the elapsed time δt . Since our experimental findings clearly show
a time varying RB-to-EB conversion rate (Lee et al. 2018), the present linear birth and
death model (the BD-Model) henceforth works with a time varying λC (t) but keep λD

constant since there is no indication to suggest otherwise.
This system of interactions approximately corresponds to the reactions R −→ 2R,

R −→ E with rates λD , λC respectively, using notation for chemical reactions. We
use separate variables for the states Pk and Q j rather than a joint state for RBs and
EBs, in order to carry out the analysis in the next section.

In the limit as δt tends to zero, we get the following ODE systems

dPk
dt

= −k(λD + λC )Pk + (k + 1)λC Pk+1 + (k − 1)λDPk−1, (1)

dQ j

dt
= λC

(
Q j−1 − Q j

) ∞∑

i=0

i Pi , (2)

augmented by the initial conditions Pk(0) = δkN and Q j (0) = 0, k, j = 0, 1, 2, . . .
, given that the process starts with N RB units and no EB.

2.2 Solution by Generating Functions

The ODE system for Pk(t) and Q j (t) can be reformulated as a problem for the corre-
sponding probability generating functions (pgf)

G(x, τ ) =
∞∑

k=0

Pk(t)x
k, F(x, τ ) =

∞∑

k=0

Qk(t)x
k . (3)

with G(x, τ ) and F(x, τ ) determined by

∂G

∂τ
+

{
(1 + ρ)x − ρ − x2

} ∂G

∂x
= 0 (4)

123



24 Page 6 of 35 G. Enciso et al.

and
∂F

∂τ
+ ρ(1 − x)R̄t F = 0 (5)

with

τ = λDt, ρ(τ ) = λC (t)

λD
, R̄t (τ ) =

∞∑

k=0

kPk(t) (6)

The initial conditions for {Pk(t)} and
{
Q j (t)

}
require

G(x, 0) = xN , F(x, 0) = 1. (7)

The solution for G(x, τ ) is found by the method of characteristics in “Appendix B”
to be

G(x, τ ) = xN0 =
{
1 + x − 1

e f (τ ) − (x − 1)I (τ )

}N

(8)

where

f (τ ) = −τ +
∫ τ

0
ρ(ξ)dξ, I (τ ) =

∫ τ

0
e f (ζ )dζ. (9)

Unlike the PDE (4) for the generating function G(x, τ ) of the sequence {Pk(τ )},
the corresponding equation (5) for the generating function F(x, τ ) of the sequence
{Qk(τ )} is effectively an ODE that is separable in time with x as a parameter. With
R̄t (τ ) given by (11), Eq. (5) for F(x, τ ) becomes

dF

dτ
= (x − 1)ρ(τ )R̄t (τ )F = (x − 1)ρ(τ )Ne− f (τ )F

so that
F(x, τ ) = eN (x−1)

∫ τ
0 ρ(ζ )e− f (ζ )dζ (10)

with F(x, 0) = 1 meeting the condition of no EB initially.

2.3 Means andVariances

2.3.1 Expected RB Population

The expected RB population as a function of time is then given by

R̄t (τ ) ≡ E[Rt ] =
∞∑

k=0

kPk(t) =
[
∂G

∂x

]

x=1

=
[

NxN−1
0 e f (τ )

{
e f (τ ) − (x − 1)I (τ )

}2

]

x=1

= Ne− f (τ ) (11)
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A differential form of the solution for R̄t (τ ), needed in subsequent development, is
obtained by differentiating both sides of (11) to get

d R̄t

dτ
= Ne− f (τ )

{
−d f

dτ

}
= (1 − ρ) R̄t , R̄t (0) = N . (12)

For the special case of a constant conversion probability λC so that ρ is a constant,
the mean populations (11) and (15) simplify to

R̄t (τ ; ρ) ≡ E[Rt ] =
∞∑

k=0

kPk(t) = Ne(1−ρ)τ (13)

with
R̄t (τ ; 1) ≡ E[Rt ] = N (14)

for the special case λC = λD . For λC �= λD , we have the following limiting behavior
for the mean RB population:

lim
t → ∞

[
R̄t (τ ; ρ)

] =
{
0 (λD < λC )

∞ (λD > λC )
.

(The expressions E[Rt ] and R̄t (τ ; ρ) will be used interchangeably for the expected
RB population size as a function of time t with τ = λDt and ρ = λC/λD .)

2.3.2 Expected EB Population

The expected EB population at any instant in time is then

Ēt (τ ) ≡ E[Et ] =
[
∂F

∂x

]

x=1
= N

∫ τ

0
ρ(ζ )e− f (ζ )dζ. (τ = λDt) (15)

We will also need the following differentiated form of this result obtained by differ-
entiating (15) with respect to τ to get

dĒt

dτ
= Nρ(τ)e− f (τ ) = ρ R̄t , Ēt (0) = 0. (16)

The expected EB population for a constant ρ is

Ēt (τ ; ρ) ≡ E[Et ] =
∞∑

k=0

kQk(t) = ρN

1 − ρ

[
e(1−ρ)τ − 1

]
(ρ �= 1) (17)

and, as a limiting case of (17) as ρ → 1,

Ēt (τ ; 1) = Nτ. (18)
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Note that we have
lim

t → ∞
[
Ēt (τ ; ρ)

] = ∞
for all ρ > 0.

2.3.3 Variance of EB Population

For the corresponding variances, we note

[
∂2F

∂x2

]

x=1
=

[ ∞∑

k=0

k(k − 1)Qkx
k−2

]

x=1

= E[E2
t ] − E[Et ]

so that

Var [Et ] = E[E2
t ] − (E[Et ])2 =

[
∂2F

∂x2

]

x=1
+ E[Et ] − (E[Et ])2.

But we have from (10)

[
∂2F

∂x2

]

x=1
=

(
N

∫ τ

0
ρ(ζ )e− f (ζ )dζ

)2

= (E[Et ])2

so that
Var [Et ] = E[Et ].

Proposition 1 For our BD-Model, the variance of the EB population is the same as
the mean population.

Remark 1 From the partial derivative of the pgf F(x, τ ) in x , it is seen that the distri-
bution of Et may be written as

Qk(τ ) = zk(τ )

k! e−z(τ ), z(τ ) = N
∫ τ

0
ρ(ζ )e− f (ζ )dζ

so that the EB process is Poisson in z(τ ).

2.3.4 Variance of RB Population

For the RB population, we have similarly

Var [Rt ] =
[
∂2G

∂x2

]

x=1
+ E[Rt ] − (E[Rt ])2

with

E[Rt ] =
[
∂G

∂x

]

x=1
= Ne− f (τ )

123



Stochastic Chlamydia Dynamics and Optimal Spread Page 9 of 35 24

by (11). From (8), we have

[
∂2G

∂x2

]

x=1
= 1

N
(E[Rt ])2 {N − 1 + 2I }

so that

Var [Rt ] = E[Rt ]
{
N − 1 + 2I

N

}
(19)

For a constant ρ �= 1, we have from (9)

Var [Rt ] = 1 + ρ

1 − ρ

(
e(1−ρ)τ − 1

)
E[Rt ].

Note that the variance of the RB process is generally not equal to the mean of the
process.

3 Maximum Expected EB Population at Host Cell Lysis Time (The
WS-Model)

3.1 Terminal Time of Life Cycle

While the BD-Model captures the basic RB activities to proliferate and convert to EB
during the chlamydial developmental cycle, such activities are known to terminate
in finite time. Unless the host cell lyses at some instant T so that the EB units are
released to infect other hosts, the bacteria would not be able to spread and thereby risk
eventual extinction. Experimental findings show the finite lysis times of different host
cells span over a significantly large time interval and cannot be approximated by a
single numerical value. The majority of C. trachomatis-infected cells among the data
collected lyse between48and72hpost infection (hpi), seeElwell et al. (2016);Hybiske
and Stephens (2007). Yet these and other available data do not offer a definitive guide
or directive toward the cause or process that induce lysing. To amplify, data collected
in Lee et al. (2018) shows that the total Chlamydia units in a cytoplasmic inclusion
typically tend to an upper limit after 32 hpi. The inclusion volume also increases with
time at the early stage of the developmental cycle but also ceases to increase near the
end. It was found that the total volume (size) of the chlamydiae actually reduces while
the total number of bacterial units increases; yet available space for more chlamydiae
does not appear to be an issue.

Absent of sufficient information for the determination of the host cell lysis time, a
plausible criterion for Chlamydia developmental cycle termination is formulated here
to illustrate one approach to complete the specification of the optimization problem
that reflects the bacteria’s expected response to the pressure of natural selection. Given
the limited capacity of the inclusion that houses the Chlamydia units within the host
cell, the approach adopted here would have the host cell lysing at the instant T when a
weighted sum of the expected RB and EB population, R̄t and Ēt , reaches a threshold
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size Pc (not necessarily in excess of the inclusion’s capacity)

{
nĒt (τ ; ρ) + m R̄t (τ ; ρ)

}
t=T ≡ n ĒT + m R̄T = Pc. (20)

(leading to the name WS-Model) for n > 0 while m may be of either sign to be
explained below. Given the stochastic nature of proliferation and conversion process
in the BD-Model, the criterion (20) allows for variations of T among the different host
cells.

The condition (20) with m > 1 may be associated with the relative size of the
EB and RB particles (by a factor of 50 at the start and down to about 5 near the
end). Experimental findings reported in Lee et al. (2018) also suggest that there are
additional factors contributing to the host cell lysis. Among these is EB particles
secreting chemicals that enhance host cell lysing. This effect may capture by a suitably
large positive n in (20). Depending on the potency of the lysis inducing EB chemicals,
the ratio m/n > 0 may be > 1 or < 1.

Observations in Lee et al. (2018) also suggest the possibility of RB particles exhibit-
ing inhibitory effects on host cell lysing to prolong their own existence. In the context
of the threshold condition (20), such inhibitory effects may be incorporated by modi-
fying it to read

n ĒT + (m − i) R̄T = Pc, (21)

for some parameter i > 0 characterizing the inhibitory effects of the RB population.
Equation (21) is again of the form (20) withm− i taking the place ofm. Given n ≥ 1,
we may divide the threshold condition (20) above through by n and write the result as

ĒT + m c R̄T = Pc, (22)

where mc = (m − i)/n may be > 1,< 1 or < 0.
Before adopting this condition for the optimization of the expected terminal EB

population, we note briefly the situation for the special case where the conversion
probability does not vary with time. In that case, the optimal conversion probability
is λ∗

C = λD (or ρ = 1) and then it is a calculus problem to obtain as the maximum
expected EB (

ĒT
)
max = (Pc − mcN ) , (23)

to be attained at the terminal time

Tmax = Pc − mcN

λDN
. (24)

where mc may be negative or positive. We see from (24) and (23) that the terminal
time would be later for mc > 1 with a larger expected terminal EB population. (Data
reported in Lee et al. (2018) suggest that mc may change with time but the condition
(20) involves onmc at the terminal time so the temporal variation ofmc is not relevant
for the WS-Model.)

Remark 2 The following two observations are appropriate at this time:
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• The requirement of optimal conversion probability λ∗
C = λD (ρ∗ = 1) may

not be met if the conversion capacity is limited so that λC is restricted to be
λ∗
C ≤ λmax < λD . For λmax < λD , we should presumably convert (suboptimally)

at λ∗
C = λmax.

• Experimental data reported in Lee et al. (2018) suggest a terminal time T of about
42–48 hpi. On the other hand, the theoretical optimal time Tmax to maximum
expected terminal EB population for λ∗

C = λD as given by (24) is about 5,000 hpi
way to long to be biologically realistic.

3.2 An Optimal Control Formulation

To find the ρ(τ) that maximizes the expected EB population at some terminal time
T , denoted by ĒT ≡ Ēt (τT ) with τT = λDT , it is well-known that the appropriate
method of solution for this type of problems is the method of optimal control. For
this reason, we henceforth change to the more conventional optimal control notations,
writing u(t), α, ET , E(t) and R(t) for λC (t), λD , ĒT , Ēt (τ ) and R̄t (τ ), respectively.
There is also the additional benefit of being able to compare directly with the results
for the deterministic optimal control problems of Wan and Enciso (2017) and Wan
(2018). In terms of the optimal control notations, the results for the expected RB and
EB populations, R(t) ≡ R̄t (τ ) and E(t) ≡ Ēt (τ ), associated with the BD Model of
the last section are restated in differential form below to be referenced in the ensuing
optimal control analysis:

Proposition 2 The rates of growth of the expected RB population R(t) ≡ R̄t (τ ) and
the expected EB population E(t) ≡ Ēt (τ ) in physical time t are determined by the
two IVP

R′ = (α − u)R, R(0) = N , (25)

E ′ = uR, E(0) = 0, (26)

respectively, with ( )′ = d( )/dt.

With ρ = λC (t)/λD = u(t)/α, the IVP (25) and (26) are merely (12) and (16),
respectively, in the new notations. For R(t) and E(t) to be differentiable, we limit
admissible u(t) (≡ λC (t)) to the set 
 of piecewise smooth (PWS) functions. In
terms of un-normalized quantities R(t) and E(t), our optimization problem as

max
u ε 


[ ET =
∫ T

0
uRdt ], (27)

subject to the growth dynamics and initial condition (25) for R(t) and the terminal
constraint

E(T ) + mc R(T ) = Pc, (28)

with RT = R(T ) being the (expected) terminal RB population in the new notation.
Given the reality of a limit to the capacity to convert, there is an upper bound on

the one-way RB-to-EB conversion. The optimal choice uop(t) among all u(t) in the
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admissible set 
 is required to satisfy the inequality constraints

0 ≤ u(t) ≤ umax. (29)

3.3 TheMaximum Principle

The appropriate method for finding the optimal conversion rate uop(t) that maximizes
the expected terminal EB population ET is the Maximum Principle (Bryson and Ho
1969; Wan 1995; Pontryagin 1962). For this method of solution, we introduce the
Hamiltonian

H [u] ≡ H(R, E, λ, u) = λ(α − u)R + uR = λαR + (1 − λ) uR (30)

and form the following adjoint differential equation

dλ

dt
= −∂H

∂R
= −λ(α − u) − u (31)

to be satisfied by an adjoint function (aka Lagrange multiplier) λ(t) as a necessary
condition required by the Maximum Principle. The adjoint DE (31) and the growth
dynamics DE in (25) constitute a Hamiltonian system supplemented by only one
auxiliary condition in (25) on the unknown R(t) prescribed at t = 0 of the solution
domain [0, T ]. The Maximum Principle then requires the adjoint function λ(t) to
satisfied the adjoint (Euler) boundary condition

λ(T ) = 0. (32)

If the control u(t) should have a finite jump discontinuity at an instant ts in (0, T ),
theMaximumPrinciple requires that theHamiltonian be continuous at the switch point
ts :

[H ]ts+t=ts− = 0. (33)

Finally, the optimal control uop(t) must maximize H(t) in the sense

[H ]u=uop(t) = max
u ε 


[
H(R∗, E∗, λ∗, u)

] = H(R∗, E∗, λ∗, uop(t)) (34)

where ( )∗ is the quantity ( ) induced by the optimal control. As we shall see, this last
step constitutes the most challenging part of the solution process for our problem.

The second order ODE system (25) and (31) is supplemented by two auxiliary con-
ditions: the initial condition in (25) and the Euler boundary condition (32). Together,
they determine the state function R(t) and adjoint function λ(t), with the terminal
time T determined by the threshold condition (28) once we know the control u(t).
If the control should have a finite jump discontinuity at a switch point ts , the switch
condition (33) applies to determine the switch point.

In principle, the optimal control uop(t) is specified by the stationary condition (34)
to complete the solution process. From the requirements imposed by the Maximum
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Principle,we readily observe in the following three sections three key results pertaining
to the optimal conversion strategy, i.e., the optimal control uop(t).

3.4 Singular Solution Not Applicable

Suppose we have the state and adjoint functions corresponding to the optimal control
uop(t). Then the dependence of theHamiltonian on the controlmust be such that uop(t)
is one of its maximum points. We should therefore seek uop(t) among the stationary
points uS(t) of the Hamiltonian H [u(t)]. Since H is differentiable with respect to u,
we use (34) in the form

∂H

∂u
= R(−λ + 1) = 0. (35)

to determine an interior extremum. Now, the relation (35) does not involve the control
u(t) and therefore does not provide any clue to uS(t) directly. But with R(t) > 0, an
interior extremum would require the adjoint function to be the singular solution

λ(s)(t) = 1. (36)

In principle, the singular solution (36) being an interior extremum should be pre-
ferred. However, it is not applicable in any sub-interval of the solution domain. Given

0 = dλ(s)

dt
= −λ(s)(α − u) − u = −α < 0,

being an impossibility, the singular solution does not satisfy the necessary condition
(31) required by the Maximum Principle in any sub-interval (t1, t2) of the solution
domain. Hence, it is not a part of the solution for the problem.We have thus established
the following negative result for our problem:

Proposition 3 The singular solution (36) has no role in the solution for our maximum
(mean) terminal EB population problem defined by (27), (25), (28) and (29) with a
time-varying control.

3.5 Optimal Conversion Rate

We limit discussion only to the biologically realistic case of umax > α (see Figure
5G of Lee et al. 2018). (If u(t) < umax, we can always increase E(T ) by converting
at umax at any time t and still continue to grow the RB population.) For this range of
umax, taken in the form

uα ≡ umax − α > 0, (37)

we first observe the following properties for the solution of the problem:
Property 1: For uα > 0, we must have

(i) uop(t) = umax, (i i) λ(t) < 1, (38)
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in some interval ts < t ≤ T for some ts < T .
Since R(t) > 0 for all t in [0, T ], we must convert at umax at the terminal time;

otherwise we can always increase E(T ) by converting at a higher rate. The optimal
control (38) follows from continuity of state and adjoint functions (given u(t) is PWS),
proving part (i).

Upon observing (i), the Hamiltonian (30) becomes

[H ] = umaxR(t) [1 − λ(t)] + α [λ(t)R(t)] , (ts < t ≤ T )

requiring λ(t) < 1 for t in the interval (ts, T ] adjacent to the terminal time T (for the
Hamiltonian would not be maximized by umax in that interval otherwise) proving part
ii). (The property can also be proved by invoking the Euler boundary condition (32).)

Property 2: If (ts, T ] is the largest interval adjacent to T in which (38) holds for
uα > 0 and 0 < ts < T , then ts must be the zero of λ(t) = 1 nearest to T , giving us
the switch condition

λ(ts) = 1, (39)

for determining the switch point ts of the optimal control uop(t).
Property 3: In the interval (ts, T ] where the Hamiltonian is maximized by umax

(with λ (t) < 1 for uα > 0), the adjoint DE (31) for λ(t) simplifies to

λ′ = uαλ − umax. (40)

It follows that λ(t) is monotone decreasing with (increasing) time in (ts, T ] given
λ(t) < 1 in that interval.

Remark 3 The property is also a consequence of the exact solution

λ(t) = c0e
uα(t−T ) + umax

uα

(ts < t ≤ T ) (41)

for the terminal value problem defined by (40) and (32) where the constant of integra-
tion c0 is determined by the Euler boundary condition to give

λ(t) = umax

uα

(
1 − euα(t−T )

)
(ts < t ≤ T ). (42)

Property 4: With λ(t) increasing as t decreases, there exists an instant ts < T
when (39) holds. The “switch condition” (39) determines the switch point ts to be

euα(ts−T ) = α

umax
, or ts = T − 1

uα

ln
(umax

α

)
< T (43)

given 0 < α < umax. Hence, the switch point occurs prior to the terminal time (though
both are still unknown prior to the application of the threshold condition (28)).

We are now in a position to state the following key result for our optimal control
problem:
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Proposition 4 The optimal conversion strategy for umax > α is

uop(t) =
{
0 [0 < t < ts)
umax (ts < t ≤ T ] , (44)

where the switch point ts is determined by (43). (Note that ts ↓ 0 as umax ↓ α.)

Remark 4 The relative simple proof of this proposition is given in “AppendixB”.When
umax � α, it would seem advantageous not to convert immediately near the start and
allow the RB population to grow initially for a while. The larger RB population at
a later time would then be converted at the fastest pace possible leading to a larger
terminal EB population. Proposition 4 not only succinctly captures the essence of
this advantageous strategy, it also provides the indispensable specification of the most
opportune time to start converting for maximal spread of infection.

A conversion strategy of the form (44) involving two distinct strategies with a finite
jump discontinuity at the instant when a switch from one strategy to the other is known
as a bang-bang control in the control literature (Bryson and Ho 1969; Wan 1995).

3.6 Terminal Time

With the optimal bang-bang control (44), it is straight forward to use the growth
dynamics (25) and (26) to determine the corresponding R(t) and E(t) to be

Rop(t) =
{
Neαt (0 ≤ t ≤ ts)
Neαts e−uα(t−ts ) (ts ≤ t ≤ T )

,

and

Eop(t) =
{
0 (0 ≤ t ≤ ts)
umax
uα

Neαts
[
1 − e−uα(t−ts )

]
(ts ≤ t ≤ T )

.

The lysis condition (28) then gives the following requirement relating the terminal
time T and the switch point ts :

e−uα(T−ts ) = pce−αts − γ

mc − γ
, γ = umax

uα

, pc = Pc
N

. (45)

This relation and the switch condition (43) determine the optimal switch point ts and
terminal time T . The solution

ts = 1

α
ln

(
pc

1 + mcα/umax

)
(46)

shows the switch point ts to be always positive (since we have typically pc = Pc/N �
mc + 1 > 1 + αmc/umax) and a monotone increasing function of pc with

pc
mc + 1

= [
eαts

]
umax=α

≤ eαts <
[
eαts

]
umax→∞ = ts .
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The optimal terminal time Top may be written as

αTop ≡ [αT ]u=uop(t) = αts + α

uα

ln
(umax

α

)

= ln

(
pc

1 + mcα/umax

)
+ α

uα

ln
(umax

α

)
, (47)

With pc = Px/N � 1, we have generally

αTop = O

(
ln

(
Pc
N

))
.

Proposition 5 For the biologically relevant case of uα > 0, the optimal host cell lysis
time of the WS-Model for maximum expected terminal EB population is of the order of
ln(pc) and is an decreasing function of the weight factor mc (which may be negative
when the inhibiting effect of RB dominates).

Thus. the time to the optimal expected terminal EB population is an order of mag-
nitude maller than αTop = O(pc) for u(t) = α (= λD) [see (24)] when λC is time
invariant.

4 Uncertain Host Death (The RT-Model)

4.1 Terminal Time as a RandomVariable

Chlamydia species differ in the length of their developmental cycle, e.g. C. trachomatis
takes about 48 h whle C. pneumoniae takes about 72 h (Elwell et al. 2016; Hybiske
and Stephens 2007). But for a given species, host cell lysis occurs within a relatively
narrow time window. Yet it is also true that the range of time of host cell lysis hasn’t
been well quantified. In the absence of definitive knowledge of the cause or process
that induces host cell lysis, we formulated in the last section a plausible model, theWS-
Model, that provides a criterion for terminating the Chlamydia developmental cycle.
To the extent that there is no conclusive evidence to validate (or refute) the criterion,
we offer here another plausible approach to the determination of the termination time
of a life cycle. In the present approach, we take the lysis times of different infected host
cells to be random events induced by the different random embedding environments of
the infected cells. The evolution of the two Chlamydia populations are the stochastic
processes associatedwith the stochasticity forwhich data are available for the uncertain
terminal time T . As such T may be taken as a random variable with a prescribed
probability density function (pdf) pT (t) (to be estimated from the data available) and
the stochastic processes of evolving RB and EB populations induced be characterized
by the birth and death processes governed by (1) and (2),

For the purpose of analysis, we take the initial time t = 0 to be the instant a group
of endocytosed infecting EB transforming into RB units that are positioned to grow
and divide. Since host cells are known not to lyse before some T1 > 0 (e.g., 40 hpi
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< T1 < 48 hpi), we should let

pT (t) = U (t − T1) fT (t) =
{
0 (t < T1)
fT (t) (t > T1)

where fT (t) is the non-zero part of pT (t) with

∫ ∞

−∞
pT (τ )dτ =

∫ ∞

T1
fT (τ )dτ = 1.

where U (z) is the Heaviside unit step function with a unit jump at z = 0.
The corresponding EB population at the terminal time is also a random variable

E(T ), a transformed random variable of the random variable T . The expected value
of E(T ), denoted by ET , is given in terms of the pdf pT (τ ) by

ET =
∫ ∞

−∞
E(τ )pT (τ )dτ =

∫ ∞

T1
E(τ ) fT (τ )dτ.

For simplicity, we continue to work with the two-form Chlamydiamodel of Sect. 3 so
that we have from the growth dynamics (25) of EB

E(T ) =
∫ T

0
u(t)R(t)dt .

For maximum spread of the C. trachomatis bacteria, we choose the (per unit RB
particle) conversion rate u(t) to maximize the expected terminal EB population ET :

ET =
∫ ∞

T1
fT (τ )

[∫ τ

0
u(t)R(t)dt

]
dτ. (48)

subject to the conversion capacity inequality constraint (29). Upon interchanging the
order of integration, we may re-write the expression above as

ET =
∫ ∞

0
Fc(τ )u(τ )R(τ )dτ (49)

where

Fc(t) =
{∫ ∞

t fT (τ )dτ (t ≥ T1)
1 (t ≤ T1)

(50)

is the probability of the host cell NOT lysed at time t .
Given the empirical data reported in Lee et al. (2018) showing all host cells to have

lysed by 72 hpi. all pdf should be with compact support, so that

pT (t) = U (t − T1)U (T2 − t) fT (t) (51)
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and

Fc(t) =
⎧
⎨

⎩

0 (t ≥ T2)∫ T2
t fT (τ )dτ (t1 ≤ t ≤ T2)
1 (t ≤ T1)

(52)

Typical probability density functions include the uniform density distribution (over
the interval (T1, T2))

pT (t) = 1


[1 −U (t − T2) ]U (t − T1),  = T2 − T1 > 0, (53)

and the generalized inverse distribution density function

pT (t) = T1T2
t2

U (t − T1)U ((T2 − t). (54)

The two corresponding Fc(t) are

Fc(t) =
⎧
⎨

⎩

0 (t ≥ T2)
1


(T2 − t ) (T1 ≤ t ≤ T2)
1 (t ≤ T1)

(55)

and

Fc(t) =
⎧
⎨

⎩

1 (t ≤ T1)
T1
t (T2 − t ) (T1 ≤ t ≤ T2)
0 (t ≥ T2)

, (56)

respectively.
Note that the expected host cell lysis time is given by

T̄ =
∫ ∞

−∞
tpT (t)dt =

∫ T2

T1
t fT (t)dt

independent of the growth dynamics or the optimal conversion strategy. For the two
particular pdf above, we have

T̄ =
∫ T2

T1

1


dt = 1

2
(T2 + T1 ) (uniform distribution)

and

T̄ =
∫ T2

T1

T1T2
t

dt = T2T1
 ln

(
T2
T1

)
(generalized inverse distribution).
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4.2 A Stochastic Optimal Control Problem

With (49), the optimization of expected terminal EB population takes the form

max
u ε 


{
ET =

∫ T2

0
Fc(t)u(t)R(t)dt

}
(57)

subject to the IVP (25) and the constraints (29) with 
 being the set of admissible
(PWS) controls as previously defined.

To apply the method of optimal control, we introduce the Hamiltonian

Hs(t) = u(t)R(t)Fc(t) + λ(t)R(t) {α − u(t)}
= u(t)R(t) {Fc(t) − λ(t)} + αλ(t)R(t) (58)

with the newHamiltonian Hs in (58) reduced to the Hamiltonian H for a known T , i.e.,
fT (t) = δ(t −T )where δ(x) is the Dirac delta function. TheMaximum Principle has
as a necessary condition for optimality the adjoint function (aka Lagrange multiplier)
λ(t) satisfying the adjoint ODE

λ′ = (u − α) λ − uFc (59)

for t in the interval (0, T2), and an associated adjoint (Euler) boundary condition (BC)
at T2

λ(T2) = 0. (60)

The Maximum Principle also requires that we choose an admissible u to maximize
Hs (Bryson and Ho 1969; Pontryagin 1962; Wan 2018):

max
u ε 


{Hs[u]} = max
u ε 


R∗(t)[u(t)
{
Fc(t) − λ∗(t)

} + αλ∗(t)]
= Hs[uop(t)], (61)

subject to the inequality constraints

0 ≤ u ≤ umax

with ( )∗ = ( )u=uop(t). Since the Hamiltonian is linear in the control function u(t),
the optimal control is expected to be a combination of singular controls and extreme
values of the admissible control over different time intervals.

4.3 Singular Solution Not Applicable

Candidates for the maximizers of Hs are normally among the stationary points of the
Hamiltonian, i.e., the solutions of

∂Hs

∂u
= [R(t) {Fc(t) − λ(t)}] = 0. (62)
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With R(t) changing at the rate (α − u)R ≥ (α − umax)R, the RB population remains
positive for all time as long as N > 0 so that the stationary condition requires

λS(t) = Fc(t). (63)

Note that the control u(t) does not appear in the stationary condition (62) and hence
is not determined by (62). As an immediate consequence of the stationary condition
(63), the singular solution λS(t)with the corresponding singular control uS(t) is to be
deduced from other requirements of the Maximum Principle as appropriate. For our
problem, the adjoint DE requires

F ′
c(t) = −αFc(t)

which is generally not satisfied by the probability distribution Fc(t) of the host cell
not lysing (and certainly not by the two illustrative examples in (55) and (56)). Hence,
the singular solution is generally not applicable in any interval of the solution domain
[0, T2] and we have the following negative result for our problem:

Proposition 6 The singular solution (63) is not applicable in any part of the solution
domain for our uncertain terminal time problem.

Remark 5 It follows from Proposition 6 that the optimal control can only be a com-
bination of the two extreme values 0 and umax of the constraint on u(t) known as the
lower and upper corner control, respectively, in the control literature. Similar to the
WS Model, we consider here only the biologically relevant range uα > 0 (see Figure
5G of Lee et al. 2018),

uα = umax − α, (64)

4.4 Optimal Conversion for umax > ˛

With R(t) > 0, u(T2) < umax is not optimal since we can always choose a larger u
(still within the admissible range) to convert some of the remaining RB for a larger
EB population at T2. With uop(T2) = umax, we have from the adjoint DE

λ′
g(T2) = −umaxFc(T2) ≤ 0 (65)

where λg(t) denotes the adjoint function with u(t) = umax. Along with the continuity
of λ(t) − Fc(t), the condition (65) requires that uop(t) must be umax for some inter-
val (ts, T2] adjacent to T2. We state this observation more formally in the following
proposition with a formal proof:

Proposition 7 The upper corner control maximizes the Hamiltonian (58) for some
interval (ts, T2] with ts being the largest root of the switch condition (nearest to T2)

Sg(t) ≡ Fc(t) − λg(t) = 0. (66)

Proof see “Appendix C”. �
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Having Proposition 7, it remains to determine for the uα = umax −α > 0 range: i)
the optimal control in the complementary range [0, ts), ii) the switch point ts ; and iii)
the optimal expected terminal EB population ET . (Note that the expected terminal
time has already been determined from the pdf of T .) For these tasks, we need the
adjoint function for the entire solution interval [0, T2]. .

The adjoint function for the upper corner control umax adjacent to the terminal time,
denoted by λg(t), is determined by the terminal value problem:

λ′
g = −(α − umax)λg − umaxFc(t), λg(T2) = 0. (67)

The solution for a finite T2 and any t in the interval [0, T2] is

λg(t) =
⎧
⎨

⎩

0 (t ≥ T2)
�2(t) (T1 ≤ t ≤ T2)
�1(t) (t < T1)

(68)

where �k(t) depends on the specific Fc(t) in the relevant time interval.
For uα > 0, we know from Proposition 7 that the upper corner control umax is

optimal for (ts, T2) where ts is the largest zero of (66). If umax should also be optimal
for t � ts for the uniform pdf (53), then the ODE for the adjoint function at ts (the
zero of (66)) simplifies to

λ′
g(ts) = −αλg(ts) = −αFc(ts) < 0

since λg(ts) = Fc(ts). With λg(ts) an exponentially decreasing function of t for t � ts
and Fc(t) typically decreases algebraically (as in the two examples (55) and (56)), we
have

λg(t) > Fc(t) for t � ts .

contradicting umax being optimal there. Since the singular control is not applicable, the
lower corner control becomes the only option. This leads to the following proposition
for the optimal control:

Proposition 8 For uα > 0, the lower corner control maximizes the Hamiltonian in
[0, ts) so that the optimal control is the bang-bang control

uop(t) =
{
0 [0 < t < ts)
umax (ts < t ≤ T2] , (69)

where ts is given by switch condition

λg(ts) = Fc(ts). (70)

Proof see “Appendix D”. �
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5 UniformDensity on a Finite Interval (The RT-Model, Continued)

5.1 The Adjoint Function

For the remaining two tasks, determining the switch point ts ; and the optimal expected
terminal EB population ET , we need the functions �k(t), k = 1, 2. We illustrate the
method of the solution by working out in the this section the details for the uniform
density function (53). For this pdf, it is straightforward to solve the relevant terminal
value problems to get

�2(t) = umax

u2α

{
uα (T2 − t) −

[
1 − e−uα(T2−t)

]}
(71)

�1(t) = umax

u2α

{
uα −

[
e−uα(T1−t) − e−uα(T2−t)

]}
(72)

with  = T2 − T1. Note that λg(t) is continuous at T1 and T2. That λg(t) = 0 for
t ≥ T2 reflects the fact that the reticulate bodies have no “(shadow) value” beyond T2.
With Fc(t) = 0 for t ≥ T2, the host cell has already lysed with probability 1 so that
we would only be interested in the range of time t < T2.

5.2 The Switch Point ts

The process of determining the switch point ts for umax > α depends on the location
of ts since the expressions for Fc(ts) and λg(ts) vary with that location [see (68)].

5.2.1 ts ≤ T1

The conditions (68) and (72) requires

umax

αuα

[
1 − e−uα

] = euα(T1−ts )

so that

ts = T1 − 1

uα

ln

(
umax

α

1 − e−uα

uα

)
. (73)

As umax increases (with α fixed), the switch point ts tends to T1 and may have already
moved into the ts > T1 range (to be discussed below). At the other extreme, the switch
point ts in this range tends to 0 (or less) as umax ↓ α from above.

5.2.2 T1 < ts ≤ T2

For ts in the interval (T1, T2), we have from (71) and (68)

e−x = 1 − α

umax
x, x = uα (T2 − ts) (74)
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Unlike the case ts ≤ T1, the switch condition does not determine ts explicitly. Instead,
it only leads to a nonlinear equation for ts . Graphing the two sides of (74) as functions
of x with α and umax prescribed shows that the switch condition determines a unique
positive root x∗ with

ts = T2 − x∗

uα

> T2 − umax

αuα

. (75)

bounded above by T2 and below by T2 − umax/ (αuα). For a fixed α, we have

ts → T2 − 1/α as umax → ∞
while ts should move into the ts < T1 range as umax ↓ α.

5.3 The Optimal Expected Terminal EB Population

5.3.1 A Local Maximum

For uα > 0, we know from Proposition 8 that the bang-bang control (69) maximizes
the Hamiltonian with ts determined by (75) or (73) whichever is appropriate. Now
maximizing the Hamiltonian is not synonymous with maximizing ET , we still need
to prove that uop(t) maximizes ET for uα > 0.

Proposition 9 For uα > 0, the bang-bang control (44) maximizes the expected termi-
nal EB population.

Proof From Propositions 7 and 8, we know already that uop(t) as given by (44) max-
imizes the Hamiltonian Hs with ts in the interval (T1, T2). For our relatively simple
control problems, we may appeal to the uniqueness of the switch point and that the
optimal control is superior to not-converting any RB to EB at all to complete the proof.

�
5.3.2 The Expected Terminal EB Population

For the optimal conversion strategy uop(t) given in (44), we have from the growth
dynamics (25)

Rop(t) =
{
Neαt (0 ≤ t ≤ ts)
Ne−uα t + umaxts (ts ≤ t < T )

. (76)

The associated expected EB population is given by (57) so that

ET =
∫ T2

0
uop(t)Fc(t)Rop(t)dt = umaxNeαts

∫ T2

ts
Fc(t)e

−uα(t−ts )dt

= umaxNeαts

uα

{
E2(ts) (ts ≥ T1)
E1(ts) (ts ≤ T1)

(77)

with

E2(ts) = 1

uα

{
uα (T2 − ts) −

[
1 − e−uα(T2−ts )

]}
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E1(ts) = 1

uα

{
uα

[
2 − e−uα(T1−ts )

]
− [

1 − e−uα
]}

where  = T2 − T1 and ts is determined by (75) if ts ≥ T1 or (73) if ts ≤ T1.

6 A Two-Step Growth and ConversionModel (theMP-Model)

6.1 A Conversion Holiday at the Start

That the optimal conversion strategy from our two constrained optimal control models,
theWS-Model and theRT-Model, for maximizing the expected terminal EB population
turns out to be a bang-bang control (44) for α < umax is rather gratifying. Without any
presumption of an initial conversion holiday or any enabling mechanism (such as a
size-threshold for conversion to ensure its occurrence) the optimal conversion strategy
deduced for both models unequivocally anticipates the experimental findings in Lee
et al. (2018). If nothing else, they help to buttress our posit that natural selection is at
work to result in the observed developmental cycle.

The relevant data (averaged over inclusions) supporting the theoretical optimal
conversion strategy summarized in Table 1 have been excerpted from the pie chart of
Figure 1 of Lee et al. (2018). The RB unit total reported in this summary includes
both (RB and DB) types of this form that were actually reported: those that are ready
and eventually convert into EBs and those not ready to convert but ready to divide
by binary fission. The conversion of RB is first into intermediate body, denoted by
IB, that eventually becomes EB with total EB reported in Table 1 here being the sum
of both types. The pie-charts in Figure 1 of Lee et al. (2018) show only RB of both
types in the infected cells 20 h post infection (hpi). With data collected every 4 hpi,
the conversion to IB and then to EB begins sometimes around 24 hpi. This is well after
the infecting EB entering the host cell, over a time period nearly half way through the
development cycle.

The total EB population (the sum of IB and EB actually observed) rises quickly to
192 units at 28 hpi indicating a maximum possible conversion rate that is much greater
than the natural RB proliferation rate. They also show a sharp rise of IBs and EBs
at a nearly discontinuous conversion rate around ts � 24 hpi. Furthermore, with the
total RB population declining sharply after reaching a peak of 507 units at 32 hpi, the
corresponding gain in EB units becomes slower as shown by the available data up to
40 hpi. These observations provide further support for conversion being proportional

Table 1 Mean count of RB and EB (averaged over inclusions)

Bodies hpi
12 16 20 24 28 32 36 40 > 40

RB 1.3 7.6 34 105 385 507 271 171 Not reported

EB 0 0 0 3.7 192 656 706 751 Not reported
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to the RB population size as modeled by (26) and with a conversion rate upper bound
umaxR considerably higher than the natural growth rate αR for the RB form.

It would be natural at this point to make use of parameter values (for α, umax,
etc.) estimated in Lee et al. (2018) to calculate relevant quantities such as the switch
point ts , terminal time T and other information pertaining to the mean populations of
interest. However, the available data from Table 1 excerpted from Lee et al. (2018)
suggest that our models still need further refinement before embarking on this task.
From the growth dynamics of the RB population modeled by (25), we see for the
relevant range α < umax of interest here that the RB population grows exponentially
prior to the onset of conversion (since uop(t) = 0 during the conversion holiday at
the start) but begins to decline immediately after the switch point ts (� 24 hpi) since
R′ = α − umax < 0 (for t > ts). On the other hand, the total RB population reported
in Table 1 continues to increase for a period after the appearance of EB particles
around 24 hpi. That total only starts to decline after reaching a maximum of 507
units at 32 psi. This important qualitative difference is likely due to the lumped form
simplification in the models formulated herein. Without multiple divisions to reach
the conversion eligibility threshold size, these two-form models are not sufficiently
fine-grained for matching the reported data beyond the conversion holiday phase of
the bacterial growth. To remedy this discrepancy, we consider in the next section a
four form model, to be known as the MP-Model, that allows for two different types
each of RB (RB and DB) and EB (IB and EB) as actually recorded in Lee et al. (2018).
Such a model was formulated in both Lee et al. (2018) and Wan and Enciso (2017).
The additional step of transitioning to another form before division will be shown to
rectify the discrepancy in the post conversion holiday RB growth.

6.2 AMulti-form PopulationModel

In addition toRBs andEBs, intermediates of RBdivision (known as dividingRBorDB
for brevity) and RB-to-EB conversion (known as intermediate body or IB) have been
identified and reported separately in Lee et al. (2018) for their distinctive appearance
on electron micrographs and shown in Table 2.
Amore realisticmodel forC. trachomatis differentiation and proliferationwouldwork
with a four-formmodel as in the schematic diagramof Figure 2 (Wan andEnciso 2017).
At any instant of time in this MP-Model, some (eligible) RB units of the population
R(t)may convert into an Intermediate form I (t) at the rate uR (that would eventually
become EB) while the remainder of R(t) to be transitioned into DB form at the rate
α1R(t). Each unit of the DB population D(t) is capable of binary division into two
new RB at the rate α2D. The population I (t) of Intermediate form converts to EB at a
rate bI . The growth rates of the four populations are summarized mathematically by
the following four differential equations:

R′ = − (α1 + u)R + 2α2D, D′ = α1R − α2D, (78)

I ′ = uR − bI , E ′ = bI (79)

123



24 Page 26 of 35 G. Enciso et al.

Ta
bl
e
2

M
ea
n
co
un

to
f
R
B
an
d
E
B
(a
ve
ra
ge
d
ov
er

in
cl
us
io
ns
)

B
od

ie
s

hp
i

12
16

20
24

28
32

36
40

>
40

R
B
/D

B
0.
6/
0.
7

3.
9/
3.
7

17
/1
7

43
/5
2

19
5/
19

0
26

3/
24

4
17

1/
10

0
12

0/
41

N
ot

re
po

rt
ed

IB
/E
B

0
0

0
3.
4/
0.
3

10
7/
85

27
2/
32

4
19

2/
51

4
10

7/
64

4
N
ot

re
po

rt
ed

123



Stochastic Chlamydia Dynamics and Optimal Spread Page 27 of 35 24

starting with some initial populations

R(0) = R0, D(0) = D0, I (0) = I0, E(0) = 0 (80)

with DB (the dividing RB) and IB (the intermediate body) populations typically taken
to be zero initially so that D0 = I0 = 0. The MP-Model (78)–(80) was first developed
in Wan and Enciso (2017) as a refinement of the PT-Model. It may also be taken as
the dynamics for the mean populations of the four stochastic population process in a
birth and death model analogous to (1) and (2) for the two-form case.

From the second ODE in (79), we get the total EB population at the time of host
cell death T

E(T ) =
∫ T

0
bI (t)dt

The problem of determining the (PWS) optimal RB-to-EB conversion strategy u(t)
(to result in the largest possible (mean) terminal EB population E(T ) at the time T
when the host cell lyses) takes the form

max
0 ≤ u ≤ umax

[
E(T ) =

∫ T

0
bI (t)dt

]
, (81)

subject to the growth dynamics of the first three ODE of (78) and (79), the first three
initial conditions of (80) and the inequality constraints (29). As a refinement of theWS-
Model, some condition for determining the terminal time T would also be prescribed.
A parallel development for a refinement of the RT-Model can also be formulated but
will not be needed for the present purpose.

6.3 The Post Conversion Holiday RB Population

Given that all population change rates are linear, the optimal control is expected (and
can be shown) to be bang-bang for umax sufficiently large (Wan and Enciso 2017).
Prior to the onset of RB-to-EB conversion at ts , we have uop(t) = 0 with the first two
ODE in (78) summed to give

C ′(t) = α2D(t), C(0) = N (82)

for C(t) = R(t) + D(t) and R(0) + D (0) ≡ R0 + D0 = N . Since D(t) > 0 for
t > 0, we have C ′(t) > 0 so that the total RB population increases with time at least
up to the onset of the RB-to-EB conversion at time ts .

For t > ts , we have from the bang-bang control uop(t) = umax so that

C ′ = −umaxR
(c) + α2D, C(ts) = Cs (83)

123



24 Page 28 of 35 G. Enciso et al.

with Cs = Rs + Ds where Rs and Ds are, by continuity of the population sizes, the
values of R and D at the switch point ts determined by the IVP defined by (78) with
u = 0 and the first two initial conditions in (80). Consistent with the grouping in
Lee et al. (2018), the RB population in our four form model consists of two groups:
those at or below the critical small size threshold and can convert (to be denoted by
R(c)(t)) and those (larger than the threshold size,) still growing and not ready to divide.
Only the group R(c)(t) can divide; as such, the uR term in the rate of change of R of
the MP-Model is an artificial simplification to avoid the complexity of dealing with
multiple rounds of division before resulting in a convertible RB and the superscript
“(c)” in (83) is to remind us of that fact.

With Cs = Rs + Ds > 0 and the various population sizes continuous in time,
we have the the following important conclusion for rectifying the noted deficiency
pertaining to the post conversion holiday growth of the total RB+DB population:

Proposition 10 The combined RB+DB population C(t) continues to increase at least
for t in some interval (ts, t∗). The increase continues to a larger interval (ts, t∗∗) for
some t∗∗ > t∗ if

α2Ds > umaxR
(c)
s . (84)

Proof At t = ts , C(t) is increasing given (82). It continues to increase since R(c)
s is

generally small relative to Ds for ts+ (since those below critical threshold size can
convert immediately with finite probability so that the population of that convertible
group must necessarily be very small near ts , assuring the inequality (84) in a small
interval (ts, t∗∗) for some t∗∗ > t∗ > ts). It follows from (83) that C ′(t) > 0 in
(ts, t∗∗) and the second half is also proved. �

The condition α2Ds > umaxR
(c)
s of the proposition is met by the data reported in

Lee et al. (2018). Crude estimates using the data presented in Lee et al. (2018) yield
the comparisons in Table 3 showing α2D(t) > umaxR(c)(t) at least for a small interval
post conversion holiday. [Even if there should be some inhibiting mechanism (such as
that imparted by RB associated with the parameter i in Eq. (20)) so that R(c)(ts) is not
so small, the recorded data leading to Table 3 may be attributed to the slow ramp up
of u(t) toward umax so that u(t)R(c)(t) remains small in some interval (ts, t∗) again
ensuring (84).]

As a consequence of the proposition above and the validity of (84) in practice, the
combined RB+DB populationC(t) should continue to increase (at least for an interval
of time post-conversion holiday) after the switch point when the RB-to-EB conversion
begins. Hence, a glaring qualitative discrepancy between the highly idealized model
of the previous section is rectified by the multi-phase life cycle model of this section.

Table 3 Growth rate estimates
(ti , ti + 4) (20, 24) (24, 28) (28, 32)

D/4 � α2D(t̄i ) 8.75 37 13

I/4 � umaxR(c)(t̄i ) 0.85 26 41
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7 Summary of Findings and Implications

The comprehensive examination of the chlamydial inclusion by three-dimensional
electron microscopy reported in Lee et al. (2018) provided an exceptionally rich trove
of data on the unusual Chlamydia developmental cycle distinguished by

(i) the alternative bacterial fate choices for an RB between division into two RBs,
or conversion into an EB;

(ii) the existence of a period of no conversion (called a conversion holiday for brevity)
in the first half of the developmental cycle;

(iii) a putative small size threshold for RB-to-EB conversion;
(iv) proposed RB size reduction through repeated divisions to reach this conversion

threshold size, and
(v) variability among the times for host cell lysing times for releasing EBs to infect

other cells.

These unusual features and others prompted us to initiate a theoretical research
project to gain some insight to the bacteria’s development. We choose to begin with
a Birth and Death model in Sect. 2 to characterize the bacteria’s life cycle of division
and conversion. This provides a gradual transition from our Gamma distribution based
probabilistic GD model introduced and discussed in Lee et al. (2018) to the different
optimal control models formulated and investigated in this paper. Notice that other
approaches are possible and might lead to similar results, such as using a doubly
subscripted quantity Pkj to describe the state of the system having k RBs and j EBs.
We believe our choice of notation Pk and Q j provides a more natural transition to the
mean population sizes of RBs and EBs, respectively.

A four-form mathematical model (the GD-Model for RB, DB, IB and EB) with
parameter values estimated from available data (see Table 1 of Lee et al. 2018) shows
that these features can be replicated quite faithfully by a relatively simple probabilistic
model (see Figure 5g of Lee et al. 2018 for example). In contrast, the goal of the
current work is to examine our posit that the developmental cycle maximizes the
spread of the bacterial infection (when the host cell lyses and releases the infectious
EB form) by showing the theoretical maximizing strategy corresponds qualitatively to
the developmental cycle reported in Lee et al. (2018). In a Darwinian world of natural
selection, the maximizing strategy would constitute the bacteria’s response to the
pressure of species survival, the bio-theoretic basis for the Chlamydia developmental
cycle.

For a particular infected cell, the deterministic PT-Model inWan and Enciso (2017)
is found to support our posit as the optimal bang-bang control strategy to maximize in
fact specifies a (very unusual) period of noRB-to-EB conversion at the start of the cycle
that is qualitatively the same as reported in Lee et al. (2018). A small size threshold for
RB-to-EB conversion eligibility observed in Lee et al. (2018) (but not stipulated by any
of the optimal control models) is now seen to provide an instrument for a conversion
delay. With available data show some variability of the host cell lysis times among
the collection of infected cells examined; probabilistic models should be developed
to address the observed stochasticity (accompanied by empirical quantification of the
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observed variability for C. trachomatis). Two such models (the WS-Model of Sect. 3
and the RT-Model of Sect. 4), both based on the BD-Model of Sect. 2, are shown to
also require a conversion holiday at the start for their optimal strategy for maximizing
the mean terminal EB population and thus further support our posit on the collection
of infected cell data.

To keep the modeling and analysis manageable, the three relevant (PT-, WS- and
RT-) models are for two (lumped) forms (RB and EB) of the Chlamydia population
(unlike the four-form GD-Model for RB, DB, IB and EB in Lee et al. 2018). Even
with parameter values estimated from reported data, these two-form models are not
sufficiently fine-grained for matching the reported data beyond the conversion holiday
phase of the bacterial growth (so that replicating faithfully the reported data for the
development cycle by these lumped form models is not in the cards). In Sect. 6, we
noted this deficiency and show that a four-form MP-Model would have continuing
growth of RB+DB for a period after the start of RB-to-EB conversion qualitatively
consistent with data reported in Lee et al. (2018).

Overall, we have shown that the delay in RB-to-EB conversion (conversion holiday)
is a strategy to maximize infectious yield (i.e. terminal EB population) at the end of
the developmental cycle. The timing of replication and conversion in each chlamydia
is inherently stochastic, and this leads to variability in population sizes but doesn’t
appear to significantly change the overall dynamics as shown in these models. We
have undertaken a number of comparisons between model predictions and available
data, both quantitatively and qualitatively in Lee et al. (2018); Wan and Enciso (2017)
and herein. For more quantitative agreement between optimal control models and data
on other features such as the switch time for the onset of conversion, the effects of
threshold size for conversion, etc., we need to refine the models further to allow for
more than four forms in order to capture the multiple divisions required to reach the
small size conversion eligibility threshold.

Acknowledgements Funding was provided by National Science Foundation (Grant Nos. DMS1763272,
DMS1616233) and National Institutes of Health (Grant No. R01 AI151212).

Appendix

A: Summary and Description of the Six Relevant Models

As the present work is the third report of our work to examine the development of
C. trachomatis and its bio-theoretic foundation, we summarize below all the models
involved in the discussion herein, both new and previously analyzed, and clarify their
relation to each other.

• TheGD-Model: The data ofLee et al. (2018) reveal a complexdevelopmental cycle
that features repeated divisions of an RB form of the bacterium and the conversion
of RB to the EB form that survives host cell lysis to infect other human cells
and spread the bacteria. A probabilistic model with gamma distributions assigned
to the elapsed times between different state transitions, known as the GD-Model
herein, was formulated in Lee et al. (2018) to show the empirical findings can be
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faithfully replicated by a mathematical model based on a few simple theoretical
ingredients.

• The PT -Model: The GD-Model reproduces the features of the chlamydial devel-
opment observed but does not provide a bio-theoretic basis for these features.
To address the question what role natural selection plays in these features, a
deterministic PT-Model for the evolution of the two (lumped) C. trachomatis pop-
ulations in a cytoplasmic inclusion was formulated in Wan and Enciso (2017)
to focus on the alternative cell fate choices of an RB division into two RBs or
an RB conversion into an EB. The resulting RB-to-EB conversion strategy that
maximizes the EB population at a known terminal time (without any built-in
mechanism to induce the observed conversion holiday at the start of the devel-
opmental cycle) is qualitatively the same as that found empirically in Lee et al.
(2018).

• The BD-Model: The variability of the many features of the chlamydial develop-
ment among the collection of infected cells examined necessitates formulation and
analysis of probabilistic models. The alternative choice of division and conversion
is captured by a simple birth and death process model (the BD-Model) for the
RB and EB populations in Sect. 2. This BD-Model provides a stepping stone to
our two approaches to the optimal control problem for our posit that the devel-
opment cycle is the optimal strategy for maximizing the spread of the bacterial
infection.

• The RT -Model: With data available for the lysis time of the infected cells exam-
ined, one approach is to treat T as a random variable with a probability distribution
(or a density function) estimated from the data. This leads to the stochastic optimal
control RT-Model of Sect. 4.

• The WS-Model: An alternative approach assumes the variability of lysis time
among host cells to be a consequence of the uncertain environment experienced
by different host cells and the resulting in random elapsed times transitioning from
an RBs to two smaller RBs (after a division) or to an EB (through a conversion)
captured by the BD-Model. The lysis time for each host cell in this WS-Model is,
as seen from Sect. 3, determined by a threshold condition of a weighted sum of
terminal RB and EB populations.

• The MP-Model: The highly idealized 2-form models are too coarse-grained for
matching with available developmental data. A qualitative difference is observed
between the theoretical result and the data reported in Lee et al. (2018) on the post
conversion holiday growth of the RB population. The discrepancy is removed by
a four-form model, the MP-Model of Sect. 6.

B: Method of Characteristics for Generating Functions

The characteristic ODE of the first order PDE for G(x, τ ) are

dx

dτ
= −ρ + (1 + ρ)x − x2,

dG

dτ
= 0.
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The Riccati equation for x(τ ) can be written as

dx

dτ
= (1 − x)(x − ρ).

with xp(τ ) = 1 as a particular solution. The decomposition

x(τ ) = 1 + 1

z(τ )

transforms the Riccati equation into a linear ODE

dz

dτ
− (1 − ρ) z = 1.

with an exact solution

z(τ ) = e− f (τ )

{
1

x0 − 1
+ I (τ )

}

where as given in (9)

f (τ ) = −τ +
∫ τ

0
ρ(ξ)dξ, I (τ ) =

∫ τ

0
e f (ζ )dζ,

and x0 is a constant of integration. The corresponding solution for x(τ ) is

x(τ ) = 1 + 1

z(τ )
= 1 + (x0 − 1) e f (τ )

1 + (x0 − 1) I (τ )
(85)

with
x(0) = x0.

The solution for the other characteristic ODE is

G(x, τ ) = G0 = xN0 (86)

since there are exactly N RB units initially so that

[G(x, τ )]τ=0 = G(x0, 0) =
∞∑

k=0

Pk(0)x
k
0 = xN0 .

To complete the solution, we solve (85) for x0 in terms of x and τ to get

x0 = 1 + x − 1

e f (τ ) − (x − 1)I (τ )
(87)
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Upon using this expression for x0 in (86), we obtain

G(x, τ ) = xN0 =
{
1 + x − 1

e f (τ ) − (x − 1)I (τ )

}N

. (88)

C: Proof of Proposition 4

Proof The optimal control uop(t)must be the lower corner control 0 at least in a small
interval (t0, ts] adjacent to the switch point. If not and uop(t) = umax for 0 ≤ t0 <

t ≤ ts, then
λ′(ts) = uαλ(ts) − umax = −α < 0

so that λ(t) is a decreasing function of t in some small neighborhood of ts . With
1 − λ (t) ≤ 0 for t ≤ ts , the upper corner control umax does not maximize the
Hamiltonian at least for t in that neighborhood; hence, u(t) = umax is not optimal
there. Since the singular solution does not apply, we are left with the only option of
uop(t) = 0 in that neighborhood. In that case, the adjoint DE (31) and the continuity
of the adjoint function require

λ′ = −αλ. λ(ts) = 1

and therewith
λ(t) = e−α(t−ts ), (t ≤ ts).

With this, the Hamiltonian,

H(u) = αλ(t)R(t) +
[
1 − e−α(t−ts )

]
u(t)R(t), (t ≤ ts), (89)

is maximized by the lower corner control uop(t) = 0 for all t in the interval [0, ts). �

D: Proof of Proposition 7

Proof With the Euler BC λg(T2) = 0, the Hamiltonian reduces to

Hs(T2) = u(T2)Rg(T2)Fc(T2)

(i) For the general case with Fc(T2) > 0, Hs(T2) is maximized by the upper corner
control so that uop(T2) = umax. Given

λg(T2) = 0, λ′
g(T2) = −umaxFc(T2) < 0,

we have λg(t) ≥ 0 but, by continuity, λg(t) < Fc(t) for some interval (ts, T2]
adjacent to T2. It follows from R(t) > 0 that uop(t) = umax at least in (ts, T2]
with ts being the root of (66) nearest to (but still <) T2.

123



24 Page 34 of 35 G. Enciso et al.

(ii) For the case Fc(T2) = 0 (and Fc(t) > 0 for t < T2), we have

[{
λg − Fc

}′]

t=T2
= uα

[
λg − Fc

]
t=T2

− αFc(T2) + fT (T2)

= uα

{
λg − Fc

}
t=T2

+ fT (T2) ≥ uα

{
λg − Fc

}
t=T2

so that
[
Fc(t) − λg(t)

]
is a decreasing function of t but remains > 0 at least in

some interval (ts, T2]. It follows from (61) that we have uop(t) = umax at least in
(ts, T2] with ts being the root of (66) nearest to (but still <) T2.

�

E: Proof of Proposition 8

Proof We have already uop(t) = umax for ts < t ≤ T2 from Proposition 7 where the
switch point ts is the root of (70) nearest to T2. We also learned from the development
prior to this proposition that uop(t) cannot be umax or the singular solution for t � ts .

For the lower corner control in that range, the corresponding adjoint function,
denoted by λ�(t), is determined by

λ′
� = −αλ�, λ�(ts) = Fc(ts).

The exact solution is
λ�(t) = Fc(ts)e

−α(t−ts ).

(i) For ts ≤ T1, we have Fc(t) = 1 and λ�(t) = eα(ts−t) so that 1 − eα(ts−t) < 0 for
all t < ts and

Hs(t) = u(t)R(t)
[
1 − eα(ts−t)

]
+ αR(t)eα(ts−t),

is maximized by uop(t) = 0 there.
(ii) For ts > T1, Fc(t) decreases only linearly with increasing t while λ�(t) decay

exponentially with λ�(ts) = Fc(ts) so that uop(t) = 0 is also optimal for t < ts .

�
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