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The paper describes an algebraic method for the second-order statistics of the response
of multi-degree-of-freedom linear time-invariant dynamical systems to (zero mean)
white noise or stationary filtered white noise excitation. The method is based on the
observation that the steady-state covariance matrix Y of the response is the solution of
the matrix equation AY -- YA” = C, where A’ is the transpose of A. A simple algorithm,
which takes advantage of the special form of A, is given for the solution of the matrix
equation. The algorithm is particularly suitable for machine computation. The correlation
matrix is simply the product of the impulse response matrix and the covariance matrix.

The above general method is applied to study the flapping response of a flexible lifting
rotor blade in hovering or vertical flight to stationary random excitation. The results of
this study show that the conventional rigid blade analysis does not in general give an
adequate approximate description of the mean square response of the blade. They also
suggest that an adequate approximate sclution may be obtained by an uncoupled two-
modes analysis if the Lock number of the blade is not too large.

An alternate method for the solution of the matrix equation is also given for systems
with a large number of degrees of freedom. This alternate method is computationally less
efficient but does allow us to keep the calculations strictly in-core for systems with up to
100 degrees of freedom.

1. INTRODUCTION

A general M-degree-of-freedom time-invariant dynamical system with damping may be
characterized byT

M
X+ i X+ D L Xi =Sfu(®), m=1,2,..., M. (1)
k=1

If £,(¢) are zero mean random functions with known statistics, the second-order correlation
functions of the steady-state response are usually obtained by way of the impulse response
matrix or the frequency response matrix [I]. A considerable amount of non-algebraic
calculation is involved in either approach.

In practice, one often settles for the steady-state mean square properties of the response
contained in the elements of the covariance matrix, {x;(t) x,(£)>, <x,{t) x;(t)> and <x (1) xx (1),

+ A list of symbols is given in Appendix II.
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where <: - +> is the ensemble averaging operation. If the excitations are temporally uncor-
related, a third method described in reference [1] (see pp. 151-152) may be used to obtain
the covariance matrix. The essential feature of the method is the formulation of a non-
stochastic initial value problem for the covariance matrix itself. Though not mentioned in
reference [1], it is not difficult to see that the steady-state solution of this initial value problem
involves only the solution of a set of linear algebraic equations if the excitations, f,,(¢), are
white noise processes. Moreover, the correlation matrix of the response, if needed, can be
obtained from the covariance matrix and the impulse response matrix of the dynamical
system.

The advantage of this algebraic method for time-invariant dynamical systems does not
seem to have attracted much attention, possibly because of (i) the severe restriction imposed
on the excitations, and (ii) the very awkward form in which the linear equations naturally
appear, namely AX + XB = C, where A, B, X and C are all square matrices with X being
the unknown. In this paper, we will (i) describe an effective method for solving the relevant
matrix equation suitable for automatic computation, (if) make use of the technique of
filtered white noise in control theory to remove the restriction of white noise excitations so
that, for all practical purposes, the determination of the steady-state covariance matrix
remains algebraic for all stationary excitations, (iii) apply the method to obtain the steady-
state mean square response of a flexible rotor blade in hovering to a zero mean stationary
(randomly changing) pitch angle, and (iv) suggest an alternate strictly in-core method for the
matrix equation when M is large.

The results for the rotor blade problem show that the conventional rigid blade analysis
does not in general give an adequate approximate solution for the mean square response.
They also suggest that an adequate approximate solution may be obtained by an uncoupled
two-mode analysis if the Lock number of the blade is not too large.

2. THE COVARIANCE MATRIX FOR WHITE NOISE EXCITATION

Let
Y= X, Ymsk = Xis
g =0, guw=f k=12,.. M) 2
and write the system (1) as
y =Ay+g, ©)
where
0 I
A= [—Q wZ]’ Q= [wjz 6,1, 7=l 4)

with I being an M x M identity matrix. If the excitation is temporally uncorrelated so that
Sult2) [ul 1)) = Frn 012 — 1), (%)

where (- - -) is the ensemble averaging operation and where F = [F,,] is a positive semi-
definite symmetric constant matrix, the covariance mattix of y, defined as

Y(1) = Ky@)y' D) ©)

+ A referee pointed out that this technique is also used in reference [1] in connection with the transition
probability density function of a continuous Markov process.
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where ()’ denotes the transpose of (), satisfies the matrix ODE [1]

Y =AY + YA’ +G, (7
where
G=[gg']=[0 0]. ®)
0 F

Supplemented by suitable initial conditions (e.g., Y(0) = 0 if the system is initially at rest),
equation (7) determines Y completely.

If we are only interested in the steady-state solution of equation (7), we may get it simply
by solving the system of (2M)? linear algebraic equations

AY + YA = —G. )]

With the help of Kronecker products [2], the matrix equation (9) may be put in the more
convenient vector form

BE =, (10)
where
E=(Y11, Yiar oo s Yioms Yoir o oo Yo am)s
71 =1(G11, Gras - - Gramys Ga1s - - s Gann )
B=AxI+IxA, an

with C x D = [C;; D]. Equation (10) can now be solved by the conventional methods. The
use of Kronecker products allows us to relegate all computations in the solution of equation
(9) to an automatic computer.

However, even for M =5, B is already a 100 x 100 matrix. To avoid dealing with an
extremely large B, we will describe in the next section a more practical method of solution
which takes advantage of the special form of A.

3. AN EFFECTIVE METHOD FOR AY + YA’ = -G

Partition Y into four M x M sub-matrices,

v [U S] ’ 2
TV
where
U=[x(0)x(t)], S =[Cait) (1)),
T = [{xi(®) x,(1)>], V= [Cxae) xi(2)). (13)

We note parenthetically that U = U, V' =V and S’ =T, so that there are at most 2M> + M
unknowns.
With equation (12), equation (9) is equivalent to the four matrix equations

S+T=0, QU+ZT-V=0,
UR+SZ' —V=0, QS+TR+ZV+VZ=F, (14)
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where use has been made of the fact that 2 is diagonal so that ' = Q.1 The first of equations
(14) may be used to eliminate T from the other three. The results can be equivalently written as

ZS +SZ'=QU-UR, 2V=QU+UR—(ZS —SZ)),
QS —SQ +ZV +VZ =F, (15)

where the second and third of equations (14) have been replaced by their sum and difference.
Since 2 is diagonal, the first of equations (15) can be written as

ZxI4+IxZL)s=(RxI—1x Q)u, (16)

where s and u are obtained from S and U in the same way as £ from Y. Equation (16) can be
solved for s in terms of u:

s=(ZxI+IxZy (R x1—-Ix Qu=7Z7'Q_u. (17)

The above expression for s can then be used to eliminate S from the second of equations (15)
(written in terms of Kronecker products) so that

V=@ xI+Ix Q) (ZxI-1IxZ)Z 'R _Ju=1i[Q, - Z_77 Q]u. (18)

Finally, the last of equations (15) may be written as an equation for u alone with the help
of equations (17) and (18):

Q7' Q_+31Z,. 2, —3Z.7 7Z7'Q Ju—T1. (19)

We now solve equation (19) for u (or U). Equations (18) and (19) then give v and s (and
therefore V and S), respectively. The above method of solution depends only on the M2 x M2
matrices 2, and Z,, with . being diagonal. In contrast to the straightforward method of
section 2, which requires the inversion of a (2M)? x (2M)? matrix B, only the three M2 x M?
matrices, Z,, Z_ and Z7' constitute the bulk of the storage requirement (while £, are
effectively M2 x 1 vectors). The algorithm is not the most efficient one available, but it is
suitable for machine computation.

4. A FLEXIBLE LIFTING ROTOR SUBJECT TO SHAPED WHITE NOISE
EXCITATION

As an application of the general results of sections 2 and 3, we consider a very flexible
uniform rotor blade hinged at the axis of revolution (Figure 1). If the effect of bending
stiffness can be neglected,{ the transverse motion of the blade in hover may be adequately
described by the dimensionless equation (see reference [3] for a derivation of and the basic
assumptions inherent in this equation)

Uy + Yo xu, — 3[(1 = X ule =pox’nr)  O<x<Il,1>1), (20)

where v is the dimensionless transverse displacement of the blade (normalized by the blade
length). The Lock number y = 6y, is a measure of the aerodynamic effects. n(r) is the randomly
changing pitch angle assumed to be uniform over the blade length. Equation (20) is supple-
mented by the conditions v =0 at x =0 and u, bounded at x = 1, and by suitable initial
conditions which we will take to be u(x,0) = 1,(x,0) =0, 0 < x < 1.

1 If we wish, we can now use S+ T=0and S’ =T to get S’ = —S so that §;; = 0 and S;; = —S};, leaving
us with 23M? + M) unknowns (the elements of the symmetric matrices U and V and the skew symmetric
matrix S). For them, we have QU — ZS — V=0 and 2S — S + VZ’ = F which form a set of 3M? + M)
equations since both sides of the second matrix equation are symmetric. However, we will proceed in a
different direction leading to a simpler algorithm.

t The effective bending stiffness factor is about 0-06 for many existing blades.
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To obtain the mean square response of the blade, we write
u(xr Z) = 21 an(t)P2n~1(x)’ (21)

where P,(x) is the Legendre polynomial of degree k. Equation (20) requires the coefficients
a,(t) to satisfy the coupled ODE

@+ 02+ odm — 1) S Geai(t) = yoldm — Drun(t)  (m=1,2,..), (22)
k=1

where

1 1
0% =m@m = 1), = [ xPon 1(9) P s()dX = O, T = [ P Papa () dx =01, (23)
0 0

and the initial conditions a,,(0) = ,(0) =0, m=1, 2, 3, . . . . The constants o, = 0, arc
givenin Table 1 form, k=1,2,3,.. ., 10.

PO

wlx,r)
Rotor plane
t

v

Figure 1. A flexible rotor blade.
The mean square properties of the blade are given by
W)= 5 5 a0 Pans (O P (2,
S 3 a0 o 1(3) P (),

m=1 k=1

W)= 55 ()0 Pan () Paca(). 24)

Qulx, ) ux, 1))

il

Our problem now is to determine <a,, (1) a,(+)>, <a,(t) ax(t)> and {a,(t)a,(t)> for all m and k
from equation (22). An approximate solution of this problem can be obtained by retaining
only the first M terms in the expansion (21). In that case, equation (22) becomes a system
of M equations of theform (1), with £, = yo(4m — 1) 0, (# () and £,,(2) = yo(dm — 1) oy ,0(t).
The results of sections 2 and 3 are directly applicable for the determination of the (M x M)
matrices U = [{a, () a(t)>], S = Ka(t)ai(t)>] and V = [{a,(t)a;(r)>] for large ¢ when n(t)
is a white noise process with zero mean and normalized spectral density. For this problem,
we have F,, = vi(dm — 1)(dk — 1) oy, 044

Just how large M must be for a good approximate solution depends of course on the rate
of convergence of the series in equations (24). For all the cases investigated, we found that
no more than five terms in the expansion (21) are needed to get convergence to at least four
significant figures in all the quantities calculated. Our solution also agrees with the solution
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for the same problem obtained in reference [4] by the spatial correlation function method
developed recently in references [5] and [6]. The present Fourier Legendre expansion method
is equivalent to and (in terms of computing time) somewhat more efficient than the method
of reference [4] for the problem considered herein. In the event that the random excitation
in equation (20) also depends on the spatial variable x, the present expansion method no
longer applies and the spatial correlation function method seems to be the most efficient
approach available.

5. NUMERICAL RESULTS FOR ROTOR BLADES WITH WHITE NOISE
EXCITATION

If only the first term is retained in the expansion (21), it follows immediately from equation

(14) (or from equations (17)~(19)) that
{a(t) ay(t)) =0,

2 -2 2 370
{ai(t)) =<ai*(t)) = 6yo 011 = IR
They correspond to the steady-state mean square response of a hinged uniform, rigidly
flapping blade subject to a white noise excitation [7]. Note that the displacement and velocity
are statistically independent as they should be.
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Figure 2. Distribution of the mean square displacement along the blade span.

The “multi-mode” solution (24) shows that the steady-state mean square displacement at
the blade tip differs from the rigid blade value by no more than 59 for all realistic values
of y, namely 2 < y < 16. The distribution of the normalized mean square displacement over
the blade span is shown in Figure 2 for the extreme value y = 16, with the normalized rigid
blade solution also plotted as a reference. The tip mean square displacement is larger than
the corresponding rigid blade value and tends toward the latter for smaller values of y.

From Figure 3, we see that the discrepancy in the mean square velocity between a flexible
and a rigid blade is much larger, by as much as 28 9 at the tip for y = 16. The distribution of
<u?) is closer to that of the rigid blade solution for smaller values of y. However, there is still
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about a 209, difference between the flexible and rigid blade solution at the blade tip for y = 2.
Again, the rigid blade tip value of {u?> is a lower bound for the flexible blade tip mean square
velocity.
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Figure 3. Distribution of the mean square velocity along the blade span.
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Figure 4. Effect of the Lock number, y, on the mean square properties at blade tip.

The actual steady-state values of <u*> and <{u?) at the tip of the flexible blade are plotted
as functions of y in Figure 4. The fact that these values are nearly proportional to y suggests
the possibility of an approximate solution to be described in Appendix I.

It should be emphasized that the good agreement between the rigid blade and flexible
blade mean square displacement distribution for the present problem does not necessarily
mean that a rigid blade model is always adequate as far as the mean square displacement is
concerned. For example, if the factor x* on the right side of equation (20) is replaced by x
(corresponding to the case of a random inflow), the rigid blade mean square displacement
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can be off by as much as 10%,. Later, in section 8, we will see that even for the case of a ran-
domly changing pitch angle the same discrepancy appears if n(¢) is exponentially correlated
with a correlation time much longer than one blade revolution.

6. THE COVARIANCE MATRIX FOR A GENERAL STATIONARY EXCITATION

The derivation of equation (7) from equation (3) as given in reference [1] requires that g(¢)
be temporally uncorrelated. If g(z) is a general stationary process of zero mean, we can
reduce the problem to one with a vector white noise excitation by associating g(t) with the
response of some (fictitious) linear time-invariant dynamical system characterized by

g = Cg+ Dw, (26)

where w(z) is a zero mean vector white noise process and D is some constant matrix. By this,
we mean that g(¢) and the steady-state output of the supplementary dynamical system have
the same (first- and) second-order statistics.t Treating g(¢) as a vector unknown, the system
of ODE for the augmented column vector (x',x",g’)’ is one with temporally uncorrelated
excitation and the results of section 2 apply to this augmented system. The construction of
an appropriate supplementary dynamical system has been discussed in references [8, 9, 10]
and elsewhere. In particular, 2 supplementary linear time-invariant system can always be
found for a stationary process with a rational power spectral density, and the use of rational
functions to approximate general functions is well documented. We should also keep in
mind that the statistics of the actual forcing are usually obtained only approximately from
a few sample histories.

7. A FLEXIBLE LIFTING ROTOR SUBJECT TO EXPONENTIALLY
CORRELATED EXCITATION
The above reduction is a known technique in control theory [8, 10] but not often used in
random vibration (see references [9, 11, 12] and references therein). To illustrate the pro-

cedure, we consider again the string model of a flexible rotor blade of section 4 but now take
the scalar random function n(¢) to be of zero mean and exponentially correlated with

(n(t) n(ty)) = e =l hl, 27N

where o is a positive constant. For the purpose of obtaining the second-order statistics of
u(x,1), we may associate n(¢) with the steady-state response of

n +on = V2aw(), (28)

where w(?) is a zero mean white noise process with a normalized spectral density.
If only M terms are retained in the expansion (21), and if we set

y=(ahaZ,""aM’ai’“"al.\{an(t))l, (29)
then the truncated version of equation (22) may be written as
y =Ay+g, (30)

where g=(0, . . ., 0, V2aw)" is a (2M + 1)-dimensional vector, f = {y,(4m — 1)o4,,} is an
(M x 1) matrix, and

o I 0
A=|-@ -7 f . (31)
0 0 —a

T No essential difficulty arises even if the supplementary system is of order higher than 2M.
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Since equation (30) is with a temporally uncorrelated excitation, the covariance matrix

R U S P

Y =[Ky()y'@t)> = [T v Q], (32)
PP Q N

where P = {{a,,(t)n(t)>} and Q = {<a,(t)n(¢)>} are M x | matrices and N(t) = {n*(t)) is a

scalar, satisfies the matrix ODE

Y =AY+ YA’ +G, (33)

where Goarryaarssy = 20 and Gy = 0 otherwise.
Again, for the purpose of obtaining a steady-state solution of the stationary response, we
need only to solve the system of linear algebraic equations

AY + YA’ =G, (34)
or, equivalently, the two subsystems
Q =aP, (Z+o0D)Q+ 2P =1 (35)

and
T+S=0, QU +ZT -V = [fP'],

UQ + SZ' —V = [Pf’], OS+ TR +ZV +VZ =[fQ" + Qf’']. (36)
The first of these systems, equations (35), can be solved immediately for P and Q:
(R +aoZ+PDHP=1f Q=cP. 37

The second system, equations (36), are then four matrix equations for U, S, T and V which
differ from equations (14) only in their right-hand members. Therefore, the algorithm
developed in section 3 is again appropriate. For all cases considered, no more than five
terms in the expansion (24) are needed for an accurate solution, based on convergence to at
least four significant figures and on agreement with the solution obtained in reference [4] by
the spatial correlation method. We emphasize that for the special case where the excitation
is uniform across the blade length, the present approach requires less computing time than
the method of reference [4] which allows for excitations to vary along the blade length.

8. NUMERICAL RESULTS FOR ROTOR BLADE WITH CORRELATED
EXCITATION

For M = 1, we have immediately from equations (37) the steady-state solution

1295611 370

yn(t)) = = 38
<ar(ryn(e)) 41 +o®) + 3y, 4(1 + o®) + 3oy, (38)
and from equations (36)
) 12y001: (4 + 3y0) 370 4o + 3,
<a1(t)> = 5 =0 2 »
40 +a?) + 3oy, 4 41+ o®) + 3ay,
. 48y, 05 " 3a
(@21 = eI 770
41 +a®) + 3oy, 4(1 + ®) + 3ay,,
(ai(t)as (1)) =0, (39)

which are just the steady-state mean square properties of a rigidly flapping blade in hover.
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For a fixed «, our multi-mode solution shows the dependence of the mean square response
of the blade on 7y to be similar to that of the white noise case. For a fixed y, the difference
between the flexible blade and the rigid blade mean square tip displacement is about 109, of
the former for o = 0-1. This difference decreases as « increases. Upon appropriate normaliza-
tion, both tip values tend to the corresponding values for a white noise n(f) as « — .
Evidently, a greater portion of the bending energy is distributed among the “flexural modes”
at the lower range of values of «. On the other hand, the mean square tip velocity for a flexible
blade differs more and more from the corresponding rigid blade value as « increases. Again,
both approach the corresponding values for a white noise n{t).

U I T U TR WO T O N | i I T S O O S S I Lo 11
¢} 02 04 06 1-0 2:0 40 60 10-0 20 30

Figure 5. Variation of the mean square properties at the blade tip with load correlation time, o, y = 4.
———, Rigid blade.

The actual mean square tip displacement and velocity are plotted as functions of « for
v=41in Figure 5. We note in particular that the (normalized) results for large « approach
from below the corresponding results for a flexible blade with a white noise n(1).

9. THE CORRELATION MATRIX

Once the covariance matrix of the response of the dynamical system, equation (3), has
been obtained it is a straightforward matter to calculate the correlation matrix of y defined by

R(1,7) =y y' (1)) (40)

Upon postmultiplying equation (3) through by y'(z) for a fixed 7 < ¢ and ensemble averaging
the result, we get

dR

= AR, 41
ds
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since, for a vector white noise process g, we have {g(¢)y'(z)> = 0 for ¢ > 7. From the definition
of R,

R(t,7) =Y(7). (42)
The solution of the initial value problem, equations (41) and (42), is
R(@,7) =h(t — 1) Y(7) (t =), (43)

where h(¢) is the fundamental matrix of the vector equation y = Ay. This fundamental
matrix can be obtained once for all.

From equation (43), we see that for a white noise excitation, the second-order statistics
of the -response is completely specified by the covariance matrix Y(¢) (the steady state of
which is a constant matrix) and the properties of the particular dynamical system charac-
terized by the impulse response matrix. If in addition the excitation is a zero mean Gaussian
process so that the response is also a zero mean Gaussian process, then the covariance matrix
Y (together with the system properties) completely specifies the response y(¢). On the other
hand, unless the excitation is a (filtered) shot noise, the response cannot be completely
specified by the covariance matrix alone even if the response is Gaussian. However, in view
of the remarks in section 6, the question whether y(¢) is completely specified by its covariance
matrix when f is a zero mean stationary Gaussian process is almost academic.

10. ALTERNATE METHODS FOR AY + YA’ = -G

The reasonably straightforward method of solution for the matrix equation (9) described
in section 3 requires much less storage than the brute force method of section 2 (via equation
(10)) and is perfectly adequate for the analysis of our particular rotor blade problem. How-
ever, it is still necessary to store three M2 x M? matrices where M is the number of degrees
of freedom. We have M < 5 for the rotor blade problem. For M > 13, we can no longer do
the problem entirely in the core of most machines. To get in and out of core during the
solution process increases the computing time considerably. More importantly, it makes
the programming much more intricate. Therefore, it is desirable to have alternate methods
of solution which require less storage.

We can eliminate the storage problem completely for M < 100 if we use a method described
in reference [13]. The method is a synthesis of the results of Krylov, Franklin and Kalman
(see reference [13] for specific references).t We prefer however a conceptually simpler
method recently used in reference [14] in a different connection. This method is based on the
observation that the solution of equation (9) can be given in the form

Y= j er'Ger''dr, (44)
(o]
provided that the real parts of all the eigenvalues of A are negative. (Work with
—AY — YA’ = G if they are all positive.) Note that, with equation (44), we have

©

AY + YA = f di(eAfGeA’f) dr. (45)
t

If A can be diagonalized and P is the relevant similarity matrix whose columns are the
eigenvectors of A, then P~*AP = A = [1,6 ] where 1, are the eigenvalnes of A. Moreover,
we have

PlearP —e, Q leA7Q=ed, (46)

+ Reference [13] and a related paper by the same author were brought to our attention by a referee.
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where Q' = P~1. Now form P~'YQ = Y to get

Y= f et Geddr = — L—————G”l ], 47
i + J

0
where G = P~ GQ.

The problem of finding the solution of equation (9) is therefore reduced to finding the
eigenvalues and eigenvectors of A. This can be accomplished accurately by reducing A to a
Hessenberg matrix and then applying the QR method. The subroutine cMPXQR used in
reference [14] was written to carry out this task. The routine uses double precision complex
arithmetics since the eigenvalues and eigenvectors are in general complex when A is not
symmetric. We note further that the method also applies to the more general equation
AY + YB = —G where Y is not necessarily a square matrix.

Evidently, the above method (as well as the method of reference [13]) involves considerably
more computation than the method of section 3. For systems with a small number of degrees
of freedom, the simpler method of section 3 seems preferable.

REFERENCES

1. Y. K. LiN 1967 Probabilistic Theory of Structural Dynamics. New York: McGraw-Hill Book
Company.

2. R. BELLMAN 1960 Introduction to Matrix Analysis. New York: McGraw-Hill Book Company.

3. C. LAksHMIKANTHAM and C. V. Joga Rao 1972 Aeronautical Quarterly 23, 276-284. Response
of helicopter rotor blades to random loads near hover.

4. F. Y. M. WaN and C. LAKSHMIKANTHAM 1973 ATAA-ASME 14th SDM Conference (Williams-
burg), AIAA Paper No. 73-406. Spatial correlation method and a time varying flexible structure.

5. F. Y. M. WaN 1972 Studies in Applied Mathematics 51, 163-178. Linear partial differential
equations with random forcing.

6. F.Y.M.WaN 1972 Presented at the XIIIth International Congress on Applied Mechanics, Moscow,
USSR, August 1972. A method for linear dynamical problems in continuum mechanics with
random loads.

7. G. H. GAONKAR 1971 Journal of Sound and Vibration 18, 381-389. Interpolation of aerodynamic
damping of lifting rotors in forward flight from measured response variance.

8. H. L. vAN TREEs 1968 Detection, Estimation and Modulation Theory, Part I. New York: John
Wiley and Sons. See pp. 516-526.

9. Y. K. Lix 1963 Journal of Applied Mechanics 30, 555-558. Application of nonstationary shot
noise in the study of system response to a class of nonstationary excitations.

10. A. Brysown and Y. C. Ho 1969 Applied Optimal Control. Waltham, Massachusetts: Ginn & Co.

11. F. Y. M. WaN and C. LAKSBMIKANTHAM 1972 Presented at the American Institute of Aeronautics
and Astronautics 10th Aerospace Science Meeting, San Diego, January 1972. Rotor blade
response to random loads: a direct time domain approach. (1973 American Institute of Aero-
nautics and Astronautics Journal 11, 24-28.)

12. F. Y. M. WaN 1973 To appear Journal of Applied Mechanics 40. Nonstationary response of
linear time-varying dynamical systems to random excitation.

13. W. GerscH 1970 Journal of the Acoustical Society of America 48, 403-413. Meansquare responses
in structural systems.

14. F. Y. M. WaN 1973 To appear Studies in Applied Mathematics 52. An in-core finite difference
method for separable boundary value problems on a rectangle.

APPENDIX I
AN APPROXIMATE SOLUTION FOR THE ROTOR BLADE PROBLEM

From Table 1, we see that the ratio {,,./Cum = O/ Omm 18 considerably less than unity for all
k # m and less than 01 if |k — m| > 2. We may therefore attempt an approximate solution
of the rotor blade problem by omitting all the coupling terms in equation (22). It should be
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noted that while the AM-degree-of-freedom system decouples into M single-degree-of-
freedom systems, the motions of the different “modes” are not statistically independent
since all subsystems experience the same random forcing n(t).

With the coupling coefficients {4, k # m, set equal to zero, and with Y denoting the
corresponding approximate steady-state covariance matrix, we get from equation (9) (which
determines the steady-state covariance matrix for the case of zero mean white noise
excitations)

Smk+ka:05 wrfm Umk+Cmek_ mGzoa
Cl)% Umk + Ck S’-mk - mG = 0’ wr%z S-mk + CO%( ka =+ (gm ~+ Ck) mG = kaa (Al)

where {, = (i = vo(4k — 1) ;. The solution of the system (A1) is

_ 1 < !
Umk = (Cm + Ck) ka> Smk =T (CO,%, - CO%) F"‘k’
Amk Amk
I
V=~ (@} + (o 03) F 42

) mk
with
A = (0} — 07)% + (L + §) (Cn 0} + L 07),
Fop = y2(4m — 1) (dk — 1) 0y, 044, wZ=m2m —1). (A3)

From equations (A2) and (A3), we see that the diagonal terms of the matrices U, V and S
are

= Fkkﬁy0(4k_ l)o'lzk

M e
_ Vi i
Uy = R S = 0. (A4)
Wy

The solution S,;, = 0is the same as the exact solution found earlier. To assess the contribution
of the diagonal terms associated with the higher modes, we form

ka (4k — 1)0'12k Ukk . 1_ E (A5)

== = = 27 *
Vi 3011 Ok U, oV

These quantities are independent of yo. With the help of Table 1, it is not difficult to see that

VZZ U22

—~ 17 00, =3 00

VII / Ull /

V33 U33

B g0, 222005 (A6)
Vi Ui

Ratios with k& > 3 are much smaller still. In view of the exact solution given in Figures 1 and 2,
an approximate two-mode solution with the coupling effect due to both damping and loading
neglected, 1.e.,

P(x, 1)y > Uy [Pi(x)) + Un[P3(x)],

ui(x, 1)) = Vi [Py(X)]) + 1722[P3(x)]2 (r>1), (AT)

accounts for almost all the discrepancies between the rigid blade and flexible blade steady-
state mean square response for the particular type of random forcing considered, provided
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y is not too large (say y, < 1). Such an approximate solution gives within its range of applic-
ability mean square displacement and velocity which vary linearly with p, a property already
exhibited by the exact solution.

For larger values of y, the contribution from 7,, is by itself not enough to bring the mean
square velocity to within 59 of the true solution. In view of the magnitude of the ratios
V! V11 (which are independent of y), retaining more diagonal terms alone cannot improve
the situation. This means that the covariances ¥, j # k, must contribute in a significant way
to the mean square velocity for large y. To assess the actual contribution of V,, for instance,
we may be tempted to consider the ratio 7,,/¥;,. Unfortunately, ¥,,, obtained by omitting
the coupling coefficients ;;, (j # k) from the matrix Z, is not an adequate approximation of
V.. That this is so can be seen from the following exact two-mode solution of equation (9):
i.e., with M =2,

Li(l +ryr2)

Via=Vs=
12 21 202 A

[2F 1, — 11y Faop — 13 Fiql,

1—r2 Vi, 1+r, Q

5212_512——‘?’.2"2?: U12: Uz1=

T e S 2
1+r,r2 w3

1 J:
Vii= —(F11 = 2‘:12 V12), V= EC_(FZZ = 2521 V12),
2

28,
1 ré(l1 +ry,)
U11=2€1w§ Fu* l—l—rzrj 2512V12 P
1 1+r,
U - A8
22 2(260%[1:22 l—l—rzrcﬁzln Via |, (A8)
where
r ———-& r ———gﬂ r :gzi Z_w_%
. sz, & Cn, Cn’ - w%,
2\2 $: 2
A=(~rp) —I—JZ(I+r2)(1+r2rw)(lvr12r21). (A9)
2

With ¢, =5, =0, the above solution reduces to equation (A2) for m, k<1, 2. Having
equation (A8), we now see that the difference between V;, and Vy, is always of the same
order of magnitude as V,,, itself, whatever p, may be. If the covariance V', contributes
significantly to the mean square velocity, V;, itself (or a corresponding solution for M > 2)
and not 77;, must be used. In contrast, the difference between ¥, and Vi is 0 [({1, 1)/ (@3 4)]
compared to V,;. For y sufficiently small (say, yo < 2/3) we have ({;,;)/(w3 4) = 0(y3/@3);
V. is therefore an adequate approximation of V7, for y, < 2/3. The same statement is also
applicable to Uy, and Uy,.

Furthermore, from the magnitude of the ratio ¥,3/7;; (which is of the same order of
magnitude as V5/V;; even if it may be substantially different from the latter), we see that
V15 may contribute more than 5% of the mean square velocity for y = 16. Therefore a two-
mode solution may not be adequate for y, > 2/3.

Altogether, we have that a two-mode solution without any modal coupling should be
within 59 of the true mean square displacement and velocity for y, < 2/3. For larger values
of y,, we should retain the coupling due to damping as well as the load terms. More than two
terms in the expansion (21) will generally be needed. On the other hand, the exact results
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obtained earlier indicate that no more than five terms will be needed for all realistic values
of 2 <y < 16).

A similar analysis can be carried out for an exponentially correlated n(z). The conclusions
are essentially the same as the white noise case. In particular, a two-mode solution (without

any modal coupling) in the case of y = 4 brings the mean square displacement and velocity
to within 59 of the “exact solution™.

APPENDIX II

LIST OF SYMBOLS

Xxm displacement or the mth generalized coordinate
() time derivative of ( )
o, natural frequency of the mth degree of freedom if the system is uncoupled
{mx  coefficient of viscous damping associated with x; in the mth equation
f m(t) zero mean random excitations
the phase space vector {Xq, . . ., Xp» X1y « + o) X}
the vector {0, .. ., 0, f1, .. ., fuu}
the M x M matrix [{;;]
the M x M matrix [w? §;;]
the transpose of ( )
the 2M x 2M matrix <yy">
the 2M x 2M matrix {gg’>
dimensionless transverse displacement of the rotor blade
dimensionless coordinate along the blade span
the Lock number (=6y,)
the fundamental solution matrix
randomly changing pitch angle
autocorrelation function
a white noise process of zero mean and normalized spectral density
reciprocal of the input correlation time
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